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Heterotrophic bacteria use extracellular enzymes to hydrolyze high molecular weight (HMW)
organic matter to low molecular weight (LMW) hydrolysis products that can be taken into the
cell. These enzymes represent a considerable investment of carbon, nitrogen, and energy, yet the
return on this investment is uncertain, since hydrolysis of a HMW substrate outside a cell yields
LMW products that can be lost to diffusion and taken up by scavengers that do not produce
extracellular enzymes'. However, an additional strategy of HMW organic matter utilization,
‘selfish” uptake?, is used for polysaccharide degradation, and has recently been found to be
widespread among bacterial communities in surface ocean waters®. During selfish uptake,
polysaccharides are bound at the cell surface, initially hydrolyzed, and transported into the
periplasmic space without loss of hydrolysis products?, thereby retaining hydrolysate for the
selfish bacteria and reducing availability of LMW substrates to scavenging bacteria. Here we
show that selfish bacteria are common not only in the sunlit upper ocean, where polysaccharides
are freshly produced by phytoplankton, but also deeper in the oceanic water column, including in
bottom waters at depths of more than 5,500 meters. Thus, the return on investment, and therefore

also the supply of suitable polysaccharides, must be sufficient to maintain these organisms.

High molecular weight carbohydrates — polysaccharides - constitute a major fraction of
both living and detrital marine organic matter*>. The degradation of polysaccharides depends
largely on the activities of bacteria equipped with the extracellular enzymes required to
dismantle these often highly complex structures to low molecular weight (LMW) pieces (e.g., 9).
Since LMW hydrolysis products may also be taken up by ‘scavengers’ that do not produce the
enzymes, the enzyme ‘producers’ that carry out external hydrolysis might benefit only in part

from their own enzyme activities'. Selfish bacteria circumvent this problem by transporting large
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polysaccharide fragments into their periplasmic space, minimizing loss of hydrolysis products.
A broad range of polysaccharides is taken up via selfish mechanisms by diverse bacteria in
surface ocean waters’; the speed and extent of selfish uptake and external hydrolysis vary by
geographic location”®, as well as by the nature and abundance of polysaccharides at different
phytoplankton bloom stages®. The extent to which selfish bacteria are present and active in other
depths of the ocean, however, remains unexplored.

Given that polysaccharide-hydrolyzing enzymes are exquisitely specific for substrate
structure'®, we hypothesized that selfish bacteria would be most abundant and active in locations
and depths at which freshly produced — structurally unaltered — polysaccharides are common.
Since both HMW dissolved organic matter and particulate organic matter are more abundant and
are ‘fresher’ — have a higher fraction of chemically characterizable components — in the upper
ocean than in the deep ocean'"!2, we expected that selfish bacteria would be particularly
dominant in the upper water column. We therefore collected water samples at three stations
characterized by different physical, chemical, and productivity conditions in the western North
Atlantic: in the Gulf Stream, in productive waters off of the coast of Newfoundland, and in the
oligotrophic waters of the North Atlantic Gyre (Fig. S1). At these stations, we collected water
from the surface, deep chlorophyll maximum (33 to 104 meters), upper mesopelagic (~300 m),
and bottom (3190 to 5580 m). Triplicate incubations were made with water from three different
Niskin bottles from each depth (biological replicates). We quantified the presence and activity of
selfish bacteria by adding small quantities of structurally-distinct fluorescently-labeled
polysaccharides (FLA-PS) and incubating these water samples at in situ temperatures. The added
FLA-PS — laminarin, pullulan, fucoidan, xylan, chondroitin sulfate, and arabinogalactan — have

different monomer compositions and linkage types. These polysaccharides were chosen because
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they are abundant in marine algae and phytoplankton and/or because a wide range of marine
bacteria may produce enzymes that hydrolyze them (e.g., '*'®). We concurrently measured
selfish uptake and external hydrolysis rates of the FLA-PS, quantified cell abundances, measured
bacterial protein production, and tracked bacterial community composition.

Much to our surprise, selfish bacteria were abundant at all water depths that we
investigated. These bacteria were identified microscopically by the co-localization of the blue
DAPI staining of DNA and the associated intense green staining from the FLA-PS (Fig. 1).
Considerable selfish activity was evident even at the t0 timepoint, when 14-17% of bacteria in
surface water, 5-22% at the DCM, 5-8% at 300 m, and 5-12% of bacteria in bottom water took
up one of the FLA-PS (Fig. 2a-d). With increasing incubation time, the proportion of cells taking
up one of the FLA-PS increased, especially in sub-surface waters. Selfish uptake reached a
maximum of 13-18% of DAPI-stainable cells in surface waters, 14-26% at the DCM, 12-18% at
300 m, and 25-67% in bottom water. Uptake at the t0 timepoint reflects the short-term response
of the in situ community, since the time elapsed between substrate addition and sample
processing is likely insufficient for major changes in community composition, while later
timepoints reflect the activities of a community that has changed in composition with time.

The in situ bacterial communities showed considerable selfish uptake, despite initial
station- and depth-related differences in composition (Fig. 3). These initial communities changed
markedly for the most part over the time course of incubation (Fig. 4; Figs S2-S5), but selfish
uptake at most stations and depths remained constant or increased after the tO timepoint. The
compositional changes in unamended incubations were very similar to the incubations amended
with FLA-PS, demonstrating that the addition of FLA-PS by themselves had little influence on

community composition (Figs. S2¢c-S5¢) or cell counts (Fig. S6). Moreover, the changes in
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community composition typically were not convergent for different depths (Fig. S7), in that
different genera dominated even in cases where similar classes became more abundant with time.
For example, although Gammaproteobacteria became relatively more abundant with time in
many of the incubations (Fig. 4, Figs. S2-S5), the dominant phylotypes varied by depth and
station (Figs. S8-S10); there were no obvious connections between specific changes in bacterial
community composition and selfish uptake.

Although selfish uptake mechanisms have been studied most intensively in members of
the gut-dwelling Bacteroidetes!”!8, our previous investigations in surface ocean waters
demonstrated that a range of bacteria, including members of the Bacteroidetes, Planctomycetes,
Verrucomicrobia, and the genus Catenovulum (Gammaproteobacteria) carry out selfish
uptake’!°. Furthermore, a large fraction of the selfish population is still unidentified”-!°. The
observation of selfish activity at multiple depths throughout the water column against a
background of changing bacterial community composition suggests that this strategy of substrate
acquisition is widespread, and in the ocean is not restricted to a limited range of bacterial taxa.
Since selfish uptake cannot be inferred solely from genomic information?°, however, we cannot
yet determine whether selfish uptake mechanisms are as widely distributed as the ability to
produce extracellular enzymes to carry out external hydrolysis.

We observed remarkable differences in patterns of selfish uptake and external hydrolysis,
which were measured in the same incubations. While selfish uptake was measurable for a broad
range of polysaccharides at all stations and all depths, external hydrolysis was more variable
among stations at similar depths, and decreased sharply in bottom water compared to surficial
waters (Fig. 2). In surface waters at Stn. 19, for example, all polysaccharides except fucoidan

were externally hydrolyzed, but at Stns. 18 and 20 only laminarin, chondroitin, and xylan were
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externally hydrolyzed; these spatial variations in external hydrolysis are consistent with previous
observations in surface ocean waters?!. Station-related variability was also evident at a depth of
300 m: at Stns. 18 and 20, a broad spectrum of polysaccharides was hydrolyzed, but at Stn. 19,
only xylan, laminarin, and pullulan were hydrolyzed. In bottom waters of all three stations, only
two or three polysaccharides were hydrolyzed — laminarin and xylan at Stn. 18, laminarin, xylan,
and chondroitin at Stn. 19, and laminarin and chondroitin at Stn. 20 — at comparatively low rates,
first evident at late incubation timepoints. Overall, the spectrum of substrates hydrolyzed was
narrower and the hydrolysis rates in deep water were considerably lower than in surface water,
consistent with the few previous reports of polysaccharide hydrolysis in deep ocean waters?>24,
Patterns of external hydrolysis and selfish uptake at the same stations and depths thus showed
striking contrasts.

The presence of selfish bacteria in the water column, also at depths well below the
euphotic zone, requires new consideration of the economics of substrate processing and uptake.
Two-player models of enzyme producers and scavengers have considered the conditions under
which extracellular enzyme production may pay off (e.g.,'), such as when polysaccharides are
abundant®’, or when they are found in sufficiently dense patches®®. Inclusion of selfish bacteria in
this calculus, as described in a new conceptual model?’, suggests that substrate structural
complexity, as well as abundance, needs to be taken into account. Selfish uptake, in which
hydrolysate is efficiently captured, can help ensure that investment in extracellular enzymes
generates sufficient return. From this perspective, selfish uptake appears to be widespread 1)
when a substrate is highly complex and requires considerable enzymatic investment, or i1) when
there is high competition for a very widely-available substrate, such that competition is a primary

consideration.
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The first case covers enzymatic investment to acquire comparatively rare and structurally
complex substrates that are selfishly taken up, as in the deep ocean (Fig. 4). Arguably, intact
polysaccharides are likely a comparatively rare commodity in most of the subsurface ocean, and
thus should be a target for selfish uptake, a consideration that would explain the broad range of
substrates selfishly taken up in much of the water column. Polysaccharides such as fucoidan are
particularly good examples for a potential pay-off from selfish uptake, since fucoidan hydrolysis
requires an extraordinary investment in extracellular enzymes?®. Moreover, external hydrolysis
of fucoidan is comparatively rarely detected in the surface ocean?!, and to date has not been
detected in deep ocean waters?®??24, The second set of circumstances for which selfish uptake
pays off — high competition for an abundant polysaccharide — applies especially to laminarin.
Oceanic production of laminarin has been estimated to be on the order of 12-18 gigatons
annually'?*, providing a vast supply of readily-degradable substrate to heterotrophic microbial
communities. Moreover, external hydrolysis of laminarin is measurable in almost every site and
location in the ocean investigated to date?!>27-2224.3.79 pointing at extraordinarily widespread
capabilities to utilize this polysaccharide. Selfish uptake of this polysaccharide therefore ensures
return on enzyme investment by capturing a substrate that would otherwise be acquired by
competitors.

Here we show for the first time that selfish uptake occurs at multiple depths in the water
column, including in deep bottom waters. Furthermore, rapid selfish uptake of polysaccharides in
bottom water provides important clues about the physiology of bacteria in the deep ocean, as
well as the nature of the substrates that they use. Approximately 5-10% of the bacterial
community at our three deep ocean sites was ready and able to take up specific polysaccharides

shortly after addition (Figs. 1- 2, Fig. 4). This response is notable in light of the observation that
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uptake of a simple amino acid at these depths (as demonstrated by leucine used for bacterial
productivity measurements; Table S1), which does not require prior enzymatic hydrolysis, was
quite low especially at Stns. 18 and 19. These observations together suggest that a bacterial
strategy focused on rapid uptake of structurally more-complex, higher molecular weight
polysaccharides pays off in deep water because there is a sufficient supply of these substrates,
whereas the in situ inventory of individual amino acids in bottom water is likely too low?! to
merit special targeting by bacteria. Although we currently lack data on the polysaccharide
component of POM in bottom waters, a new method to specifically quantify laminarin in POM
has demonstrated a considerable laminarin concentration in POM in the upper water column
(including measurements to a depth of 300m3°). Moreover, time-variable rapid transport of
bacteria/particles to bottom water depths has been demonstrated*?; some of this organic matter
reaching these depths evidently is fresh, and has not been thoroughly worked over in the upper
ocean; this organic matter could include intact polysaccharides. Recent measurements of DOM
in deep ocean waters additionally suggest that high molecular weight polysaccharides are added
to the DOM pool circulating in the deep ocean’.

Evidence of selfish uptake of highly complex polysaccharides in the deep ocean supports
the point that the flux of relatively unaltered organic matter to the deep ocean must be of
sufficient magnitude®*33 to support a viable and reactive population of selfish bacteria in the
deep. The presence of bacteria that are capable of processing complex substrates in a selfish
manner also points out that measurements of bacterial metabolism that are dependent upon
uptake of monomeric substances have likely underestimated an important fraction of
heterotrophic carbon cycling activity, since the enzymatic systems used for selfish uptake are

specifically tuned to their target substrates®. The prevalence of selfish uptake against a backdrop
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of changing bacterial community composition (Fig. 2, Fig. 4, Figs. S2-S5), moreover, suggests
that selfish uptake as a substrate acquisition strategy pays off sufficiently that it is comparatively
widespread among bacteria. Selfish uptake is important not only in the surface waters of the
ocean, but also in the upper mesopelagic and deep ocean, and is carried out by heterotrophic

bacteria whose carbon cycling activities help drive much of the marine carbon cycle.

Methods

i. Station location and seawater collection

Seawater was collected at three stations in the western North Atlantic aboard the research vessel
Endeavor (cruise EN638) using a sampling rosette of 30-liter Niskin bottles fitted with a Sea-
Bird 32 conductivity-temperature-depth (CTD) profiler, between May 15™ and 30% 2019 (Fig.
S1). Collection depths included surface water (2.5—-6 m water depth), the deep-chlorophyll
maximum (DCM; depth identified via chorophyll fluorescence signal of the CTD: 104 m, 33 m,
64 m water depth at Stns. 18, 19, and 20, respectively), ~300 m (300 m at Stns. 18 and 20; 318 m
at Stn. 19), and bottom water (3,190 m, 4,325 m, and 5,580 m, at Stns. 18, 19, and 20,

respectively; Fig. S1).

At each station and depth, triplicates of 600 mL (DCM and bottom water) or 290 mL (surface
and 300 m water) were added to sterile, acid rinsed (10% HCI) bottles and incubated for up to 30
days in the dark at in situ temperatures (room temperature (RT) for water from the surface, DCM
and 300 m; 4°C for bottom water) with one of the six FLA-PS: arabinogalactan, chondroitin

sulfate, fucoidan, laminarin, pullulan and xylan, each at 3.5 uM monomer equivalent
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203  concentration. A single live treatment control without the addition of any substrate was included
204  for the DCM and bottom waters; autoclaved killed controls were included for each substrate at
205  each station and each depth, and were incubated under the same conditions alongside

206  polysaccharide incubations

207

208  Subsamples for microbial cell counts and selfish FLA-PS uptake were collected from DCM and
209  bottom water incubations 0, 1, 3, 7, and 10 days after the addition of polysaccharides; in surface
210 and 300 m incubations, subsamples were collected 0, 3, 7, 10, and 15 days after polysaccharide
211  addition. Note also that the t0 timepoint measurements of selfish uptake represent a time period
212 ofca. 30 min (surface, 300m) to 5 hrs (DCM, bottom water), representing the time required after
213  initial substrate addition to go back and process all of the samples to which substrate had been
214  added. To measure the extracellular hydrolysis of FLA-PS, subsamples were collected on days 0,
215  3,7,10, 15, and 30 of the incubations. Subsamples for bulk community analysis were taken

216  before the addition of FLA-PS and at day 1, 3, and 10 of the incubation with DCM and bottom
217  water and at day 0, 3, 7, 10, and 15 in the surface and 300 m incubations.

218

219 ii. Synthesis of FLA-PS and measurements of extracellular enzymatic activities

220  Arabinogalactan, chondroitin sulfate, fucoidan, laminarin, pullulan, and xylan were fluorescently
221  labeled with fluoresceinamine (Sigma) and characterized according to Arnosti (2003)3.

222 Subsamples (2 ml) were removed at days 0, 1, 3, 7, 10, 15, and 30 days post FLA-PS addition,
223 and analyzed after Arnosti (2003)%¢. Note that the added substrate is in competition with

224  naturally occurring substrates, and thus calculated hydrolysis rates are potential hydrolysis rates.

225

10
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iii. Counts of total and substrate-stained cells

Cell counts:

To prepare samples, 25-50 mL of 1% FA fixed sample were filtered onto a 0.22 um pore size
polycarbonate filter at a maximum vacuum of 200 mbar. The DNA of filtered cells was
counterstained using 4',6-diamidin-2-phenylindol (DAPI) and mounted with a
Citifluor/VectaShield (4:1) solution. A minimum of 45 microscopic images per sample were
aquired as described by Bennke et al. (2016)37 with a fully automated epifluorescence
microscope (Zeiss Axiolmager.Z2 microscope stand, Carl Zeiss) equipped with a cooled
charged-coupled-device (CCD) camera (AxioCam MRm + Colibri LED light source, Carl Zeiss),
three light-emitting diodes (UV-emitting LED, 365 nm for DAPI; blue-emitting LED, 470 nm
for FLA-PS 488) and a HE-62 multi filter module with a triple emission filter (425/50 nm,
527/54 nm, LP 615 nm, including a triple beam splitter of 395/495/610, Carl Zeiss) using a 63x
magnification oil immersion plan apochromatic objective with a numerical aperture of 1.4 (Carl
Zeiss). Final cell enumeration on the acquired images was performed using the image analysis
software ACMETOOQOL (http://www.technobiology.ch and Max Planck Institute for Marine

Microbiology, Bremen). Automated cell counts were checked manually.

Total microbial cell numbers and FLA-PS stained cells were counted in a single experimental
setup, following Reintjes et al. (2017)3. Counting validation was done through manual cell
counting on all stains. Selfish substrate uptake could be measured for only four or five of the six
polysaccharides used; at all stations and depths, xylan incubations yielded high background
fluorescence, which interfered with cell counting; this problem also affected efforts to count cells

for pullulan uptake in surface waters and at a depth of 300 m. Note also that we report the

11
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249  fraction of cells carrying out selfish uptake under the assumption that each substrate is taken up
250 by different bacteria (i.e., when reporting that for example 22% of total DAPI-stainable cells

251  were substrate-stained, we add together the percentages taking up laminarin, fucoidan,

252  arabinogalactan, and chondroitin). Since selfish uptake of each substrate is measured in different
253  incubations (triplicate incubations of each individual substrate), however, it is possible that some
254  or all of the cells taking up one substrate also take up another substrate via a selfish mechanism.
255

256  iv. Super-resolution imaging of selfish polysaccharide uptake

257  The specific substrate accumulation pattern in FLA-PS stained cells was visualized on a Zeiss
258 LSM780 with Airyscan (Carl Zeiss) using a 405 nm, a 488 nm, and a 561 nm laser with

259  detection windows of 420-480 nm, 500-550 nm, and LP 605 nm, respectively. Z-stack images of
260 the cells were taken with a Plan-Apochromat 63x/1.4 oil objective and the ZEN software

261  package (Carl Zeiss) was used for subsequent AiryScan analysis.

262

263  v. Taxonomic bacterial community analysis

264  The initial bacterial communities and their change over the course of the incubation were

265  determined through bulk 16S rRNA analysis. Therefore, 25 mL samples from each incubation
266  were filtered onto a 0.22 um pore size polycarbonate filter at a maximum vacuum of 200 mbar,
267  dried and frozen at -20 °C until further processing. Total DNA extraction from filter was done
268  using the DNeasy Power Water Kit (Quiagen). Determination of the concentration as well as the
269  size of the extracted DNA was done via gel chromatography using a Fragment Analyzer™

270  (Advanced Analytical). Amplification of the variable 16S rRNA regions V3 and V4 (490 bp)

271  was done in 30 cycles using the 5 PRIME HotMasterMix (Quantabio) together with the

12
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Bakt 314F (CCTACGGGNGGCWGCAG) and Bakt 805R
(GACTACGVGGGTATCTAATCC)*® PCR primer pair with an individual 8 bp barcode adapter
(based on the NEB Multiplex Oligos for Illumina, New England Biolabs) attached to the forward
primer and the reverse primer. The amplified PCR product was purified and size selected using
the AMPure XP PCR Cleanup system (Beckman Coulter). Barcoded products were pooled in
equimolar concentrations and send for paired-end Illumina sequencing (2x250 bp HiSeq2500) to
the Max Planck-Genome-center Cologne. Sequences were merged, demultiplexed and quality
trimmed (sequence length 300-500 bp, < 2% homopolymers, <2 % ambiguities) with
BBTools*. The SILVAngs pipeline*®® with the SSU rRNA SILVA database 138 was used for

sequence comparison and taxonomic assignment of the retrieved sequences.

vi. Statistical analysis of bacterial communities

Analysis of the bacterial community composition was done normalized reads representing >
1,000 reads per sample and the average of triplicates for the FLA-PS amended incubations was
used for further analysis and visualization. Archaeal and eukaryal reads were excluded from
analysis. Differences in the community composition between station, water depth, incubation
time, and substrate amended to unamended incubations were analyzed by analysis of similarity
(ANOSIM) and visualized in non-metric multi-dimensional scaling (NMDS) plots, using Bray-
Curtis dissimilarity matrices. The community shift over the course of the incubation was
visualized by the comparison of the read abundance on genus level from the initial community to

the respective read abundance in the incubations over time.

vii. Bacterial productivity

13
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295  Bacterial productivity was measured after Kirchman et al. (2001)*'. In brief, bacterial protein
296  production was calculated from leucine incorporation rates, measured in samples that were

297  incubated at in-situ temperatures in the dark for time periods of 12 to 24 h. Bacterial carbon
298  production was calculated by multiplying bacterial protein production by 0.86%>4!,

299

300 viii. Data availability

301 Bacterial 16S rRNA gene sequences were archived as [llumina-generated libraries at the

302  European Nucleotide Archive (ENA) of The European Bioinformatics Institute (EMBL-EBI)
303  under the accession number PRIEB45894.
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Arabinogalactan, 0d, Stn. 18 Fucoidan, 0d, (Stn. 18) Chondroitin, 3d, Stn. 18

.

Arabinogalactan, 7d, Stn. 18 | Chondroitin, 3d, Stn. 19 Laminarin, 10d, Stn. 20

Arabinogalactan, 3d, Stn. 18 Pullulan, 7d, Stn. 19 Fucoidan, 3d, Stn. 20

Nucleic acid stain = DAPI, . Substrate = FLA-polysaccharide

Figure 1 Selfish bacteria throughout the water column in the western North Atlantic Ocean. Super-
resolution images of microbial cells from surface water, 300 m water depth, and bottom water
(3,190 m, 4,325 m, and 5,580 m, respectively) showing accumulation of fluorescently labeled
arabinogalactan, fucoidan, chondroitin sulfate, laminarin, and pullulan due to selfish uptake. Blue
signal (DAPI) shows nucleic acids, green signal is due to fluoresceinamine-labeled polysaccharides.

Scale bar =1 ym.
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Figure 2 Heterotrophic polysaccharide utilization throughout the water column at three distinct locations in
the western North Atlantic Ocean. Selfish uptake and extracellular (external) hydrolysis of six different
fluorescently labeled polysaccharides (FLA-PS) in (a) surface waters, (b) at the DCM, (c) at 300 m water
depth, and (d) in bottom waters at Stations 18, 19 and 20 over the course of individual FLA-PS amended
incubations. Note that selfish FLA-xylan uptake at all stations and FLA-pullulan uptake in surface waters
and at 300 m depth could not be analyzed due to high background fluorescence and are therefore not
included in the data. Error bars represent the average of biological replicates (n = 3). Samples marked
with an x were not analyzed.
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Figure 4 Selfish polysaccharide uptake, cell counts, and bacterial community composition in North Atlantic
bottom water. (a) Selfish uptake of FLA-PS over the course of 10 day FLA-PS amended incubations at
Stations 18, 19 and 20 (same data as in Fig. 2d). (b) Development of the total microbial cell counts and (c)
bacterial community composition in each of the FLA-PS amended incubations from (a), and in the unamended
treatment control. The initial community shortly after the addition of the FLA-PS is depicted at 0 days of
incubation. Bars represent the average of up to 3 replicates. Time points marked with an x were not analyzed.
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