

1 Barcoded reciprocal hemizygosity analysis via sequencing illuminates the
2 complex genetic basis of yeast thermotolerance

3
4 Melanie B. Abrams*¹, Julie N. Chuong*^{†1}, Faisal AlZaben*², Claire A. Dubin*², Jeffrey M.
5 Skerker^{‡3}, and Rachel B. Brem*[‡]

6
7 *Department of Plant and Microbial Biology, UC Berkeley, Berkeley, CA; [†]Ph.D. Program in
8 Biology, New York University, New York, NY; [‡] Environmental Genomics and Systems Biology
9 Division, Lawrence Berkeley National Laboratory, Berkeley, CA; [‡]Buck Institute for Research on
10 Aging, Novato, CA

11
12 ¹These authors contributed equally to this work.

13 ²These authors contributed equally to the work

14 ³Current address: Zymergen, Inc., 5980 Horton St #105, Emeryville, CA 94608

15
16

17 Barcoded RH-seq and yeast thermotolerance
18
19 Keywords: Evolution, Genetics, *Saccharomyces*, Thermotolerance, Adaptation
20
21 Corresponding authors:
22
23 Rachel Brem, Ph.D.
24 Department of Plant and Microbial Biology
25 University of California, Berkeley
26 312F Innovative Genomics Institute Building
27 2151 Berkeley Way
28 Berkeley, CA 94730
29 rbrem@berkeley.edu
30
31 Jeffrey Skerker, Ph.D.
32 Zymergen, Inc.
33 5980 Horton St #105
34 Emeryville, CA 94608
35 skerker1@gmail.com
36

37

ABSTRACT

38

39 Decades of successes in statistical genetics have revealed the molecular underpinnings of traits
40 as they vary across individuals of a given species. But standard methods in the field can't be
41 applied to divergences between reproductively isolated taxa. Genome-wide reciprocal
42 hemizygosity mapping (RH-seq), a mutagenesis screen in an inter-species hybrid background,
43 holds promise as a method to accelerate the progress of interspecies genetics research. Here
44 we describe an improvement to RH-seq in which mutants harbor barcodes for cheap and
45 straightforward sequencing after selection in a condition of interest. As a proof of concept for the
46 new tool, we carried out genetic dissection of the difference in thermotolerance between two
47 reproductively isolated budding yeast species. Experimental screening identified dozens of
48 candidate loci at which variation between the species contributed to the thermotolerance trait.
49 Hits were enriched for mitosis genes and other housekeeping factors, and among them were
50 multiple loci with robust sequence signatures of positive selection. Together, these results shed
51 new light on the mechanisms by which evolution solved the problems of cell survival and
52 division at high temperature in the yeast clade, and they illustrate the power of the barcoded
53 RH-seq approach.

54

55

INTRODUCTION

56

57 Understanding how and why organisms from the wild exhibit different traits is a central goal of
58 modern genetics. Linkage and association mapping have driven decades of success in
59 dissecting trait variation across individuals of a given species (Ott et al. 2015; Tam et al. 2019).
60 But since these methods can't be applied to reproductively isolated taxa, progress in the field of
61 interspecies genetics has lagged behind. However, newer statistical-genetic methods
62 appropriate to comparisons between species have been proposed in the recent literature (Weiss
63 and Brem 2019), which hold promise for elucidating the genetics of ancient traits. For most such
64 methods, limitations accruing from throughput and/or coverage issues remain to be refined.

65

66 The budding yeast *Saccharomyces cerevisiae* grows better at high temperature than any other
67 species in its clade (Sweeney et al. 2004; Gonçalves et al. 2011; Salvadó et al. 2011; Hittinger
68 2013; Weiss et al. 2018), in keeping with its likely ecological origin in hot, East Asian locales
69 (Peter et al. 2018). This derived and putatively adaptive trait serves as a model for the genetic
70 study of deep evolutionary divergences. Thermosensitivity, the ancestral phenotype in the
71 clade, is borne out in *S. paradoxus*, a close sister species to *S. cerevisiae*, making the former a
72 useful point of comparison. Our group previously used this system as a testbed to develop RH-
73 seq (Weiss et al. 2018), a genomic version of the reciprocal hemizygosity test (Stern 2014) that
74 is well-suited to the mapping of natural trait variation between sister species. This technique
75 starts with the generation of large numbers of random transposon mutant clones of a viable but
76 sterile interspecies hybrid. In a given clone, loss of function from a transposon insertion in one
77 species' allele of a gene reveals the function of the uncovered allele from the other species.
78 These hemizygotes are competed en masse in a condition of interest; the abundance of each
79 hemizygote in turn in the selected pool is quantified by bulk sequencing, and used in a test for
80 allelic impact on the focal trait. In previous work, we identified eight genes through this approach
81 at which species divergence contributed to thermotolerance (Weiss et al. 2018).

82

83 Against a backdrop of successful biological and evolutionary inference from our yeast RH-seq
84 pilot (Weiss et al. 2018; Abrams et al. 2021), we noted that the combination of *S. cerevisiae*
85 alleles of all eight genes mapped to thermotolerance recapitulated only <20% of the difference
86 between the species (AlZaben et al. 2021). Thus, many of the determinants of yeast
87 thermotolerance likely remain undetected. If so, boosting the replication and throughput of

88 genetic mapping, to enable higher statistical power, could help meet the challenge. In our initial
89 implementation of RH-seq, we had quantified the abundance of hemizygotes in a sample by
90 sequencing across the transposon junction with the genome, using one universal primer that
91 recognized the transposon and another recognizing a ligated adapter at DNA fragment ends
92 (Weiss et al. 2018). This protocol, though rigorous, is labor-intensive and expensive, limiting the
93 potential for throughput and coverage. A higher-throughput alternative starts with the tagging of
94 transposon sequences by random short DNA barcodes (Wetmore et al. 2015). After
95 mutagenesis of a genotype of interest by these barcoded transposons, and then selection of the
96 mutants in bulk in a challenging condition, mutant abundance can be quantified from
97 sequencing of DNA straight from the pool with a simple PCR. We set out to adapt this barcoding
98 strategy to enable highly replicated RH-seq, with application to yeast thermotolerance as a test
99 case to achieve a deeper exploration of the complex genetics of the trait.

100

MATERIALS AND METHODS

101

102

103 Construction of a randomly barcoded piggyBac transposase pool

104

105

106 For barcoded RH-seq, we constructed a pool of plasmids, each harboring the piggyBac
107 transposase and a randomly barcoded copy of the piggyBac transposon, via Golden Gate
108 cloning of random 20bp barcodes flanked by universal priming sites into a plasmid backbone
109 containing the piggyBac machinery, modified from pJR487 (Weiss et al. 2018) as follows
(Figure S1).

110

111

112 Preparation of the backbone vector

113

114

115 To allow the use of BbsI as the Type IIS restriction enzyme for Golden Gate cloning of barcodes
116 into pJR487 (see below), we first removed all three BbsI cut sites from pJR487 by introducing
117 silent mutations that disrupted the restriction enzyme's recognition pattern. The resulting
118 plasmid was called pCW328. We next modified pCW328 to make a Golden-Gate-ready vector,
119 with the final identifier pJC31, by replacing transposon nucleotides with those of a stuffer at a
120 location 70 nucleotides from the end of the right arm of the transposon (Table S1); see
121 Supplementary Note and Figure S2 for a description of this choice. The stuffer contained two
122 BbsI cut sites with custom Type IIS overhang sequences from (Lee et al. 2015), and a NotI cut
123 site in between the two BbsI cut sites. All cloning steps were carried out by GenScript, Inc.

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

123 Preparation of barcode oligonucleotides

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

125 To make barcodes, we acquired an oligonucleotide pool from IDT that contained random 20 bp
126 sequences (from hand-mixed random nucleotides) flanked by universal priming regions, U1 and
127 U2 (Wetmore et al. 2015, Coradetti et al. 2018). These custom oligos were produced and PAGE
128 purified by IDT. Additionally, we designed forward (FW_BbsI_JC) and reverse (REV_BbsI_JC)
129 primers which each contained a BbsI cut site, BbsI overhang sequences complementary to the
130 backbone vector, and either universal priming sequence (Table S2) (Coradetti et al. 2018). We
131 set up 50 μ L amplification PCR reactions with 1 μ L of random 20 bp barcodes as template, from
132 a 2.5 μ M stock, and 0.25 μ L of each of the forward and reverse primers from a 100 μ M stock.
133 Amplification used Phusion High Fidelity polymerase (NEB) and the following cycling protocol:
134 98°C for 30 seconds, (98°C for 10 seconds, 58°C for 30 seconds, 72°C for 60 seconds) \times 6,
135 72°C for five minutes. PCR products were purified (Zymo DNA Clean & Concentrator kit) and
136 then combined. This yielded the final donor barcodes: random 20bp barcodes flanked by
137 universal priming regions, with BbsI cut sites at the extreme edges.

139 *Cloning barcodes into plasmids*

140
141 To clone barcodes into pJC31, we proceeded in two barcoding reactions.

142
143 The first reaction contained 2:1 molar ratio of vector to barcodes (4 µg of pJC31 and 128 ng of
144 donor barcodes), 5 µL of 10X T4 Ligase Buffer (ThermoFisher), 2.5 µL of T4 Ligase
145 (ThermoFisher), 2.5 µL FastDigest Bpil (ThermoFisher), and sterile water up to 50 µL. The
146 cycling program was: 37°C for five minutes, (37°C for two minutes, 16°C for five minutes) x 25,
147 65°C for 10 minutes. Then a mixture containing 5 µL 10X FastDigest Buffer (ThermoFisher),
148 3.13 µL BSA 2 mg/mL (NEB), 12.5 µL FastDigest NotI (ThermoFisher), and 12.5 µL FastDigest
149 Bpil (ThermoFisher) was spiked into the reaction and incubated at 37°C for 16 hours to digest
150 unbarcoded backbone vectors. Ten of these reactions were combined, purified, and eluted in
151 H₂O (Zymo DNA Clean & Concentrator). To spot-check this cloning, 5 µL of this product was
152 transformed into 25 µL of *E. coli* 10beta electrocompetent cells (NEB). Sanger sequences
153 across the barcode regions of 20 individually miniprepped *E. coli* colonies showed 95%
154 barcoding efficiency.

155
156 The second reaction contained 2:1 molar ratio of vector to donor barcodes (4 µg of pJC31 and
157 128 ng of donor barcodes), 5 µL of 10X T4 Buffer (ThermoFisher), 2.5 µL T4 Ligase
158 (ThermoFisher), 2.5 µL Bpil (ThermoFisher), and sterile water up to 50 µL. The cycling program
159 was: 37°C for five minutes, (37°C for two minutes, 16°C for five minutes) x 25, 65°C for 10
160 minutes. Then a mixture containing 2.5 µL 10X FastDigest Buffer (ThermoFisher), 2.5 µL G
161 Buffer, (ThermoFisher), 3.13 µL BSA 2 mg/mL (NEB), 12.5 µL FastDigest NotI (ThermoFisher),
162 and 12.5 µL Bpil (ThermoFisher) was spiked in the reaction and incubated at 37°C for 16 hours
163 to digest remaining unbarcoded backbone vectors. Six of these reactions were combined,
164 purified, and eluted in H₂O (Zymo DNA Clean & Concentrator). Then every 5 µL of cleaned
165 eluted product was redigested with 5 µL of NotI-HF (NEB), 5 µL 10X CutSmart buffer (NEB), and
166 35 µL H₂O at 37°C for 16 hours then 80°C for 20 minutes. The reactions were purified again
167 (Zymo DNA Clean & Concentrator) and pooled. Spot checks of this cloning reaction proceeded
168 as above, and Sanger sequences across the barcode regions of 20 individually miniprepped *E.*
169 *coli* colonies showed 95% barcoding efficiency.

170
171 Purified plasmids from the two reactions were combined in a master tube of DNA before
172 transforming into electrocompetent *E. coli* cells (NEB) to generate the final barcoded piggyBac
173 pool (final identifier P58). Each electroporation cuvette (BTX) contained 25 µL of 10beta
174 electrocompetent cells (NEB) and 5 µL of cleaned master tube DNA from the previous golden
175 gate barcoding step. We performed 21 electroporation reactions in total using the Bio-Rad
176 GenePulser Xcell machine set to 2.0 kV, 200 Ohms, 25 µF. After electroporation, each culture
177 was recovered in provided outgrowth media (NEB) by shaking at 37°C at 250 rpm for 1.5 hours.
178 After recovery, all independent 21 electroporation reactions were combined.

179
180 The combined recovered transformation *E. coli* culture was used to inoculate two 1L fresh LB
181 cultures containing carbenicillin at 100 µg/mL to select for *E. coli* cells containing barcoded
182 piggyBac plasmids. Each culture was incubated for 15.5 hours at 37°C, 250 rpm (overnight) to
183 expand the barcoded piggyBac *E. coli* pool. Then the two cultures were combined yielding the
184 final barcoded transposon plasmid pool, P58. This was aliquoted into 1 mL volumes with 15%
185 glycerol and stored at -80°C.

186
187 *Sequencing verification of barcoded piggyBac pool plasmid DNA for barcode diversity*
188 To verify barcode diversity in the barcoded piggyBac plasmid pool (P58), we sequenced
189 barcodes as follows. One frozen aliquot of P58 was inoculated into 1.25 L of LB containing

190 carbenicillin 100 μ g/mL and grown for 16 hours 37°C, 250 rpm or until it reached an OD₆₀₀ of
191 2.1. This culture was gigaprepped on using a column kit (Invitrogen) to generate 5 mg of
192 plasmid. We used this as input into a PCR with primers (Table S2) annealing to the universal
193 priming regions flanking the barcode. These primers were dual-indexed, although in this work
194 we only carried out sequencing of the resulting amplicon from one end (see below), such that
195 only one index was used. The generic form of the forward primer was
196 AATGATACGGCGACCACCGAGATCTACACTCTTCCCTACACGACGCTCTCCGATCT(N1-
197 4)xxxxxxGTCGACCTGCAGCGTACG, where the N1-4 represent variable amounts of random
198 bases from 1-4 to help samples cluster on the Illumina lane and the (x6) represent a unique 6-
199 bp index sequence for multiplexing samples. The generic reverse primer was
200 CAAGCAGAAGACGGCATACGAGATxxxxxxGTGACTGGAGTTCAGACGTGTGCTCTCCGAT
201 CTGATGTCCACGAGGTCTCT . Four PCR reactions used 50 ng of prepped P58 plasmid
202 template each. Amplification used Q5 High Fidelity Polymerase (NEB) and a cycling program
203 98°C for four minutes, (98°C for 30 seconds, 55°C for 30 seconds, 72°C for 30 seconds) x 25,
204 72°C for five minutes. Each PCR product was purified on a column (Zymo DNA Clean &
205 Concentrator-5 Kit) and eluted in 10 μ L prewarmed 65°C provided elution buffer (Zymo). Six μ L
206 of each were then combined and sequenced off the U2 region via Illumina amplicon
207 sequencing, on one lane of HiSeq4000 SR50 at the Genomics Sequencing Laboratory at UC
208 Berkeley. Reads sequenced per library are reported in Table S3. Sequencing of the *E. coli*
209 vector pool p58 revealed 27,538,142 barcodes with an estimated sequencing error rate of
210 1.38% analyzed as described (Coradetti et al. 2018).

211
212 **Yeast hemizygote pool construction via barcoded transposon mutagenesis**
213

214 We constructed our yeast hemizygote pool essentially as described (Weiss et al. 2018) but with
215 modifications as follows.

216 To prepare plasmid DNA for mutagenesis, one frozen aliquot of P58 was inoculated into 1.25L
217 of LB containing carbenicillin 100 μ g ml^{-1} and grown for 16 hours at 37°C, 250 rpm or until it
218 reached an OD₆₀₀/mL of 2.1. This culture was gigaprepped on using a column kit (Invitrogen) to
219 generate 5 mg of plasmid.

220 Next, we transformed yeast in several, smaller subpools which we combined to form a final pool
221 as follows. We carried out mutagenesis of CW27, an F1 hybrid from the mating of *S. cerevisiae*
222 DBVPG1373 with *S. paradoxus* Z1 (Weiss et al. 2018) across the first two days. The first day,
223 we generated one subpool in a single 50 mL culture and one subpool in five 50 mL cultures at
224 OD₆₀₀/mL \sim 0.9 (\sim 45 OD₆₀₀ units of cells each). The second day, we generated two subpools in
225 five 50 mL cultures each at OD₆₀₀/mL \sim 0.9 (\sim 45 OD₆₀₀ units of cells).

226 To generate subpools consisting of a single 50 mL culture, one colony of CW27 was inoculated
227 into 5 mL of YPD and incubated at 28°C 200 rpm. 24 hours later, the OD₆₀₀/mL of the overnight
228 culture was 3.86. It was backdiluted to an OD₆₀₀/mL of 0.1 in 50 mL of YPD in a 250 mL
229 Erlenmeyer flask and grown with shaking at 28°C, 200 rpm for 5.5 hours. After 5.5 hours, it had
230 reached OD₆₀₀/mL \sim 0.9 and cells were at mid-log phase. This 50 mL culture was gently pelleted
231 at 1000xg for three minutes. The pellet was washed with 25 mL sterile water and then 5 mL
232 of 0.1 M lithium acetate (Sigma) mixed with 1X Tris-EDTA buffer (10 mM Tris-HCl and 1.0 mM
233 EDTA); after spin-down, to the tube was added a solution of 0.269 mg of P58 mixed 5:1 by
234 volume with salmon sperm DNA (Invitrogen), followed by 3 mL of 39.52% polyethylene glycol,
235 0.12 M lithium acetate and 1.2X Tris-EDTA buffer (12 mM Tris-HCl and 1.2 mM EDTA). The
236 tube was rested for 10 minutes at room temperature, then heat-shocked in a water bath at 37°C
237 for 26 minutes. The tube was gently spun at 1000g for three minutes after which supernatant
238

241 was removed. We transferred the cells to a flask and added YPD to attain an OD_{600}/mL of
242 $\sim 0.35\text{--}4$ in ~ 70 mL. Each such culture was recovered by shaking at 28°C and 200 rpm for two
243 hours. G418 (Geneticin; Gibco) was added to each at a concentration of 300 $\mu\text{g}/\text{mL}$ to select for
244 those cells that had taken up the plasmid, and cultures were incubated with 200 rpm shaking at
245 28°C for two days until each reached an OD_{600}/mL of ~ 2.5 . We transferred cells from this
246 culture, and YPD + G418 (300 $\mu\text{g}/\text{mL}$), to new 250 mL flasks at the volumes required to attain
247 an OD_{600}/mL of 0.2 in 50 mL each. We cultured each flask with 200 rpm. shaking at 28°C
248 overnight until each reached an OD_{600}/mL of 3.43. To cure transformants of the P58 URA3+
249 plasmid, we spun down 10% of this master culture, and resuspended in water with the volume
250 required to attain a cell density of 1.85 OD_{600}/mL . Four mL of this resuspension were plated (1
251 mL per 24.1 cm x 24.1 cm plate) onto plates containing complete synthetic media with 5-
252 fluoroorotic acid (0.2% dropout amino acid mix without uracil or yeast nitrogen base (US
253 Biological), 0.005% uracil (Sigma), 2% D-glucose (Sigma), 0.67% yeast nitrogen base without
254 amino acids (Difco), 0.075% 5-fluoroorotic acid (Zymo Research)). After incubation at 28°C to
255 enable colony growth, colonies were scraped off all four plates and combined into water at the
256 volume required to attain 44 OD_{600}/mL , yielding the transposon mutant hemizygote subpool.
257 This was aliquoted into 1 mL volumes with 10% dimethylsulfoxide and frozen at -80°C .
258

259 To generate subpools consisting of five 50 mL cultures, one colony of CW27 was inoculated to
260 100 mL of YPD in a 250 mL Erlenmeyer flask and incubated shaking at 28°C , 200 rpm. Twenty-
261 four hours later, the OD_{600}/mL of the overnight culture was OD_{600}/mL 3.89. The overnight culture
262 was backdiluted to OD_{600}/mL 0.1 in 250 mL of YPD and incubated for 5.5 hours at 28°C , 200
263 rpm. After 5.5 hours, the OD_{600}/mL reached 0.9 and cells were split into five 50 mL conical
264 tubes, and subjected each to heat shock as above. We then transferred all cells from this post-
265 transformation culture to one 1L flask and added fresh YPD to attain OD_{600}/mL 0.4 in ~ 750 mL
266 YPD. The transformed culture was recovered by shaking at 28°C , 200 rpm, for two hours. G418
267 (300mg/ul) was added to select for the transposed cells. The culture continued shaking for 48
268 hours or until the OD_{600}/mL reached 2.1. This culture was then backdiluted to create a new
269 culture at OD_{600}/mL 0.2 in 500 mL of YPD with 300mg/ μL G418 shaking for 24 hours at 28°C ,
270 200 rpm until it reached OD_{600}/mL ~ 3.4 . The curing, scraping, and freezing steps were the same
271 as above.
272

273 To combine the four subpools to yield the final 160X hemizygote pool (final identifier P75), three
274 1 mL aliquots of each subpool were thawed on ice for one hour. They were transferred to each
275 of four 1L flasks with 500 mL YPD to OD_{600}/mL 0.2, cultured at 28°C , 200 rpm for 17 hours upon
276 which the OD_{600}/mL was 3.5-4. They were gently pelleted, combined, and resuspended in two
277 ways to reach OD_{600}/mL of 44: YPD with 15% glycerol and YPD with 7% DMSO, aliquoted to 1
278 mL volumes, and frozen at -80°C .
279

280 **Tn-seq mapping of yeast hemizygote pool**

281 *Tn-seq library preparation*

284 To associate barcoded transposon insertions to genomic location in the hemizygote pool, which
285 we refer to as Tn-seq, we first sequenced barcoded transposon insertions according to the
286 methods of (Weiss et al. 2018) as follows. Each 44 OD_{600}/mL aliquot of each subpool or final
287 pool was thawed on ice, and its genomic DNA (gDNA) was harvested with the ZR
288 Fungal/Bacterial DNA MiniPrep Kit (Zymo Research). gDNA was resuspended in DNA elution
289 buffer (Zymo Research) prewarmed to 65°C , and its concentration was quantified using a Qubit
290 4.0 fluorometer. Illumina transposon sequencing (Tn-seq) library construction was as described
291 previously. Briefly, gDNA was sonicated and ligated with common adapters, and for each

292 fragment deriving from a barcoded transposon insertion in the genome, a sequence containing
293 a barcode, a portion of the transposon, and a portion of its genomic context (the barcoded
294 transposon–genome junction) was amplified using one primer homologous to the U1 region
295 immediately upstream of barcode and another primer homologous to a region in the adapter.
296 See Table S2 for the transposon-specific primer (“forward primer”), where Ns represent random
297 nucleotides, and the indexed adapter-specific primer (“reverse primer”). Amplification used
298 Jumpstart polymerase (Sigma) and the following cycling protocol: 94°C for two minutes, (94°C
299 for 30 seconds, 65°C for 20 seconds, 72°C for 30 seconds) × 25, 72°C for 10 minutes.
300 Sequencing of paired-end reads of 150 bp was done over two lanes on a HiSeq4000 at
301 Novogene Corporation (Sacramento, CA) and one lane on a NovaSeq SP at the Genomics
302 Sequencing Laboratory at UC Berkeley (Berkeley, CA). Reads sequenced per library are
303 reported in Table S4.

304

305 *Tn*-seq data analysis

306

307 Tn-seq data of the hemizygote pool was analyzed, to infer transposon insertions on the basis of
308 barcodes detected in reads as junctions with genomic sequence, essentially as described
309 (Coradetti et al. 2018) (https://github.com/stcoradetti/RBseq/tree/master/Old_Versions/1.1.4),
310 with the following modifications. For each barcode, instead of scanning positions for the end of
311 the insertion from a sequence specified by a model file, we searched for the final 22 base pairs
312 of the right arm of the piggyBac transposon allowing for two mismatches. For annotation, we
313 converted the annotation file from <https://github.com/weiss19/rh-seq> for the *S. cerevisiae* D1373
314 x *S. paradoxus* Z1 hybrid to a compliant GFF3 file using Another GFF Analysis Toolkit (AGAT) -
315 Version: v0.4.0 (<https://github.com/NBISweden/AGAT>). Then, we used a custom Jupyter
316 notebook to annotate the file generated by the RBseq mapping software.

317

318 Quality control for Tn-seq, to eliminate barcodes whose junction genomic sequence mapped to
319 multiple insertion locations in the hybrid genome, and to minimize the proportion of sequencing
320 errors included in final tallies, was as described (Coradetti et al. 2018). Briefly, we eliminated
321 from further consideration any case where a barcode observed in Tn-seq sequencing data
322 differed from another, much more abundant, barcode by a single base (a total of 2,024,812 off-
323 by-one barcodes in 2,888,129 reads). We also filtered out off-by-two barcodes (280,949
324 barcodes in total). Separately, we eliminated barcodes that were detected in sequencing data
325 as a junction with more than one genomic context, suggesting the respective transposon had
326 inserted into multiple locations in one or many clones (98,669 barcodes where this inference
327 was based on multiple strong mapping matches, and an additional 46,583 barcodes where this
328 inference was ambiguous, with one strong mapping match with reads outnumbered by those
329 assigned to weaker mapping matches). The final filtered barcode set comprised 548,129
330 uniquely barcoded and mapped inferred transposon insertions in the P75 hemizygote pool, at
331 an average read depth of 308.6 reads, and a median read depth of 47 reads; 166,834 of these
332 insertions were mapped as genic. The annotation script, GFF3 file, and modified mapping script
333 are available at https://github.com/melanieabrams-pub/RH-seq_with_barcoding.

334

335 Competition cultures

336

337 For the thermotolerance competition at 37°C (Table S5), one aliquot of the yeast hemizygote
338 pool was thawed and inoculated into 150 mL of YPD in a 250 mL unbaffled Erlenmeyer flask
339 and grown for six hours at 28°C, 200 rpm. This pre-culture (T_0 , at OD_{600}/mL of 1.22) was
340 backdiluted into 12 10 mL competition cultures at 200 rpm at each of 28°C and 37°C, with a
341 starting OD_{600}/mL of 0.02 or 0.05 in at 28°C and 37°C respectively. These competition cultures
342 were maintained within logarithmic growth through back-dilutions into fresh tubes of 10 mL of

343 YPD at the same optical density as the starting culture, for a total of 10-15 generations.
344 Dilutions for the 28°C competition cultures were performed after 8.5, 18.5, and 25.5 hours after
345 the T₀ timepoint, and dilutions for the 37°C competition cultures were performed after 8.5, 18.5,
346 25.5 hours and 32.5 hours after the T₀ timepoint. The entire cell culture was harvested from
347 each of these biological replicate tubes for sequencing as biological replicates.
348

349 For thermotolerance competition at 36°C (Table S6), competition cultures were grown as above
350 with the following differences. The high temperature was 36°C, instead of 37°C. The pre-culture
351 (T₀, at OD₆₀₀/mL of 0.693 after 5.5 hours at 28°C, 200 rpm) was backdiluted to a starting
352 OD₆₀₀/mL of 0.02 for competition cultures at 36°C. Dilutions for both the 28°C and 36°C
353 competition cultures were performed after 8.5, 18.5 and 25.25 hours after the T₀ timepoint.
354 Eleven instead of 12 replicates were carried out at 28°C.
355

356 **Barcode quantification from competition cultures**

357
358 *Bar-seq library preparation*
359
360 To determine the abundance of barcoded transposon mutant hemizygote clones after selection,
361 we sequenced barcodes insertions as follows. Each cell pellet from a selection sample was
362 thawed on ice, and its genomic DNA (gDNA) was harvested with the Zymo QuickDNA Kit
363 (Zymo#D6005). gDNA was resuspending in DNA elution buffer (Zymo Research) prewarmed to
364 65°C, and its concentration was quantified using a Qubit 4.0 fluorometer. The barcode insertion
365 was amplified as above (see *Sequencing verification of barcoded piggyBac pool plasmid DNA*
366 *for barcode diversity*). Each PCR product was purified on a column (Zymo DNA Clean &
367 Concentrator) and eluted in 10 µL prewarmed 65°C provided elution buffer (Zymo). Six µL of
368 each were then combined and sequenced off the U2 region by Illumina sequencing on one lane
369 of HiSeq4000 SR50 at the QB3 Genomics Sequencing Laboratory at UC Berkeley.
370

371 *Bar-seq data analysis*

372
373 Bar-seq mapping and quantification were as described (Coradetti et al. 2018)
374 (https://github.com/stcoradetti/RBseq/tree/master/Old_Versions/1.1.4), wherein only barcodes
375 that passed quality control in Tn-seq (see *Tn-seq data analysis* above) were analyzed for
376 quantitative measures of abundance via Bar-seq. Thus we did not use in our screen any
377 barcode that was detected in Bar-seq sequence data but not Tn-seq data (the product of e.g.
378 sequencing errors in Bar-seq, or a failure to observe in Tn-seq a barcode associated with a
379 bona fide transposon insertion that could be detected in Bar-seq). A total of 301,349 barcodes
380 conformed to these criteria from across all replicates of Bar-seq in competitions for the
381 dissection of determinants of growth at 37°C relative to 28°C, with an average read depth of
382 305.3 reads and a median of 12 reads; 89,772 of these Bar-seq detected barcodes
383 corresponded to inferred transposon insertions in genes and were analyzed as input to the
384 reciprocal hemizygosity testing pipeline described below. In a given replicate competition culture
385 we detected a median 1 x 10⁵ barcodes. The latter represented a fifth of the size of the total
386 pool of hemizygotes detectable after quality control by Tn-seq (5.5 x 10⁵; see *Tn-seq data*
387 *analysis* above). Thus, the extent of bottlenecking in any given competition experiment was
388 modest, with diversity retained at the order of magnitude of the mutant pool size.
389

390 Competitions for the dissection of growth at 36°C relative to 28°C (Table S6) used the same
391 procedures as above, mapping a total of 230,469 barcodes, 68,523 of which corresponded to
392 inserts in genes and were analyzed as input to the reciprocal hemizygosity testing pipeline

393 described below. In a given replicate competition culture, we detected a median 5×10^4
394 barcodes.

395

396 Reciprocal hemizygosity testing

397

398 The tabulated counts of abundance from Bar-seq for each barcode in each replicate were used
399 as input into reciprocal hemizygosity tests essentially as in (Abrams et al. 2021), with slight
400 changes as follows. We had in hand each barcode which had been sequenced as a junction
401 with a unique genomic location in the Tn-seq step and had passed quality control there (see *Tn-*
402 *seq data analysis* above), and which was now detected in competition cultures. We interpreted
403 each such barcode as reporting a hemizygote clone bearing a transposon insertion at the
404 respective position of the respective species' allele (*S. cerevisiae* or *S. paradoxus*), with the
405 other species' allele retained as wild-type at that locus. In what follows, we refer to each such
406 barcode as reporting an inferred hemizygote clone, with respect to its growth behavior in
407 competition cultures. As in (Abrams et al. 2021), for a given biological replicate we normalized
408 the abundances attributed to each inferred hemizygote genotype to the total number of
409 sequencing reads in the respective sample, and we eliminated from further analysis insertions
410 which had been annotated as intergenic, or as corresponding to the plasmid used to generate
411 this library. For reciprocal hemizygosity tests, we excluded from consideration any gene with
412 fewer than three inferred hemizygote genotypes per allele. Of the retained genes, for each
413 inferred hemizygote genotype, we tabulated the quantity $a_{\text{experimental},i}$, the sequencing-based
414 abundance measured after the competition culture in biological replicate i of growth at the
415 experimental temperature (36 or 37°C), and, separately, we calculated $a_{\text{control},i}$, the analogous
416 quantity from growth at the control temperature (28°C), for $i = [1, 12]$. We then took the mean of
417 the latter and used it to tabulate the temperature effect on the inferred hemizygote genotype in
418 replicate i , $t_i = \log_2(a_{\text{experimental},i}/a_{\text{control,mean}})$. As in (Abrams et al. 2021), we eliminated an inferred
419 hemizygote genotype if the coefficient of variation of this quantity exceeded 2.0, or there were
420 fewer than 1.1 normalized reads. With the data for the remaining inferred hemizygote genotypes
421 (Tables S5 and S6), for a given gene, we compiled the vector of the t measurements across
422 replicates and all inferred hemizygote genotypes with each species' allele of the hybrid
423 disrupted in turn, and discarded genes where the coefficient of variation of the t measurements
424 across hemizygote inserts for one or both alleles exceeded 10. For the remainder, we used the
425 Mann-Whitney test to compare these two vectors, with Benjamini-Hochberg correction for
426 multiple testing (Tables S7 and S8). For a given gene, we calculated the effect size as the
427 difference between two values: the \log_2 (abundance at the experimental temperature/abundance
428 at 28°C) of the average inferred hemizygote genotype representing a transposon insertion in the
429 *S. cerevisiae* allele, and the analogous quantity among inferred hemizygote genotypes
430 representing insertions in the *S. paradoxus* allele of the gene. Scripts for this modified RH-seq
431 analysis pipeline are available at [https://github.com/melanieabrams-pub/RH-](https://github.com/melanieabrams-pub/RH-seq_with_barcoding)
432 [seq_with_barcoding](https://github.com/melanieabrams-pub/RH-seq_with_barcoding). We earmarked top candidate genes for factors contributing to the
433 thermotolerance of *S. cerevisiae* as those with corrected Mann-Whitney $p < 0.05$ in the
434 reciprocal hemizygosity test, and an effect size < -0.5 , i.e. disrupting the *S. cerevisiae* allele was
435 associated with a strong defect in thermotolerance relative to disruption of the *S. paradoxus*
436 allele; we refer to this gene set as our top barcoded RH-seq hit gene list.

437

438 **Analysis of inferred interactions between top hit genes from barcoded RH-seq**

439

440 For the circos plot reporting inferred interactions between top hit genes from barcoded RH-seq,
441 we used the STRING database (Szklarczyk et al. 2021), accessed September 30, 2021, which
442 incorporates experimental/biochemical data from DIP, BioGRID, HPRD, IntAct, MINT, and PDB,
443 and curated data from Biocarta, BioCyc, Gene Ontology, KEGG, and Reactome. Widths of

444 edges between nodes in the circos plot represent STRING confidence scores, each the
445 probability of a true positive interaction between a given two genes (Szklarczyk et al. 2021).
446
447 To test the encoded proteins of top barcoded RH-seq hit genes for enrichment of physical
448 interactions with each other, we used curated known interactions from BioGRID (Oughtred et al.
449 2021) as housed in the *Saccharomyces* Gene Database, downloaded February 19, 2021. We
450 tabulated the number of physical interactions between the proteins encoded by RH-seq hit
451 genes, and we divided that by the total number of interactions involving one RH-seq hit gene
452 and any other gene in the genome; call this ratio r_{true} . Then, we drew a random sample of genes
453 from the genome, as described above for GO term resampling. We tabulated, in this random
454 gene set, the number of physical interactions between genes in that sample, and we divided
455 that by the total number of interactions involving one gene in the random sample and any other
456 gene in the genome, to yield $r_{resample}$. We repeated this procedure 10,000 times, and we used
457 the proportion of resampled groups where $r_{resample}$ was greater than or equal to r_{true} as a one-
458 sided p value assessing the significance of enrichment of interactions between our genes of
459 interest.
460

461 **Gene Ontology analyses of top hit genes from barcoded RH-seq**

462
463 To test top barcoded RH-seq hit genes for enrichment for overrepresentation of a particular
464 Gene Ontology (GO) term, we mapped each gene to its Gene Ontology groups based on data
465 from geneontology.com (Ashburner et al. 2000). We filtered out GO terms with fewer than five
466 or with more than 200 gene members. We also filtered out GO terms with identical membership
467 in the genome. We took the subset of the remaining GO terms with at least one member among
468 our top barcoded RH-seq hit genes. Then, we randomly sampled genes from the genome,
469 ensuring the same proportion of essential genes as in our set of top barcoded RH-seq hit genes
470 based on the essentiality annotations of (Winzeler 1999). We tabulated whether our random
471 sample had greater or fewer genes with that GO term than our candidate set. We repeated this
472 procedure 10,000 times and used the proportion of these resampled groups that had more
473 genes in the given GO term as the initial p value assessing the significance of the enrichment of
474 that GO term. Then, we applied Benjamini-Hochberg correction for multiple hypothesis testing to
475 generate final, adjusted p -values for the enrichment of the given GO term among top barcoded
476 RH-seq hit genes.
477

478 To test Biological Process ontologies for enrichment for large magnitudes of the effect of allelic
479 variation on thermotolerance, we used the latter as tabulated in **Reciprocal hemizygosity**
480 **testing** above. We filtered GO terms as above, and then excluded all genes absent in our
481 barcoded RH seq analysis, which would have no associated quantity for the effect of allelic
482 variation to resample. For each retained term in turn, we first tabulated the median absolute
483 value of the effect size of the gene members for which we had data, e_{true} . Then, we tabulated
484 the analogous quantity for a random sample of the same number of genes from the genome,
485 $e_{resample}$, ensuring the same proportion of essential genes as above. We repeated this procedure
486 100 times, and used the proportion of the resampled groups for which $e_{resample}$ was greater than
487 or equal to e_{true} as an initial p value assessing the enrichment of large effects of allelic variation
488 in the genes the term. For all GO terms with an initial p value < 0.1 , we repeated this procedure
489 10,000 times to calculate a more precise p value. Then, we applied the Benjamini-Hochberg
490 correction for multiple hypothesis testing to generate final, adjusted p -values for the enrichment
491 of the given GO term for large effects of allelic variation on thermotolerance.
492

493 **Molecular evolution analysis of RH-seq hit genes**

494 Branch length PAML analysis with codeML was performed as in (Dubin et al. 2020). Hits were
495 manually inspected for the quality of the alignment, and one, YAL026C, was discarded for poor
496 alignment quality leading to an artificially high branch length. We used the inferred branch
497 lengths as input into a resampling test as in **Gene Ontology analyses of top hit genes from**
498 **barcoded RH-seq** above, and we performed a one-sided significance test for long branch
499 lengths along the *S. cerevisiae* lineage. Branch-site PAML analysis with codeML was performed
500 as in (Abrams et al. 2021). Jalview version 2 was used to visualize the percent identity of amino
501 acid sequence alignments (Waterhouse et al. 2009). McDonald-Kreitman analysis statistics
502 were calculated as in (Abrams et al. 2021). Fisher's exact test was used to compute *p*-values for
503 individual loci, and these were adjusted using the Benjamini-Hochberg correction for multiple
504 hypothesis testing.

505

506 **Data availability statement**

507

508 Sequencing data are deposited in the Sequence Read Archive under the accession
509 PRJNA735401. Strains and plasmids are available upon request. Custom scripts for the
510 barcoded RH-seq analysis are available at https://github.com/melanieabrams-pub/RH-seq_with_barcoding. The authors affirm that all data necessary for confirming the conclusions of
511 the article are present within the article, figures, and tables.

512

513 **RESULTS**

514

515

516 **Dissecting thermotolerance divergence between species by barcoded transposon** 517 **mutagenesis**

518

519 With the goals of boosting RH-seq throughput and power, and achieving new insights into the
520 genetics and evolution of yeast thermotolerance, we set out to generate an RH-seq reagent for
521 yeast incorporating barcoded transposons (Wetmore et al. 2015). For this purpose, we first
522 generated a pool of plasmids, each encoding a barcoded copy of the piggyBac transposon and
523 its transposase (Figure S1A-C). To use these in RH-seq, we revisited our previously
524 characterized model system: a comparison between DVPG1373, a thermotolerant Dutch soil
525 strain of *S. cerevisiae*, and Z1, an *S. paradoxus* isolate from the UK (Weiss et al. 2018; AlZaben
526 et al. 2021; Abrams et al. 2021). The F1 hybrid formed from the mating of these strains exhibits
527 a thermotolerance phenotype intermediate between those of the two species parents, and thus
528 is well-suited to mapping of allelic effects on the trait (Weiss et al. 2018). We transformed this
529 F1 hybrid with barcoded plasmids, yielding a pool of hemizygote mutants, which we expanded
530 and then banked (Figure S1D). Next, to catalog the genomic locations of transposon insertions,
531 we used the DNA from a culture of the pool in standard conditions as input into a first round of
532 sequencing library construction, whose primers recognized a common site on the transposon
533 and a common DNA adapter ligated to DNA fragment ends ("Tn-seq"; Figure 1A). Sequencing
534 and data analysis, with quality controls to eliminate barcodes that could not be uniquely
535 associated with a single transposon insertion location (see Methods), yielded a catalog of
536 548,129 barcoded hemizygotes in the pool whose genomic insertion locations were tabulated.
537 At this point we could harness the pool for highly replicated screens, each of which could
538 quantify hemizygote abundance in a condition of interest via relatively cheap and
539 straightforward barcode sequencing ("Bar-seq"; Figure 1B).

540

541 Thus, with our barcoded hemizygote pool, we implemented an RH-seq screen to search for
542 genes at which *S. cerevisiae* and *S. paradoxus* alleles drove differences in strain abundance at
543 high temperature. For this, we subjected the pool to growth assays with 12 biological replicate
544 cultures at 37°C, alongside controls at 28°C. We used DNA from each culture as input into

545 barcode sequencing (Figure 1B). The resulting data revealed a total of 301,349 cases where a
546 barcode, representing a hemizygote clone with a transposon insertion catalogued by Tn-seq
547 (Figure 1A), was detectable in our growth assays. Transposon insertion positions corresponding
548 to these informative barcodes were evenly split between *S. cerevisiae* and *S. paradoxus* alleles
549 of genes throughout the F1 hybrid genome (Figure S3). We took the normalized count of a
550 given barcode in a sequencing data set as a report of the fitness of the respective hemizygote,
551 *i.e.* its relative abundance after growth in the pool in the respective condition. We then used the
552 complete set of such counts as the input into reciprocal hemizygosity tests to compare, for a
553 given gene, the temperature-dependent abundance of strains harboring a disruption in the *S.*
554 *cerevisiae* allele, relative to that of strains with the *S. paradoxus* allele disrupted. A pipeline for
555 these tests, including filters for coverage and reproducibility and multiple testing correction (see
556 Methods), revealed 83 genes at a 5% false discovery rate (Figure 2 and Table S7). This
557 contrasted with the much smaller set of eight genes at which species' alleles drove differences
558 in high-temperature growth, in our original non-barcoded RH-seq approach (Weiss et al. 2018),
559 which had involved only three biological replicates. The 10-fold increase in the number of
560 significant hits in our barcoded RH-seq screen reflects the statistical power afforded by our
561 highly-replicated method to detect even quite small effects.
562

563 In our barcoded RH-seq screen hits, as a positive control we first examined the set of genes
564 known to contribute to thermotolerance divergence from our earlier study (*AFG2*, *APC1*, *CEP3*,
565 *DYN1*, *ESP1*, *MYO1*, *SCC2*, and *DYN1*) (Weiss et al. 2018). Several did not meet the
566 experiment-wide statistical thresholds of our barcoded RH-seq pipeline (Figure S4A),
567 suggesting an appreciable false negative rate of the latter overall. However, manual inspection
568 made clear that hemizygosity effects at all gold-standard thermotolerance loci were borne out: in
569 each case, in barcoded RH-seq data, strains with disruptions in the *S. cerevisiae* allele, and a
570 wild-type copy of the *S. paradoxus* allele, had worse thermotolerance than did strains with only
571 the *S. cerevisiae* allele intact (Figure S4A-B), as we had previously reported (Weiss et al. 2018).
572 Furthermore, the list of gene hits from barcoded RH-seq also included *HFA1* (Figure 2B and
573 Tables S7 and S9) which was reported and validated separately as a determinant of
574 thermotolerance differences between yeast species (Li et al. 2019). On the strength of these
575 controls, we considered our deep sampling of thermotolerance loci to serve as a useful proof of
576 concept for the barcoded RH-seq method.
577

578 **Functional-genomic analysis of thermotolerance genes**

579 We next aimed to pursue deeper analyses of the novel gene hits from barcoded RH-seq in our
580 yeast thermotolerance application. We considered that a focus on the strongest and most
581 evolutionarily relevant sources of mapping signal would likely yield the most informative results.
582 As such, in light of our interest in explaining the exceptional thermotolerance of purebred *S.*
583 *cerevisiae*, we earmarked the 44 genes from our larger candidate set at which the *S. cerevisiae*
584 allele boosted the trait most dramatically relative to that of *S. paradoxus* (Figure 2 and Table
585 S9). In what follows, we refer to these genes as our top RH-seq hits, and we analyze them as
586 our highest-confidence predictions for factors that nature would have used in evolving the *S.*
587 *cerevisiae* phenotype.
588

589 We sought to use our mapped loci to explore potential functional mechanisms underlying the
590 thermotolerance trait. We hypothesized that *S. cerevisiae* thermotolerance genes could
591 participate in an interacting network, jointly shoring up particular aspects of cell machinery that
592 were critical for growth at high temperature (AlZaben et al. 2021). Consistent with this notion,
593 the STRING database, which collates experimentally detected protein-protein interactions,
594 genetic interactions, and pathway membership (Szklarczyk et al. 2021), inferred multiple

596 interactions among our top genes from barcoded RH-seq, with salient signal involving cell cycle
597 factors (Figure 3). A more focused analysis revealed an enrichment, among our top barcoded
598 RH-seq hits, for protein-protein interactions with one another as tabulated in BioGRID (Oughtred
599 et al. 2021), to an extent beyond the null expectation (resampling $p = 0.014$). We also
600 implemented qualitative gene set enrichment tests, which revealed that chromosome
601 segregation and mitosis factors, although relatively few in number among our top barcoded RH-
602 seq hit loci, were significantly enriched relative to the genomic null (Table 1). And we developed
603 a complementary, quantitative test to screen Gene Ontology terms for large allelic effect size
604 (the impact on thermotolerance when the *S. cerevisiae* allele of a given gene was disrupted in
605 the hybrid, as a difference from the analogous quantity for the *S. paradoxus* allele; see
606 Methods). Top-scoring in this test was a mitosis gene group, encoding components of the septin
607 ring (GO:0000921; resampling $p < 0.0001$). Together, these results suggest that our top
608 thermotolerance gene hits share commonalities in function, most notably involving cell cycle
609 factors. This dovetails with previous phenotypic and genetic characterization of yeast
610 thermotolerance, including the breakdown of cell division in heat-treated *S. paradoxus* (Weiss et
611 al. 2018), and supports a model in which *S. cerevisiae* acquired thermotolerance in part by
612 resolving the latter cell cycle defect.

613
614 The genetics of yeast thermotolerance likely also involves mechanisms beside mitosis, given
615 the known role of mitochondrial genes (Baker et al. 2019; Li et al. 2019) and those operating
616 during stationary phase (AlZaben et al. 2021). Indeed, functional-genomic tests revealed
617 enrichment for secretion genes and for regulatory factors in our top RH-seq hits, although no
618 such group constituted a large proportion of the total hit list (Table 1). Annotations in
619 transcription and translation, mitochondrial function, and signaling were also apparent in our top
620 thermotolerance loci (Figure 2B). These trends are consistent with a scenario in which evolution
621 built the trait in *S. cerevisiae* by tweaking an array of housekeeping mechanisms, beside those
622 that involve cell cycle machinery.

623
624 **Evolutionary analysis of thermotolerance genes**

625
626 We anticipated that sequence analyses of the genes we had mapped to thermotolerance by
627 barcoded RH-seq could shed light on the evolutionary history of the trait. To explore this, we
628 used a phylogenetic approach in *Saccharomyces sensu stricto*. We first inferred species-
629 specific branch lengths in the phylogeny of each gene in turn, and focused on the lineage
630 leading to *S. cerevisiae*. The distribution of branch lengths along this lineage among top
631 thermotolerance gene hits was not detectably different from that of the genome as a whole, with
632 the exception of two rapidly evolving thermotolerance genes, *TAF2* and *BUL1*, encoding a
633 transcription initiation factor and ubiquitin ligase adapter respectively (Figure S5). Separately,
634 we quantified protein evolutionary rates in top hits from barcoded RH-seq. A branch-site
635 phylogenetic modeling approach (Yang 2007) detected striking evidence for positive selection
636 along the *S. cerevisiae* lineage in the amino acid permease *GNP1*, the kinetochore DNA binding
637 factor *CBF2*, and the sister chromatid cohesion factor *CTF18* (Figure 4). Interestingly, however,
638 McDonald-Kreitman tests (McDonald and Kreitman 1991) on population-genomic data did not
639 detect an overall excess of amino acid variation relative to synonymous changes, at these three
640 genes or any other barcoded RH-seq hit locus (Table S10). Thus, even at genes harboring
641 individual codons with likely signatures of selection, we could not detect evidence for a scenario
642 where *S. cerevisiae* stacked up a large number of unique amino acid changes, in the evolution
643 of thermotolerance. Together, however, our analyses do highlight thermotolerance genes with
644 marked signal for derived alleles in *S. cerevisiae* at single codons or in the overall DNA
645 sequence—cases where species divergence is likely to be of phenotypic and evolutionary
646 importance.

647

648

649

DISCUSSION

650

RH-seq power and the interpretation of mapped loci

651

In this work, we established the barcoded RH-seq method for genetic dissection of trait variation between diverged lineages. RH-seq falls into a family of recently-developed methods that can dissect natural trait variation across species barriers (Weiss and Brem 2019). A chief distinction of RH-seq is its low cost and low overhead, and the barcoding feature we add here cuts down labor and cost even further, enabling high replication.

652

Our application to yeast thermotolerance serves as an informative model for the performance of barcoded RH-seq on highly genetically complex traits. We pinpointed dozens of candidate genes at which species-level variation contributes to growth at high temperature. And yet we also observed evidence for a sizeable false negative rate among our barcoded RH-seq results, since some validated thermotolerance loci from our earlier screen did not appear among the hits here. Likewise, a separate barcoded RH-seq mapping of yeast species' differences in growth under milder heat stress revealed little signal above the noise (Table S6 and Table S8), likely reflecting very weak genetic effects under this condition. We thus expect that, as would be true for a classical linkage or association scan, the statistical power of a barcoded RH-seq experiment is a function of signal to-noise, genetic complexity, and genetic effect size; and that many thermotolerance loci remain to be identified even in our very deep set of screen results from high-temperature growth.

653

By virtue of our focus on pro-thermotolerance alleles in *S. cerevisiae*, our work has left open the functional and evolutionary genomics of loci at which the allele from *S. cerevisiae* instead conferred worse thermotolerance than that of *S. paradoxus*, when each in turn was uncovered in the hybrid. Our barcoded RH-seq identified a number of such genes at high statistical significance. These loci may well reflect the accumulation of advantageous alleles in *S. paradoxus*, or deleterious alleles in *S. cerevisiae*, by drift, even as the latter was under selection to improve the trait in evolutionary history. Analogously, in linkage mapping results, the effect of an allele in recombinant progeny from a cross often does not conform to that expected from the respective parent's phenotype (Burke and Arnold 2001; Brem and Kruglyak 2005). It is also possible that some such allelic effects are the product of epistatic interactions between a locus of interest and the hybrid background, and would be phenotypically buffered (and thus evolutionarily irrelevant) in the purebred species. Molecular validation will be necessary to confirm the phenotypic impact of variation at our mapped loci, and its potential dependence on genetic background.

654

That said, we consider genes with pro-thermotolerance *S. cerevisiae* alleles according to barcoded RH-seq to be strong candidates for *bona fide* determinants of the trait from the wild in this species. Indeed, earlier work has shown that for such genes mapped by RH-seq in the hybrid, the advantage of *S. cerevisiae* alleles is borne out in tests in purebred backgrounds (Weiss et al. 2018). Accordingly, we have shown here that as a cohort, barcoded RH-seq hits with advantageous *S. cerevisiae* alleles exhibit functional and sequence-based attributes consistent with a role in thermotolerance evolution in the wild.

655

Cellular and molecular mechanisms of thermotolerance

656

657

Our top RH-seq hits revealed strong evidence for chromosome segregation and other mitosis functions as a linchpin of *S. cerevisiae* thermotolerance. As a complement to earlier

698 characterization of six such genes (*APC1*, *ESP1*, *DYN1*, *MYO1*, *CEP3*, and *SCC2*) (Weiss et al.
699 2018; Abrams et al. 2021), we now report seven new thermotolerance determinants that
700 function in cell division (*MEC1*, *MLH1*, *CTF13*, *CTF18*, *MCM21*, *CBF2*, and *MYO2*). The
701 emerging picture is one in which the ancestor of modern-day *S. cerevisiae*, faced with
702 dysfunction of a slew of mitotic factors at high temperature, acquired variants across the
703 genome to shore up their activity under these conditions. Under one model of *S. cerevisiae*
704 evolution, the particular niche to which this species specialized was one of avid fermentation,
705 producing (and resisting) heat and ethanol at levels that eliminated its microbial competitors
706 (Goddard 2008; Salvadó et al. 2011). In such a scenario, the maximum benefit could well
707 accrue to the organism if it were able to undergo rapid cell division under the challenging
708 conditions of its own making. Consistent with this notion, another budding yeast,
709 *Hanseniaspora*, which often dominates in early fermentation prior to takeover by *S. cerevisiae*
710 (Fleet 2003), underwent evolutionary loss of much of the cell-cycle checkpoint machinery,
711 consistent with a strategy of accelerated growth at any cost to outcompete other species at the
712 respective stage (Steenwyk et al. 2019).

713
714 However, since our current hit list includes many genes from other housekeeping pathways,
715 from transcription/translation to transport and lipid metabolism, mitosis does not appear to be
716 the whole mechanistic story for the thermotolerance trait in *S. cerevisiae*. Indeed, other
717 housekeeping factors also showed up in our previous screen (Weiss et al. 2018) and in an
718 elegant complementary study of mitochondrial determinants of thermotolerance divergence
719 between yeast species (Baker et al. 2019; Li et al. 2019). The panoply of functions detected
720 among our mapped loci conforms well to current models of the mechanisms of thermotolerance,
721 which invoke many essential genes and housekeeping processes (Leuenberger et al. 2017).

722
723 The latter idea emerged largely from a proteomic study which showed that thermotolerant
724 organisms had higher thermostability of essential proteins of many functions, across the tree of
725 life (Leuenberger et al. 2017). Were sequence changes that led to improved protein stability a
726 linchpin of thermotolerance evolution in *S. cerevisiae*? Our data are consistent with a
727 mechanistic role for properties of the protein sequences of many thermotolerance genes, in that
728 variation in coding regions has come to the fore in our sequence tests here and those of an
729 earlier small-scale analysis (Abrams et al. 2021). And interestingly, an experimental case study
730 of one of our mapped thermotolerance loci revealed no impact on the trait from variation in the
731 promoter, only from that in the coding region (Abrams et al. 2021). We cannot rule out
732 noncoding determinants in some cases, especially given that a few hundred genes exhibit
733 temperature-dependent *cis*-regulatory programs unique to *S. cerevisiae* (Tirosh et al. 2009; Li
734 and Fay 2017). But if coding regions do hold the exclusive key to the mechanism of *S.*
735 *cerevisiae* thermotolerance, they could well involve variants that improve protein function and
736 regulation alongside folding/structure at high temperature. Overall, then, we envision that nature
737 could have used a variety of molecular mechanisms in building the trait, given the apparent
738 complexity of the problem. Biochemical studies will be necessary to nail down exactly how *S.*
739 *cerevisiae* alleles advance thermotolerance.

740
741 In summary, our data reveal a newly detailed picture of the highly polygenic architecture for a
742 natural trait divergence between species. It is tempting to speculate that evolution may draw on
743 a vast number of variants across the genome to refine a trait over millions of generations,
744 making effects stronger, weaker, or less pleiotropic, adding regulatory control, and so on (Orr
745 1998). If so, these architectures may ultimately conform to the omnigenic model (Boyle et al.
746 2017)—which was originally applied to human disease genetics, but may also prove to be an apt
747 description of ancient adaptations.

748

749

ACKNOWLEDGEMENTS

750

751 This work was supported by NSF GRFP DGE 1752814 to M.A. and NIH R01 GM120430 to
752 R.B.B. The authors thank Adam Arkin for his generosity with computational resources; Morgan
753 Price, Lori Huberman, and members of the John Dueber lab for discussions about barcoded
754 transposon mutagenesis; and sequencing; and Abel Duarte for cloning advice.

755

756

REFERENCES

757

758

Abrams MB, Dubin CA, AlZaben F, Bravo J, Joubert PM, Weiss CV, Brem RB. 2021. Population
759 and comparative genetics of thermotolerance divergence between yeast species. *G3*
760 *Genes|Genomes|Genetics* 11(7):jkab139. doi: 10.1093/g3journal/jkab139.

761

AlZaben F, Chuong JN, Abrams MB, Brem RB. 2021. Joint effects of genes underlying a
762 temperature specialization tradeoff in yeast. *PLoS Genet.* 17(9):e1009793.
763 doi:10.1371/journal.pgen.1009793.

764

Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight
765 SS, Eppig JT, et al. 2000. Gene Ontology: tool for the unification of biology. *Nat Genet.*
766 25(1):25–29. doi:10.1038/75556.

767

Baker EP, Peris D, Moriarty RV, Li XC, Fay JC, Hittinger CT. 2019. Mitochondrial DNA and
768 temperature tolerance in lager yeasts. *Sci Adv.* 5(1):eaav1869. doi:10.1126/sciadv.aav1869.

769

Boyle EA, Li YI, Pritchard JK. 2017. An Expanded View of Complex Traits: From Polygenic to

770

Omnigenic. *Cell.* 169(7):1177–1186. doi:10.1016/j.cell.2017.05.038.

771

Brem RB, Kruglyak L. 2005. The landscape of genetic complexity across 5,700 gene expression

772

traits in yeast. *Proc Natl Acad Sci U S A.* 102(5):1572–1577. doi:10.1073/pnas.0408709102.

773

Burke JM, Arnold ML. 2001. Genetics and the fitness of hybrids. *Annu Rev Genet.* 35:31–52.

774

doi:10.1146/annurev.genet.35.102401.085719.

775

Coradetti ST, Pinel D, Geiselman GM, Ito M, Mondo SJ, Reilly MC, Cheng Y-F, Bauer S,
776 Grigoriev IV, Gladden JM, et al. 2018. Functional genomics of lipid metabolism in the
777 oleaginous yeast *Rhodosporidium toruloides*. Bohlmann J, editor. *eLife.* 7:e32110.

778

doi:10.7554/eLife.32110.

779

Dubin CA, Roop JI, Brem RB. 2020. Divergence of Peroxisome Membrane Gene Sequence and
780 Expression Between Yeast Species. *G3: Genes, Genomes, Genetics.* 10(6):2079–2085.

781

doi:10.1534/g3.120.401304.

782

Fleet GH. 2003. Yeast interactions and wine flavour. *International Journal of Food Microbiology.*

783

86(1):11–22. doi:10.1016/S0168-1605(03)00245-9.

784

Goddard MR. 2008. Quantifying the complexities of *Saccharomyces cerevisiae*'s ecosystem

785

engineering via fermentation. *Ecology.* 89(8):2077–2082. doi:10.1890/07-2060.1.

786

Gonçalves P, Valério E, Correia C, Almeida JMGCF de, Sampaio JP. 2011. Evidence for

787

Divergent Evolution of Growth Temperature Preference in Sympatric *Saccharomyces* Species.

788

PLOS ONE. 6(6):e20739. doi:10.1371/journal.pone.0020739.

789

Hittinger CT. 2013. *Saccharomyces* diversity and evolution: a budding model genus. *Trends*

790

Genet. 29(5):309–317. doi:10.1016/j.tig.2013.01.002.

791

Huh W-K, Falvo JV, Gerke LC, Carroll AS, Howson RW, Weissman JS, O'Shea EK. 2003.

792

Global analysis of protein localization in budding yeast. *Nature.* 425(6959):686–691.

793

doi:10.1038/nature02026.

794

Lee ME, DeLoache WC, Cervantes B, Dueber JE. 2015. A Highly Characterized Yeast Toolkit

795

for Modular, Multipart Assembly. *ACS Synth Biol.* 4(9):975–986. doi:10.1021/sb500366v.

796 Leuenberger P, Ganscha S, Kahraman A, Cappelletti V, Boersema PJ, von Mering C, Claassen
797 M, Picotti P. 2017. Cell-wide analysis of protein thermal unfolding reveals determinants of
798 thermostability. *Science*. 355(6327). doi:10.1126/science.aai7825.

799 Li XC, Fay JC. 2017. Cis-Regulatory Divergence in Gene Expression between Two Thermally
800 Divergent Yeast Species. *Genome Biol Evol*. 9(5):1120–1129. doi:10.1093/gbe/evx072.

801 Li XC, Peris D, Hittinger CT, Sia EA, Fay JC. 2019. Mitochondria-encoded genes contribute to
802 evolution of heat and cold tolerance in yeast. *Sci Adv*. 5(1):eaav1848.
803 doi:10.1126/sciadv.aav1848.

804 McDonald JH, Kreitman M. 1991. Adaptive protein evolution at the Adh locus in *Drosophila*.
805 *Nature*. 351(6328):652–654. doi:10.1038/351652a0.

806 Morellet N, Li X, Wieninger SA, Taylor JL, Bischerour J, Moriau S, Lescop E, Bardiaux B, Mathy
807 N, Assrir N, et al. 2018. Sequence-specific DNA binding activity of the cross-brace zinc finger
808 motif of the piggyBac transposase. *Nucleic Acids Research*. 46(5):2660–2677.
809 doi:10.1093/nar/gky044.

810 Orr HA. 1998. The Population Genetics of Adaptation: The Distribution of Factors Fixed During
811 Adaptive Evolution. *Evolution*. 52(4):935–949. doi:10.1111/j.1558-5646.1998.tb01823.x.

812 Ott J, Wang J, Leal SM. 2015. Genetic linkage analysis in the age of whole-genome
813 sequencing. *Nat Rev Genet*. 16(5):275–284. doi:10.1038/nrg3908.

814 Oughtred R, Rust J, Chang C, Breitkreutz B-J, Stark C, Willems A, Boucher L, Leung G, Kolas
815 N, Zhang F, et al. 2021. The BioGRID database: A comprehensive biomedical resource of
816 curated protein, genetic, and chemical interactions. *Protein Sci*. 30(1):187–200.
817 doi:10.1002/pro.3978.

818 Peter J, Chiara MD, Friedrich A, Yue J-X, Pflieger D, Bergström A, Sigwalt A, Barre B, Freel K,
819 Llored A, et al. 2018. Genome evolution across 1,011 *Saccharomyces cerevisiae* isolates.
820 *Nature*. 556(7701):339–344. doi:10.1038/s41586-018-0030-5.

821 Pierleoni A, Martelli PL, Fariselli P, Casadio R. 2007. eSLDB: eukaryotic subcellular localization
822 database. *Nucleic Acids Res*. 35(Database issue):D208–D212. doi:10.1093/nar/gkl775.

823 Salvadó Z, Arroyo-López FN, Guillamón JM, Salazar G, Querol A, Barrio E. 2011. Temperature
824 adaptation markedly determines evolution within the genus *Saccharomyces*. *Appl Environ
825 Microbiol*. 77(7):2292–2302. doi:10.1128/AEM.01861-10.

826 Steenwyk JL, Opulente DA, Kominek J, Shen X-X, Zhou X, Labella AL, Bradley NP, Eichman
827 BF, Čadež N, Libkind D, et al. 2019. Extensive loss of cell-cycle and DNA repair genes in an
828 ancient lineage of bipolar budding yeasts. *PLOS Biology*. 17(5):e3000255.
829 doi:10.1371/journal.pbio.3000255.

830 Stern DL. 2014. Identification of loci that cause phenotypic variation in diverse species with the
831 reciprocal hemizygosity test. *Trends Genet*. 30(12):547–554. doi:10.1016/j.tig.2014.09.006.

832 Sweeney JY, Kuehne HA, Sniegowski PD. 2004. Sympatric natural *Saccharomyces cerevisiae*
833 and *S. paradoxus* populations have different thermal growth profiles. *FEMS Yeast Res*. 4(4–
834 5):521–525. doi:10.1016/S1567-1356(03)00171-5.

835 Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, Doncheva NT, Legeay M,
836 Fang T, Bork P, et al. 2021. The STRING database in 2021: customizable protein–protein
837 networks, and functional characterization of user-uploaded gene/measurement sets. *Nucleic
838 Acids Research*. 49(D1):D605–D612. doi:10.1093/nar/gkaa1074.

839 Tam V, Patel N, Turcotte M, Bossé Y, Paré G, Meyre D. 2019. Benefits and limitations of
840 genome-wide association studies. *Nat Rev Genet*. 20(8):467–484. doi:10.1038/s41576-019-
841 0127-1.

842 Tirosh I, Reikhav S, Levy AA, Barkai N. 2009. A Yeast Hybrid Provides Insight into the Evolution
843 of Gene Expression Regulation. *Science*. 324(5927):659–662. doi:10.1126/science.1169766.

844 Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ. 2009. Jalview Version 2—a
845 multiple sequence alignment editor and analysis workbench. *Bioinformatics*. 25(9):1189–1191.
846 doi:10.1093/bioinformatics/btp033.

847 Weiss CV, Brem RB. 2019. Dissecting Trait Variation across Species Barriers. *Trends in
848 Ecology & Evolution*. 34(12):1131–1136. doi:10.1016/j.tree.2019.07.013.

849 Weiss CV, Roop JI, Hackley RK, Chuong JN, Grigoriev IV, Arkin AP, Skerker JM, Brem RB.
850 2018. Genetic dissection of interspecific differences in yeast thermotolerance. *Nature Genetics*.
851 50(11):1501. doi:10.1038/s41588-018-0243-4.

852 Wetmore KM, Price MN, Waters RJ, Lamson JS, He J, Hoover CA, Blow MJ, Bristow J, Butland
853 G, Arkin AP, et al. 2015. Rapid Quantification of Mutant Fitness in Diverse Bacteria by
854 Sequencing Randomly Bar-Coded Transposons. Moran MA, editor. *mBio*. 6(3):e00306-15.
855 doi:10.1128/mBio.00306-15.

856 Winzeler EA. 1999. Functional Characterization of the *S. cerevisiae* Genome by Gene
857 Deletion and Parallel Analysis. *Science*. 285(5429):901–906.
858 doi:10.1126/science.285.5429.901.

859 Yang Z. 2007. PAML 4: Phylogenetic Analysis by Maximum Likelihood. *Molecular Biology and
860 Evolution*. 24(8):1586–1591. doi:10.1093/molbev/msm088.

861 Yusa K, Zhou L, Li MA, Bradley A, Craig NL. 2011. A hyperactive piggyBac transposase for
862 mammalian applications. *PNAS*. 108(4):1531–1536. doi:10.1073/pnas.1008322108.

863

864
865

FIGURE CAPTIONS

866 **Figure 1. Barcoded RH-seq mapping of yeast thermotolerance loci.** (A) Barcoded RH-seq
867 sequencing analysis steps. Left, in a pool of *S. cerevisiae* x *S. paradoxus* hybrid hemizygotes, each
868 harboring a transposon (grey rectangle) marked with a unique 20-mer barcode (multicolored) flanked by
869 universal primer sites (U1 and U2), each barcode is associated with its insertion location by transposon
870 sequencing (Tn-seq). Genomic DNA from the pool is extracted, sheared, and ligated to universal
871 adapters (pink ovals), followed by PCR amplification with a transposon-specific primer (forward black
872 arrow) and an adapter-specific primer (reverse black arrow) and sequencing. Right, for barcode
873 sequencing (Bar-seq) to quantify hemizygote strain abundance after pool growth in a condition of interest,
874 genomic DNA is used as input to PCR with primers to universal primer sites for sequencing. (B)
875 Thermotolerance RH-seq screen design. An aliquot of the hemizygote pool was thawed and cultured in
876 large format, then split into small replicate cultures, each maintained in logarithmic growth phase at the
877 temperature of interest by back-dilution, followed by quantification by Bar-seq.
878

879 **Figure 2. Hits from barcoded RH-seq mapping of yeast thermotolerance.** (A) Each panel reports
880 barcoded RH-seq results for a gene at which the *S. cerevisiae* allele is associated with better
881 thermotolerance than the *S. paradoxus* allele, when uncovered in the hybrid background. In a given
882 panel, the x-axis reports the \log_2 of abundance, measured by RH-seq after selection at 37°C, of a clone
883 harboring a barcoded transposon insertion in the indicated species' allele in a given replicate, as a
884 difference from the analogous quantity for that clone after selection at 28°C on average across replicates.
885 The y-axis reports the proportion of observations of all clones bearing insertions in the indicated allele
886 that exhibited the abundance ratio on the x, as a kernel density estimate. Shown are the top six genes
887 from among all barcoded RH-seq hit loci in terms of allelic effect size; see Table S7 for effect sizes of the
888 complete set of hits. (B) Subcellular localization of RH-seq hit genes, where available from (Pierleoni et al.
889 2007) and (Huh et al. 2003). Genes at which effects of allelic variation on thermotolerance were reported
890 previously (Weiss et al. 2018; Li et al. 2019) are denoted in bold type.
891

892 **Figure 3. Interactions between thermotolerance loci.** Each node represents a top hit gene from
893 barcoded RH-seq mapping of thermotolerance. Each chord represents an inferred interaction, taking into
894 account physical and genetic interactions as well as pathway membership, from the STRING database
895 (Szklarczyk et al. 2021). Chords are weighted by the confidence of the inference of interactions; nodes
896 are colored by the number of inferred interactions with other top hits, such that genes with higher
897 numbers of interactions among the hits are represented by warmer colored nodes.
898

899 **Figure 4. Codons under positive selection in thermotolerance loci.** Each panel shows the amino acid
900 sequence context of the codon(s) (red bar) inferred to be under positive selection along the *S. cerevisiae*
901 lineage, in a hit gene from RH-seq thermotolerance mapping. Alignments are colored by percent identity,
902 with darker purples indicating a higher percent identity. (A) *YDR508C/GNP1*. (B) *YGR140W/CBF2*. (C)
903 *YMR078C/CTF18*.

904
905

TABLES

GO term	n _{observed} :	Adjusted p	Name	Total n
Cellular Component				
GO:0000775	5:1	0.0366	chromosome, centromeric region	75
GO:0000778	4:0	0.0256	kinetochore	40
Molecular Function				
GO:0000149	3:0	0.0701	SNARE binding	28
GO:0008081	2:0	0.0256	phosphoric diester hydrolase activity	11
GO:0004843	2:0	0.0998	thiol-dependent deubiquitinase	24
Biological Process				
GO:0007165	3:0	0.0923	signal transduction	59
GO:0001403	3:0	0.0923	invasive growth in response to glucose limitation	42
GO:0046580	2:0	0.0256	negative regulation of Ras protein signal transduction	6
GO:0001934	2:0	0.0256	positive regulation of protein phosphorylation	5
GO:0016042	2:0	0.0923	lipid catabolic process	26
GO:0034087	2:0	0.0923	establishment of mitotic sister chromatid cohesion	16

906
907
908
909
910
911
912

Table 1. Functional enrichment among thermotolerance loci. Each row with numerical data reports a Gene Ontology (GO) term enriched for RH-seq hit genes. n_{observed}, the number of genes from among top hits from thermotolerance RH-seq that were annotated with the term. n_{expected}, the number of genes annotated with the term in the same number of randomly chosen genes from the genome, as a median across samples. Adjusted p, resampling-based significance of the enrichment after Benjamini-Hochberg correction. Total n, the total number of genes annotated in the GO term in *S. cerevisiae*.

913

SUPPLEMENTARY FIGURE CAPTIONS

914

915 **Supplementary Figure 1. Making barcoded hemizygotes in a yeast hybrid background for RH-seq.**

916

(A) A pool of random N20 barcodes (colors), each flanked by universal priming sites (U1 and U2), was used as input into a PCR with primers containing recognition sites for the BbsI type IIS restriction enzyme. (B) In a plasmid harboring an un-barcoded piggyBac transposon (gray rectangle) (the kanamycin resistance cassette, kan^R, flanked by left and right transposon arms) and transposase (teal rectangle) (Weiss et al. 2018), a 42 nucleotide stuffer sequence, consisting of two BbsI restriction enzyme sites flanking a NotI restriction enzyme site and custom overhang sequences (Lee et al. 2015), replaced 42 nucleotides in the right arm of the transposon. (C) BbsI digestion of the barcodes and stuffer-containing plasmid, followed by stuffer loss and ligation of a barcode into each plasmid, yielded a pool of barcoded plasmids. (D) Transformation of the barcoded transposase plasmid into *S. cerevisiae* x *S. paradoxus* hybrids, followed by transposition and plasmid loss, yielded a pool of marked transposon hemizygote insertion genotypes in the hybrid background.

927

928 **Supplementary Figure 2. Modifying yeast piggyBac to test barcode insertion positions and 929 transposase optimization, and effects of barcode insertion positions and transposase sequence 930 on yeast piggyBac transposition efficiency.**

931

(A) Left, a plasmid from (Weiss et al. 2018) containing the unbarcoded piggyBac transposon (gray) and transposase (teal) was modified to eliminate three BbsI restriction enzyme sites, and used as a backbone for further modifications. Right, test plasmids were mutated at transposase sites designed to optimize codons and increase activity (Yusa et al. 2011). Bottom, test plasmids were modified to incorporate into the transposon a single 20 nucleotide barcode flanked by universal priming regions and custom two-nucleotide overhang sequences (blue squares), either by insertion between the 3'-most end of the left arm and 5' end of the TEF promoter of the kanamycin cassette (bottom left) or replacing endogenous nucleotides inside the right arm of the transposon (bottom right). Pink rectangles indicate transposase binding sites from (Morellet et al. 2018). (B) Each pair of boxes reports transposition test results from a plasmid schematized in (A) in the *S. cerevisiae* x *S. paradoxus* F1 hybrid, with transformation at the indicated temperature. For a given box, the thick black line reports the median; the box extent report quartiles; whiskers report outliers.

942

943 **Supplementary Figure 3. Gene coverage and read depth in thermotolerance Bar-seq.** (A) The x-axis 944 reports the number of inferred hemizygote clones in a given gene (corresponding to transposon insertion 945 mutants) whose abundance was detectable in Bar-seq (see Figure 1B), and each bar height reports the 946 number of genes with the number of detectable hemizygotes on the x, for the indicated species' allele in 947 the diploid hybrid. The dotted red line indicates the cutoff used in our quality control pipeline for tests of 948 allelic impact on thermotolerance, whereby only genes with greater than three inserts for an allele in the 949 Bar-seq counts were considered. (B) The x-axis reports the total number of Bar-seq reads, for a given 950 inferred hemizygote clone in the indicated species' allele, in competition cultures grown at 28°C; each bar 951 height reports the number of inferred hemizygote clones with the Bar-seq abundance on the x. (C) Data 952 are as in (B) except that competitions at 37°C were analyzed.

953

954 **Supplementary Figure 4. Impact on high-temperature growth of allelic variation, in barcoded RH- 955 seq, at genes from a previous thermotolerance screen.** (A) Each row reports the allelic effect, the 956 thermotolerance conferred by disruption of the *S. cerevisiae* allele, relative to the analogous quantity for 957 the *S. paradoxus* allele, as measured in barcoded RH-seq, of a gene at which allelic variation was 958 previously reported to impact thermotolerance (Weiss et al. 2018). Genes marked with asterisks were 959 significant at $p < 0.05$, after quality control for noise and number of inserts and multiple-hypothesis 960 correction. (B) The x-axis reports allelic effect for a given gene as in (A); the y-axis reports the proportion 961 of genes with the allelic effect on the x, with the blue trace showing the distribution across all genes with 962 barcoded RH-seq data, as a kernel density estimate. Red dotted vertical lines represent genes from (A).

963

964 **Supplementary Figure 5. Accelerated evolution of thermotolerance loci.** Shown are results of 965 analyses of branch length of top hit genes from barcoded RH-seq mapping of thermotolerance, as 966 inferred from gene trees and normalized for gene length. Each vertical bar reports inferred branch length, 967 along the *S. cerevisiae* lineage, of the indicated RH-seq hit gene. Horizontal lines report median branch 968 lengths across the indicated gene sets. A resampling test for long branches on the *S. cerevisiae* lineage

969 among top RH-seq hits revealed significant evidence for enrichment ($p = 0.0465$) but not when *TAF2* and
970 *BUL1* were eliminated ($p = 0.1574$), attesting to the particularly strong inference of accelerated evolution
971 in the latter two genes.

972
973
974

SUPPLEMENTARY TABLES

Supplementary Table 1. Plasmids used in this study.

975

Oligo name	Sequence (5' to 3')	Index Identifier	Index Sequence	Notes
Barcoding cloning				
Random Barcodes U1 — N20 — U2	GATGTCCACGAGGTCTCTNNNNNNNNNNNNNNNCGTACGCTGCAG GTCGAC			Random barcodes flanked by universal primer sites
FW_BbsI_JC	TCACACAAGTTGTACAAAAAGCAG GCTGGAGCTCGaagacATCCCTGATG TCCACGAGGTCTCT			Forward primer to amplify barcodes for cloning into vector
REV_BbsI_JC	CTCAACCACTTGTACAAGAAAGCTG GGTGGATCCGaaagacCGCGTTGTCGAC CTGCAGCGTACG			Reverse primer for to amplify barcodes for cloning into vector
Tn-Seq				
JC8 Tn-specific FW Primer	ATGATAACGGCGACCACCGAGATCTAC ACTCTTCCCTACACGACGCTCTTCC GATCTNNNNNNCCCTGATGTCCACGA GGTCTCT			Forward primer to sequence transposon insertions; homologous to transposon (Figure 1A, left)
P7_MOD_TS_index1	CAAGCAGAAGACGGCATACGAGATC GTGATGTGACTGGAGTTCAGACGTGT GCTCTCCGATCT	Index1	ATCACG	Indexed reverse primer to sequence transposon insertions; homologous to adapter (Figure 1A, left)
P7_MOD_TS_index2	CAAGCAGAAGACGGCATACGAGATA CATCGGTGACTGGAGTTCAGACGTGT GCTCTCCGATCT	Index2	CGATGT	Indexed reverse primer to sequence transposon insertions; homologous to adapter (Figure 1A, left)
P7_MOD_TS_index3	CAAGCAGAAGACGGCATACGAGATG CCTAAGTGACTGGAGTTCAGACGTGT GCTCTCCGATCT	Index3	TTAGGC	Indexed reverse primer to sequence transposon insertions; homologous to adapter (Figure 1A, left)
P7_MOD_TS_index4	CAAGCAGAAGACGGCATACGAGATT GGTCAAGTGTGACTGGAGTTCAGACGTG TGCTCTCCGATCT	Index4	TGACCA	Indexed reverse primer to sequence transposon

				insertions; homologous to adapter (Figure 1A, left)
P7_MOD_TS_index5	CAAGCAGAAGACGGCATACGAGATC ACTGTGTGACTGGAGTTCAGACGTGT GCTCTCCGATCT	Index5	ACAGTG	Indexed reverse primer to sequence transposon insertions; homologous to adapter (Figure 1A, left)
P7_MOD_TS_index6	CAAGCAGAAGACGGCATACGAGATAT TGGCGTGACTGGAGTTCAGACGTGT GCTCTCCGATCT	Index6	GCCAAT	Indexed reverse primer to sequence transposon insertions; homologous to adapter (Figure 1A, left)
P7_MOD_TS_index7	CAAGCAGAAGACGGCATACGAGATG ATCTGGTGACTGGAGTTCAGACGTGT GCTCTCCGATCT	Index7	CAGATC	Indexed reverse primer to sequence transposon insertions; homologous to adapter (Figure 1A, left)
P7_MOD_TS_index8	CAAGCAGAAGACGGCATACGAGATT CAAGTGTGACTGGAGTTCAGACGTGT GCTCTCCGATCT	Index8	ACTTGA	Indexed reverse primer to sequence transposon insertions; homologous to adapter (Figure 1A, left)
Bar-seq				
P1_BS3_IT001	AATGATACGGCGACCACCGAGATCTA CACTCTTCCCTACACGACGCTCTTC CGATCTNGCACTAGTCGACCTGCAG CGTACG	IT001	ATCACG	Indexed forward Bar- seq primer (Figure 1A, right)
P1_BS3_IT002	AATGATACGGCGACCACCGAGATCTA CACTCTTCCCTACACGACGCTCTTC CGATCTNNCGGATTGTCGACCTGCA GCGTACG	IT002	CGATGT	Indexed forward Bar- seq primer (Figure 1A, right)
P1_BS3_IT003	AATGATACGGCGACCACCGAGATCTA CACTCTTCCCTACACGACGCTCTTC CGATCTNNCGGATTGTCGACCTGCA GCGTACG	IT003	TTAGGC	Indexed forward Bar- seq primer (Figure 1A, right)
P1_BS3_IT004	AATGATACGGCGACCACCGAGATCTA CACTCTTCCCTACACGACGCTCTTC	IT004	TGACCA	Indexed forward Bar- seq primer

	CGATCTNNNNACCAGTGTGACCTG CAGCGTACG			(Figure 1A, right)
P1_BS3_IT005	AATGATACGGCGACCACCGAGATCTA CACTCTTCCCTACACGACGCTCTTC CGATCTNGTACAGTCGACCTGCAG CGTACG	IT005	ACAGTG	Indexed forward Bar- seq primer (Figure 1A, right)
P1_BS3_IT006	AATGATACGGCGACCACCGAGATCTA CACTCTTCCCTACACGACGCTCTTC CGATCTNNTAACCGGTCGACCTGCA GCGTACG	IT006	GCCAAT	Indexed forward Bar- seq primer (Figure 1A, right)
P1_BS3_IT007	AATGATACGGCGACCACCGAGATCTA CACTCTTCCCTACACGACGCTCTTC CGATCTNNCTAGACGTGACCTGCA GCGTACG	IT007	CAGATC	Indexed forward Bar- seq primer (Figure 1A, right)
P1_BS3_IT008	AATGATACGGCGACCACCGAGATCTA CACTCTTCCCTACACGACGCTCTTC CGATCTNNNNAGTTCAAGTCGACCTGC AGCGTACG	IT008	ACTTGA	Indexed forward Bar- seq primer (Figure 1A, right)
P1_BS3_IT009	AATGATACGGCGACCACCGAGATCTA CACTCTTCCCTACACGACGCTCTTC CGATCTNGACTAGGTCGACCTGCAG CGTACG	IT009	GATCAG	Indexed forward Bar- seq primer (Figure 1A, right)
P1_BS3_IT010	AATGATACGGCGACCACCGAGATCTA CACTCTTCCCTACACGACGCTCTTC CGATCTNNTCGATGTCGACCTGCAG CGTACG	IT010	TAGCTT	Indexed forward Bar- seq primer (Figure 1A, right)
P1_BS3_IT011	AATGATACGGCGACCACCGAGATCTA CACTCTTCCCTACACGACGCTCTTC CGATCTNNNCATGGGTCGACCTGC AGCGTACG	IT011	GGCTAC	Indexed forward Bar- seq primer (Figure 1A, right)
P1_BS3_IT012	AATGATACGGCGACCACCGAGATCTA CACTCTTCCCTACACGACGCTCTTC CGATCTNNNNATGTTCGTCGACCTGC AGCGTACG	IT012	CTTGTA	Indexed forward Bar- seq primer (Figure 1A, right)
P1_BS3_IT013	AATGATACGGCGACCACCGAGATCTA CACTCTTCCCTACACGACGCTCTTC CGATCTNAACTGAGTCGACCTGCAGC GTACG	IT013	AGTCAA	Indexed forward Bar- seq primer (Figure 1A, right)
P1_BS3_IT014	AATGATACGGCGACCACCGAGATCTA CACTCTTCCCTACACGACGCTCTTC CGATCTNNCCTTGAGTCGACCTGCAG CGTACG	IT014	AGTTCC	Indexed forward Bar- seq primer (Figure 1A, right)
P1_BS3_IT015	AATGATACGGCGACCACCGAGATCTA CACTCTTCCCTACACGACGCTCTTC	IT015	ATGTCA	Indexed forward Bar- seq primer

	CGATCTNNNACTGTAGTCGACCTGCA GCGTACG			(Figure 1A, right)
P1_BS3_IT016	AATGATACGGCGACCACCGAGATCTA CACTCTTCCCTACACGACGCTCTTC CGATCTNNNCCTGCCGTGACCTG CAGCGTACG	IT016	CCGTCC	Indexed forward Bar- seq primer (Figure 1A, right)
P1_BS3_IT017	AATGATACGGCGACCACCGAGATCTA CACTCTTCCCTACACGACGCTCTTC CGATCTNGAGATGGTCGACCTGCAG CGTACG	IT017	GTAGAG	Indexed forward Bar- seq primer (Figure 1A, right)
P1_BS3_IT018	AATGATACGGCGACCACCGAGATCTA CACTCTTCCCTACACGACGCTCTTC CGATCTNCGCCTGGTCGACCTGCA GCGTACG	IT018	GTCCGC	Indexed forward Bar- seq primer (Figure 1A, right)
P1_BS3_IT019	AATGATACGGCGACCACCGAGATCTA CACTCTTCCCTACACGACGCTCTTC CGATCTNNNAAGTGGTCGACCTGCA GCGTACG	IT019	GTGAAA	Indexed forward Bar- seq primer (Figure 1A, right)
P1_BS3_IT020	AATGATACGGCGACCACCGAGATCTA CACTCTTCCCTACACGACGCTCTTC CGATCTNNNCCTGGTCGACCTG CAGCGTACG	IT020	GTGGCC	Indexed forward Bar- seq primer (Figure 1A, right)
P1_BS3_IT021	AATGATACGGCGACCACCGAGATCTA CACTCTTCCCTACACGACGCTCTTC CGATCTNGCTTGGTCGACCTGCAGC GTACG	IT021	GTTCG	Indexed forward Bar- seq primer (Figure 1A, right)
P1_BS3_IT022	AATGATACGGCGACCACCGAGATCTA CACTCTTCCCTACACGACGCTCTTC CGATCTNNGCATCGTCGACCTGCA GCGTACG	IT022	CGTACG	Indexed forward Bar- seq primer (Figure 1A, right)
P1_BS3_IT023	AATGATACGGCGACCACCGAGATCTA CACTCTTCCCTACACGACGCTCTTC CGATCTNNNGGTGAGGTCGACCTGC AGCGTACG	IT023	GAGTGG	Indexed forward Bar- seq primer (Figure 1A, right)
P1_BS3_IT024	AATGATACGGCGACCACCGAGATCTA CACTCTTCCCTACACGACGCTCTTC CGATCTNNNCGATGGTCGACCTG CAGCGTACG	IT024	GGTAGC	Indexed forward Bar- seq primer (Figure 1A, right)
P2_BS3_IT001	CAAGCAGAAGACGGCATACGAGATC GTGATGTGACTGGAGTTCAGACGTGT GCTCTCCGATCTGATGTCCACGAGG TCTCT	IT001	ATCACG	Indexed reverse Bar- seq primer (Figure 1A, right)
P2_BS3_IT002	CAAGCAGAAGACGGCATACGAGATA CATCGGTGACTGGAGTTCAGACGTGT	IT002	CGATGT	Indexed reverse Bar- seq primer

	GCTCTCCGATCTGATGTCCACGAGG TCTCT			(Figure 1A, right)
P2_BS3_IT003	CAAGCAGAAGACGGCATACTGAGATG CCTAAGTGACTGGAGTTCAGACGTGT GCTCTCCGATCTGATGTCCACGAGG TCTCT	IT003	TTAGGC	Indexed reverse Bar- seq primer (Figure 1A, right)
P2_BS3_IT004	CAAGCAGAAGACGGCATACTGAGATT GGTCAGTGACTGGAGTTCAGACGTGT TGCTCTCCGATCTGATGTCCACGAG GTCTCT	IT004	TGACCA	Indexed reverse Bar- seq primer (Figure 1A, right)
P2_BS3_IT005	CAAGCAGAAGACGGCATACTGAGATC ACTGTGTGACTGGAGTTCAGACGTGT GCTCTCCGATCTGATGTCCACGAGG TCTCT	IT005	ACAGTG	Indexed reverse Bar- seq primer (Figure 1A, right)
P2_BS3_IT006	CAAGCAGAAGACGGCATACTGAGATAT TGGCGTGACTGGAGTTCAGACGTGT GCTCTCCGATCTGATGTCCACGAGG TCTCT	IT006	GCCAAT	Indexed reverse Bar- seq primer (Figure 1A, right)
P2_BS3_IT007	CAAGCAGAAGACGGCATACTGAGATG ATCTGGTGACTGGAGTTCAGACGTGT GCTCTCCGATCTGATGTCCACGAGG TCTCT	IT007	CAGATC	Indexed reverse Bar- seq primer (Figure 1A, right)
P2_BS3_IT008	CAAGCAGAAGACGGCATACTGAGATT CAAGTGAGTGACTGGAGTTCAGACGTGT GCTCTCCGATCTGATGTCCACGAGG TCTCT	IT008	ACTTGA	Indexed reverse Bar- seq primer (Figure 1A, right)
P2_BS3_IT009	CAAGCAGAAGACGGCATACTGAGATC TGATCGTGACTGGAGTTCAGACGTGT GCTCTCCGATCTGATGTCCACGAGG TCTCT	IT009	GATCAG	Indexed reverse Bar- seq primer (Figure 1A, right)
P2_BS3_IT010	CAAGCAGAAGACGGCATACTGAGATA AGCTAGTGACTGGAGTTCAGACGTGT GCTCTCCGATCTGATGTCCACGAGG TCTCT	IT010	TAGCTT	Indexed reverse Bar- seq primer (Figure 1A, right)
P2_BS3_IT011	CAAGCAGAAGACGGCATACTGAGATG TAGCCGTGACTGGAGTTCAGACGTGT GCTCTCCGATCTGATGTCCACGAGG TCTCT	IT011	GGCTAC	Indexed reverse Bar- seq primer (Figure 1A, right)
P2_BS3_IT012	CAAGCAGAAGACGGCATACTGAGATTA CAAGGTGACTGGAGTTCAGACGTGT GCTCTCCGATCTGATGTCCACGAGG TCTCT	IT012	CTTGTA	Indexed reverse Bar- seq primer (Figure 1A, right)
P2_BS3_IT013	CAAGCAGAAGACGGCATACTGAGATT GACTGTGACTGGAGTTCAGACGTGT	IT013	AGTCAA	Indexed reverse Bar- seq primer

	GCTCTCCGATCTGATGTCCACGAGG TCTCT			(Figure 1A, right)
P2_BS3_IT014	CAAGCAGAAGACGGCATACTGAGATG GAACTGTGACTGGAGTTTCAGACGTGT GCTCTCCGATCTGATGTCCACGAGG TCTCT	IT014	AGTTCC	Indexed reverse Bar- seq primer (Figure 1A, right)
P2_BS3_IT015	CAAGCAGAAGACGGCATACTGAGATT GACATGTGACTGGAGTTTCAGACGTGT GCTCTCCGATCTGATGTCCACGAGG TCTCT	IT015	ATGTCA	Indexed reverse Bar- seq primer (Figure 1A, right)
P2_BS3_IT016	CAAGCAGAAGACGGCATACTGAGATG GACGGGTGACTGGAGTTTCAGACGTG TGCTCTCCGATCTGATGTCCACGAG GTCTCT	IT016	CCGTCC	Indexed reverse Bar- seq primer (Figure 1A, right)
P2_BS3_IT017	CAAGCAGAAGACGGCATACTGAGATC TCTACGTGACTGGAGTTTCAGACGTGT GCTCTCCGATCTGATGTCCACGAGG TCTCT	IT017	GTAGAG	Indexed reverse Bar- seq primer (Figure 1A, right)
P2_BS3_IT018	CAAGCAGAAGACGGCATACTGAGATG CGGACGTGACTGGAGTTTCAGACGTG TGCTCTCCGATCTGATGTCCACGAG GTCTCT	IT018	GTCCGC	Indexed reverse Bar- seq primer (Figure 1A, right)
P2_BS3_IT019	CAAGCAGAAGACGGCATACTGAGATT TCACGTGACTGGAGTTTCAGACGTGT CTCTCCGATCTGATGTCCACGAGGT CTCT	IT019	GTGAAA	Indexed reverse Bar- seq primer (Figure 1A, right)
P2_BS3_IT020	CAAGCAGAAGACGGCATACTGAGATG GCCACGTGACTGGAGTTTCAGACGTG TGCTCTCCGATCTGATGTCCACGAG GTCTCT	IT020	GTGGCC	Indexed reverse Bar- seq primer (Figure 1A, right)
P2_BS3_IT021	CAAGCAGAAGACGGCATACTGAGATC GAAACGTGACTGGAGTTTCAGACGTGT GCTCTCCGATCTGATGTCCACGAGG TCTCT	IT021	GTTTCG	Indexed reverse Bar- seq primer (Figure 1A, right)
P2_BS3_IT022	CAAGCAGAAGACGGCATACTGAGATC GTACGGTGACTGGAGTTTCAGACGTG TGCTCTCCGATCTGATGTCCACGAG GTCTCT	IT022	CGTACG	Indexed reverse Bar- seq primer (Figure 1A, right)
P2_BS3_IT023	CAAGCAGAAGACGGCATACTGAGATC CACTCGTGACTGGAGTTTCAGACGTGT GCTCTCCGATCTGATGTCCACGAGG TCTCT	IT023	GAGTGG	Indexed reverse Bar- seq primer (Figure 1A, right)
P2_BS3_IT024	CAAGCAGAAGACGGCATACTGAGATG CTACCGTGACTGGAGTTTCAGACGTGT	IT024	GGTAGC	Indexed reverse Bar- seq primer

	GCTCTTCCGATCTGATGTCCACGAGG			(Figure 1A, right)
976	TCTCT			

976
977
978

Supplementary Table 2. Oligonucleotides used in this study.

979

Experiment	Library	Reads
<i>E. coli</i> vector pool Bar-seq	RBJC009_IT013	93,277,156
	RBJC009_IT014	73,914,499
	RBJC009_IT015	79,273,122
	RBJC009_IT016	81,404,878
	RBJC45_IT013	100,794,463
	RBJC45_IT014	92,410,111
	RBJC45_IT015	91,931,624
	RBJC45_IT016	96,631,037
	RBJC009_IT013	93,277,156
	RBJC009_IT014	73,914,499
	RBJC009_IT015	79,273,122
	RBJC45_IT016	96,631,037
37°C vs. 28°C barcoded RH-seq in yeast	RMBA038A_IT001	16,042,537
	RMBA038A_IT002	19,451,725
	RMBA038A_IT003	16,313,279
	RMBA038A_IT004	19,512,043
	RMBA038A_IT005	13,625,004
	RMBA038A_IT006	22,257,379
	RMBA038A_IT007	22,385,133
	RMBA038A_IT008	16,359,601
	RMBA038A_IT009	20,118,293
	RMBA038A_IT010	19,121,369
	RMBA038A_IT011	18,887,044
	RMBA038A_IT012	15,895,905
	RMBA038A_IT013	18,922,229
	RMBA038A_IT014	26,602
	RMBA038A_IT015	16,571,744
	RMBA038A_IT016	18,783,445
	RMBA038A_IT017	17,671,257
	RMBA038A_IT018	18,040,605
	RMBA038A_IT019	16,929,985
	RMBA038A_IT020	15,319,721
	RMBA038A_IT021	16,897,401
	RMBA038A_IT022	16,372,841
	RMBA038A_IT023	16,679,583
	RMBA038A_IT024	13,875,240
36°C vs. 28°C barcoded RH-seq in yeast	RMBA039A_IT001	28,004,341
	RMBA039A_IT002	19,283,097
	RMBA039A_IT003	12,427,040
	RMBA039A_IT004	13,934,236
	RMBA039A_IT005	12,068,707
	RMBA039A_IT006	60,072,532
	RMBA039A_IT008	12,500,340
	RMBA039A_IT009	25,029,516
	RMBA039A_IT010	14,765,007
	RMBA039A_IT011	7,059,133

	RBMA039A_IT012	19,837,690
	RBMA039A_IT013	14,393,602
	RBMA039A_IT014	19,572,649
	RBMA039A_IT015	8,814,383
	RBMA039A_IT016	14,587,181
	RBMA039A_IT017	8,619,661
	RBMA039A_IT018	13,216,843
	RBMA039A_IT019	12,499,486
	RBMA039A_IT020	11,963,866
	RBMA039A_IT021	6,626,989
	RBMA039A_IT022	11,649,542
	RBMA039A_IT023	5,813,357
	RBMA039A_IT024	9,349,172

980

981 **Supplementary Table 3. Bar-seq sequencing data sets.** Each row reports numbers of reads
982 sequenced for the indicated Bar-seq experiment. The first set of rows reports results from a check of
983 barcoded piggyBac transposon plasmids as in Figure S1C; the remaining rows report results from
984 quantification of yeast hemizygote insertion genotypes after competition in the indicated condition, as in
985 Figure 1B of the main text. Experiment identifiers are from BioProject PRJNA735401.

986

Pool	Library	Reads	Platform	Facility
67	RBJC37	38,713,102	Novaseq SP PE150	UC Berkeley
69	RBJC38	38,875,221		
69	RBJC39	43,194,450		
69	RBJC40	39,778,862		
69	RBJC41	38,836,065		
67	RBJC42	39,265,466		
67	RBJC43	47,124,575		
67	RBJC44	39,762,187		
67	RBJC48	91,531,071	HiSeq4000 PE150	Novogene
67	RBJC48_reseq	86,892,060		
70	RBCJ51	86,254,426		
70	RBCJ51_reseq	86,130,880		
70	RBJC52	52,108,306		
70	RBJC52_reseq	53,363,169		
71	RBJC54	88,154,532		
71	RBJC54_reseq	86,878,835		
71	RBJC55	90,265,981		
71	RBJC55_reseq	82,130,170		
69	RBJC57	84,296,399		
69	RBJC57_reseq	85,606,080		

987

988

989 **Supplementary Table 4. Tn-seq sequencing data sets.** Each row reports numbers of reads from the
990 indicated sequencing of insertion positions of barcoded transposons in the *S. cerevisiae* x *S. paradoxus*
991 hybrid, as in Figure 1A, left, of the main text. Experiment identifiers are from PRJNA735401; “reseq”
992 indicates the reads from a technical replicate performed to gather additional reads for the indicated
993 library.

994 **Supplementary Table 5. Abundance of inferred hemizygote insertion genotypes from**
995 **thermotolerance RH-seq.** Each row reports the results of sequencing from one inferred transposon
996 insertion in the *S. cerevisiae* x *S. paradoxus* diploid hybrid after selection of the barcoded transposon pool
997 after competitions comparing growth at 37°C and 28°C, reflecting the abundance in the pool of the
998 respective hemizygote clone harboring the insertion. Chromosome, strand, location, and gene report the
999 fine-scale position of the inferred insertion. Allele, the species parent's homolog in which the transposon
1000 insertion lay. Abundance, read counts of the transposon insertion sequenced after selection of the
1001 barcoded transposon pool at the indicated temperature, normalized for library size and averaged across
1002 the biological replicate cultures. Transposon insertions not detected in any replicate of the indicated
1003 selection were assigned an abundance of 1 prior to normalization by library size. CV, coefficient of
1004 variation over biological replicates of normalized read counts after selection at the indicated temperature.
1005 Barcode, the unique barcode identifier of the transposon insertion.

1006 **Supplementary Table 6. Abundance of hemizygote insertion genotypes from RH-seq at 36°C.** Data
1007 are as in Table S5, except that RH-seq was done using 36°C as the high-temperature condition.

1008 **Supplementary Table 7. Effects of allelic variation in thermotolerance RH-seq.** Each row reports the
1009 results of reciprocal hemizygote tests on thermotolerance at the indicated gene in the *S. cerevisiae* x *S.*
1010 *paradoxus* diploid hybrid at 37°C. Columns B-G report analyses of abundance upon the aggregation at
1011 the gene level of inferred hemizygote genotypes (Table S5) from all biological replicate experiments,
1012 filtered for quality control (see Methods). Columns B-D report results of a two-tailed Mann-Whitney
1013 statistical test for a difference in the abundance after growth at 37°C, relative to the abundance after
1014 growth at 28°C, of hemizygotes harboring transposon insertions in the two species parents' homologs.
1015 The Benjamini-Hochberg method was used to correct for multiple testing. Column E reports the
1016 $\log_2(\text{abundance at } 37^\circ\text{C}/\text{abundance at } 28^\circ\text{C})$ of the average insert in the *S. cerevisiae* allele. Column F
1017 reports the analogous quantity among inserts in the *S. paradoxus* allele of the gene. Column G reports
1018 the allele-specific effect size, calculated as the difference between the measures of Columns E and F.

1019 **Supplementary Table 8. Effects of allelic variation in RH-seq at 36°C.** Data are as in Table S7, except
1020 that the high temperature growth condition was 36°C.

Hit	Description
YGR198W/YPP1	Cargo-transport protein involved in endocytosis; interacts with phosphatidylinositol-4-kinase Stt4; GFP-fusion protein localizes to the cytoplasm; YGR198W is an essential gene
YMR207C/HFA1	Mitochondrial acetyl-coenzyme A carboxylase, catalyzes the production of malonyl-CoA in mitochondrial fatty acid biosynthesis
YGL082W/MIY1	Putative protein of unknown function; predicted prenylation/proteolysis target of Afc1p and Rce1p; green fluorescent protein (GFP)-fusion protein localizes to the cytoplasm and nucleus; YGL082W is not an essential gene
YNL049C/SFB2	Component of the Sec23p-Sfb2p heterodimer of the COPII vesicle coat, required for cargo selection during vesicle formation in ER to Golgi transport; homologous to Sec24p and Sfb3p
YDL035C/GPR1	Plasma membrane G protein coupled receptor (GPCR) that interacts with the heterotrimeric G protein alpha subunit, Gpa2p, and with Plc1p; sensor that integrates nutritional signals with the modulation of cell fate via PKA and cAMP synthesis
YDR508C/GNP1	High-affinity glutamine permease, also transports Leu, Ser, Thr, Cys, Met and Asn; expression is fully dependent on Grr1p and modulated by the Ssy1p-Ptr3p-Ssy5p (SPS) sensor of extracellular amino acids
YBR136W/MEC1	Genome integrity checkpoint protein and PI kinase superfamily member; signal transducer required for cell cycle arrest and transcriptional responses prompted by damaged or unreplicated DNA; monitors and participates in meiotic recombination
YML099C/ARG81	Zinc-finger transcription factor of the Zn(2)-Cys(6) binuclear cluster domain type, involved in the regulation of arginine-responsive genes; acts with Arg80p and Arg82p
YPL254W/HFI1	Adaptor protein required for structural integrity of the SAGA complex, a histone acetyltransferase-coactivator complex that is involved in global regulation of gene expression through acetylation and transcription functions
YIL152W/VPR1	Putative protein of unknown function
YKL017C/HCS1	Hexameric DNA polymerase alpha-associated DNA helicase A involved in lagging strand DNA synthesis; contains single-stranded DNA stimulated ATPase and dATPase activities; replication protein A stimulates helicase and ATPase activities
YGR140W/CBF2	Essential kinetochore protein, component of the CBF3 multisubunit complex that binds to the CDEIII region of the centromere; Cbf2p also binds to the CDEII region possibly forming a different multimeric complex, ubiquitinated in vivo
YJR127C/RSF2	Zinc-finger protein involved in transcriptional control of both nuclear and mitochondrial genes, many of which specify products required for glycerol-based growth, respiration, and other functions
YDR375C/BCS1	Mitochondrial protein of the AAA ATPase family; has ATP-dependent chaperone activity; required for assembly of Rip1p and Qcr10p into cytochrome bc(1) complex; mutations in human homolog BCS1L are linked to neonatal mitochondrial diseases
YOR091W/TMA46	Protein of unknown function that associates with translating ribosomes; interacts with GTPase Rbg1p
YLR397C/AFG2	ATPase of the CDC48/PAS1/SEC18 (AAA) family, forms a hexameric complex; is essential for pre-60S maturation and release of several preribosome maturation factors; may be involved in degradation of aberrant mRNAs
YNL132W/KRE33	Essential protein, required for biogenesis of the small ribosomal subunit; heterozygous mutant shows haploinsufficiency in K1 killer toxin resistance
YMR078C/CTF18	Subunit of a complex with Ctf8p that shares some subunits with Replication Factor C and is required for sister chromatid cohesion; may have overlapping functions with Rad24p in the DNA damage replication checkpoint
YLR422W/DCK1	Protein of unknown function with similarity to human DOCK proteins (guanine nucleotide exchange factors); interacts with Ino4p; green fluorescent protein (GFP)-fusion protein localizes to the cytoplasm, YLR422W is not an essential protein

YMR125W/STO1	Large subunit of the nuclear mRNA cap-binding protein complex, interacts with Npl3p to carry nuclear poly(A)+ mRNA to cytoplasm; also involved in nuclear mRNA degradation and telomere maintenance; orthologous to mammalian CBP80
YOR371C/GPB1	Multistep regulator of cAMP-PKA signaling; inhibits PKA downstream of Gpa2p and Cyr1p, thereby increasing cAMP dependency; promotes ubiquitin-dependent proteolysis of Ira2p; regulated by G-alpha protein Gpa2p; homolog of Gpb2p
YMR094W/CTF13	Subunit of the CBF3 complex, which binds to the CDE III element of centromeres, bending the DNA upon binding, and may be involved in sister chromatid cohesion during mitosis
YMR167W/MLH1	Protein required for mismatch repair in mitosis and meiosis as well as crossing over during meiosis; forms a complex with Pms1p and Msh2p-Msh3p during mismatch repair; human homolog is associated with hereditary non-polyposis colon cancer
YDR103W/STE5	Pheromone-response scaffold protein that controls the mating decision; binds Ste11p, Ste7p, and Fus3p kinases, forming a MAPK cascade complex that interacts with the plasma membrane and Ste4p-Ste18p; allosteric activator of Fus3p
YDR318W/MCM21	Protein involved in minichromosome maintenance; component of the COMA complex (Ctf19p, Okp1p, Mcm21p, Ame1p) that bridges kinetochore subunits that are in contact with centromeric DNA and the subunits bound to microtubules
YAL026C/DRS2	Aminophospholipid translocase (flippase) that maintains membrane lipid asymmetry in post-Golgi secretory vesicles; contributes to clathrin-coated vesicle formation and endocytosis; mutations in human homolog ATP8B1 result in liver disease
YDR180W/SCC2	Subunit of cohesin loading factor (Scc2p-Scc4p), a complex required for loading of cohesin complexes onto chromosomes; involved in establishing sister chromatid cohesion during DSB repair via histone H2AX; evolutionarily-conserved adherin
YOR092W/ECM3	Non-essential protein of unknown function; involved in signal transduction and the genotoxic response; induced rapidly in response to treatment with 8-methoxysoralen and UVA irradiation
YDR235W/PRP42	U1 snRNP protein involved in splicing, required for U1 snRNP biogenesis; contains multiple tetrastricopeptide repeats
YER151C/UBP3	Ubiquitin-specific protease that interacts with Bre5p to co-regulate anterograde and retrograde transport between the ER and Golgi; inhibitor of gene silencing; cleaves ubiquitin fusions but not polyubiquitin; also has mRNA binding activity
YMR275C/BUL1	Ubiquitin-binding component of the Rsp5p E3-ubiquitin ligase complex, functional homolog of Bul2p, disruption causes temperature-sensitive growth, overexpression causes missorting of amino acid permeases
YKL114C/APN1	Major apurinic/apyrimidinic endonuclease, 3'-repair diesterase involved in repair of DNA damage by oxidation and alkylating agents; also functions as a 3'-5' exonuclease to repair 7,8-dihydro-8-oxodeoxyguanosine
YOL081W/IRA2	GTPase-activating protein that negatively regulates RAS by converting it from the GTP- to the GDP-bound inactive form, required for reducing cAMP levels under nutrient limiting conditions, has similarity to Ira1p and human neurofibromin
YPR049C/ATG11	Adapter protein for pexophagy and the cytoplasm-to-vacuole targeting (Cvt) pathway; directs receptor-bound cargo to the phagophore assembly site (PAS) for packaging into vesicles; required for recruiting other proteins to the (PAS)
YGL095C/VPS45	Protein of the Sec1p/Munc-18 family, essential for vacuolar protein sorting; required for the function of Pep12p and the early endosome/late Golgi SNARE Tlg2p; essential for fusion of Golgi-derived vesicles with the prevacuolar compartment
YDR456W/NHX1	Na+/H+ and K+/H+ exchanger, required for intracellular sequestration of Na+ and K+; located in the vacuole and late endosome compartments; required for osmotolerance to acute hypertonic shock and for vacuolar fusion
YKL197C/PEX1	AAA-peroxin that heterodimerizes with AAA-peroxin Pex6p and participates in the recycling of peroxisomal signal receptor Pex5p from the peroxisomal membrane to the cytosol; induced by oleic acid and upregulated during anaerobiosis
YIL068C/SEC6	Essential 88kDa subunit of the exocyst complex, which mediates polarized targeting of secretory vesicles to active sites of exocytosis; dimeric form of Sec6p interacts with Sec9p in vitro and inhibits t-SNARE assembly

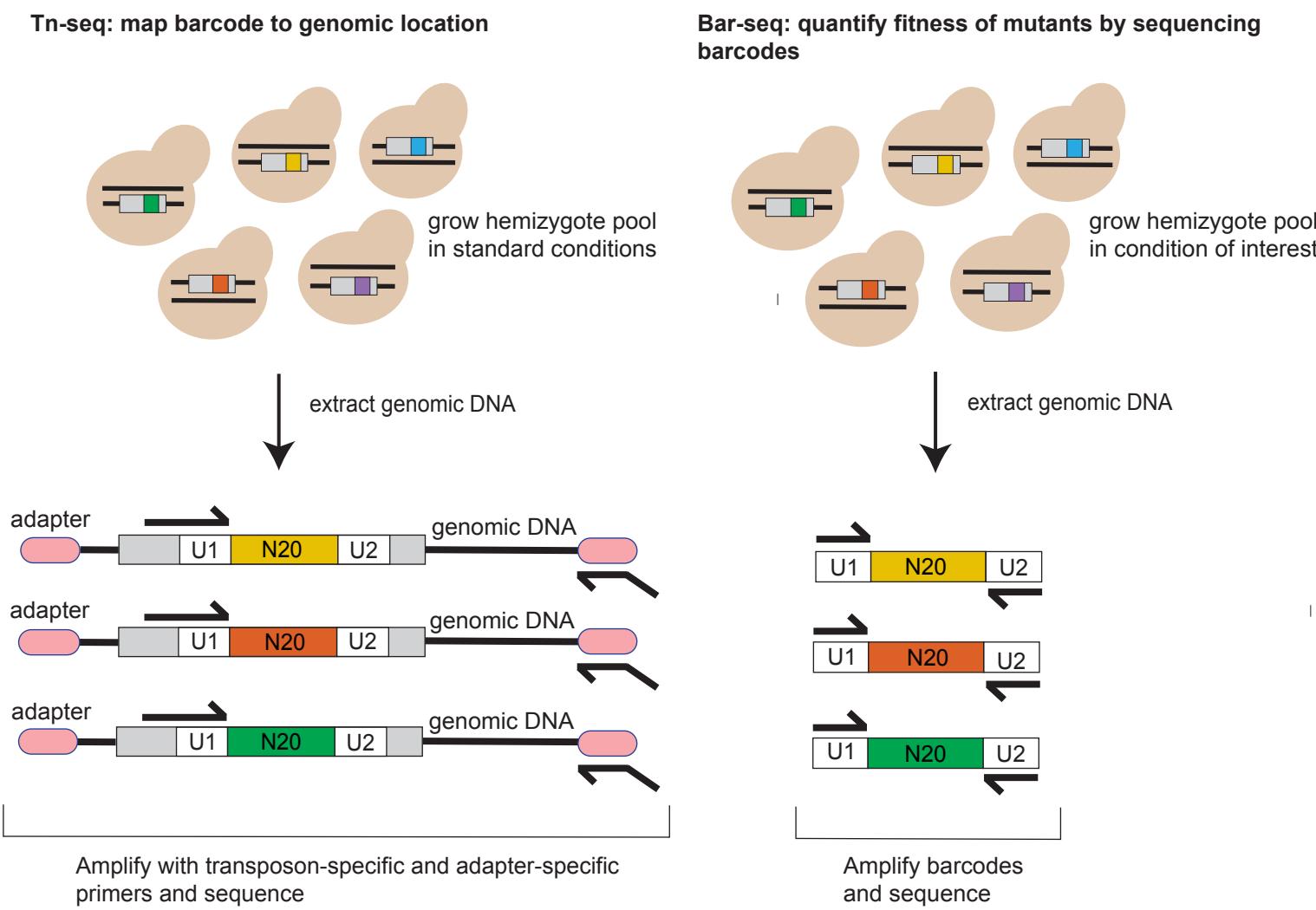
YOR326W/MYO2	One of two type V myosin motors (along with MYO4) involved in actin-based transport of cargos; required for the polarized delivery of secretory vesicles, the vacuole, late Golgi elements, peroxisomes, and the mitotic spindle
YNR045W/PET494	Mitochondrial translational activator specific for the COX3 mRNA, acts together with Pet54p and Pet122p; located in the mitochondrial inner membrane
YJR107W/LIH1	Putative protein of unknown function; has sequence or structural similarity to lipases
YPL268W/PLC1	Phospholipase C, hydrolyzes phosphatidylinositol 4,5-biphosphate (PIP2) to generate the signaling molecules inositol 1,4,5-triphosphate (IP3) and 1,2-diacylglycerol (DAG); involved in regulating many cellular processes
YJL062W/LAS21	Integral plasma membrane protein involved in the synthesis of the glycosylphosphatidylinositol (GPI) core structure; mutations affect cell wall integrity
YCR042C/TAF2	TFIID subunit (150 kDa), involved in RNA polymerase II transcription initiation

1022
1023
1024
1025
1026

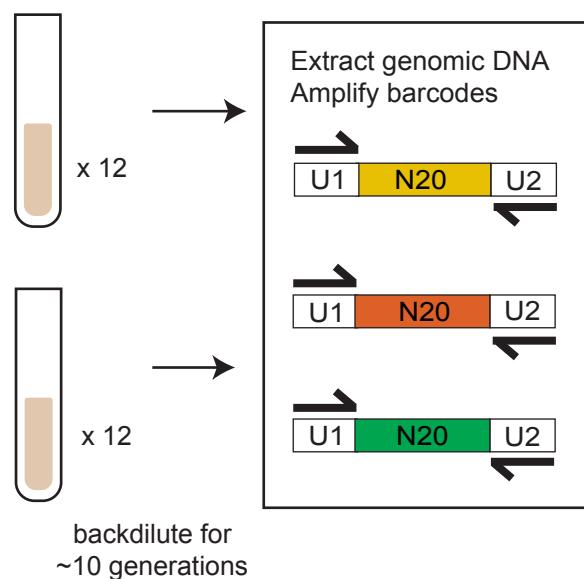
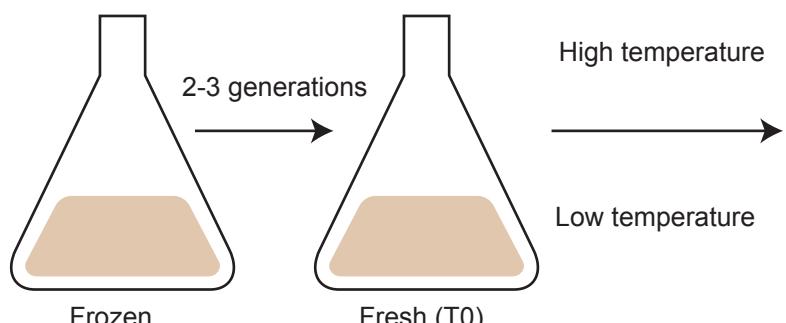
Supplementary Table 9. Annotations of top hit loci from barcoded RH-seq of thermotolerance.

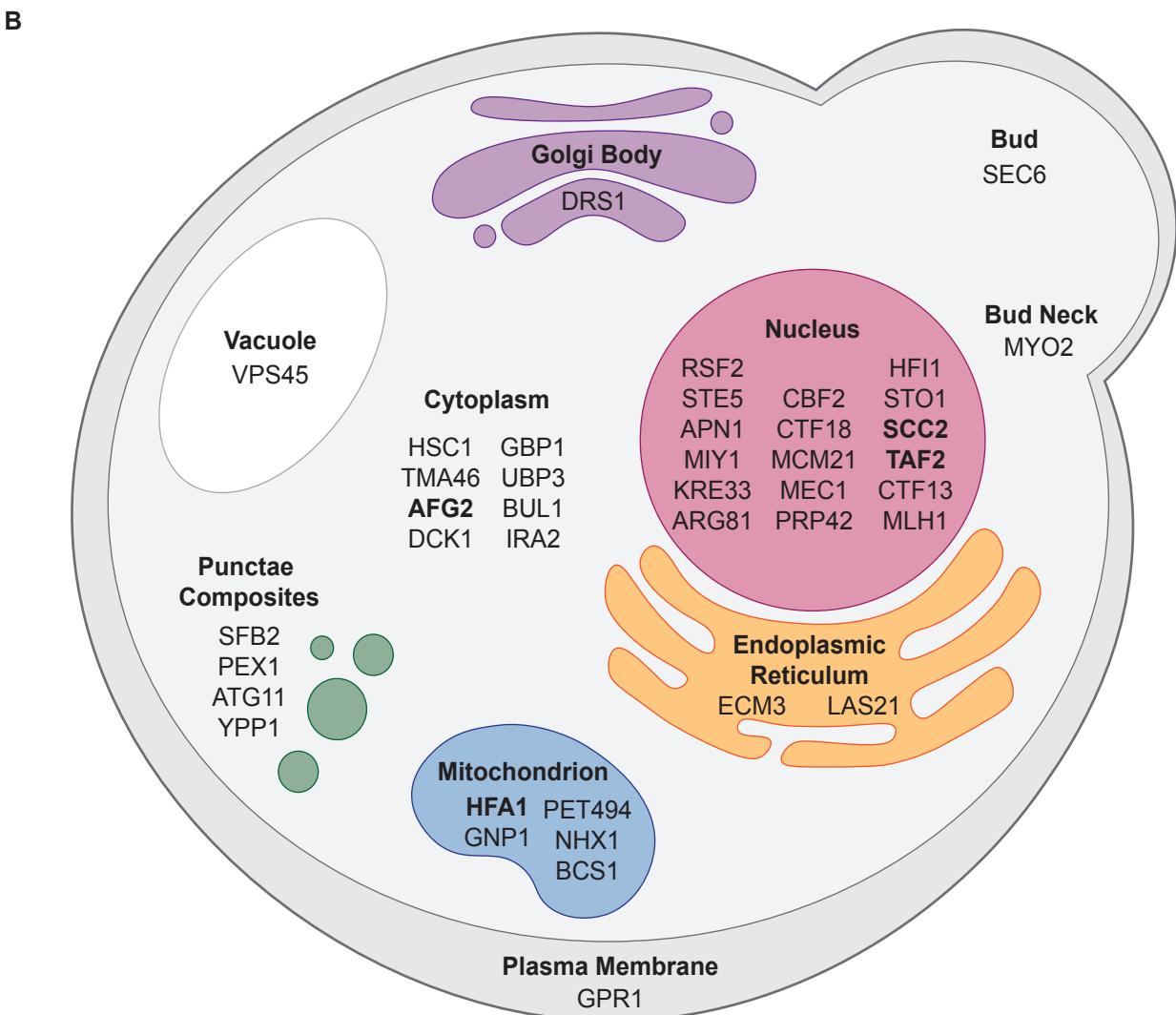
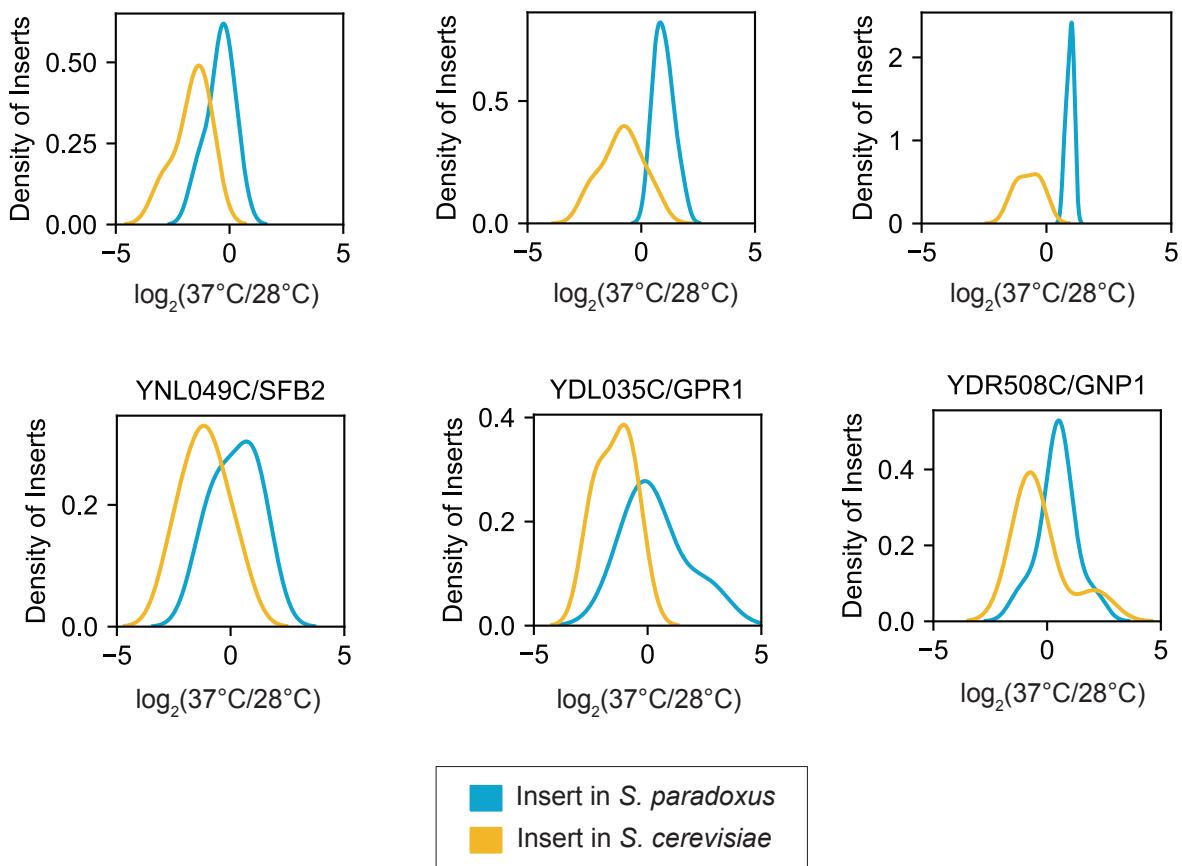
Shown are hits from thermotolerance mapping by barcoded RH-seq (Table S7) that met quality control thresholds and at which disruption of the *S. cerevisiae* allele compromised thermotolerance to a greater extent than did disruption of the *S. paradoxus* allele in the interspecific hybrid.

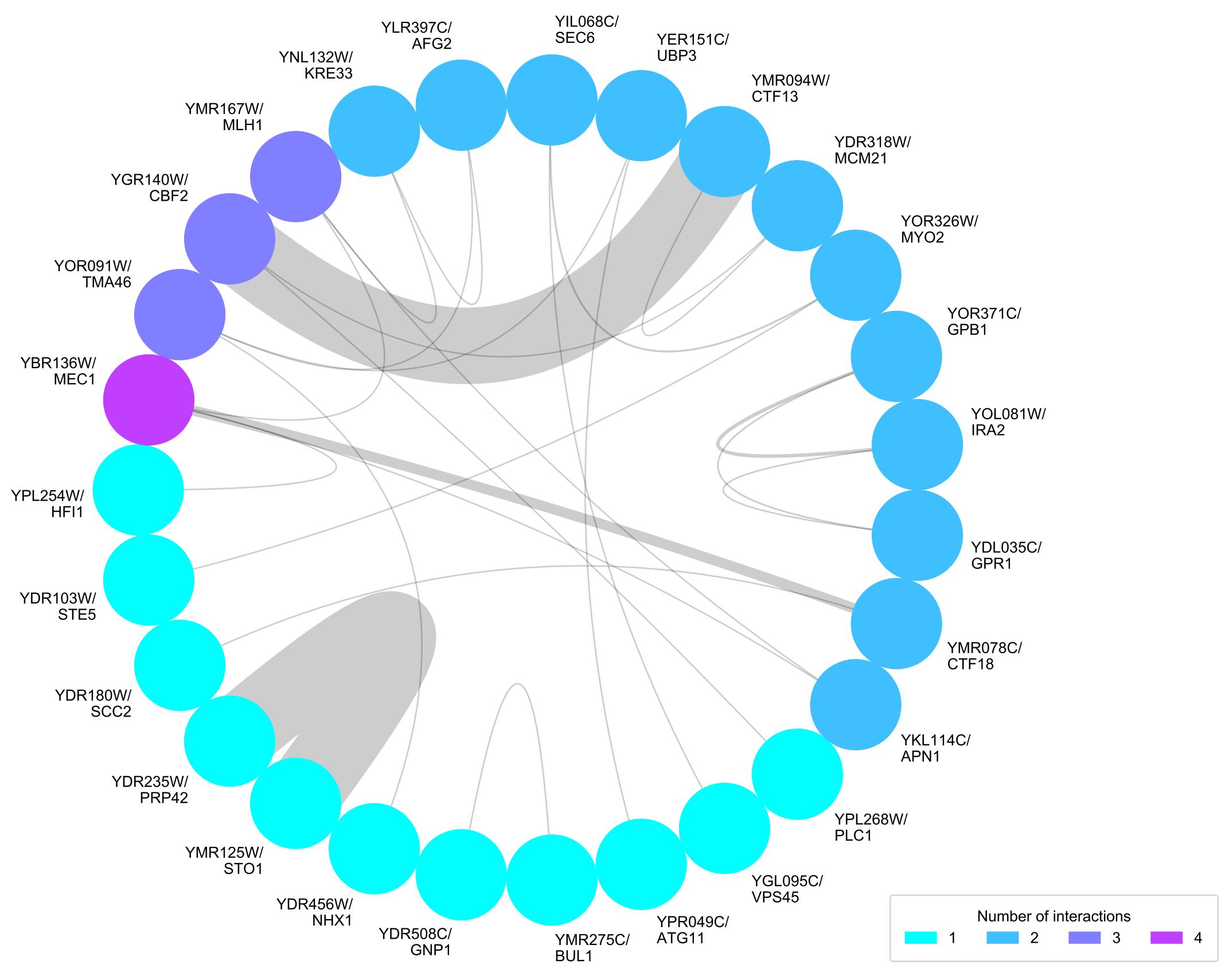
1027

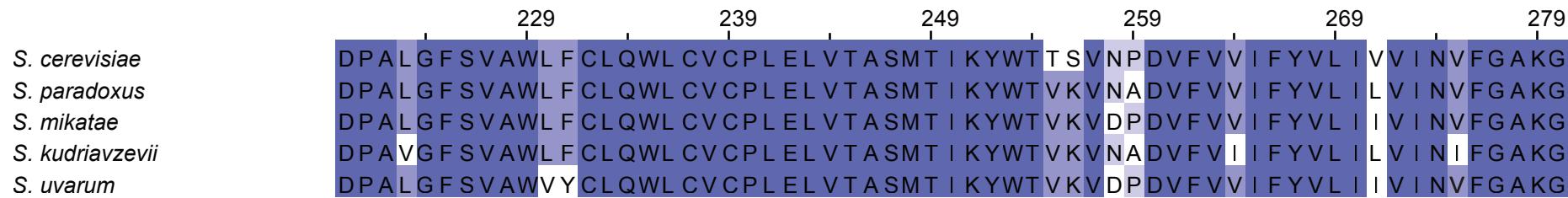
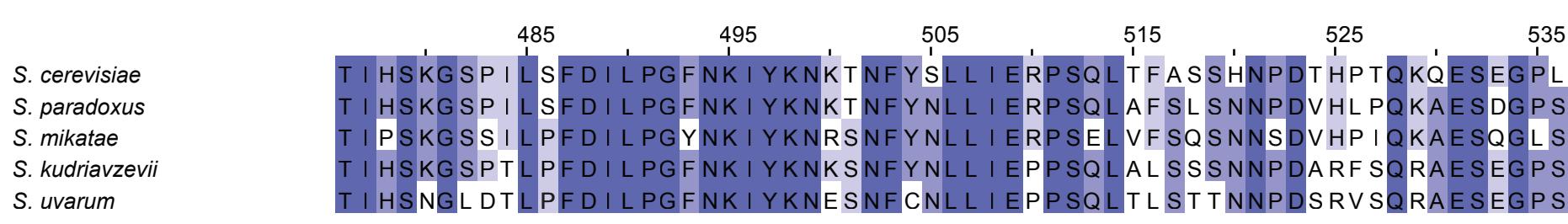
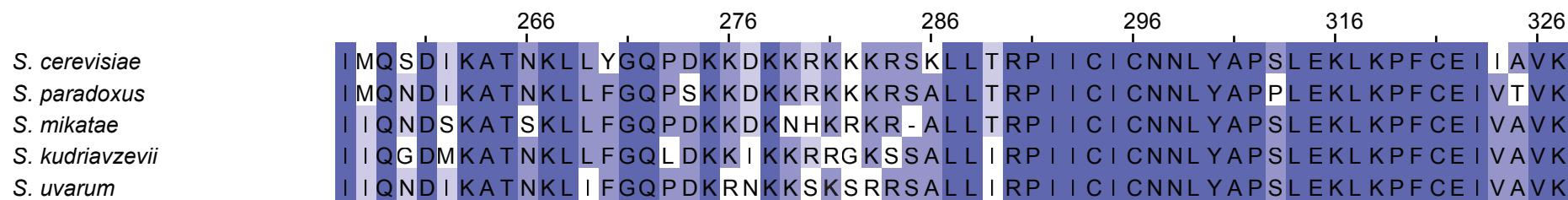

gene	D _s	D _n	P _s	P _n	NI	p	adjusted p
YBR136W/MEC1	293	38	770	363	3.63	5.71 x 10 ⁻¹⁵	1.69 x 10 ⁻¹²
YLR422W/DCK1	122	26	335	280	3.92	1.13 x 10 ⁻¹⁰	8.70 x 10 ⁻⁹
YOR326W/MYO2	35	0	1486	1273	inf	5.15 x 10 ⁻¹⁰	2.77 x 10 ⁻³
YAL026C/DRS2	32	1	1399	1595	36.48	5.81 x 10 ⁻¹⁰	2.97 x 10 ⁻⁸
YMR207C/HFA1	77	16	2215	2103	4.57	6.16 x 10 ⁻¹⁰	3.08 x 10 ⁻⁸
YOR371C/GPB1	79	18	347	323	4.09	1.42 x 10 ⁻⁸	4.02 x 10 ⁻⁷
YML099C/ARG81	96	16	351	247	4.22	1.61 x 10 ⁻⁸	4.43 x 10 ⁻⁷
YJL062W/LAS21	74	10	170	131	5.70	2.19 x 10 ⁻⁸	5.77 x 10 ⁻⁷
YPL268W/PLC1	112	16	245	146	4.17	4.57 x 10 ⁻⁸	1.05 x 10 ⁻⁶
YCR042C/TAF2	155	45	661	470	2.45	1.70 x 10 ⁻⁷	2.90 x 10 ⁻⁶
YPL254W/HFI1	76	10	150	106	5.37	1.66 x 10 ⁻⁷	2.90 x 10 ⁻⁶
YPR049C/ATG11	131	45	448	395	2.57	1.67 x 10 ⁻⁷	2.90 x 10 ⁻⁶
YNL049C/SFB2	32	1	773	587	24.30	3.22 x 10 ⁻⁷	4.88 x 10 ⁻⁶
YKL114C/APN1	44	3	120	87	10.63	9.80 x 10 ⁻⁷	1.19 x 10 ⁻⁵
YIL068C/SEC6	80	5	271	111	6.55	1.36 x 10 ⁻⁶	1.52 x 10 ⁻⁵
YGR198W/YPP1	79	25	295	282	3.02	1.97 x 10 ⁻⁶	2.10 x 10 ⁻⁵
YDR375C/BCS1	67	4	107	54	8.45	2.20 x 10 ⁻⁶	2.28 x 10 ⁻⁵
YKL017C/HCS1	78	13	219	143	3.92	3.56 x 10 ⁻⁶	3.28 x 10 ⁻⁵
YDR235W/PRP42	61	7	177	109	5.37	5.34 x 10 ⁻⁶	4.57 x 10 ⁻⁵
YDR180W/SCC2	173	72	523	431	1.98	6.47 x 10 ⁻⁶	5.35 x 10 ⁻⁵
YMR167W/MLH1	94	26	286	209	2.64	2.47 x 10 ⁻⁵	1.54 x 10 ⁻⁴
YKL197C/PEX1	132	58	415	351	1.92	1.55 x 10 ⁻⁴	6.57 x 10 ⁻⁴
YMR078C/CTF18	73	26	295	260	2.47	1.63 x 10 ⁻⁴	6.82 x 10 ⁻⁴
YGL095C/VPS45	67	14	202	122	2.89	3.72 x 10 ⁻⁴	1.30 x 10 ⁻³
YMR094W/CTF13	54	21	152	158	2.67	4.44 x 10 ⁻⁴	1.50 x 10 ⁻³
YNL132W/KRE33	75	4	187	52	5.21	5.13 x 10 ⁻⁴	1.69 x 10 ⁻³
YDR103W/STE5	93	56	344	373	1.80	1.57 x 10 ⁻³	4.16 x 10 ⁻³
YOR092W/ECM3	16	1	648	498	12.30	1.92 x 10 ⁻³	4.86 x 10 ⁻³
YNR045W/PET494	61	20	177	136	2.34	2.15 x 10 ⁻³	5.32 x 10 ⁻³
YJR107W/LIH1	19	1	102	61	11.36	2.40 x 10 ⁻³	5.79 x 10 ⁻³
YLR397C/AFG2	102	27	288	155	2.03	2.56 x 10 ⁻³	6.10 x 10 ⁻³
YGL082W/MIY1	41	8	132	84	3.26	2.60 x 10 ⁻³	6.17 x 10 ⁻³
YOR091W/TMA46	40	6	103	46	2.98	0.0212	0.0351
YDR456W/NHX1	87	13	187	59	2.11	0.0278	0.0443
YDR508C/GNP1	3	0	959	797	inf	0.2562	0.3009
YIL152W/VPR1	19	11	70	59	1.46	0.4184	0.4669

1028



1029 **Supplementary Table 10. Whole-gene tests for evidence of non-neutral protein evolution at**
 1030 **thermotolerance loci.** Each row reports results from the McDonald-Kreitman test on sequences from
 1031 strains of European populations of *S. cerevisiae* and *S. paradoxus* of the indicated top hit from barcoded
 1032 RH-seq mapping of thermotolerance. D_s, number of sites of synonymous nucleotide divergence between
 1033 species; number of sites of D_n, nonsynonymous nucleotide divergence between species; P_s, number of



1034 sites of synonymous nucleotide polymorphisms within species; P_n , number of sites of nonsynonymous
1035 nucleotide polymorphisms within species. NI, neutrality index. The sixth column reports the *p*-value from a
1036 Fisher's exact test on D_s , D_n , P_s , and P_n , and the seventh column reports the adjusted *p*-value after
1037 applying the Benjamini-Hochberg correction for multiple hypothesis testing. All loci exhibited $NI > 1$,
1038 corresponding to a dearth of divergent amino acid changes relative to synonymous changes and
1039 polymorphisms.


A

B

A**B****C**