

1 **Resistance to a CRISPR-based gene drive at an evolutionarily conserved site is**
2 **revealed by mimicking genotype fixation**

3 Silke Fuchs^{1¶*}, William T. Garrood^{1¶}, Anna Beber², Andrew Hammond^{1,3}, Roberto Galizi⁴,
4 Matthew Gribble¹, Giulia Morselli¹, Tin-Yu J. Hui¹, Katie Willis¹, Nace Kranjc¹, Austin Burt¹,
5 Tony Nolan^{5*} and Andrea Crisanti^{1,6*}

6

7 ¹ Department of Life Sciences, Imperial College London, London, UK

8 ² Department of Biology, University of Padua, Padua, Italy

9 ³ Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health,
10 Johns Hopkins University, Baltimore, MD 21205, USA

11 ⁴ Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University,
12 Keele, Staffordshire, UK

13 ⁵ Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, Merseyside,
14 UK

15 ⁶ Department of Molecular Medicine, University of Padua, Padua, Italy

16

17

18 * Corresponding Authors

19 ¶ Authors contributed equally to the publication

20

21 Short Title:

22 CRISPR/Cas9 and target site ultra-conservation

23 **Abstract**

24 CRISPR-based homing gene drives can be designed to disrupt essential genes whilst
25 biasing their own inheritance, leading to suppression of mosquito populations in the laboratory.
26 This class of gene drives relies on CRISPR-Cas9 cleavage of a target sequence and copying
27 ('homing') therein of the gene drive element from the homologous chromosome. However,
28 target site mutations that are resistant to cleavage yet maintain the function of the essential
29 gene are expected to be strongly selected for. Targeting functionally constrained regions
30 where mutations are not easily tolerated should lower the probability of resistance.
31 Evolutionary conservation at the sequence level is often a reliable indicator of functional
32 constraint, though the actual level of underlying constraint between one conserved sequence
33 and another can vary widely. Here we generated a novel gene drive in the malaria vector
34 *Anopheles gambiae*, targeting an ultra-conserved target site in a haplosufficient essential
35 gene (AGAP029113) required during mosquito development, which fulfils many of the criteria
36 for the target of a population suppression gene drive. We then designed a selection regime to
37 experimentally assess the likelihood of generation and subsequent selection of gene drive
38 resistant mutations at its target site. We simulated, in a caged population, a scenario where
39 the gene drive was approaching fixation, where selection for resistance is expected to be
40 strongest. Continuous sampling of the target locus revealed that a single, restorative, in-frame
41 nucleotide substitution was selected. Our findings show that ultra-conservation alone need not
42 be predictive of a site that is refractory to target site resistance. Our strategy to evaluate
43 resistance *in vivo* could help to validate candidate gene drive targets for their resilience to
44 resistance and help to improve predictions of the invasion dynamics of gene drives in field
45 populations.

46

47

48

49 **Author summary**

50 Gene drives have the potential to be applied as novel control strategy of disease-
51 transmitting mosquitoes, by spreading genetic traits that suppress or modify the target
52 population. Many gene drive elements work by recognising and cutting a specific target
53 sequence in the mosquito genome and copying themselves into that target sequence allowing
54 the gene drive to increase in frequency in the population.

55 Like other mosquito control interventions, efficacy will greatly depend on minimising
56 the development of resistance to the gene drive mechanism - most likely via a change in the
57 target sequence that prevents further cutting. One strategy to reduce resistance is to target
58 sequences that are highly conserved, which implies that changes cannot easily be tolerated.
59 We developed a strategy that simulates high selection pressure, under which resistance is
60 most likely to emerge, and therefore provides a stringent test of its propensity to arise. Unlike
61 previous results with another gene drive, we recovered a resistant allele within a few
62 generations of gene drive exposure and at high frequency. Our results show that conserved
63 sequences can vary hugely in ability to tolerate mutations and highlights the need to
64 functionally validate future candidate gene drive target sites for their robustness to resistance.

65

66 **Introduction**

67 CRISPR/Cas9 homing gene drives have shown much promise in providing an effective
68 drive mechanism for novel genetic population modification and suppression strategies against
69 insect vectors of major diseases, in particular the mosquito *Anopheles gambiae* (1–4). In
70 general, these gene drives comprise a genetic construct containing a source of ubiquitously
71 expressed guide RNA (gRNA) and Cas9 endonuclease that is expressed in the germline and
72 together they cut a very specific chromosomal target site. Homology Directed Repair (HDR)
73 leads to copying over of the entire gene drive construct into the target site in the homologous

74 chromosome, leading to homozygosity in the germline of carrier individuals. Therefore, unlike
75 Mendelian inheritance, potentially all offspring will receive a copy of the transgene, regardless
76 of which chromosome they inherit from the parent. Modelling has suggested that suppression
77 of disease vector populations could be achieved by designing the gene drive to target and
78 disrupt haplosufficient genes (i.e. genes where one functioning copy is sufficient to maintain
79 normal function) that are essential in the soma for mosquito viability or fertility, and confining
80 the homing reaction to the germline (5–7). Under this scenario, individuals that contain one
81 copy of the gene drive are ‘carriers’ that transmit the drive to a very high portion of the
82 offspring, resulting in an increase in its frequency, which in turn places a strong genetic load
83 on the population. This load is highest when all individuals carry at least 1 copy of the gene
84 drive and the gene drive allele reaches genotype fixation,

85 Selection of mutations at the target site, or pre-existing alleles in the population,
86 however, can hinder this type of gene drive strategy and prevent further spreading of the drive
87 element (8). Mutations that prevent Cas9 cleavage at the intended cut site, whilst maintaining
88 the function of the targeted gene, are referred to as ‘functionally resistant’ alleles. Such alleles
89 can pre-exist in the target population or arise when the repair of the cleaved chromosome is
90 mediated by non-homologous end joining (NHEJ) rather than HDR (8). One approach to
91 reduce the development of resistance to a gene drive is to target regions that are structurally
92 or functionally constrained and therefore less likely to tolerate insertions or deletions (‘indels’)
93 and substitutions that could lead to resistance.

94 As a proof of principle, this approach has been used to mitigate resistance in small
95 cage/scale testing observed in previous applications that targeted female fertility genes (2).
96 By targeting a highly conserved 18bp sequence within the *A. gambiae doublesex (dsx)* gene,
97 complete suppression of wild-type laboratory populations was achieved, while no alleles
98 resistant to the gene drive were selected (1). Although these results are promising for the use
99 of population suppression gene drives against these malaria vectors, it is important to have a

100 range of suitable target genes, allowing a more tailored approach to achieve the desired levels
101 of suppression and avoidance of resistance.

102 Our ability to identify genes that could be novel targets for gene drives has been greatly
103 enhanced by genome resequencing efforts that have covered species across the *Anopheles*
104 genus, spanning over 100 million years on an evolutionary timescale, as well as wild caught
105 individuals of the closely related *Anopheles gambiae* and *Anopheles coluzzii* species (9–11).
106 A recent analysis of genomic data from 21 *Anopheles* species revealed over 8000 ultra-
107 conserved sites (100% identity) of sufficient length (18bp; corresponding to the minimal
108 sequence recognised by a guide RNA) to be targetable by homing-based gene drives (12). It
109 is to be expected that among this set of sequences there will be variation in their tolerance for
110 changes to their underlying biological functions.

111 In this study, we focussed our analysis on ultra-conserved sites within putative
112 haplosufficient essential genes as potential target sites for robust gene drives aimed at
113 population suppression. Having generated an active gene drive targeting one of these
114 essential genes, as proof of principle we subjected it to a maximal selection pressure to test
115 its resilience to the selection of gene drive resistant alleles and its overall suitability for vector
116 control.

117

118 **Results**

119 **AGAP029113 is a haplosufficient essential gene in *Anopheles gambiae***

120 A recent analysis of ultra-conserved elements (UCEs) from 21 different *Anopheles*
121 species and search of functional annotations of genes containing UCEs by O'Loughlin et al
122 (12) identified ultra-conserved targets potentially affecting female fertility or lethal recessive
123 phenotype that could be suitable targets for vector control. Amongst the list of potential targets,
124 the *AGAP029113* gene is of interest as it contains multiple ultra-conserved sites with a total

125 of 140 invariant sites. The *AGAP029113* gene is located on Chromosome 2L: 2895973-
126 2931030 and was recently reassigned as a fusion of *AGAP004734* and *AGAP004732*
127 (Vectorbase.org). It consists of 12 exons (Fig S1A) and contains domains putatively involved
128 in interaction with the G-protein suppressor 2 pathway, DNA repair exonuclease subunit and
129 DNA binding domains (Homeobox-like domain superfamily), suggesting a role in signalling,
130 replication, recombination and DNA repair (13). Its high level of conservation and expression
131 in larvae and in female ovaries (14,15), which does not change with increasing adult age (16)
132 suggests that this gene is required during mosquito development in both sexes (15).

133 We chose a target site within *AGAP029113* that is ultra-conserved across Culicidae
134 (Culicidae; last common ancestor ~ 150 million years ago) but not in *Drosophila melanogaster*
135 genomes (Drosophilidae; 260 m.y.a.) (Fig. S1B). Even within *An. gambiae* and *Anopheles*
136 *coluzzii* populations (2784 wild *Anopheles* mosquitoes sampled across Africa), this particular
137 target site showed only negligible variations of less than 0.6% frequency (17) (Fig. S1C). This
138 does not exclude the existence of further polymorphisms in wild populations but suggests that
139 alteration of this sequence either naturally or by gene drive may have a strong fitness cost.

140 We then disrupted this candidate gene by inserting a GFP ‘docking’ cassette
141 (‘*hdrGFP*’) into the target site within exon 5, which is expected to prevent the generation of a
142 functional *AGAP029113* transcript and likely represents a null allele. The insertion of this
143 cassette was performed by CRISPR-mediated HDR (Fig. 1A), using previously described
144 methodology (1,2). After confirming the correct integration of the docking cassette (Fig. 1B)
145 we crossed heterozygous individuals with each other and scored their progeny. Among larvae
146 we observed heterozygous (29113^{hdrGFP/+}) and homozygous (29113^{hdrGFP/hdrGFP}) individuals at
147 the expected Mendelian ratio (Fig 1C). However, individuals homozygous for the null allele
148 failed to emerge to adulthood. During general maintenance of the strain we noticed no obvious
149 fitness effects in individuals heterozygous for the null allele, suggesting that this gene may
150 represent a suitable haplosufficient essential gene as a target for a population suppression

151 gene drive strategy, whereby 'carriers' with a gene drive disrupting a single copy of the target
152 gene need to be competitive to be able to pass on the gene drive to their offspring.

153

154 **Phenotypic assessment of a gene drive targeting an essential gene**

155 To assess the phenotype in the presence of a gene drive construct targeting this locus,
156 an active Cas9/gRNA cassette (29113^{CRISPRh}) was inserted into the locus as described
157 previously (5). The 29113^{CRISPRh} construct contained Cas9 with expression controlled by the
158 *zero population growth (zpg)* germline promoter (1), together with a dominant *RFP* marker
159 gene to assist in tracking the inheritance of the gene drive (Fig. 2A). This was placed in locus
160 via recombinase mediated cassette exchange (RMCE), replacing the GFP cassette with the
161 29113^{CRISPRh} cassette. This gene drive construct showed high rates of biased inheritance from
162 heterozygous (29113^{CRISPRh}/+) female (92.7% ± 2.9) and male mosquitoes (91.3% ± 3.2) (Fig.
163 2B).

164 Impaired fecundity and fertility of heterozygotes has been observed in other gene drive
165 strains (1,2). We performed fecundity assays where heterozygous (29113^{CRISPRh}/+) males and
166 heterozygous (29113^{CRISPRh}/+) females were crossed to wild-type G3 mosquitoes and the
167 number of eggs laid and hatched larvae was counted by individual oviposition of females. The
168 wild-type G3 strain was used as control. There was no significant difference in the number of
169 eggs across all 5 crosses (Fig. 2C; quasi-Poisson GLM, $F=0.458$, $df1=4$, $df2=90$, $p=0.766$).
170 However, the hatching rate of the progeny of 29113^{CRISPRh}/+ females was reduced by 21.6%
171 relative to wild-type controls (Fig. 2D; z-test, $p=0.046$). There was also increased mortality
172 during larvae to adult development of about 37.8% and 46.2% for heterozygous male and
173 female offspring respectively (Fig 2E, z-test, 29113^{CRISPRh}/+ males $p = 3.33e-5$; 29113^{CRISPRh}/+
174 females $p = 4.88e-8$).

175

176 **Assessment of 29113^{CRISPRh/+} spread in a cage population experiment**

177 Despite the fitness costs apparent with this gene drive in heterozygous carrier
178 individuals, the extent of biased inheritance was still expected to cause the element to increase
179 in frequency in a population (1,2). To test this, we seeded 29113^{CRISPRh/+} individuals into a
180 wild-type caged population (total initial population size of 600) at a starting frequency of 20%,
181 in triplicate, and monitored the frequency of gene drive individuals over time. The same
182 experiment was performed in parallel with the non-driving 29113^{hdrGFP/+} mosquitoes as control.

183 For releases with the control strain the frequency of individuals with the control allele
184 decreased slowly over 3 generations to an average of 10.6%, consistent with the expectation
185 for a non-driving null allele (Fig. 3A). However, in the gene drive release cages, despite
186 observing an initial increase in the frequency of gene drive carriers in the generation after
187 release, this rapidly declined, to the extent that by 3 generations post-release the gene drive
188 was lost from the population in all three replicates (Fig. 3B). Rapid loss of the gene drive
189 suggests that there is a fitness cost associated with the Cas9/gRNA expression from the gene
190 drive allele that prevents its persistence. We therefore used a simple deterministic model of a
191 single, randomly mating population with two life stages (juveniles and adults), two sexes and
192 discrete non-overlapping generations, following the structure of Beaghton et al (18) and
193 incorporated the heterozygote fitness costs identified from the phenotypic assays. They
194 included a) no fitness costs (grey dashed line) b) fitness costs that were observed in the
195 phenotypic assays (21% reduced hatching rate in 29113^{CRISPRh/+} females and reduced larvae
196 to adult eclosion rate of 37.8% and 46.2% for 29113^{CRISPRh/+} males and females) (light red
197 dashed line) and c) further potential fecundity and somatic costs (90% for 29113^{CRISPRh/+} males
198 and females) that were not measured (dark red dashed line). Overall, the data fitted the model
199 c) assuming additional fitness costs associated with the gene drive construct. This could
200 include fitness costs that manifest in adulthood which we did not assess.

201 We also investigated the possibility of the generation and subsequent selection of a
202 functional resistant allele to the gene drive that could have led to loss of the transgene. Such
203 alleles can be formed when Cas9-mediated cuts are repaired by error-prone end joining DNA
204 repair pathways producing small insertions or deletions or substitutions (8). Our models
205 showed that such resistant alleles would have had no impact on the transgenic rate over the
206 first 5 generations of the population experiment (Supplementary Fig. 2). This suggests that
207 the dominant factor in determining the drive loss was the unexpected additional fitness costs
208 associated with harbouring the drive element in heterozygosity, rather than the emergence
209 and selection of resistance. Nonetheless, an important question is the resilience to resistance
210 at this target site, in the face of a gene drive.

211

212 **Non-drive alleles generated at the target site by Cas9 nuclease activity**

213 To investigate the array of target site mutations that can be generated at the ultra-
214 conserved site we devised a cross that enriched for non-drive alleles exposed to the nuclease
215 from the gene drive (Fig 4A). In this assay the non-drive alleles are balanced against a marked
216 (GFP+) null allele of the haplosufficient target gene. Consistent with an essential role for the
217 *AGAP029113* gene between larval and adult transition, the distribution of in-frame and out-of-
218 frame alleles was markedly different between the larval stage (where a complete null genotype
219 is tolerated) and the adult stage (where it is not): pooled sequencing of the target site in L1
220 instar larvae revealed that 26% of non-drive alleles contained a target site mutation, of which
221 10.8% were in-frame (Fig 4B); sampling at the adult stage, only 5.7% of non-drive alleles
222 contained mutations, of which 99.3% were in-frame. The persistence of in-frame alleles in the
223 adult stage strongly suggests that these restore function, at least partially, to the essential
224 target gene. If these mutations are also resistant to further cleavage by the gene drive then
225 they would meet the criteria of being functionally resistant and thus be positively selected in
226 the presence of the gene drive.

227

228 **Selection of 29113^{CRISPR}h resistant alleles by mimicking genotype fixation in a**
229 **caged population**

230 In order to investigate our assumption that these mutations could be strongly selected,
231 we mimicked a scenario of genotype fixation (i.e., 100% of mosquitoes have at least one copy
232 of the gene drive), where selection pressure for functionally resistant alleles is expected to be
233 highest. We crossed individuals heterozygous for the gene drive construct, allowing all
234 offspring to survive and reproduce for multiple generations. Given our previous estimate of
235 gene drive transmission rate (93%), under this scenario the vast majority (87% (0.93²)) of
236 progeny would be expected to be homozygous for the gene drive and so would die during
237 larval development. Of the progeny that survive to form the following generation, the majority
238 would be heterozygous and destined to produce predominantly non-viable offspring. Under
239 these conditions a functionally resistant allele will therefore have a high selective advantage
240 since it will confer viability on any genotype that inherits it.

241 Over the first five generations of this experiment, the gene drive population (marked in
242 red) was constantly suppressed (Fig. 5A), producing very few eggs compared to the non-drive
243 29113^{hdrGFP/+} controls (in green), consistent with the majority of the offspring lacking a
244 functional copy of the AGAP029113 gene. However, by generations 6 and 7 we observed a
245 rise in frequency of larvae as well as the number of adults and eggs produced by the gene
246 drive cage. Together, these observations are consistent with a breakthrough of functionally
247 resistant alleles that are refractory to gene drive invasion and restore the carrying capacity of
248 the population. Indeed, sequencing of adults from the G7 generation (Fig. 5B) showed over
249 87% of reads contained the same mutation at the Cas9 target site. We also detected this
250 single nucleotide substitution amongst other mutations recovered in larvae and adults in our
251 previous screen (Supplementary Fig. 3). Since this mutation was not found in the laboratory
252 wild-type population (despite sequencing of 360 wild-type individuals and alignment of 35817

253 reads), the most likely explanation is that it is a de novo mutation caused by end-joining repair
254 following nuclease activity of the gene drive. This specific mutation was selected and rapidly
255 increased in frequency over generations likely due to a fitness advantage compared to other
256 indels found in the single generation assay.

257

258 **Discussion**

259 Any strategy, from antibiotics to insecticides, that aims to impose a fitness load on a
260 population inevitably leads to strong selection for resistance. For gene drives, the easiest
261 pathway for resistance to occur is for an allele to arise that codes for a functioning gene that
262 lacks the endonuclease recognition site, thereby blocking the biased inheritance of the gene
263 drive element. These alleles may pre-exist in the population, arise through spontaneous point
264 mutation, or arise through error-prone (non-HDR) DNA repair pathways that introduce small
265 mutations in the repair of the double stranded break generated by the gene drive.

266 We developed a CRISPR homing gene drive targeting an ultra-conserved site in the
267 viability gene *AGAP0029113* and showed that this gene is essential for development of both
268 male and female mosquitoes. However, the invasive potential of the gene drive construct was
269 hindered by high fitness costs in the heterozygous $29113^{\text{CRISPRh}}/+$ individuals compared to the
270 wild-type strain. Fitness costs in gene drive carriers are not unusual and have been reported
271 for other gene drive strains (1,19,20). A fitness cost, per se, in carriers will not prevent a gene
272 drive increasing in frequency provided that the magnitude of its biased inheritance outweighs
273 the fitness cost suffered in the carrier. However, in the case here, the fitness costs were severe
274 enough to prevent the gene drive invading at all. One explanation for the fitness costs may be
275 nuclease expression in the soma that converts the wild type allele to a null, thereby creating
276 mosaic individuals with cells containing no functional copy of this essential gene. Mosaicism
277 can derive from 'leaky' expression from the otherwise germline-restricted promoter or from

278 parental deposition into the embryo. The germline promoter (from the gene *zpg*) used in this
279 gene drive construct was shown previously to have minimal propensity to show these features,
280 compared to alternative promoters, however we cannot exclude that position effects at the
281 AGAP029113 locus may affect promoter specificity (17). An alternative explanation is that the
282 target gene has a germline function in addition to its essential function in the soma, with the
283 result that gene drive conversion to homozygosity in the germline leads to reduced fecundity.
284 In our case it is difficult to disentangle such effects from general fitness effects since the
285 competing hypothesis of somatic mosaicism could similarly lead to reduced fecundity.

286 Potentially such effects are more problematic for essential genes that are required
287 during development in both sexes, compared to female fertility genes, since in the latter case
288 heterozygous carrier males are unaffected. This is important for the phenotypic assessment
289 of the suitability of future gene drive candidate genes required for viability in males and
290 females and more emphasis should be placed on the restriction of gene drive activity to the
291 germline. To look at the potential for gene drive resistance to arise at our chosen ultra-
292 conserved target site, we devised both a single generation resistance assay and a population
293 experiment designed to mimic the highest selection pressure. In both scenarios we recovered
294 the same single point mutation at the target site. Possibly, the resistant allele we isolated might
295 carry a small fitness cost which would be selected against in natural mosquito populations,
296 which is why it was not detected within variation data from the 2784 *An. gambiae*, *An. coluzzii*,
297 *Anopheles arabiensis* and hybrid individuals, collected from 19 countries in Africa as part of
298 the Phase 3 MalariaGEN *Anopheles gambiae* 1000 Genomes Project (17) . However, when
299 faced with a gene drive, any small fitness cost is offset by the relative advantage the mutation
300 confers against the gene drive allele. Therefore, even where genomic locations are ultra-
301 conserved across various species and populations over a wide geographic area, their mutation
302 may be tolerated under the selective pressure of gene drive. Further, different ultra-conserved
303 sites could have very different functional constraints and selection pressure; studies have
304 shown that even without any obvious functional constraints sequences can remain ultra-

305 conserved between different species (21). Consequently, how to assess the potential of
306 resistance development at any given conserved target site is of fundamental importance when
307 considering gene drives of this type.

308 As a general rule, for a population suppression gene drive, the largest load is imparted
309 on a population when the target is a gene essential for female fertility or viability, yet a
310 considerable, though reduced, level of suppression can be achieved when the gene produces
311 a recessive lethal phenotype that manifests in both sexes (22). Given that there may be a
312 paucity of genes with functionally constrained target sites that are sufficiently robust to
313 resistance it may be that the optimal target site choice will consider a balance between the
314 suppressive load conferred by the gene drive and the intrinsic capability of its target site to
315 tolerate resistant mutations.

316 Our mimicking of genotype fixation could be a useful experimental approach for swiftly
317 assessing target site susceptibility, since it isolates resistant alleles faster than possible in
318 population experiments of gene drive spread into wild-type populations - the selective
319 advantage to a resistant allele over a wild type allele is highest when the likelihood of either
320 allele finding themselves balanced against a gene drive allele is highest. A similar rationale
321 applies in the resistance assay balancing the gene drive against a marked null allele (19,23)
322 that we also employed here, however in this assay no measure is given of how strongly such
323 potentially resistant alleles are selected or, indeed, of whether they are resistant to the gene
324 drive nuclease. One feature of targeting a gene essential in early development, as we did
325 here, is that it allows a much higher throughput of screening, due to the fact that selection
326 happens during larval rearing, where rearing capacity is much less limited, meaning that all
327 surviving adults have been through the selection bottleneck. In contrast, for a gene drive that
328 targets female fertility in the adult, the vast majority of the adults will be homozygous for the
329 gene drive and selection of a resistant allele only occurs in the small subset of females that
330 have the opportunity to mate and contain at least one non-drive allele.

331 It will be essential to build on successes to date that have shown gene drives that can
332 suppress populations robustly, without obvious selection for resistance (1). At scale, in a field
333 setting and considering the vast population sizes of mosquitoes it is certain that such drives
334 will need to be augmented by targeting multiple sites in the same gene, in order to greatly
335 reduce the likelihood of multi-resistant alleles arising on the same haplotype (24–27). A similar
336 effect can be achieved by releasing multiple gene drives that independently target separate
337 loci (22,28). Moreover, using a similar logic, it could be prudent to have gene drives targeting
338 genes in a range of different, independent biological pathways. In all cases, it will be essential
339 to prioritise target site choice according not just to its suitability in terms of desired phenotypic
340 effect when targeted, but its resilience to the generation of resistant alleles. Our results here
341 show a pathway for how testing of ultra-conserved sites might proceed in order to evaluate
342 these determinants for future gene drive designs *in vivo*.

343

344 **Materials and Methods**

345 **Ethics statement**

346 All animal work was conducted according to UK Home Office Regulations and
347 approved under Home Office License PPL 70/6453.

348

349 **Generation of CRISPR and donor constructs**

350 A CRISPR construct (p16510) containing a human-codon-optimized Cas9 coding
351 sequence (*hCas9*) under the control of the *zpg* promoter and U6::gRNA spacer cloning
352 cassette was utilized as described previously and modified using Golden Gate cloning to
353 generate a PolIII transcription unit containing the AGAP029113-specific gRNA (1,2). The
354 donor plasmid was assembled by MultiSite Gateway cloning (Invitrogen) and contained a *GFP*
355 transcription unit under the control of the 3xP3 promoter enclosed within two reversible φC31

356 *attP* recombination sequences flanked both 5' and 3' by 2 kb sequence amplified using primer
357 29113 ex5 B1 f (CAACCAAGTAGTTACTGTGCTC) and 29113 ex5 B4 r
358 (GTCTTTGTTGTTCACGT) and primer 29113 ex5 B3 f (TGTAGGCCGTGATCGTGC)
359 and 29113 ex5 B2 r (GCGACACCATACTCCGATG) of the exon 5 target site in *AGAP029113*.
360 To generate the 29113^{CRISPRh} allele a gRNA spacer (GAACAAACAACAAAAGACTGTAGG)
361 bearing complete homology to the intended target sequence was inserted by Golden Gate
362 cloning into a CRISPR construct (p17410) as described previously (1,2). This vector contains
363 a human codon-optimized Cas9 gene (hCas9) under control of the zpg promoter and a
364 U6::gRNA cassette with a Bsal cloning site, as well as a visual marker (3xP3::RFP). This
365 constructs sequence is flanked by attB recombination sites, which will allow the recombinase-
366 mediated in vivo cassette exchange for the homing allele.

367

368 **Generation of the 29113^{hdrGFP} docking line and 29113 CRISPRh line**

369 In order to generate the docking line, we injected 253 eggs of the *Anopheles gambiae*
370 G3 strain with the 29113gRNA-modified p16510 plasmid (300ng/μl) and donor plasmid
371 (300ng/μl) and obtained 7 transients that led to 6 transgenic individuals. Site-specific
372 Integration was confirmed by PCR using primers binding the docking construct, 5'GFP-R
373 (TGAACAGCTCCTGCCCTTG) and a primer binding the genome outside of the homology
374 arms: DL_29113 Ex5_F2 (TTCCACCTCTCGCTCGTAGT) and sequencing of the flanking
375 sites. For the recombinase-mediated cassette exchange reactions a mix containing the
376 CRISPR plasmid (200 ng/μl) and 400 ng/μl vasa2::integrase helper plasmid (29) was injected
377 into embryos of the 29113^{+/−} docking lines. Progeny from the outcross of surviving
378 G₀ individuals to WT were screened for the presence of RFP and the absence of GFP that
379 should be indicative of a successful cassette-exchange event.

380

381 **Assessment of homing rate of CRISPR construct**

382 To assess the ability of this 29113^{CRISPRh} construct to home at super-Mendelian rates,
383 individuals heterozygous (29113^{CRISPRh/+}) for the construct were crossed with wild type
384 individuals and the progeny scored for inheritance of the CRISPR construct (via the proxy of
385 RFP) from individual lays (N=15 per cross).

386

387 **Molecular characterisation of homozygotes and heterozygotes for the**
388 **29113^{hdrGFP} allele**

389 Males and females heterozygote for the 29113^{hdrGFP} allele were crossed with each
390 other and 60 L1-L2 larvae were analysed by Multiplex PCR using primer 3'-GFP-F
391 (GCCCTGAGCAAAGACCCCAA), 5'-GFP R (TGAACAGCTCCTGCCCTTG) and the primer
392 DL_29113_Ex5_F2 (TTCCACCTCTCGCTCGTAGT) flanking the transgenic construct. The
393 same PCR was repeated for 60 adult mosquitoes from the same cross.

394

395 **Fertility and fecundity data**

396 Groups of a minimum of 40 virgin heterozygotes carrying the 29113^{hdrGFP/+} or
397 29113^{CRISPRh/+} genotype respectively were mated to an equal number of virgin wildtype
398 mosquitoes for 5 days and the number of eggs and offspring was counted from individuals
399 lays (N≥12). Females that failed to lay eggs and did not contain sperm in their spermathecal
400 were excluded from the analysis.

401

402 **Larval to adult eclosion rate**

403 Groups of a minimum of 40 virgin heterozygotes carrying the 29113^{hdrGFP/+} or
404 29113^{CRISPRh/+} genotype respectively were mated to an equal number of virgin wildtype

405 mosquitoes for 5 days. 100 transgenic L1 larvae were selected and reared to adulthood for
406 each experiment (N≥3).

407

408 **Population cage experiments with 20% starting frequency**

409 First instar mosquito larvae heterozygous for the 29113^{CRISPRh} allele were mixed within
410 12 h of eclosion with age-matched WT larvae at a ratio of 1:5 in rearing trays at a density of
411 200 per tray (in ~1 litre rearing water). The mixed population was used to seed three cages
412 (36cm³) with 400 adult mosquitoes each. For three generations, each cage was fed after
413 allowing 5 days for mating, and an egg bowl placed in the cage 48 h after a blood meal to
414 allow overnight oviposition. A random sample of 450 eggs was selected. After allowing full
415 eclosion, offspring were scored under fluorescence microscopy for the presence or absence
416 of the RFP-linked *CRISPRh* allele, then reared together in the same trays and then used to
417 populate the next generation.

418 **Population model**

419 To model the results of the population cage experiment, we use a simple deterministic
420 model of a single, randomly mating population with two life stages (juveniles and adults), two
421 sexes and discrete non-overlapping generations, following the structure of Beaghton et al (18),
422 without considering parental deposition. We initially consider 3 alleles: wild-type (W),
423 transgenic (T) and cleavage resistant (R). We model insertion of the transgene into a recessive
424 gene required for survival to adulthood and assume all cleavage resistant alleles are non-
425 functional, therefore T/T, T/R and R/R adults are inviable. For the 29113^{CRISPRh} transgene,
426 cleavage of the W allele occurs in W/T individuals, followed by either homology directed repair,
427 converting W to T, or non-homologous end joining, converting W to R. Cleavage and end
428 joining rates were calculated from the proportion of progeny inheriting the 29113^{CRISPRh} allele
429 (d) (F) = 0.927, (M) = 0.913 (Fig 2B) and the probability that non-homed alleles are R (u) =

430 0.266 (based on % of exposed but unmodified alleles from Fig 4B) where $e = 2d - 1$,
431 cleavage = $e + (1 - e)u$, (F) = 0.893, (M) = 0.872 and end joining (given cleavage) =
432 $\frac{(1 - e)u}{e + (1 - e)u}$, (F) = 0.043, (M) = 0.053. To model functional resistance, we extend the model to
433 include a fourth allele (r), which is both cleavage resistant and fully functional. Here we allow
434 a proportion (p) of non-homologous end joining products to be functional (r) and $1 - p$ to be
435 non-functional (R). To incorporate the heterozygote fitness costs identified from the
436 phenotypic assays we consider female heterozygotes carrying the transgene to lay fewer
437 viable eggs compared to wildtype: fecundity cost (1 - relative hatching rate) (F) = 0.216 (Fig
438 2D), and male and female heterozygotes to have reduced survival to adulthood: somatic cost
439 (1 - relative eclosion rate) (M) = 0.378, (F) = 0.462, (Fig 2E). We also consider the case where
440 heterozygotes carrying the transgene have additional somatic costs of other unknown factors:
441 somatic cost (M) = 0.9, (F) = 0.9. In both cases W/R and W/r individuals are assumed to be
442 fully fit. When modelling the 29113⁺⁻ line we assumed mendelian inheritance of the transgene
443 and no heterozygous fitness costs. Following the experimental protocols, the frequency of
444 transgenics was calculated at the juvenile stage, except for generation G₀ which reflects that
445 of the starting adult population.

446 **Small population cage experiment mimicking fixation of the drive**

447 20 male and 20 virgin female adults heterozygous for the 23113^{CRISPR^h} allele were
448 placed in a small cage (25cm³). Females were blood-fed after 5 days and an egg bowl was
449 placed in the cage 48h post bloodmeal. After allowing full eclosion the number of eggs and
450 RFP+ and RFP-larvae was recorded. All offspring was reared to adulthood and crossed with
451 each other. This was continued for 7 generations. The same procedure was repeated for
452 adults heterozygous for the 29113⁺⁻ allele for 2 generations. Offspring was screened for
453 GFP+.

454 **Resistance Assay**

455 400 males heterozygous for the 29113^{CRISPR^h} allele (RFP+) were crossed to 400
456 females heterozygous for the 29113^{+/−} allele. To collect L1 for DNA extractions, 7000
457 individuals were screened for GFP using COPAS. Larvae that were GFP+ only or RFP/GFP+
458 (RFP+ only and larvae with no fluorescent marker were discarded) were pooled and frozen in
459 ethanol at -20°C. To collect adults for DNA extraction large number of larvae were needed (as
460 the majority would die before reaching adulthood). 10,000 L1 were screened for GFP+, and
461 the sorted larvae were split into 20 trays of 500 individuals. A single tray was then reassessed
462 for frequency of GFP+ and RFP/GFP+. This tray was then rescreened at L4 stage for
463 frequency of GFP+, RFP/GFP+ and the rate of larval mortality. Surviving larvae were collected
464 from all 20 trays and screened manually for GFP+. These were allowed to emerge as adults
465 before collection and storage at -20°C for later DNA extraction.

466

467 **PCR of target site and deep sequencing analysis preparation**

468 Pooled DNA extractions (minimum 90 adult mosquitoes or 3500 L1 larvae) were
469 performed using the Wizard Genomic DNA Purification kit (Promega). A 349 bp locus
470 containing the predicted on-target cleavage site was amplified with primers containing Illumina
471 Nextera Transposase adapters (underlined), 29113-F
472 (TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCTGCTTGGGGAACACTGTTAG)
473 and 29113-R
474 (GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTGTTAAGGAAGTCCGACAGCG).
475 PCR reactions with KAPA HiFi HotStart ReadyMix PCR Kit (Kapa Biosystems) were setup
476 with 80ng genomic DNA. These PCR reactions, library preparation and deep sequencing were
477 performed as previously described (1).

478

479 **Deep sequencing analysis**

480 CRISPResso software v2.0.29 (30) was utilised for analysis of amplicon sequencing
481 around the on-target site, with the parameter –q 30. Reads containing indels and substitutions
482 1bp either side of the predicted cleavage site were tallied as modified. Frameshift analysis
483 was performed within CRISPResso2 using parameter –c to input the coding sequence.

484

485 **Statistical analysis**

486 To compare the number of eggs laid by different strains, a quasi-Poisson generalised
487 linear model (GLM) was fitted to the egg counts, with stains (5 levels, or categories) being the
488 main effect. Quasi-binomial was used to explore the difference in the hatching rates across.
489 The quasi family was adopted as the data exhibits overdispersion. A mixed-effect binomial
490 GLM was run to study the eclosion rates for the various strains and across generations. A
491 random effect was included for experiments with replicates.

492

493 **Acknowledgements**

494 We are grateful for the helpful feedback on the manuscript by John Connolly and John
495 Mumford. The authors are members of the Target Malaria not-for-profit research consortium,
496 which receives core funding from the Bill & Melinda Gates Foundation (Grant INV006610
497 Target Malaria Phase II) and from the Open Philanthropy Project Fund (Grant O-77157).

498

499 **References**

500 1. Kyrou K, Hammond AM, Galizi R, Kranjc N, Burt A, Beaghton AK, et al. A CRISPR–Cas9 gene
501 drive targeting *doublesex* causes complete population suppression in caged *Anopheles*
502 *gambiae* mosquitoes. Nat Biotechnol. 2018 Nov 24;36(11):1062–6.

503 2. Hammond A, Galizi R, Kyrou K, Simoni A, Siniscalchi C, Katsanos D, et al. A CRISPR-Cas9
504 gene drive system targeting female reproduction in the malaria mosquito vector *Anopheles*
505 *gambiae*. *Nat Biotechnol*. 2016;34(1):78–83.

506 3. Carballar-Lejarazú R, Ogaugwu C, Tushar T, Kelsey A, Pham TB, Murphy J, et al. Next-
507 generation gene drive for population modification of the malaria vector mosquito, *Anopheles*
508 *gambiae*. *Proc Natl Acad Sci U S A*. 2020;117(37):22805–14.

509 4. Gantz VM, Jasinskiene N, Tatarenkova O, Fazekas A, Macias VM, Bier E, et al. Highly
510 efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito
511 *Anopheles stephensi*. *Proc Natl Acad Sci*. 2015;112(49):E6736–43.

512 5. Burt A. Site-specific selfish genes as tools for the control and genetic engineering of natural
513 populations. *Proc R Soc B Biol Sci*. 2003;270(1518):921–8.

514 6. Eckhoff PA, Wenger EA, Godfray HCJ, Burt A. Impact of mosquito gene drive on malaria
515 elimination in a computational model with explicit spatial and temporal dynamics. *Proc Natl*
516 *Acad Sci*. 2017;114(2):E255–64.

517 7. Godfray HCJ, North A, Burt A. How driving endonuclease genes can be used to combat pests
518 and disease vectors. *BMC Biol*. 2017 Dec 11;15(1):81.

519 8. Hammond AM, Kyrou K, Bruttini M, North A, Galizi R, Karlsson X, et al. The creation and
520 selection of mutations resistant to a gene drive over multiple generations in the malaria
521 mosquito. Barton NH, editor. *PLOS Genet*. 2017 Oct 4;13(10):e1007039.

522 9. Neafsey DE, Waterhouse RM, Abai MR, Aganezov SS, Alekseyev MA, Allen JE, et al. Highly
523 evolvable malaria vectors: The genomes of 16 *Anopheles* mosquitoes. *Science* (80-). 2015
524 Jan 2;347(6217):1258522.

525 10. Miles A, Harding NJ, Bottà G, Clarkson CS, Antão T, Kozak K, et al. Genetic diversity of the
526 African malaria vector *Anopheles gambiae*. *Nature*. 2017 Dec 29;552(7683):96–100.

527 11. Clarkson CS, Miles A, Harding NJ, Lucas ER, Battey CJ, Amaya-Romero JE, et al. Genome
528 variation and population structure among 1142 mosquitoes of the African malaria vector
529 species *Anopheles gambiae* and *Anopheles coluzzii*. *Genome Res*. 2020 Oct;30(10):1533–46.

530 12. O'Loughlin SM, Forster AJ, Fuchs S, Dottorini T, Nolan T, Crisanti A, et al. Ultra-conserved
531 sequences in the genomes of highly diverse *Anopheles* mosquitoes, with implications for
532 malaria vector control. *G3 Genes|Genomes|Genetics*. 2021 Mar 17;

533 13. Marchler-Bauer A, Bo Y, Han L, He J, Lanczycki CJ, Lu S, et al. CDD/SPARCLE: functional
534 classification of proteins via subfamily domain architectures. *Nucleic Acids Res*. 2017 Jan
535 4;45(D1):D200–3.

536 14. Baker D, Nolan T, Fischer B, Pinder A. A comprehensive gene expression atlas of sex-and
537 tissue-specificity in the malaria vector, *Anopheles gambiae*. *BMC Genomics*. 2011;12(1):296.

538 15. Marinotti O, Calvo E, Nguyen QK, Dissanayake S, Ribeiro JMC, James AA. Genome-wide
539 analysis of gene expression in adult *Anopheles gambiae*. *Insect Mol Biol*. 2006 Feb;15(1):1–
540 12.

541 16. Cook PE, Sinkins SP. Transcriptional profiling of *Anopheles gambiae* mosquitoes for adult age
542 estimation. *Insect Mol Biol*. 2010 Dec;19(6):745–51.

543 17. The *Anopheles gambiae* 1000 Genomes Consortium. Ag1000G phase 3 SNP data release.
544 MalariaGEN. 2021.

545 18. Beaghton AK, Hammond A, Nolan T, Crisanti A, Burt A. Gene drive for population genetic
546 control: non-functional resistance and parental effects. *Proceedings Biol Sci*. 2019 Nov
547 6;286(1914):20191586.

548 19. Hammond A, Karlsson X, Morianou I, Kyrou K, Beaghton A, Gribble M, et al. Regulating the
549 expression of gene drives is key to increasing their invasive potential and the mitigation of
550 resistance. *PLoS Genet*. 2021;17(1):1–21.

551 20. Kandul NP, Liu J, Bennett JB, Marshall JM, Akbari OS. A confinable home-and-rescue gene
552 drive for population modification. *Elife*. 2021 Mar 5;10:1–25.

553 21. Díaz-Castillo C, Xia X-Q, Ranz JM. Evaluation of the Role of Functional Constraints on the
554 Integrity of an Ultraconserved Region in the Genus *Drosophila*. Noor MAF, editor. *PLoS*
555 *Genet*. 2012 Feb 2;8(2):e1002475.

556 22. Deredec A, Burt A, Godfray HCJ. The Population Genetics of Using Homing Endonuclease

557 Genes in Vector and Pest Management. Genetics. 2008 Aug 1;179(4):2013–26.

558 23. KaramiNejadRanjbar M, Eckermann KN, Ahmed HMM, Sánchez C HM, Dippel S, Marshall JM,
559 et al. Consequences of resistance evolution in a Cas9-based sex-conversion suppression
560 gene drive for insect pest management. Proc Natl Acad Sci U S A. 2018;201713825.

561 24. Champer J, Liu J, Oh SY, Reeves R, Luthra A, Oakes N, et al. Reducing resistance allele
562 formation in CRISPR gene drive. Proc Natl Acad Sci. 2018;115(21):5522–7.

563 25. Oberhofer G, Ivy T, Hay BA. Cleave and Rescue, a novel selfish genetic element and general
564 strategy for gene drive. Proc Natl Acad Sci. 2019 Mar 26;116(13):6250–9.

565 26. Champer J, Yang E, Lee E, Liu J, Clark AG, Messer PW. A CRISPR homing gene drive
566 targeting a haplolethal gene removes resistance alleles and successfully spreads through a
567 cage population. Proc Natl Acad Sci. 2020 Sep 29;117(39):24377–83.

568 27. Kandul NP, Liu J, Buchman A, Gantz VM, Bier E, Akbari OS. Assessment of a Split Homing
569 Based Gene Drive for Efficient Knockout of Multiple Genes. G3 Genes|Genomes|Genetics.
570 2020 Feb 1;10(2):827–37.

571 28. Deredec A, Godfray HCJ, Burt A. Requirements for effective malaria control with homing
572 endonuclease genes. Proc Natl Acad Sci. 2011;108(43):E874–80.

573 29. Volohonsky G, Terenzi O, Soichot J, Naujoks DA, Nolan T, Windbichler N, et al. Tools for
574 *Anopheles gambiae* Transgenesis. G3 Genes|Genomes|Genetics. 2015 Jun 10;5(6):1151–63.

575 30. Clement K, Rees H, Canver MC, Gehrke JM, Farouni R, Hsu JY, et al. CRISPResso2 provides
576 accurate and rapid genome editing sequence analysis. Nat Biotechnol. 2019 Mar
577 26;37(3):224–6.

578

579

580 Figure captions

Fig 1. Gene disruption by HDR at a conserved site in exon 5 of *AGAP029113* causes recessive lethality. (A) Schematic representation of disruption of the *AGAP029113* gene.

583 **(B)** PCR was used to confirm the targeted loci in WT individuals (red arrows) as well as those
584 homozygous and heterozygous for the 29113^{hdrGFP} allele (blue arrow). **(C)** Heterozygous
585 females and males were crossed with each other and the offspring was selected for GFP
586 expression. Displayed is the percentage of homozygous (29113^{hdrGFP/hdrGFP}) and heterozygous
587 (29113^{hdrGFP/+}) L1 larvae (N=60) and adults (N=60) analysed by PCR as well as the expected
588 homozygote vs heterozygote ratio according to Mendelian inheritance (red dashed line).

589 **Fig 2. Phenotypic assessment of 29113^{CRISPRh/+} individuals crossed with wild-type. (A)**
590 Displayed is the CRISPR homing construct 29113^{CRISPRh} consisting of
591 a 3xP3::RFP marker, Cas9 under the transcriptional control of the *zpg* promoter and a gRNA
592 under the control of the ubiquitous *U6* PolII which replaced the GFP transcription unit in
593 heterozygous 29113^{hdrGFP/+} lines by RCME. The gRNA cleaves at the homologous wild-type
594 allele at the target site corresponding to the 29113^{CRISPRh} insertion. Repair of the cleaved
595 chromosome through HDR leads to copying of the *CRISPRh* allele and homing. **(B)** Male or
596 female 29113^{CRISPRh/+} heterozygotes were mated to wild-type. High levels of homing of >90%
597 was observed. Progeny from individual females were scored for the presence of the RFP
598 linked to the 29113^{CRISPRh} construct and the average transmission rate indicated by vertical
599 bar. A minimum of 15 females were analyzed for each cross. The average homing rate ±
600 s.e.m. is also shown. **(C)** Scatter plots displaying number of eggs laid by single females in
601 crosses of 29113^{CRISPRh/+} mosquitoes with wild-type individuals. Data were analyzed by quasi-
602 Poisson GLM model. No significant differences were found between the wild-type and
603 transgenic strains. **(D)** The hatching rate of these crosses is also displayed. Data were
604 analyzed by random effect GLM model with binomial response. No significant differences were
605 found. **(E)** Larval to adult eclosion rate. Data were analyzed by random effect binomial GLM
606 model. * p<0.05, ** p<0.01, *** p<0.001.

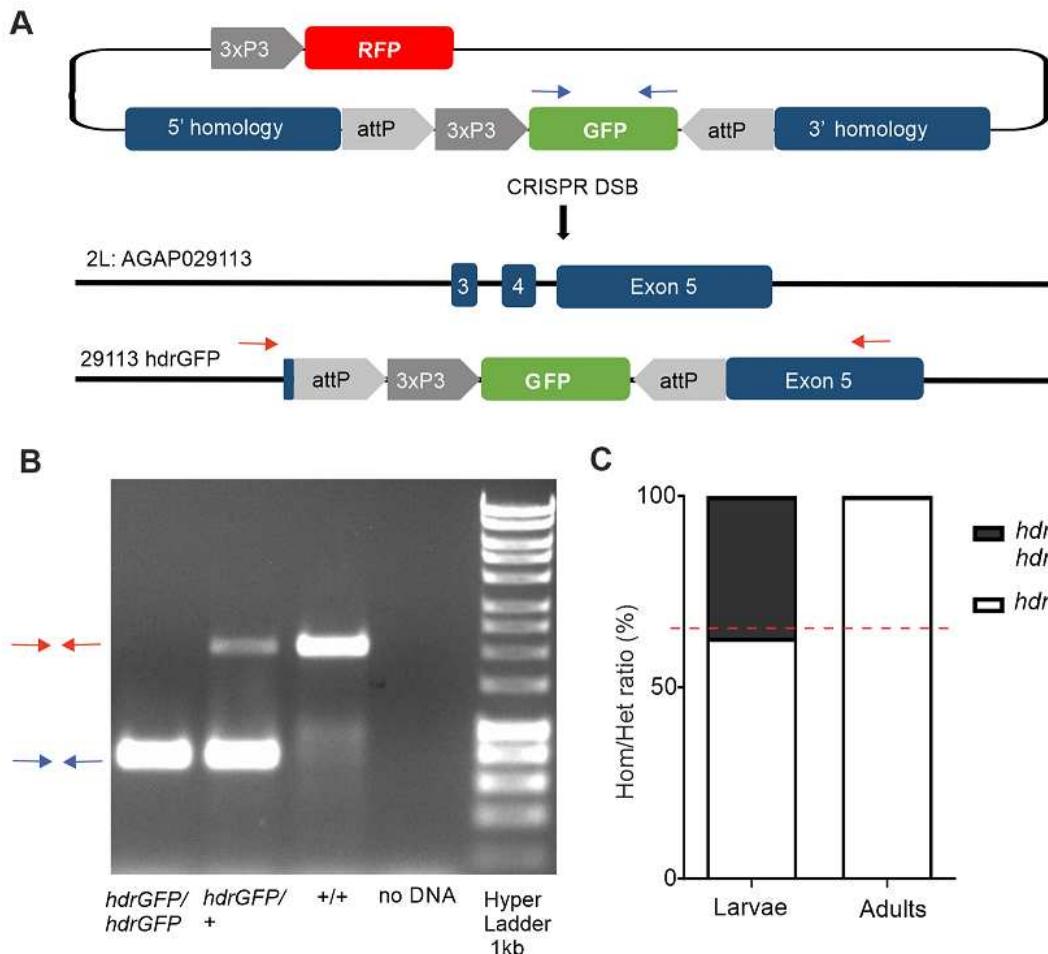
607 **Fig 3. Frequency of individuals containing the 29113^{CRISPRh} drive allele over time in a**
608 **population.** Transgenics were introduced at a 20% frequency in a wild-type (G3) population.
609 The transgenic rate was recorded in each subsequent generation. The experiments were

610 performed in triplicates. **(A)** Proportion of individuals carrying the non-homing 29113^{hdrGFP}
611 transgene (in blue). The dotted grey line shows the expected transgenic rate, based on no
612 fitness costs in heterozygotes **(B)** Proportion of the 29113^{CRISPRh/+} individuals (in blue). Dotted
613 lines show the deterministic prediction based on the observed homing rates for 29113^{CRISPRh/+}
614 individuals assuming either no fitness costs in gene drive carriers (grey hatched line),
615 observed fitness costs (light red line) from the phenotypic assays (fecundity cost (1 - relative
616 hatching rate) (F) = 0.216 and somatic cost (1 – relative eclosion rate) (M) = 0.378, (F) =
617 0.462,) and additional somatic costs (M) = 0.9, (F) =0.9, in dark red line) not measured in our
618 experiments.

619 **Fig 4. Resistance analysis of an ultra-conserved target site in AGAP0029113. (A)**
620 Crossing scheme devised to allow analysis of alleles that were exposed to CRISPR/Cas9, but
621 which were not converted to the 29113^{CRISPRh} construct. The crossing of heterozygous
622 29113^{CRISPRh/+} individuals to 29113^{hdrGFP/+} individuals, and subsequent screening of the
623 offspring for GFP+, provided mosquitoes that had an 29113^{hdrGFP/+} genotype, with the other
624 allele being wild-type or containing indels generated by NHEJ repair. Red represents the
625 29113^{CRISPRh} allele (RFP+), whilst green shows the 29113^{hdrGFP} allele (GFP+) and black shows
626 novel mutations. Progeny was screened for GFP+/RFP- (dashed rectangle). **(B)** Allele
627 frequency (%) at the CRISPR/Cas9 cleavage site. L1: 7000 larvae, adults: 90 individuals.
628

629 **Fig 5. Reproductive output of a population when mimicking near genotype fixation of**
630 **the 29113^{CRISPRh} allele.** 20 heterozygous males and 20 heterozygous females for the
631 29113^{CRISPRh} allele were crossed with each other. The same cross was performed with
632 29113^{hdrGFP/+} individuals as control. **(A)** All adults, eggs and larvae were recorded. The
633 resulting adults were used to set up the following generation. This procedure was continued
634 until generation 7 (G7). The number of non-homing 29113^{+/} adults was recorded as
635 comparison until G2, once the population had exceeded the carrying capacity of the
636 experimental set up. **(B)** Indels and substitutions seen at the predicted cleavage site for

637 29113^{CRISPRh} were assessed in 220 adults (G7) after repeated crossing of 29113^{CRISPRh/+}
638 individuals for 7 generations. The gRNA binding site is underlined, with the PAM highlighted
639 in bold. The Base highlighted in red shows a substitution that was also identified in the
640 resistance assay.


641

642

643

644

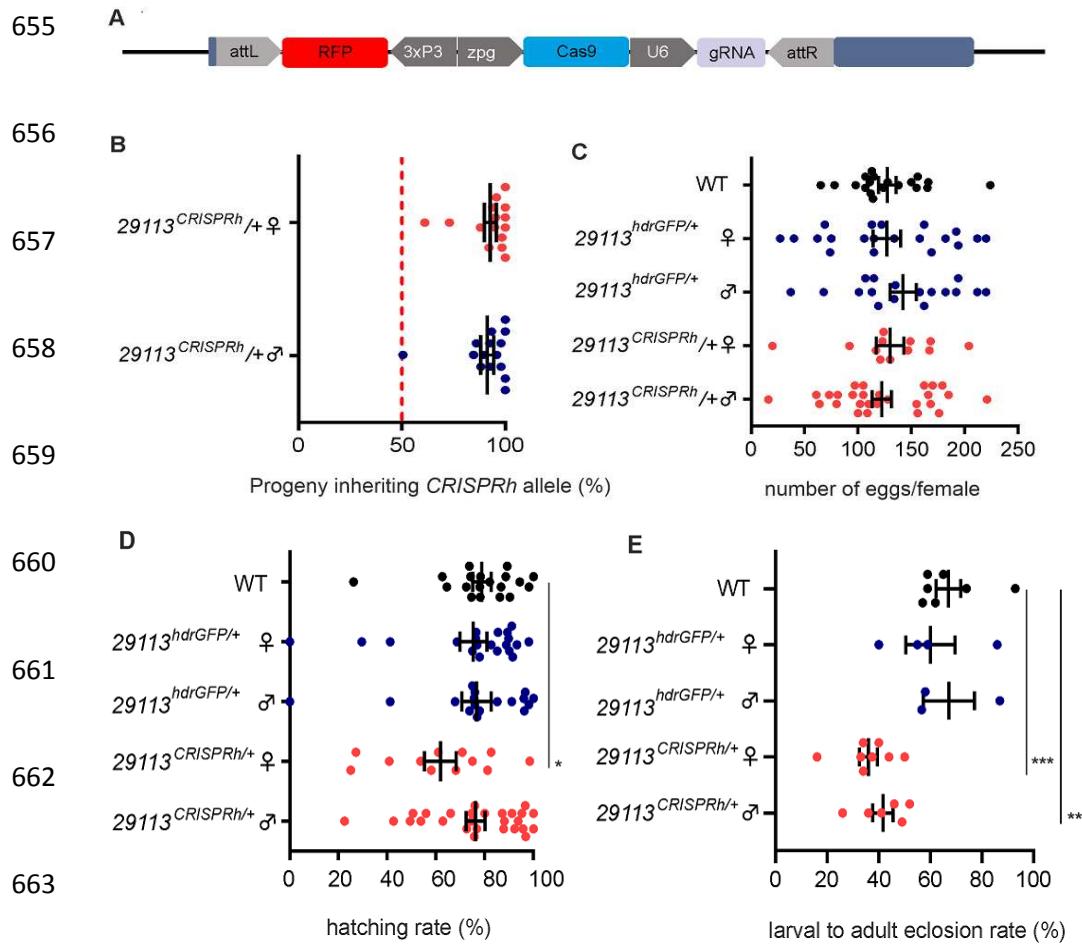
645

646

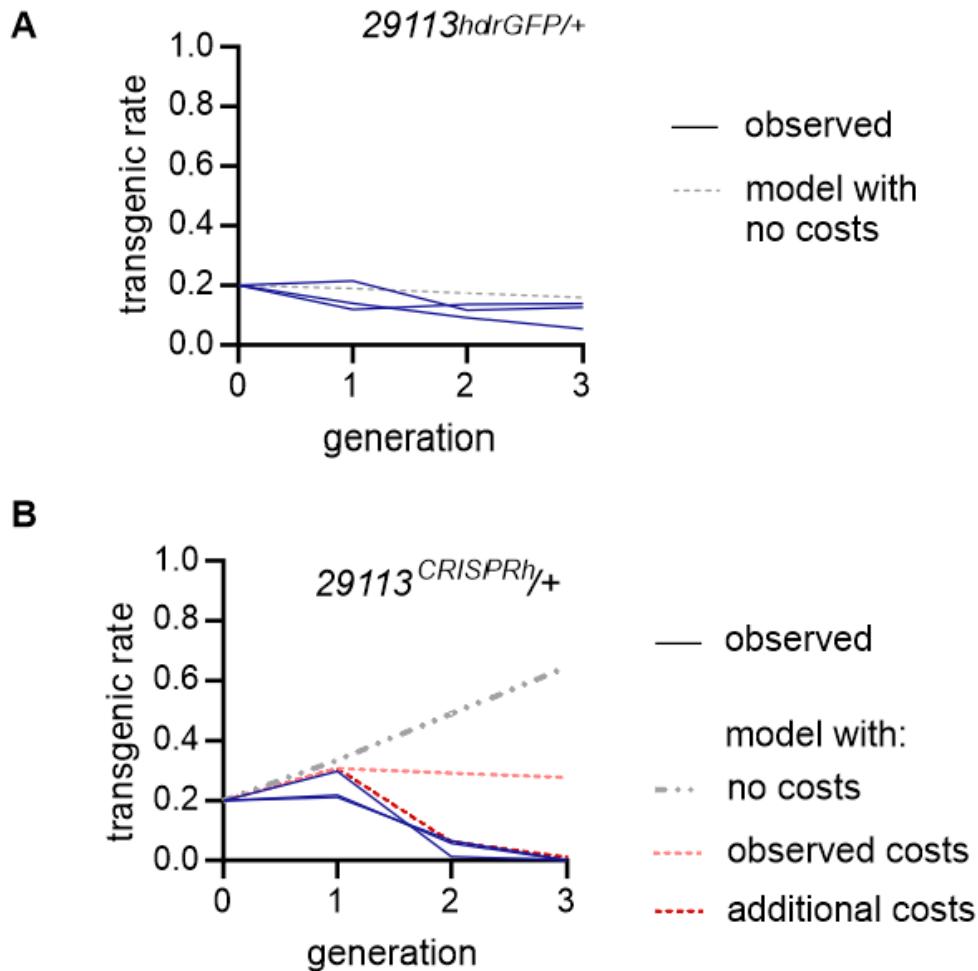
647 Fig 1

648

649


650

651


652

653

654

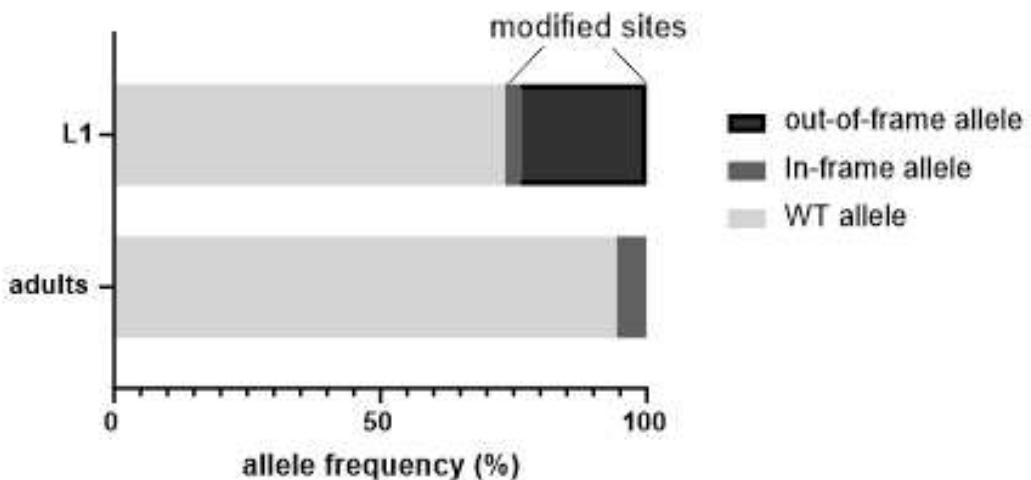
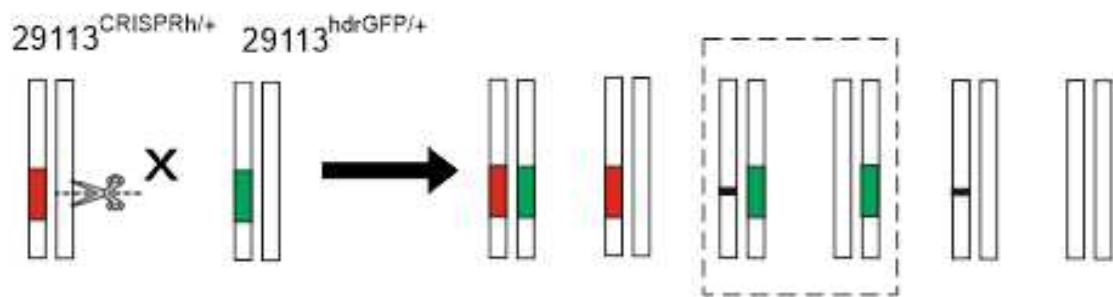
671

672

673 Fig 3

674

675



676

677

678

679

680

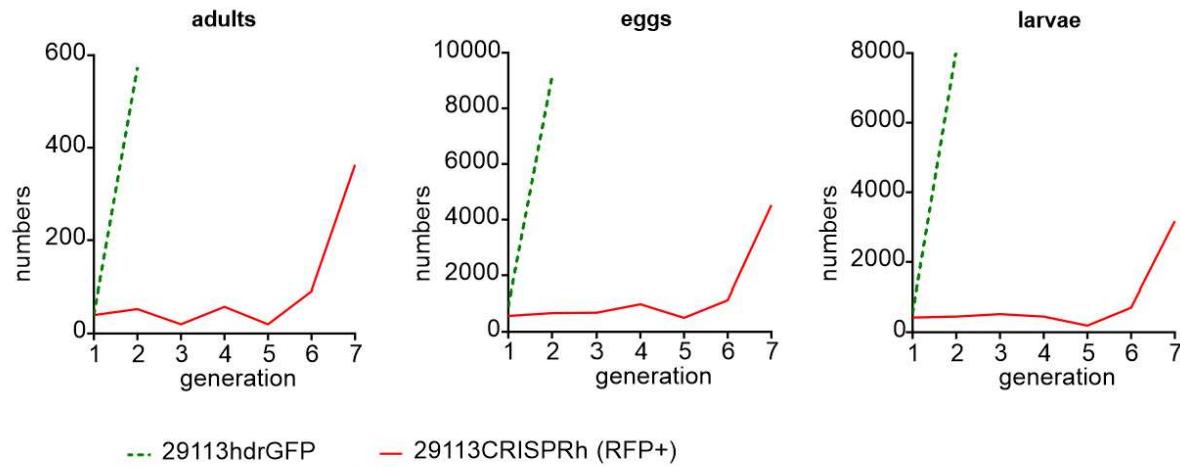
681

682 Fig 4

683

684

685


686

687

688

689

A

B

690
CGTGAACAAACAACAAAAGAC^TGT~~AGG~~ CCGTGATCGTGCCG Reference
CGTGAACAAACAACAAAAGAC^CGTAGGCCGTGATCGTGCCG 86.90% (387402 reads)
CGTGAACAAACAACAAAAGAC^TGTAGGCCGTGATCGTGCCG 12.56% (55901 reads)

691 Fig 5

692

693

694

695

696

697

698

699

700

701 **Supporting information**

702 **Fig S1.** Target site selection in *AGAP029113*. **(A)** Schematic representation of the 12 exons
703 of *AGAP029113* and location of the target site in exon 5 (red bar). **(B)** Nucleotide alignment
704 of exon 4 and 5 sections of *AGAP029113* (Chromosome 2L: 2921441-2921488) belonging to
705 *Anopheles gambiae/coluzzii* (AgamP3, AgamS1, AgamM1), *An. merus* (AmerM1), *An.*
706 *arabiensis* (AaraD1), *Anopheles quadriannulatus* (AquaS1), *An. melas* (AmelC1), *Anopheles*
707 *christyi* (AchrA1), *Anophles epiroticus* (AepiE1), *Anopheles minimus* (AminM1), *Anopheles*
708 *culicifacies* (AculA1), *Anopheles funestus* (AfunF1), *Anopheles stephensi* (AsteS1, Astel2),
709 *Anopheles maculatus* (AmacM1), *Anopheles farauti* (AfarF1), *Anopheles dirus* (AdirW1),
710 *Anopheles sinensis* (AsinS1), *Anopheles atroparvus* (AatrE1), *Anopheles darlingi* (AdarC2),
711 *Anopheles albimanus* (AalbS1), *An. funestus* (AfunF1), *Ae. Albopictus* (Aealb), *Aedes aegypti*
712 (Aeaeg), *Culex quinquefasciatus* (Cqui) and *Drosophila melanogaster* (Dmel) CRISPR gRNA
713 target is underlined in red and the CRISPR-Cas9 cut site is indicated by a black arrowhead.
714 The PAM sequence is indicated in bold letters. **(C)** Ag1000g phase 3 SNP data and frequency
715 at the *AGAP029113* target site sampled from 2784 wild *Anopheles* mosquitoes across Africa
716 and 297 parents and progeny from 15 lab crosses. *Anopheles gambiae* (Agam), *Anopheles*
717 *coluzzii* (Acol).

718 **Fig S2.** Deterministic prediction of the proportion of 29113^{CRISPRh/+} transgenics under observed
719 fitness costs and varying probability of generation of a functional resistance (r) allele by NHEJ
720 in the germline.

721 **Fig S3.** Indels and substitutions seen at the predicted cleavage site for 29113^{CRISPRh} in the
722 resistance assay in larvae and adults. Crossing of heterozygous 29113^{CRISPRh/+} individuals to
723 29113^{hdrGFP/+} individuals, and subsequent screening of the offspring for GFP+, provided
724 mosquitoes with a deficient 29113 allele, with the other allele being wild-type or containing
725 indels generated by NHEJ repair. **(A)** L1 larvae (7000). **(B)** Adults (90). The gRNA binding site

726 is underlined, with the PAM highlighted in bold. Horizontal dashes represent deletions whilst
727 vertical dashes show the predicted cleavage site. Bases highlighted in red show substitutions,
728 while bases in a red box represent insertions.

A

B

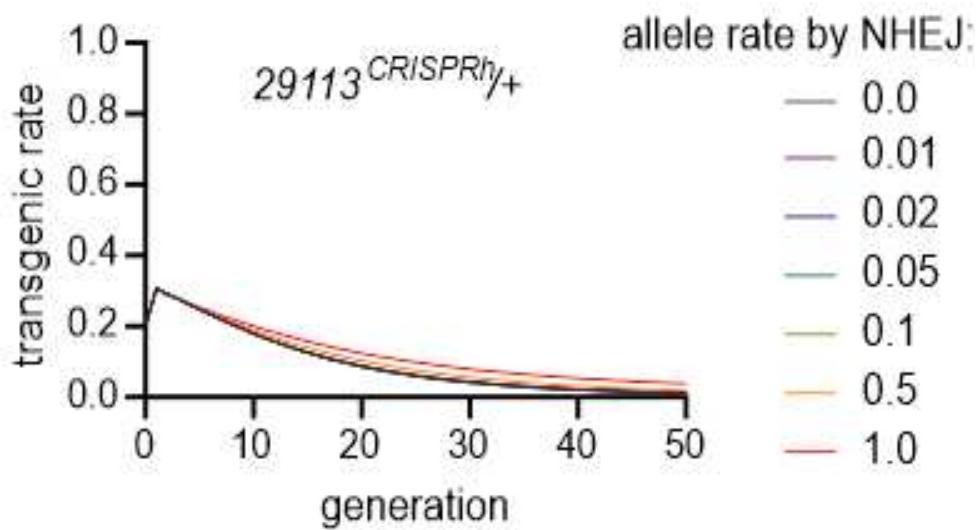
AgamP3	AGACTACAACGTGAA CAAC ACAAAAAGACTGTAGCCGTGATCGTGCC
AgamS1	AGACTACAACGTGAA CAAC ACAAAAAGACTGTAGCCGTGATCGTGCC
AgamM1	AGACTACAACGTGAA CAAC ACAAAAAGACTGTAGCCGTGATCGTGCC
AmerM1	AGACTACAACGTGAA CAAC ACAAAAAGACTGTAGCCGTGATCGTGCC
AaraD1	AGACTACAACGTGAA CAAC ACAAAAAGACTGTAGCCGTGATCGTGCC
AquaS1	AGACTACAACGTGAA CAAC ACAAAAAGACTGTAGCCGTGATCGTGCC
AmelC1	AGACTACAACGTGAA CAAC ACAAAAAGACTGTAGCCGTGATCGTGCC
AchrA1	AGACTACAACGTGAA CAAC ACAAAAAGACTGTAGCCGTGATCGTGCC
AepiE1	AGACTACAACGTGAA CAAC ACAAAAAGACTGTAGCCGTGATCGTGCC
AfarF1	AGACTACAACGTGAA CAAC ACAAAAAGACTGTAGCCGTGATCGTGCC
AdirW1	AGACTACAACGTGAA CAAC ACAAAAAGACTGTAGCCGTGATCGTGCC
AdarC2	AGACTACAACGTGAA CAAC ACAAAAAGACTGTAGCCGTGATCGTGCC
AalbS1	AGACTACAACGTGAA CAAC ACAAAAAGACTGTAGCCGTGATCGTGCC
AatrE1	AGACTACAACGTGAA CAAC ACAAAAAGACTGTAGCCGTGATCGAGCC
AminM1	AGACTACAACGTGAA CAAC ACAAAAAGACTGTAGCCGTGATCGGCC
AculA1	AGACTACAACGTGAA CAAC ACAAAAAGACTGTAGCCGTGATCGGCC
AfunF1	AGACTACAACGTGAA CAAC ACAAAAAGACTGTAGCCGTGATCGGCC
AsteS1	AGACTACAACGTGAA CAAC ACAAAAAGACTGTAGCCGTGATCGGCC
AsteI2	AGACTACAACGTGAA CAAC ACAAAAAGACTGTAGCCGTGATCGGCC
AmacM1	AGACTACAACGTGAA CAAC ACAAAAAGACTGTAGCCGTGATCGGCC
AsinS1	AGACTACAACGTGAA CAAC ACAAAAAGACTGTAGCCGTGATCGAGCC
Aealb	AGACTACAACGTGAA CAAC ACAAAAAGACTGTAGCCGTGATCGTGCC
Aeaeg	AGACTACAACGTGAA CAAC ACAAAAAGACTGTAGCCGTGATCGTGCC
Cqui	AGACTACAACGTGAA CAAC ACAAAAAGACTGTAGCCGTGATCGTGCC
Dmel	CGATTGCA CGCG ACAGCAACAAAAAGTC CGCG GTGTTATCCGCC

C

Sequence	Frequency	Country and species
.....G..	0.00113	Cameroon (Agam: 100.0)
.....C..	0.00167	Tanzania (Agam: 100.0)
.....T....	0.00113	Cameroon (Agam: 100.0)
.....T....	0.00658	DRC (Agam 100.0)
.....G.....	0.00222	Mali (Agam: 100.0)
.....G.....	0.00113	Cameroon (Agam: 100.0)
.....C.....	0.00658	DRC (Agam: 100.0)
.....C.....	0.00222	Mali (Agam: 100.0)
A.....	0.00179	The Gambia (Agam-Acol: 100.0)

730

731 S1 Fig


732

733

734

735

736

737

738 S2 Fig

739

740

741

742

743

744

745

746

747

748

749

750

A

CGTGAACAACAACAAAAGAC	TGT	AGG	CCGTGATCGTGCCG	Reference
CGTGAACAACAACAAAAGAC	TGT	AGG	CCGTGATCGTGCCG	74.65% (553502 reads)
CGTGAACAACAACAAAAGAC	TGT	AGG	CCGTGATCGTGCCG	7.15% (53019 reads)
CGTGAACAACAACAAAAGAC	TGT	AGG	CCGTGATCGTGCCG	6.16% (45692 reads)
CGTGAACAACAACAAAAGAC	TGT	AGG	CCGTGATCGTGCCG	4.31% (31962 reads)
CGTGAACAACAACAAAAGAC	TGT	AGG	CCGTGATCGTGCCG	1.60% (11856 reads)
CGTGAACAACAACAAAAGAC	TGT	AGG	CCGTGATCGTGCCG	1.40% (10393 reads)
CGTGAACAACAACAAAAGAC	TGT	AGG	CCGTGATCGTGCCG	1.10% (8119 reads)
CGTGAACAACAACAAAAGAC	TGT	AGG	CCGTGATCGTGCCG	0.72% (5360 reads)
CGTGAACAACAACAAAAGAC	TGT	AGG	CCGTGATCGTGCCG	0.58% (4314 reads)

B

CGTGAACAACAACAAAAGAC	TGT	AGG	CCGTGATCGTGCCG	Reference
CGTGAACAACAACAAAAGAC	TGT	AGG	CCGTGATCGTGCCG	94.32% (416510 reads)
CGTGAACAACAACAAAAGAC	TGT	AGG	CCGTGATCGTGCCG	1.81% (7982 reads)
CGTGAACAACAACAAAAGAC	TGT	AGG	CCGTGATCGTGCCG	1.55% (6828 reads)
CGTGAACAACAACAAAAGAC	TGT	AGG	CCGTGATCGTGCCG	1.25% (5523 reads)
CGTGAACAACAACAAAAGAC	TGT	AGG	CCGTGATCGTGCCG	0.72% (3162 reads)

751

752 S3 Fig