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Abstract

We developed a deep learning model that predicts super-resolved versions
of diffraction-limited microscopy images. Our model, named Task-
Assisted Generative Adversarial Network (TA-GAN), incorporates an
auxiliary task (e.g. segmentation, localization) that is closely related to
the characterization of the observed biological nanostructures. We evalu-
ate how TA-GAN improves generative accuracy over unassisted methods
using images acquired with two modalities: confocal (diffraction-limited)
and STimulated Emission Depletion (STED, super-resolved) microscopy.
The generated synthetic STED images show an accurate distribution of
the F-actin nanostructures, and they replicate the nanoscale morphology



of synaptic protein clusters. We expand the applicability of the TA-
GAN to online live-cell imaging assistance. Incorporated directly into
the acquisition pipeline of the microscope, the TA-GAN informs the user
on the nanometric content of the field of view without requiring the
acquisition of a super-resolved image. This information is used to auto-
matically select time points of interest for the visualization of biological
change, optimizing the acquisition sequence and reducing light expo-
sure. TA-GAN partially replaces super-resolution imaging acquisitions,
enables the creation of domain-adapted labeled datasets requiring min-
imal manual annotation, and assists microscopy users by taking online
decisions regarding the choice of imaging modality and region of interest.
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Fig. 0 Graphical Abstract. The proposed model has two general use cases: TA-GAN,
for paired datasets, and TA-CycleGAN, for unpaired datasets. Top-left: The TA-GAN uses
a task adapted to each dataset for accurate resolution enhancement. Middle-left: The gen-
erated synthetic STED images are used to analyze the distribution of nanostructures that
were not resolved in the original confocal image. Top-right: Domain adaptation using the
TA-CycleGAN enables the generation of large annotated synthetic image datasets from a
new domain. Middle-right: The task network generates the corresponding annotations on the
synthetic dataset. Bottom: Both models can be used for microscopy acquisition guidance.
The TA-GAN model, trained using a TA-CycleGAN generated dataset, can automatically
identify regions and frames of interest from the low-resolution images. Automatic switching
between low- and high-resolution imaging modalities is guided by the TA-GAN predictions.
Scale bars: 1 pm.
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1 Introduction

The development of super-resolution optical microscopy techniques to study
the nanoscale organisation of biological structures has transformed our under-
standing of cellular and molecular processes [1]. Such techniques, including
STimulated Emission Depletion (STED) microscopy [2], are compatible with
live-cell imaging, enabling the monitoring of sub-cellular dynamics with
unprecedented spatio-temporal precision. In the design of super-resolution
microscopy experiments, multiple and often conflicting objectives (e.g. achiev-
able spatial resolution, acquisition speed, light exposure, and signal-to-noise
ratio) must be considered [3]. For example, high spatio-temporal resolution
is often achieved at the expense of an increased light dose on the sample [4].
Machine learning-assisted optical microscopy approaches have been proposed
to improve the acquisition processes, mostly by limiting light exposure [3, 5, 6].
In parallel, several supervised [7, 8] and weakly supervised [3, 9] deep learning
approaches have been developed for quantitative and high-throughput analysis
of super-resolution optical microscopy images.

Deep learning approaches were also recently applied for microscopy image
generation [11-15]. Conditional Generative Adversarial Networks (cGAN) [16]
generate data instances based on a different input value, capturing some of the
features of this input value to guide the creation of a new instance that fits the
target domain. This conditioning makes cGANs well suited for image-to-image
translation tasks [2], including super-resolution. For natural images, cGANs
have been used to enhance the spatial resolution by increasing the number of
pixels and sharpening the finer details of the upsampled image [18]. For medi-
cal imaging, cGANs have been applied to improve the signal-to-noise ratio [19],
to augment limited data [20-22], and to sharpen raw noisy data [23, 24].
c¢GAN-based super-resolution approaches have been gaining similar interest for
microscopy images, as they achieve high performance in reducing blurring arti-
facts and noise [13, 14]. Their applicability has been demonstrated on images
of biological structures such as microtubules [14] and mitochondria [13]. Yet,
these cGAN models are trained to generate images that appear to belong to the
target higher-resolution domain, without specifically requiring the biological
features of interest to be accurately generated [25].

Super-resolution microscopy techniques exploit the ability to modulate
(or switch) the emission properties of fluorescent molecules to overcome the
diffraction barrier of light microscopy, which cannot be surpassed by adding
pixels or improving the contrast [26]. In this context, it is challenging to
rely on algorithmic methods to generate images of sub-diffraction structures
that are not optically resolved in the original image [27]. Deep learning-
based super-resolution [5, 11-14] and domain adaptation [28] approaches have
been proposed recently for optical microscopy, but concerns and skepticism
arise regarding their applicability to characterize biological structures at the
nanoscale [25, 27, 29]. Yet, the possibility to super-resolve microscopy images
post-acquisition would unlock opportunities that were otherwise out of reach,



favorably alleviating some of the compromises between the spatial resolution,
light exposure, and acquisition speed [11, 30].

In its regular form, the generator network of a cGAN is optimized to pro-
duce images that are realistic enough to be indiscernible from real images.
This is well adapted for the generation of natural images, where fooling a dis-
criminant network (discriminator) with a realistic output is the sole objective
used to optimize the generator. However, for microscopy images, realism does
not ensure that the images are usable for further field-specific analysis. The
primary goal for generating super-resolved microscopy images is to produce
reliable nanoscale information on the biological structures of interest. Optimiz-
ing a network using complementary tasks, or multi-task learning, can guide the
generator to produce content that matters for the current context [31]. Vari-
ous applications of cGANs for image-to-image translation use complementary
tasks such as semantic segmentation [32, 33|, attributes segmentation [34], or
foreground segmentation [35], to provide spatial guidance to the generator,
ensuring that the generated images are consistent with the target annotations.
We adapt this idea in the context of microscopy, where structure-specific anno-
tations can direct the attention to subtle features that are only recognizable
by trained experts.

We propose to guide the image generation process using a complementary
task that is closely related to the biological question at hand. This approach
improves the applicability of synthetic data generation using deep learning in
microscopy and ensures that the generated features in synthetic images are
consistent with the observed biological structures in real images. Microscopy
image analysis tasks that are already routinely solved with deep learning [36]
(e.g. segmentation, detection, and classification) can guide a cGAN to preserve
the biological features of interest in the generated synthetic images, gear-
ing towards undifferentiated analysis between the synthetic and the ground
truth super-resolved images. We designed a Task-Assisted GAN (TA-GAN)
for confocal-to-STED super-resolution image generation, which is optimized
to perform well over a complementary task associated with the nanostructures
of interest that are unresolved in confocal images. We expand the applicability
of the method with a variation called TA-CycleGAN, based on the CycleGAN
model [37], applicable to unpaired datasets. Here, the TA-CycleGAN is applied
to domain adaptation for STED microscopy of fixed and living neurons. Our
results demonstrate that the TA-GAN and TA-CycleGAN models improve the
synthetic representation of biological nanostructures in comparison to other
deep learning-based super-resolution approaches. Specifically, our method is
useful to 1) guide the quantitative analysis of nanostructures from diffraction
limited ground truth images, 2) generate synthetic datasets of different modal-
ities for data augmentation or to reduce the annotation burden, and 3) predict
regions of interest for machine learning-assisted live-cell STED imaging.
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2 Results

TA-GAN: Task-assisted super-resolution image
generation

Generative methods designed for synthetic microscopy image generation,
where direct comparisons between the generated and the ground truth images
are made, have been shown to be very effective for deblurring and denoising
of confocal images [11, 12, 14]. To increase the accuracy of deep learning-
assisted super-resolved image generation of complex nanoassemblies (e.g. the
F-actin periodical lattice in neurons [38]), we considered the combination of
a ¢cGAN with an additional convolutional neural network, the task network,
targeting an image analysis task relevant to the biological structures of inter-
est (Figure la). Three individual networks form the TA-GAN model: 1) the
generator, 2) the discriminator, and 3) the task network. They are trained in
parallel and updated sequentially in each iteration (Methods). Pairs of confo-
cal (low-resolution) and STED (super-resolution) images are used to train the
generator and the discriminator. The TA-GAN is tested on different nanos-
tructures in fixed hippocampal neurons for the translation of confocal to STED
images. The absence of movement in fixed cells allows for the acquisition of
paired confocal and STED images. The task network relies on manual expert
annotations highlighting the nanostructures of interest on the ground truth
STED images for training (Figure la). The error between the task network
predictions and the expert annotations is back-propagated to the generator to
optimize its parameters (Methods, Figure S1).

The first TA-GAN model is trained to generate STED images of the axonal
F-actin lattice from confocal images (Figure 1b). The membrane-associated
periodic skeleton in axons is formed by F-actin rings and spectrin tetramers
that are periodically spaced by around 180 nm and cannot be resolved with
confocal microscopy [38]. The complementary task we identified to train the
TA-GAN on the azonal F-actin dataset (Methods) was the segmentation of
periodical F-actin rings in axons (Figure 1a). This complementary task is used
to compute the generation loss and to evaluate the generation performance at
test time (Methods). Different denoising and super-resolution baselines were
applied to the translation of the input confocal image into a STED image
(Figure 1b, first row). For all baselines, the generated F-actin nanostructures
in the synthetic denoised and super-resolved images could not be recognized
by a segmentation U-Net trained to recognize the F-actin rings on real STED
images (Figure 1b, second row). For the TA-GAN image generation, using
the segmentation loss to optimize the generator’s weights forces the generated
F-actin nanostructures to be realistic enough to be recognized by the segmen-
tation U-Net (Figure 1b). We compared the results of the TA-GAN with the
best performing baseline, pix2pix, a cGAN developed for image modality trans-
lation [2]. The pixel-wise mean square error (MSE) between generated and
ground truth (GT) STED images shows no significant difference when com-
paring with (TA-GAN) and without (pix2pix) task-assistance during training
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Fig. 1 The TA-GAN method. a, Architecture of the TA-GAN model. The losses (cir-
cles) are backpropagated to the networks of the same color: the generator (violet, ResNet
with 9 blocks [39]), the discriminator (green, PatchGAN [40]), and the task network (blue,
ResNet with 6 blocks). The model is split for easier visualization: the left section shows
the flow of the input image and its related losses; the right section shows the flow of the
ground truth (GT) target image and its related losses (Methods). b, Comparison of dif-
ferent deep learning methods for resolution enhancement and denoising on axonal F-actin
nanostructures. (Top) The confocal image is the low-resolution input and the real STED
image is the aimed ground truth (STED GT). ESRGAN x4 (Enhanced Super-Resolution
Generative Adversarial Networks) [41] is a state-of-the-art method for upsampling natural
images; DnCNN (denoising convolutional neural networks) [42] is a state-of-the-art denois-
ing method for natural images; CARE (content-aware image restoration) [11] uses a U-Net
for debluring and denoising; 3D-RCAN [12] uses residual channel attention networks to
denoise and sharpen fluorescence microscopy image volumes; pix2pix [2] is a state-of-the-art
method for image-to-image translation in natural images. (Methods) (Bottom) Segmentation
of the axonal F-actin rings (green) predicted by a U-Net trained on real STED images [3].
Bounding boxes (white line) correspond to the manual expert annotations for axonal F-actin
rings [3]. See Figure S3 for more TA-GAN results. ¢, The DC evaluates the overlap of the
predicted segmentation masks for the generated synthetic and real STED images (STED
GT). It shows a significant improvement (p ~ 10~°, Mann-Whitney U test [1]) when using
TA-GAN compared to pix2pix for F-actin rings segmentation on synthetic super-resolved
images (Figure S2). Scale bars: 1 um
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(Figure S2a). The Dice coefficient (DC) however, computed between the out-
put of a U-Net trained on real STED images[3] for the generated and GT STED
images, shows a significant improvement for TA-GAN compared to pix2pix
(Figure 1lc, Figure S2b). These results confirm that the pixel-wise MSE loss
is not sufficient to guide the generator to produce synthetic super-resolved
images that are reliable for the analysis of the axonal F-actin nanostructure
distribution.

The performance of the TA-GAN is next evaluated on a more complex task,
which is the semantic segmentation of two nanostructures that can be differ-
entiated only with super-resolution optical microscopy: dendritic F-actin rings
and fibers [3, 44]. It was recently shown that, in dendrites, the prevalence of
these nanostructures varies in an activity-dependent manner [3]. The TA-GAN
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is trained on the dendritic F-actin dataset (Methods) using the semantic seg-
mentation of F-actin rings and fibers as the complementary task (Figure 2a).
The TA-GAN generates synthetic nanostructures in dendrites that are suc-
cessfully segmented by a U-Net trained on real STED images[3] (Figure 2b).
Similarly to results previously obtained from real STED images [3], seg-
mentation of the synthetic images shows that the area of the F-actin rings
significantly decreases as the neuronal activity increases, while the opposite is
observed for F-actin fibers (Figure 2c¢). A similar conclusion cannot be drawn
from images generated by a standard conditional GAN architecture since the
rings and fibers generated are not accurate enough to be segmented by the
U-Net trained on real STED images (Figure S4). This experiment highlights
the reliability of the TA-GAN to guide quantitative image analysis of different
sub-diffraction structures for varying biological conditions.

The complementary task in the TA-GAN model requires expert anno-
tations, which results in a trade-off between the cost of producing these
annotations and the gain in generation accuracy they provide. Model-based
and machine learning-based tools have been developed to automatically cre-
ate simple labels for an extensive number of specific analysis applications, like
segmentation labels [45-47] for cell-wise morphology features extraction, and
detection labels [36] for cell counting. When applicable, these resources can
eliminate the task-assistance trade-off by eliminating the manual annotation
requirement, replacing it with automatic annotations.

We use automatically generated localization annotations to train the TA-
GAN for confocal-to-STED super-resolution of the Synaptic protein dataset
consisting of two-channels images of synaptic proteins clusters [4] (Figure 3a,b,
Figure S5, Methods). We localize the centers of synaptic proteins clusters (Pre
: Bassoon; Post : PSD95, Homerlc) [4] in STED images relying on an auto-
matic segmentation pipeline [5] (Methods). We evaluate the performance of
the TA-GAN on the comparison of synaptic protein cluster morphology fea-
tures in real and synthetic STED images (Figure 3c, Methods). We measure
similar population-level distributions for the cluster area, perimeter, and eccen-
tricity in super-resolved real and synthetic images (Figure 3c, Figure S7 and
Figure S8).

TA-CycleGAN: Domain adaptation on unpaired datasets

For many microscopy modalities, paired and labeled training datasets are not
directly available or would be associated with a high annotation burden from
highly qualified experts. Based on the results obtained using confocal and
STED image pairs on fixed neurons, we wanted to expand the applicability
of the TA-GAN to unpaired datasets — here, images of fixed and living cells.
We generated a dataset of F-actin nanostructures in living neurons using the
far-red fluorogenic dye SiR-Actin (Methods) that reveals the F-actin rings and
fibers in living neurons [50].

Using our task-assisted strategy, we trained a CycleGAN [2] model, as it
was precisely developed for image domain translation for unpaired datasets.
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Fig. 2 Resolution improvement by TA-GAN with an auxiliary semantic segmen-
tation task. a, The semantic segmentation of F-actin rings (green) and fibers (magenta) is
used as the complementary task to train the TA-GAN (Methods). Annotations identifying
F-actin rings and fibers are polygonal bounding boxes generated by an expert (Methods).
b, Confocal, real STED (ground truth (GT)), and synthetic STED images showing den-
drites for low (top) and high (bottom) neuronal activity level (Methods). Insets show the
regions identified as rings (green) and fibers (magenta) by the segmentation U-Net trained
on real STED images [3]. ¢, The measured proportion of F-actin rings in dendrites is sig-
nificantly larger at low neuronal activity compared to high activity in both real (orange,
STED GT) and TA-GAN generated synthetic (purple, TA-GAN) STED images (STED GT:
p = 0.0007, TA-GAN: p = 0.004). The opposite is observed for F-Actin fibers for both the
real (p = 0.0006) and the synthetic STED images (p = 0.0009). Statistical significance com-
puted with the The Mann-Whitney U test [1] (x** p < 0.001, *x p < 0.01, *p < 0.05, n.s.
p > 0.05). Scale bars: 1 pm.

The TA-CycleGAN includes two generators that are trained to first perform
a complete cycle between the two domains (fixed- and live-cell STED imag-
ing), and then to compare the ground truth input image with the generated
end-of-cycle image. In the generic CycleGAN model, the losses are minimized
when the generated images appear to belong to the target domain and the
MSE loss between input and output is minimized. No weight is given to the
preservation of the substructures of interest through the translation. With the
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Fig. 3 TA-GAN predicts synaptic protein cluster nanoscale morphology
through an automatically labeled localization task. a, Prediction of the position of
the weighted centroids of PSD95 (green) and Bassoon (magenta) clusters is used as the
complementary task (localization). b, Two-channel confocal (left), real STED (center), and
synthetic STED (right) images of the synaptic protein pair PSD95 and Bassoon. ¢, Eval-
uation of morphological features (area, perimeter, and eccentricity) of clusters in confocal
(red), GT STED (orange) and synthetic STED (purple) for Bassoon clusters (n = 12 images,
Figure S7). The difference between the distributions is statistically significant using a one-
sided ANOVA test (Methods) between GT STED and confocal (area : p ~ 10711, perimeter
: p ~ 10727, eccentricity : p ~ 107%2) and between synthetic STED and confocal (area :
p ~ 1079, perimeter : p ~ 10726, eccentricity : p ~ 10793). Difference between GT and syn-
thetic STED is not significant (area : p = 0.3, perimeter : p = 0.7, eccentricity : p = 0.07).
(Methods, Figure S6, S7 and S8). Scale bars: 1 pm.

TA-CycleGAN, a task-related loss is added to ensure that the biological struc-
tures (here, F-actin nanostructures) of the input image are similarly located
and distributed in the translated and end-of-cycle images (Figure 4a).

A STED image of F-actin acquired in fized (F) neurons is given as input
to the F— L generator of the TA-CycleGAN which translates it into an image
of the same structure but with image features (e.g. spatial resolution, signal-
to-noise ratio, background level) corresponding to the domain of live-cell (L)
images (Figure S9). The generated image is translated back into an image of
fixed cells by the L—F generator (Figure 4a) and compared to the original
image with a cycle-consistency loss and a generation loss (CYC and GEN in
Figure 4a).

To reduce the annotation burden, we train the TA-CycleGAN using only
the annotation of the fixed cell dataset (Methods). We then used the trained
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TA-CycleGAN to infer a new synthetic dataset of F-actin in living neurons
with its corresponding annotations for F-actin rings and fibers (Figure 4b,
Methods). This dendritic F-actin dataset adapted to live F-actin domain, along
with the expert annotations from the initial dendritic F-actin dataset, is used
to train a segmentation network from scratch. This network, even if trained
with synthetic images only, can perform well on the segmentation task of
F-actin rings and fibers on real STED images acquired on living neurons
(Figure 4c, Methods). To confirm that training on synthetic domain-adapted
images generalizes to real live-cell STED images, a user study was conducted
where an expert was asked to annotate F-actin rings and fibers on a set of
28 images using bounding box annotations (Methods). The segmentation net-
work is tested on this set of unseen live-cell STED images, achieving an area
under the Receiver Operating Characteristic (ROC) curve (AUROC) of 0.76
for rings and 0.83 for fibers using the user-study annotations as ground truth
(Figure 4c, d, Figure S11). In comparison, a U-Net trained on images from
fixed neurons achieves only an AUROC of 0.60 for rings and 0.59 for fibers
(Figure 4c) on the same live-cell test images. Thus, domain adaptation with
TA-CycleGAN enables the use of synthetic images to train a modality-specific
segmentation network when no real annotated dataset is available for training.
This strongly facilitates the cumbersome step in the training of any supervised
machine learning method: creating data specific annotations.

Imaging Assistance: Automated modality selection with
TA-GAN

Optimizing light exposure is of particular concern for live-cell imaging, where
multiple acquisitions over an extended period of time might be required to
observe a dynamic process. We integrate the generator of the TA-GAN for
resolution enhancement of live F-actin in the acquisition loop of a STED
microscope for time-lapse imaging of F-actin in living neurons (Methods). The
TA-GAN-assisted microscope uses the generated synthetic images to guide the
acquisition schemes of STED experiments by predicting the remodelling of F-
actin nanostructures during live-cell STED acquisition sequences. The light
exposure on the sample is reduced by relying on the synthetic STED images to
decide at which time points the acquisition of a real super-resolved image of the
region of interest (ROI) is necessary. At the beginning of an imaging sequence,
a reference STED and confocal image pair is acquired. Thereafter, the TA-
GAN uses the confocal image of the full field of view (FOV, 10 x 10pm) to
generate synthetic STED images of the same FOV (Figure 5a, Methods). The
TA-GAN generates 10 possible synthetic STED images of the FOV for each
confocal acquisition. The optical flow is measured from these synthetic images
to determine the most variable sub-region (2 x 2pm) (Methods). It serves
as an estimation of the TA-GAN’s uncertainty over the generated nanostruc-
tures. This most variable sub-region is imaged using the STED modality and
given as input along with the confocal FOV to the generator of the TA-GAN.
It primarily serves to minimize the signal variations encountered in live-cell
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Fig. 4 TA-CycleGAN for unpaired domain adaptation. a, The TA-CycleGAN
consists of a CycleGAN combined with a segmentation network as in TA-GAN. Losses: gen-
eration (GEN), cycle consistency (CYC), discrimination for live (DL) and fixed (DF') cells,
GAN for live (GANL) and fixed (GANF) cells. Networks: fixed-to-live cell generator (F—L,
dark red), live-to-fixed cell generator (L— F, light red), discriminator for live (Dis. L, dark
green) and for fixed cells (Dis. F, light green), and segmentation for fixed cells (Segmen-
tation, blue). b, The dendritic F-actin dataset (middle row), previously annotated by an
expert with polygonal bounding boxes 3] (F-Actin rings: green, F-Actin fibers: magenta, top
row), is translated to the live-cell domain using the fixed-to-live cell generator (bottom row,
Methods). The annotations (top row) and the generated live-cell F-actin dataset (bottom
row) are combined to train a network for the generation and semantic segmentation of F-
actin nanostructures in living neurons (Methods). ¢, Segmentation of F-actin nanostructures
on live-cell STED acquisitions. F-actin fibers and rings in living neurons are not properly
segmented by a U-Net trained only with images of F-actin in fixed neurons (second column).
The segmentation network trained with synthetic images generated by the TA-CycleGAN
produces segmentation masks (third column) that are similar to the manual expert anno-
tations (fourth column, Methods). See Figure S10 for more examples and DC distributions.
d, ROC curves (TPR: true positive rate, FPR: false positive rate) for the segmentation of
F-actin rings (green) and fibers (magenta) averaged over the manually annotated test set of
real live-cell STED images (N=28). Top: the U-Net is trained on fixed-cell images. Bottom:
The U-Net is trained on the same images translated to the live-cell domain using the TA-
CycleGAN (Methods). Shaded region is the standard deviation. Dashed line represents the
performance of a random classifier (AUROC=0.5). Scale bars: 1 pm.

imaging (Figure 5b, Methods). At each time point, the TA-GAN provides a
prediction of the corresponding STED image for the full FOV. The synthetic
STED image is segmented by the complementary task network to measure the
dynamic remodelling of F-actin nanostructures (Figure 5c).

We also rely on the generated synthetic STED images for automated modal-
ity (confocal or STED) selection. The acquisition of a complete frame using the
STED modality is triggered when either 1) the segmentation of the synthetic
STED images changes when compared to the segmentation of the previous
STED image (Figure 6, Methods), or 2) the TA-GAN confidence is low on the
nanostructure predictions (Figure 7, Methods).

We apply TA-GAN-assisted image acquisition to detect the activity-
dependent remodeling of dendritic F-actin from periodical rings into fibers in
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Fig. 5 Real-time assistance for live-cell STED microscopy. a, Image acquisition
workflow integrating the TA-GAN for resolution enhancement in living neurons. Using opti-
cal flow on the full field of view (FOV), the sub-region with the highest uncertainty outside
the region of interest (ROI) is identified and imaged with the STED modality (Methods).
The acquired sub-region is used to improve the prediction of the nanostructures in the syn-
thetic image of the ROI. b, STED sub-regions acquired over 30 iterations for 6 different
FOV from two coverslips. The shade of each region is proportional to the number of times it
was chosen using the optical flow measurement (darker regions were acquired more often).
Subsequently acquired regions are connected with a black line. ¢, Time-lapse imaging of
F-actin nanostructures in living neurons using the TA-GAN-assisted acquisition workflow.
The first row shows confocal acquisitions in the central ROI, the second row shows corre-
sponding generated STED images. All images from a given row are displayed using the same
intensity scale (min:0, max:30 for confocal, min:0, max:20 for STED) to show the minimal
effect of the acquisitions on the fluorescence intensity. d, Normalized fluorescence intensity
after 15 confocal acquisitions over the full FOV (red, N=45 regions) and associated syn-
thetic STED signal (purple, N=45 regions) in comparison to acquisitions using the STED
modality (orange, N=42 regions). The TA-GAN predictions compensate for the fluorescence
intensity decrease in the synthetic STED images. Scale bars: 1 pm.

living neurons. This remodeling was previously shown in fixed neurons but
could not be monitored in living neurons due to technical limitations [3]. Mon-
itoring F-actin nanoscale dynamics is particularly challenging as a strongly
reduced concentration of the jasplaskinoid-based fluorogenic dye SiR-Actin
is required to limit the F-actin stabilization effects associated with jasplask-
inoide [51]. This results in a low signal-to-noise ratio for time-lapse STED
imaging of F-actin in living neurons. Additionally, photobleaching effects asso-
ciated with repeated STED acquisitions can impair our ability to detect and
quantify the presence of dim nanostructures such as F-actin rings (Figure 5d).

For the first acquisition scheme, we use the measurement of the expected
activity-dependent remodelling of the F-actin lattice [3] to guide the imaging
sequence. The acquisition of a complete STED image is triggered when changes
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Fig. 6 Prediction of F-actin remodelling with TA-GAN a, Live-cell imaging of
dendritic F-actin before (initial), during (frames 0-15) and after (final) application of a
0Mg?* /Gly/Ca2t solution, which promotes synaptic NMDA receptor activity. Shown are
the confocal images (red, top row), synthetic STED images (purple, middle row), and real
STED images when acquired (orange, middle row), and corresponding segmentation masks
for F-actin fibers (bottom row) (See Figure S12 for all 15 frames. At each time point, a con-
focal 5 x 5 pm image is acquired and a synthetic STED image of the same FOV is generated.
The synthetic STED image is segmented by the segmentation network, and the DC is com-
puted using the segmentation of the last acquired real STED image as reference. Bottom
row shows the segmentation output for the central ROI for the real STED if acquired, or
for the synthetic STED otherwise. b, Modality selection method : a STED is acquired if the
DC between the segmentation map of the last acquired real STED image and the segmen-
tation map of the synthetic STED image of the current time point falls below a predefined
threshold. ¢, DC measured at each time point. When the DC falls below a manually preset
threshold (here 0.5), a real STED image is acquired (for this example, real STED images
are acquired for frames 1, 2, 3, 14 and 15). Dark gray points indicate that the last acquired
real STED (used to compute the DC) is from a previous time step; light gray points indicate
that a new STED is acquired at this time step allowing to update the reference. d, Propor-
tion of dendritic F-actin fibers at each time point segmented using the segmentation network
trained on synthetic live-cell images (Methods) measured on either the real STED (orange)
or the synthetic STED (purple). When a real STED acquisition is triggered, the proportion
of fibers in both images is measured (dotted line). Initial and final reference STED images
(empty orange bullets) are acquired at each round. In this specific case, there is an activity-
dependent increase between the second and third minutes. See Figure S14 for an additional
example of imaging sequence. Scale bars: 1 pm.
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Fig. 7 Real-time assistance for live-imaging: monitoring the generator’s con-
fidence. a, Live-cell imaging of dendritic F-actin before and during a 0Mg2t/Gly/Ca?t
stimulation. Shown are the confocal images (red, top row), synthetic STED images (pur-
ple, middle row), real STED images when acquired (orange, middle row), and the TA-GAN
confidence maps (bottom row) (Methods, see Figure S13 for all 15 frames). Pixels predicted
to belong to the same class (fibers or not fibers) in >80 % of the TA-GAN predictions are
defined as high-confidence pixels (blue) and pixels predicted to belong to the same class in
<80 % of the TA-GAN predictions are defined as low-confidence pixels (red). b, The high
confidence pixels (blue) are binned together against the low-confidence pixels (red). ¢, The
TA-GAN confidence score corresponds to the proportion of high-confidence pixels at each
frame. This score falls below 0.5 when the number of low-confidence pixels exceeds the num-
ber of high-confidence pixels (b, right), which triggers the acquisition of an image with the
STED modality, as seen at time steps 11 and 13. d, Proportion of fibers on the dendrite on
either the real STED (orange) or the synthetic STED (purple). Initial and final reference
STED images (empty orange bullets) are acquired at each round. The mean (dashed line)
and standard deviation (shaded area) in the proportion of F-actin fibers is computed for the
10 predicted synthetic images. In this specific case, there is no activity-dependent increase.
Scale bars: 1 pm.

in the segmentation masks of the generated synthetic image are detected.
Full confocal and STED FOVs are first acquired (Figure 6a). The segmenta-
tion output of the first STED image is used as the initial reference. For each
subsequently acquired confocal image, a synthetic STED is generated and seg-
mented for F-actin fibers (Methods). The DC between the segmentation masks
of the synthetic STED image and the reference STED image is computed
(Figure 6b). A real STED image is acquired if the DC between the segmen-
tation mask of the synthetic and the reference real STED image is below a
predefined threshold (Figure 6¢, threshold fixed at 0.5 for this example). The
proportion of fibers in the dendrite is measured in the real and synthetic STED
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images using the segmentation network trained on synthetic live-cell images
(Figure 6d, Methods). At the end of the image acquisition sequence, confo-
cal and STED images of the full FOV are acquired to validate the formation
of fibers and compare with the synthetic generations (Figure 6a, last frame).
The value of the DC threshold is chosen based on preliminary imaging trials
and previous knowledge about the remodelling extent and dynamics, which is
not always available prior to the imaging experiment. Using the segmentation
masks to trigger a STED acquisition requires the user to know what structure
is expected to either appear, disappear or change in the course of the imag-
ing sequence. For the remodelling of F-actin rings, we use the segmentation of
fibers because, based on experimental results on fixed cells, the distribution of
pixels segmented as fibers is expected to increase following the change of activ-
ity condition [3]. This requirement of prior knowledge could possibly prove to
be cumbersome to image an unexpected transformation.

We developed a second method to trigger STED image acquisitions, which
is based on the confidence of the TA-GAN with respect to the image genera-
tion task. This approach is particularly useful when no previous knowledge on
the expected structural change is available prior to the experiment. For each
frame, a confocal image of the full FOV is acquired from which 10 synthetic
super-resolved images are predicted by the TA-GAN (Figure 7a). A STED
image of the full FOV should be acquired when the predicted nanostructures
strongly vary between the 10 synthetic images, which could be an indicator
for a structural remodelling. We compare the segmentation maps of 10 gen-
erated synthetic STED images and calculate the variability in the predicted
class for each pixel in the 10 images. We define pixels that are assigned in more
than 80 % of the synthetic images to the same class (fibers or background) as
having a low variability (high confidence of the TA-GAN, Figure 7b). Other-
wise, when the segmentation network assigns a pixel in less than 80 % of the
generated images to the same class, the variability is high (low confidence of
the TA-GAN). The proportion of high confidence pixels in the image corre-
sponds to the confidence score. When the confidence score is below 0.5, a full
STED image is acquired (Figure 7c,d, frames 11 and 13). This approach can
be beneficial to detect unexpected patterns and rare events, but can lead to
the acquisition of multiple consecutive frames if the measured confocal pat-
tern is associated with a high variability in the generated images. Modulation
of the STED modality acquisition frequency can be achieved by adapting the
DC or confidence thresholds to the experimental settings.

3 Discussion

We have introduced TA-GAN for resolution enhancement and domain adap-
tation and have demonstrated its applicability to STED nanoscopy. We have
shown that a complementary task assisting the training of a generative network
for resolution enhancement and domain adaptation improves the reconstruc-
tion accuracy of nanoscopic structures in optical microscopy images. Using a
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segmentation loss to optimize the image generation process results in more
reliably generated F-actin nanostructures in terms of general appearance and,
most importantly, distribution in axons (Figure 1) and dendrites (Figure 2).
The applicability of our method was also demonstrated using a paired confo-
cal and STED microscopy dataset of synaptic protein pairs in fixed neurons
(Figure 3). We showed that the TA-GAN method is flexible and can be trained
with different complementary tasks such as binary segmentation, semantic
segmentation, and localization. For unpaired datasets, we have introduced
the TA-CycleGAN model and demonstrated how the structure preserving
domain adaptation opens up the possibility to create paired datasets of anno-
tated images that cannot be acquired simultaneously (Figure 4). We have
used the TA-CycleGAN generated synthetic STED images of F-actin to train
a segmentation network that performs well for the segmentation of F-actin
nanostructures in real STED images, without the need for manual reannota-
tions of the new live-cell imaging dataset. This segmentation network was also
used to train a TA-GAN for resolution enhancement in living neurons. The
resulting confocal to STED generator for live-cell imaging was incorporated
into the acquisition loop of a STED microscope (Figure 5). We have validated
how the trained TA-GAN model can be helpful in assisting a microscopist by
automating decisions in live-cell optical nanoscopy acquisition sequences. The
resolution enhancement TA-GAN provides increases the informative value of
each confocal acquisition and automatically triggers the acquisition of a STED
image only in the regions and time-steps where this acquisition is informa-
tive enough due to variations or uncertainties in the predicted nanostructures
(Figures 6 and 7).

We have used the variability in the output of the generator to quantify
its confidence and to trigger the acquisition of a STED image. Future work
in calibrating the network’s probabilistic output could lead to an improved
quantification of its confidence. Multiple successive frames could also be given
as input to the generator to introduce temporal information instead of using
static frames individually. This could enable the generator to decode the rate
of biological change and introduce this knowledge to the next frame predic-
tion, leading to smoother transitions between synthetic images. The TA-GAN
model, as presented here, enables the visualization of biological dynamics over
longer sequences with reduced photobleaching effects. Thus, TA-GAN-assisted
STED nanoscopy can guide microscopists for optimized acquisition schemes
and reduced light exposure.
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Methods
4 Sample preparation and STED microscopy

Cell culture

Dissociated rat hippocampal neurons were prepared as described previ-
ously [3, 52] in accordance with and approved by the animal care committee of
Université Laval. For live-cell STED imaging, the dissociated cells were plated
on PDL-Laminin coated glass coverslips (18 mm) at a density of 322 cells/mm?
and used at DIV 12-16.

STED microscopy

Super-resolution imaging was performed on a 4-color Abberior STED micro-
scope (Abberior Instruments, Germany) using a 40 MHz pulsed 640nm
excitation laser, a ET685/70 (Chroma, USA) fluorescence filter, and a 775 nm
pulsed (40 MHz) depletion laser. Scanning was conducted using a pixel dwell
time of 5ps, a pixel size of 20nm, and 8 line repetition sequence. The STED
microscope was equipped with a motorized stage and auto-focus unit.

Live-cell imaging

The cultured neurons were pre-incubated in HEPES buffered artificial cere-
brospinal fluid (aCSF) at 33°C with SiR-Actin (0.5 M, SpiroChrome) for 8
minutes and washed once gently in SiR-Actin-free media. Imaging was per-
formed in HEPES buffered aCSF of high Mg?* /low Ca?* (in mM: NaCl 98,
KCl1 5, HEPES 10, CaCly 0.6, Glucose 10, MgCly 5) using a gravity driven
perfusion system. After identification of the regions of interest, the perfusion
solution was switched to HEPES buffered aCSF containing high Ca?*, Glycine
and without Mg?* (in mM: NaCl 98, KC1 5, HEPES 10, Glycine 0.2, CaCl,
2.4, Glucose 10). Solutions were adjusted to an osmolality of 240 mOsm per
kg and a pH of 7.3.

5 Image Datasets

Axonal F-actin dataset

The Azonal F-actin dataset was used to train the TA-GAN for confocal-to-
STED super-resolution of axonal F-actin rings using a binary segmentation
task. The original dataset consisted of 516 paired confocal and STED images
(224 x 224 pixels) of axonal F-actin from Lavoie-Cardinal et al. [3]. 31 images
from the original dataset were discarded for not containing annotated F-actin
rings or fiber structures. The remaining images were split into a training set
(377 images), a validation set (56 images), and a testing set (52 images). The
manual polygonal bounding box annotations of the axonal F-actin periodical
lattice (F-actin rings) from the original dataset were retained (Figure 1b).
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Dendritic F-actin dataset

The Dendritic F-actin dataset was used to train the TA-GAN for confocal-to-
STED super-resolution of dendritic F-actin nanostructures using a semantic
segmentation task as well as to train the TA-CycleGAN for live and fixed
domain adaptation. The original dataset from Lavoie-Cardinal et al. [3] was
split into a training set (304 images), a validation set (54 images), and a
testing set (26 images, 12 for low activity and 14 for high activity). This
dataset consisted in paired confocal and STED images (20 nm pixel size for
both) of the dendritic F-actin cytoskeleton in fixed hippocampal dissociated
neurons, which had been manually annotated using polygonal bounding boxes
(Figure 2a). The training and validation crops were taken from large STED
images (between 500 x 500 and 3000 x 3000 pixels) using a sliding window
of size 224 x 224 pixels with no overlap. If less than 1% of the pixels of the
crop were annotated as containing a structure of interest (F-actin rings and/or
fibers), the crop was discarded from the set. This operation resulted in 4,331
crops for training and 659 crops for validation.

Synaptic protein dataset

Images from the original dataset from Wiesner et al. [4] were split into a
training set (81 images), a validation set (22 images) and a testing set (12
PSD95-Bassoon and 7 PSD95-Homerlc images). The confocal and STED
images from the training and validation sets were first registered using the
pipeline presented in Figure S15, resulting in 1,841 crops for training and 509
crops for validation. The localization maps were generated by automatically
segmenting the STED images using wavelet transform decomposition [5] with
the same parameters as Wiesner et al. [4] (scales 3 and 4). No segmented clus-
ters were discarded based on size or position, following the intuition that even
the smallest structures should be generated. The localization map was created
from a black image by placing a white pixel at the position of the intensity-
weighted centroid of each segmented cluster, and then applying a gaussian
filter with a variance of 2 (Figure S5).

Live F-actin dataset

The Live F-actin dataset was used to train the TA-CycleGAN for live and
fixed domain adaptation and the segmentation network for live-cell images. A
large FOV was first imaged at low-resolution from which regions were manually
selected by an expert. For each region selected, a confocal and a STED image
were acquired sequentially. The Live F-actin dataset consists in 904 paired
STED and confocal images of F-actin stained with the fluorogenic dye SiR-
Actin (Spirochrome, US) in living hippocampal cultured neurons. The dataset
was split into a training set (833 images) and a validation set (71 images). The
images were of variable size (from a minimum width of 2.76 to a maximum of
49.1 pm). We chose to exploit the variable size of the input images for data
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augmentation by performing a cropping step during training. Refer to the Cell
Culture and STED microscopy sections for cell cultures and imaging protocols.

Dendritic F-actin dataset adapted to the live-cell STED
imaging domain

The Domain adapted dendritic F-actin dataset was used to train the resolu-
tion enhancement TA-GAN for live-cell images. This dataset corresponds to
the Dendritic F-actin dataset adapted to the live-cell STED imaging domain
using the TA-CycleGAN for fixed-to-live domain adaptation (TA-CycleGAN
for domain adaptation section). It contains the same number of images, the
same train/valid/test splits, and the same image characteristics (crop size,
pixel size, annotations) as the Dendritic F-actin dataset.

Training procedures

TA-GAN for resolution enhancement

The TA-GAN was developed from the conditional GAN model for
image-to-image translation [2], available at https://github.com/junyanz/
pytorch-CycleGAN-and-pix2pix. It differs by its computation of the genera-
tion loss. Comparable methods using cGANs for enhancing the resolution of
microscopy images are trained using pixel-wise metrics such as mean squared
error (MSE) [5], absolute error [11, 12] or structural similarity index [13, 14]
(Figure Sla). For the TA-GAN, the generation loss is computed by comparing
the output of a complementary task network applied on the real and syn-
thetic images (Figure S1b,c). The training of TA-GAN has two dataset-specific
aspects: the task and the data format. Table 1 summarizes the settings for the
four resolution enhancement experiments presented in this paper, and table 2
presents the hyperparameters used for training the TA-GAN for each of these
experiments.

Axonal Dendritic Synaptic Live
F-actin [3] F-actin [3] Proteins [4] F-actin
Confocal Confocal Confocal Canocal +
Input (1 channel) (1 channel) (2 channels) decision matrix +
STED sub-region
Output STED STED STED STED
(1 channel) (1 channel) (2 channels) (1 channel)
Seg. of axonal Semantic seg. of Localization of Semantic seg. of
Task F—aLc tin rings dendritic F-actin synaptic protein dendritic F-actin
rings and fibers cluster centroids rings and fibers
Annotations Bounding boxes Bounding boxes Wavelet detected None
(1 class) (2 classes) centroids (2 channels)
i;:ltrigfd No No No Yes

Table 1 Summary of experimental settings using the TA-GAN for confocal-to-STED
resolution enhancement.
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H ¢ Axonal Dendritic Synaptic Live
yperparameters F-actin [3] | F-actin [3] | Proteins [4] F-actin

Number of training images 377 4,331 1,841 753

Number of validation images 56 659 509 47

Image size (px) 224 x 224 224 x 224 512 x 512 x 2 variable

Generator architecture 9-blocks ResNet [39]

Task network architecture 6-blocks ResNet [ U-Net 128 [53]

Discriminator architecture PatchGAN [40]

Batch size 8 [ 32 32 [ 16

Learning rate 0.0002

Weight of GAN loss 1

Weight of GEN loss 10 1 1 [ 10

Data augmentation methods Flip, 90 rotations, random crops

Crop size (px) 128 x 128 128 x 128 128 x 128 x 2 256 x 256 x 3

Number of epochs 1000 500 2000 5000

Table 2 Hyperparameters used to train the TA

\-GAN model on the four datasets presented.

Resolution enhancement using a segmentation task

The TA-GAN models for confocal-to-STED resolution enhancement were first
trained using a segmentation network to compute the generation loss. The
output of the segmentation network was compared with manual bounding box
annotations of the same structure produced by an expert [3] using a MSE loss.
The loss computed from the real STED image (Task Loss, TL in Figure 1)
was back-propagated to the segmentation network to optimize its weights,
and the loss from the synthetic STED image (GEN) optimizes the generator.
The other losses computed were standard cGAN losses : the GAN loss (GAN:
misclassification of synthetic images as real images), the discriminator losses
(DR: classification of real images as real, and DG: classification of generated
images as synthetic). The validation losses were not used for early-stopping
because of the adversarial nature of GANs. The validation images were instead
used as a qualitative assessment of the training progress to select the best
iteration for testing the model.

For the Azonal F-actin dataset (Axonal F-actin dataset section), the com-
plementary task was the segmentation of axonal F-actin rings. The output
of the segmentation network was the predicted segmentation maps of F-actin
rings. For the Dendritic F-actin dataset (Dendritic F-actin dataset section),
the complementary task was the semantic segmentation of dendritic F-actin
rings and fibers. The output of the segmentation network was a two-channel
image, with the predicted segmentation of rings in the first channel and of
fibers in the second channel. The two first columns of Table 2 present the
hyperparameters used to train these two models.

Resolution enhancement using a localization task

A TA-GAN model for confocal-to-STED resolution enhancement was trained
using a localization network to compute the generation loss. The localization
network took a STED image as input to output a map of dots indicating the
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intensity-weighted centroids of all detected clusters in the STED image. This
model was trained on the Synaptic protein dataset (Synaptic protein dataset
section) using the hyperparameters presented in Table 2, column 3. The input
of the generator was a two-channel confocal image rescaled and registered
to the STED image. The generation loss (GEN in Figure 1) was the MSE
between the wavelet-generated localization maps on the real STED image and
the localization predictions from the task network on the synthetic image.

Resolution enhancement for live-cell imaging

The TA-GAN for resolution enhancement of live-cell STED imaging was
trained on the Live F-actin dataset (Live F-actin dataset section). The com-
plementary task was the semantic segmentation of dendritic F-actin rings and
fibers. Since the Live F-actin dataset did not include any labels, the seg-
mentation network was pretrained (U-Net for the segmentation of F-actin
nanostructures in living neurons section) on the Domain adapted dendritic F-
actin dataset (Dendritic F-actin dataset adapted to the live-cell STED imaging
domain and TA-CycleGAN for domain adaptation section). This pretrained
network was not updated during the TA-GAN training, but it was used to
compute the MSE generation loss between the segmentation prediction of the
real and the synthetic STED images. The fourth column of Table 2 shows
the hyperparameters used for this training. The input of the generator was
the confocal image concatenated with two channels of the same size. The first
additional channel contained a sub-region acquired with the STED modality,
with the rest of the image filled with Os (Figure 5a, STED sub-region acquisi-
tion). The second additional channel was filled with Os, with the position of
the STED sub-region indicated by 1s (Figure 5a, STED sub-region selection).
The selection of the STED sub-region served as data augmentation; at each
iteration, one of the 16 possible sub-regions was selected from the full STED
image. Training using this three-channel input enabled the generator to learn
features from the STED sub-region and turned the resolution enhancement
task into an image completion task.

TA-CycleGAN for domain adaptation

The TA-CycleGAN model was developed from the CycleGAN model [2]. As
for the standard CycleGAN, the TA-CycleGAN consists of 4 networks : two
generators (one that translates the domain of fixed-cell STED imaging (F) into
domain of live-cell STED imaging (L), the other domain F' into domain L),
and two discriminators (one for domain F', the other for domain L), which are
combined with a fifth network : the complementary task network (Figure 4a).
The TA-CycleGAN was applied to non-paired images, where the prediction of
the generator for a given input cannot be compared to a corresponding ground
truth. Instead, the generated synthetic image was passed through a second
generator and converted back to the input domain where it was compared to
the initial image (ground truth) for the computation of losses.
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The TA-CycleGAN for fixed-to-live domain adaptation was trained using
two datasets: STED images of the Dendritic F-actin dataset (F, Dendritic F-
actin dataset section) and the Live F-actin dataset (L, Live F-actin dataset
section). The complementary task was the semantic segmentation or F-actin
rings and fibers on the fixed-cell STED images, for which manual bounding box
annotations were available [3]. The U-Net segmentation network was already
optimized for the semantic segmentation of F-actin rings and fibers in fixed-
cell STED images [3]. The generation loss was the MSE between the U-Net
segmentation prediction on the real fixed cell image (F'), and the end-of-cycle
fixed cell image (F”) (Figure 5a).

U-Net for the segmentation of F-actin nanostructures in
living neurons

The live-cell domain segmentation network was built around a U-Net-128 [53]
architecture with batch normalization and two output channels (F-actin rings
and fibers). A random subset (2,069 training crops and 277 validation crops)
of the Dendritic F-actin dataset (Dendritic F-actin dataset section) was trans-
lated into live-cell domain using the F — L generator (TA-CycleGAN for
domain adaptation section, Figure S9). The manual annotation from the fixed
cell images were associated with the corresponding synthetic images from the
live-cell domain (Figure S9a).

Random crops of 128 x 128 pixels of the translated synthetic images and
their corresponding annotations were used to train a segmentation network on
images of the live-cell domain. Horizontal and vertical flips were used for data
augmentation. Due to class imbalance in the training set, the segmentation
loss for fibers was weighted by a factor of 2.5, which reflected the ratio of total
annotated pixels for each class. The segmentation network was trained for 1000
epochs and the iteration with the lowest segmentation loss over the validation
set was kept for further use and testing. The segmentation maps were bina-
rized to compute the DC (TA-GAN assisted monitoring of expected structural
change) and the summed prediction (Monitoring the pixel-wise generator’s
confidence for previously unknown structural remodelling section). The opti-
mal threshold to binarize the segmentation prediction was determined as the
value that reached the optimal DC over the validation set (-0.53 for the raw
output predictions).

Baselines

The baselines were, unless specified, trained and tested on the Azonal F-actin
dataset (Axonal F-actin dataset section) to produce the results in Figure 1
and on the Dendritic F-actin dataset (Dendritic F-actin dataset section) for
the results in Figure S4.
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Enhanced Super-Resolution Generative Adversarial
Networks (ESRGAN x4)

The trained version of Enhanced Super-Resolution Generative Adversar-
ial Networks (ESRGAN) [41], available at https://github.com/xinntao/
ESRGAN, was directly applied to the test images from the Azonal F-actin
dataset (Figure 1b). The network was not trained on our datasets and was not
expected to achieve great performance, since it was trained on natural images.
This baseline was used to demonstrate that the confocal-to-STED transfor-
mation is not an upsampling task, justifying the need for methods that differ
from the super-resolution methods developed for natural images.

Denoising convolutional neural networks (DnCNN)

The trained version of DnCNN [42] available at https://github.com/yinhaoz/
denoising-fluorescence was directly applied to our test images from the Azonal
F-actin dataset (Figure 1b). A version of the network trained on the fluores-
cence microscopy denoising dataset [54] was used. The network was not trained
on our specific images. It was included as a baseline to show how the confocal-
to-STED transformation of F-actin nanostructures is not a denoising task, but
a generation task.

Content-Aware image REstoration (CARE)

Content-Aware image REstoration (CARE) [11] was implemented from the
public GitHub repository (https://github.com/CSBDeep/CSBDeep). We used
the standard CARE network for image restoration and enhancement. The
residual U-Net generator was optimized from scratch with the same training
and validation images as the TA-GAN. All default hyperparameters were used
and the model was trained for 300 epochs using a mean absolute error loss.
The epoch that reached the lowest validation loss was used for testing.

Three-dimensional residual channel attention networks
(3D-RCAN)

Three-dimensional residual channel attention networks (3D-RCAN) [12] was
implemented with Tensorflow and Keras. The code was taken from the
publicly available GitHub repository (https://github.com/AiviaCommunity/
3D-RCAN). All default hyperparameters were used and the model was trained
over 300 epochs to ensure convergence of the validation loss. The model
reaching the lowest validation loss was used for testing.

Conditional GAN for image-to-image translation (pix2pix)

Pix2pix [2] was implemented with Pytorch from the publicly available GitHub
repository  (https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix).
For each experiment, the same hyperparameters and datasets as for the TA-
GAN were used for training (Table 2), replacing only the generation loss with
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a pixel-wise MSE loss between the ground truth and generated STED images
(Figure Sla). The results from this baseline are compared to the TA-GAN for
the generation of axonal F-actin rings in Figure 1c and Figure S2, and for the
generation of dendritic F-actin in Figure S4.

Evaluation of networks performance

Segmentation of axonal F-actin nanostructures in
synthetic STED images

Synthetic images were generated by the TA-GAN from the confocal images
from the test set of the Azonal F-actin dataset (52 images) and of the Dendritic
F-actin dataset (26 images) (Axonal F-actin dataset and Dendritic F-actin
dataset sections). The MSE was computed between the ground truth and syn-
thetic STED images of the test set of the Azonal F-actin dataset (Figure S2b).
Additionally, a U-Net that was trained on real STED images only [3] (avail-
able at https://github.com/FLClab/STEDActinFCN) was used to produce
segmentation masks of F-Actin nanostructures on the ground-truth and syn-
thetic STED image pairs (Figure S2¢ and Figure 2). The segmentation masks
were compared with manual bounding box annotations using the DC [55]
(Figure S2d). The statistical significance results reported in Figure 1lc and
Figure S2b,d were computed with the Mann-Whitney U test[1].

Assessment of synaptic protein cluster morphology

We characterized the morphological features of the generated synaptic protein
clusters on the Synaptic protein dataset. The area, perimeter, and eccen-
tricity of the protein clusters were measured in the confocal images, STED
images and synthetic STED images (Figure 3, S7 and S8). The distribution
of each morphological feature over all associated clusters was computed using
a Python library for Statistical Object Distance Analysis (pySODA) [4]. The
same parameters as in Wiesner et al. [4] were used for the analysis: wavelet
segmentation scales of 3 and 4, a minimum cluster area of 5 pixels, and mini-
mum cluster width/height of 3 pixels. The weighted centroids of the detected
clusters were calculated on the raw STED images. A foreground mask was
generated following Wiesner et al. [4]: applying a gaussian blur (standard devi-
ation of 10) on the sum of both STED channels, and thresholding the image
using 50% of the mean intensity value. Only clusters from the foreground mask
were considered for the analysis. The statistical significance results reported in
Figure 3, Figure S7, and Figure S8 were computed from a one-sided ANOVA
test over all clusters identified as coupled by pySODA analysis.

User-study for the segmentation of live F-actin images

A set of 28 STED images (224 x 224 pixels) from the Live F-actin dataset test
set was labeled by an expert using a F1JI [56] macro to test the performance of
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the segmentation network trained on synthetic live-cell images. The 28 images
were chosen among a set of 150 test images. To avoid testing on images that do
not include at least one of the two nanostructures of interest (rings or fibers),
the output of the segmentation network was used to make this selection: the
14 images that had the most pixels identified as rings, and the 14 images that
had the most pixels identified as fibers, were kept for the user-study. Each
STED image was presented to the expert who was prompted to draw bounding
boxes that enclose all regions identified as F-actin rings, then fibers, using
the polygon tool. The expert had access to all FIJI functions to facilitate the
process, such as contrast enhancing and zooming. In addition to the set of
live-cell images, a second set of 28 synthetic live-cell STED images, selected
from the Domain adapted dendritic F-actin dataset validation set using the
same selection criteria, was also included in the user-study. The expert was
presented with an image from one of the two sets, without being informed
whether the image was real or synthetic.

TA-GAN-assisted live-cell STED microscopy

TA-GAN integration in the acquisition loop

The generator trained for resolution enhancement for live-cell imaging (Reso-
lution enhancement for live-cell imaging section) was directly integrated in the
imaging acquisition process of the STED microscope (Figure 5a). A region of
interest (ROI) of 10 x 10 pm was selected and reference STED and confocal
images were acquired. Next, at each time point (to monitor F-actin remod-
elling, a new image was acquired every minute), the steps described in Table 3
were performed.

1 | A confocal image of the ROI is acquired

10 synthetic images of the ROI are generated

(Resolution enhancement for live-cell imaging section)

The sub-region (2x2pm) of lowest confidence within the ROI is identified
(Optical flow computation for sub-region selection section)

4 | A real STED image of this sub-region is acquired

The confocal image of the full ROI and of the STED sub-region are used by the
5 | TA-GAN to produce 10 synthetic STED image of the full ROI

(Resolution enhancement for live-cell imaging section)

Table 3 Steps performed at each time point for automated TA-GAN assistance.

Note that step 5 can be done post-acquisition if real-time visualization
of the synthetically enhanced image is not required. This whole process was
repeated for 15 iterations at 1 iteration/minute. For the last iteration, a STED
and confocal images of the full region were acquired.

Steps 2, 3 and 4 needed to be computed with a graphical processing unit
(GPU) to avoid computation induced delays. To do so, the commands from
steps 2, 3 and 4 were sent from the microscope’s control computer to a GPU-
equipped computer using the Flask [57] web framework Python module. All
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automated acquisitions were programmed using the SpecPy Python library to
interface with the Imspector software (Abberior Instruments, Germany).

Optical flow computation for sub-region selection

The optical flow was used to choose the most informative sub-region to guide
TA-GAN synthetic image generation. It was computed using a Python imple-
mentation of the Horn—Schunck method [58] with the Python multiprocessing
library, parallelizing the computations on 8 CPUs to increase the computation
speed and avoid delays. The optical flow was considered a better method to
compute the variation between the generations than the pixel-wise standard
deviation, the latter being mostly proportional to the intensity values of the
pixels (Figure S16). To translate the pixel-wise optical flow to a region-wise
map of image variability, the 500 x 500 pixel optical flow image is downsampled
to a 5 x 5 map using the mean of the region. The sub-region with a maximum
mean optical flow was selected as the most variable (Figure 5b, Figure S16).

Live-cell imaging decision guidance using the TA-GAN

The TA-GAN predictions were used for decision guidance on the optimal
STED and confocal acquisition sequence. Two approaches could be used to
determine when to acquire a STED image of the full ROI depending on the
type of structural remodelling studied.

TA-GAN assisted monitoring of expected structural change

The proof-of-concept experiment targeted the expected activity-dependent
remodelling of dendritic F-actin rings into fibers [3]. Since the area of F-actin
fibers was expected to increase following a neuronal stimulation, structural
remodelling was monitored by comparing the area of segmented F-actin fibers
on the synthetic and the reference real STED images. F-actin fibers were seg-
mented on the synthetic STED images by the U-Net described in the U-Net for
the segmentation of F-actin nanostructures in living neurons section. At each
time point, steps 1-5 are performed as described in Table 3. After step 5, 10
synthetic images of the ROI were generated and segmented by the U-Net. The
mean of the 10 segmentation maps predicted for the synthetic images was com-
pared to the segmentation map predicted for the reference real STED image
using the DC metric. A low DC was indicative of a change in respect to the
reference image in the spatial distribution of the dendritic fibers. A full real
STED image was acquired if the DC fell below 0.5. The value of 0.5 was chosen
by performing several trials on live-cell F-actin imaging. The value of the DC
threshold should be adapted to the type of structural remodelling observed.
Each time the acquisition of a STED on the full ROI was triggered, the STED
reference image was updated for subsequent comparison of the segmentation
maps.
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Monitoring the pixel-wise generator’s confidence for
previously unknown structural remodelling

The pixel-wise generator’s confidence can be used when the structural remod-
elling cannot be precisely defined prior to the experiments. At each time point,
steps 1-5 were performed as described in Table 3. Following step 5, 10 syn-
thetic STED images of the ROI were generated. The 10 synthetic images were
segmented by the U-Net, resulting in 10 segmentation maps for F-actin rings
and fibers. The 10 segmentation maps of F-actin fibers were binarized (U-Net
for the segmentation of F-actin nanostructures in living neurons section) and
summed. Pixels in the summed segmentation prediction had a value between
0 and 10. The confidence of the generator on the segmentation prediction was
evaluated from the summed segmentation prediction. High confidence pixels
were associated with those having the same value for at least 80% of the pre-
dicted segmentation maps (1-2 : no fibers; 9-10 : fibers). Pixels with values in
between (3-7, inclusive) were considered low confidence since the segmentation
of the F-actin fibers was not consistent between the synthetic STED images.
The distribution of high confidence and low confidence pixels (Figure 7b) was
compared for each image (pixels with a value of zero for the summed segmenta-
tion maps were not considered in the distribution as they mostly corresponded
to background pixels). The proportion of high confidence pixels was defined
as the confidence score (CS). If the CS was above 0.5, the generator was con-
sistent in its predictions and therefore confident. If the CS was below 0.5, the
synthetic STED images were not consistent and therefore not reliable; a STED
acquisition was therefore required. The threshold of 0.5 was chosen because it
corresponds to the tipping point where the number of low confidence pixels
exceeds the number of high confidence pixels.
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