

1 **CRISPR screens for host factors critical for infection by SARS-CoV-2**
2 **variants of concern identify GATA6 as a central modulator of ACE2.**

3

4 Ma'ayan Israeli^{#1}, Yaara Finkel^{#2}, Yfat Yahalom-Ronen³, Nir Paran³, Theodor Chitlaru¹, Ofir Israeli¹,
5 Inbar Cohen-Gihon¹, Moshe Aftalion¹, Reut Falach¹, Uri Elia¹, Ital Nemet⁴, Limor Kliker⁴, Michal
6 Mandelboim⁴, Adi Beth-Din¹, Tomer Israely³, Ofer Cohen¹, Noam Stern-Ginossar², and Adi
7 Bercovich-Kinori¹

8

9 ¹ Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel

10 ² Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel

11 ³ Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona, Israel

12 ⁴ Central Virology Laboratory, Public Health Services, Ministry of Health and Sheba Medical Center, Tel Hashomer, Israel

13 # Contributed equally

14

15 **Abstract**

16 The global spread of SARS-CoV-2 led to the most challenging pandemic in this
17 century, posing major economic and health challenges worldwide. Revealing host
18 genes essential for infection by multiple variants of SARS-CoV-2 can provide
19 insights into the virus pathogenesis, and facilitates the development of novel
20 broad-spectrum host-directed therapeutics. Here, employing genome-
21 scale CRISPR screens, we provide a comprehensive data-set of cellular factors
22 that are exploited by WT-SARS-CoV-2 as well as two additional recently emerged
23 variants of concern (VOCs), Alpha and Beta. These screens identified known and
24 novel host factors critical for SARS-CoV-2 infection, including various components
25 belonging to the Clathrin-dependent transport pathway, ubiquitination and
26 Heparan sulfate biogenesis. In addition, the host phosphatidylglycerol
27 biosynthesis processes appeared to have major anti-viral functions. Comparative
28 analysis of the different VOCs revealed the host factors KREMEN2 and SETDB1
29 as potential unique candidates required only to the Alpha variant, providing a
30 possible explanation for the increased infectivity of this variant. Furthermore, the
31 analysis identified GATA6, a zinc finger transcription factor, as an essential pro-
32 viral gene for all variants inspected. We revealed that GATA6 directly
33 regulates ACE2 transcription and accordingly, is critical for SARS-CoV-2 cell
34 entry. Analysis of clinical samples collected from SARS-CoV-2 infected individuals
35 showed an elevated level of GATA6, indicating the important role GATA6 may be

36 playing in COVID-19 pathogenesis. Finally, pharmacological inhibition of GATA6
37 resulted in down-modulation of ACE2 and consequently to inhibition of the viral
38 infectivity. Overall, we show GATA6 represents a target for the development of
39 anti-SARS-CoV-2 therapeutic strategies and reaffirm the value of the CRISPR
40 loss-of-function screens in providing a list of potential new targets for therapeutic
41 interventions.

42

43 **Introduction**

44 Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a recently
45 emerged type of respiratory syndrome-related coronaviruses, the cause of the
46 Coronavirus Disease 2019 (COVID-19), responsible for the most challenging
47 pandemic in this century. Despite an unprecedented worldwide research effort that
48 resulted in the rapid development of a variety of vaccines against SARS-CoV-2,
49 the pandemic remains uncontrolled in many countries and continues to take a
50 devastating toll on both human health and global economic activity. The
51 emergence of SARS-CoV-2 variants with enhanced transmissibility and
52 pathogenesis, or which may evade pre and post exposure countermeasures,
53 presents further challenges in the continuous struggle against the virus and the
54 tragical consequences of the pandemic.

55 Coronaviruses are enveloped, positive-sense single-stranded RNA viruses with a
56 genome of approximately 30 kb in length [1]. The initial steps of SARS-CoV-2
57 infection involve the specific binding of the coronavirus spike protein (S) to the
58 cellular entry receptor angiotensin-converting enzyme 2 (ACE2) [2-5]. The
59 engagement of the receptor and the subsequent membrane fusion commences
60 the process of viral entry into the host cell by endocytosis allowing the virion to
61 release the genetic material into the cytoplasm. In the host cell cytoplasm, the viral
62 RNA is translated into continuous polypeptides that are cleaved into
63 16 nonstructural proteins, which then facilitate the transcription of sub-genomic
64 RNA that is translated into structural and accessory proteins. These viral proteins
65 rearrange host membranes to form the endoplasmic reticulum-localized viral

66 replication complex (RC) in which the viral genomic RNA is replicated by the viral
67 RNA-dependent RNA polymerase (RdRP) complex. The assembled components
68 further undergo maturation in the Golgi apparatus to form the mature virion that is
69 released outside the host cell by exocytosis [1, 6-8]. Every step of the viral life
70 cycle, from entry to budding, is orchestrated through interactions with host cellular
71 proteins. For example, cellular proteases, such as TMPRSS2, Cathepsin L, and
72 Furin, are exploited for the cleavage of the viral spike protein of SARS-CoV-2,
73 mediating efficient membrane fusion with the infected cell [9-13]. Identification of
74 additional key host proteins involved in the various steps of the infection is
75 essential for the development of countermeasures and represents the objective of
76 intense efforts. Several proteomics studies addressed the SARS-CoV-2-
77 host interactions by utilizing immunoprecipitation mass spectrometry (IP-MS) of
78 affinity-tagged viral proteins and proximity labeling of the virus replicase complex
79 [14-17]. The proteomics approach revealed comprehensive interactomes and
80 physical contacts between many viral and cellular proteins, and highlighted
81 potential targets for drug repurposing. Yet, this approach could not provide direct
82 information pertaining to the essentiality of these host components for enabling the
83 SARS-CoV-2 life cycle. Another strategy to explore SARS-CoV-
84 2- host interactions is to globally disrupt individual genes of the entire host genome
85 and screen for those whose disruption resulted in resistance to viral infection and
86 consequently to host-cell survival. Several reports documented genome-wide
87 CRISPR-Cas9-mediated loss-of-function screens and identification of host factors
88 that are functionally required for SARS-CoV-2 infection in various cell types [10,
89 18-25]. These studies identified genes, metabolic and signaling networks that
90 previously have not been considered as potential therapeutic targets for SARS-
91 CoV-2, such as the cholesterol synthesis pathways [19].
92 As of today, following a year-long period of combating Covid-19 essentially by
93 medical care and social distancing, the contribution of many effective vaccines
94 started to materialize [26, 27]. Covid-19 vaccines exhibited as high as 95% efficacy
95 in preventing clinical cases and 100% efficacy in preventing severe disease with
96 the original virus [28, 29]. The average mutation rate of SARS-CoV-2 remains low

97 and steady. However, the continuing global spread of the SARS-CoV-2, together
98 with selective pressure for immune escape, led to the emergence of new SARS-
99 CoV-2 variants raising concerns regarding their relative ability to escape from
100 natural and vaccine-induced immunity. Four novel variants that generated different
101 patterns in the pandemic expansion, are of considerable public-health concern, as
102 concluded by the WHO organization following judicious monitoring and
103 classification of the new lineages (hence eloquently coined VOC, acronym for
104 variants of concern): (i) Alpha (also known as B.1.1.7, VOC-202012/01- Variant of
105 Concern, year 2020, month 12, variant 01) emerged in the UK. (ii) Beta variant
106 (also known as B.1.351 variant, 501Y.V2), emerged in South Africa. (iii) Gamma,
107 (also known as the P.1 lineage, 501Y.V3 variant), first identified in Brazil (iv) Delta
108 (also known as B.1.617.2. variant) originally surfaced in India [30-33]. The Alpha
109 lineage has a total of 17 nonsynonymous mutations relative to the original Wuhan
110 strain, of which 7 replacements and 2 deletions reside in the spike protein. The
111 Alpha variant was shown to be significantly more infectious than other lineages
112 (increasing the effective reproduction number, R_0 , by a factor of 1.35) which
113 resulted in its rapid global expansion. As of May 2021, the variant has been
114 detected in over 100 countries, with a worldwide daily prevalence of over 75% [34].
115 The Beta variant emerged independently of the Alpha variant but shares with it
116 mutations at several loci. The significant anxiety caused by this variant, owe to the
117 co-occurrence of the N501Y mutation in the spike protein receptor binding domain
118 (RBD, also found in the Alpha variant) with additional mutations K417N/T and
119 E484K. Viral variants with the triple combination of mutations exhibit reduced
120 susceptibility to vaccine-induced and convalescent sera [35-41]. Fortunately, the
121 Beta variant is less abundant with a reported worldwide daily prevalence of 1%
122 [42, 43]. In addition to the assessment of full immunological and clinical
123 implications of the SARS-CoV-2 new variants, there is an urgent need for a more
124 profound understanding of their biology, and for integrating this information
125 towards the development of therapeutic approaches targeting host elements
126 essential to all variants.

127 In this study we have performed a genome-wide CRISPR loss-of-function screen
128 in a lung derived human cell line infected with SARS-CoV-2. In an attempt to probe
129 shared and differential host factors that may be essential for the virus in the course
130 of infection the genomic approach was expanded to the original WT SARS-CoV-2
131 and two additional variants, Alpha and Beta. This strategy led to the discovery of
132 known and novel SARS-CoV-2-host interactions, enabled the identification of both
133 common factors as well as those specific for a particular variant, and revealed a
134 pivotal role of the host pleiotropic regulator GATA6 which may represent a
135 promising target for therapy.

136 **Results**

137 Genome wide CRISPR screens for the identification of host factors essential for
138 SARS-CoV-2 infection

139 To identify host factors essential for viral infection and/or for cell survival in
140 response to human SARS-CoV-2, a CRISPR-based genome-wide gene-knockout
141 screen was performed using the human lung epithelial cell line Calu-3, which is
142 highly permissive to SARS-CoV-2 infection due to elevated levels of endogenous
143 ACE2 expression. The library employed for the screen was the Brunello CRISPR
144 library composed of 76,441 targeting single guide RNAs (sgRNAs) with an average
145 of four sgRNAs per gene and 1,000 non-targeting control sgRNAs [44]. For the
146 identification of host factors exhibiting either broad or restricted essentiality for the
147 different variants of SARS-CoV-2, Calu-3 cells transduced with the CRISPR
148 library, were infected separately with each of the SARS-CoV-2 variants of concern
149 (VOCs): SARS-CoV-2 B.1.1.7(Alpha), SARS-CoV-2 B.1.351 (Beta), and the
150 original wild-type (WT) SARS-CoV-2. Genomic DNA was harvested from surviving
151 cells 7-9 days post infection, and sgRNAs abundance was determined by
152 sequencing (Fig.1A). In the initial analysis, to identify cellular functions important
153 for infection of Calu-3 cells with SARS-CoV-2, irrespective of the variant, the
154 sgRNA distributions measured in the 3 screens were collectively compared to the
155 control non-infected cells. The analysis identified numerous genes which upon
156 disruption, conferred resistance to death by viral infection (referred to as pro-viral)

157 or sensitization to viral infection (referred to as anti-viral) (Table 1). The sgRNA
158 score- distribution of the full library, non-targeting control sgRNAs and that of top
159 enriched and depleted- sgRNAs hits demonstrated high technical quality of the
160 screens (Fig 1B and Table 2).

161 As expected, the pro-viral gene, exhibiting the highest enrichment score was
162 ACE2, the receptor serving as the portal for SARS-CoV-2 cell-entry (log fold
163 change (LFC)=1.534, false discovery rate (FDR)= 0.007). The transcription factor
164 GATA6 (GATA Binding Protein 6) scored as the second-strongest pro-viral hit
165 (LFC=1.24, FDR=0.028, Figure 1C, 1D). GATA6 is a DNA-binding protein
166 belonging to a family of zinc finger transcription factors that participate in the
167 regulation of cellular differentiation during vertebrate development and contribute
168 to immune regulation through NF- κ B and various other pathways. Interestingly, the
169 transcription level of GATA6 was shown to be elevated in the lung transcriptome
170 of COVID-19 patients strongly implying that GATA6 takes part of the viral-host
171 cross-talk [45]. Other top pro-viral hits included CUL5, IRF6, AP1G1, EP300 and
172 EXTL2 (Figure 1C, 1D). The CUL5 gene encodes Cullin5, a core component of
173 multiple SCF-like ECS (Elongin-Cullin 2/5-SOCS-box protein) E3 ubiquitin-protein
174 ligase complexes, which mediate the ubiquitination and subsequent proteasomal
175 degradation of target proteins. While ubiquitination of viral proteins can be
176 regarded as a host -defense mechanism for destroying the incoming pathogen,
177 viruses have adapted to exploit this cellular process to enhance various steps of
178 the replication cycle and increase pathogenesis [46]. Indeed, in addition to highly
179 modified ubiquitin-proteome of SARS-CoV-2- infected host cells, ubiquitination
180 modifications were observed also on SARS-CoV-2 proteins, and these
181 modifications were reported to inhibit the host innate immune response [46-48].
182 IRF6 gene is a transcriptional activator with a well-established role in the
183 development of the epidermis. A recent study suggests a role for IRF6 in the
184 modulation of the NF κ B-pathway that influences cell-survival by regulating host
185 responses during viral infection, such as cytokine production [49]. AP1G1 (Adaptor
186 Related Protein Complex 1 Subunit Gamma 1) encodes a component of clathrin-
187 coated vesicles that were shown to mediate endocytosis and intracellular

188 trafficking of SARS-CoV-2 [50, 51]. Of note, the clathrin-coating complex, to which
189 AP1G1 belongs, was recently suggested to be important for SARS-CoV-2
190 infectivity in Calu-3 cells but not in other cell lines [21]. EP300 encodes a histone
191 acetyltransferase that is recruited by SMAD complexes to activate target genes in
192 response to TGF- β receptor signaling [52]. Interestingly, in a recent search for
193 functional modifiers of ACE2 surface abundance, EP300 was found to regulate
194 ACE2 transcription and hence to influence cellular susceptibility to SARS-CoV-2
195 infection [53]. EXTL2 encodes a glycosyltransferase involved in the chain
196 elongation step of heparan sulfate (HS) biosynthesis [54, 55]. Several heparan
197 sulfate biosynthetic genes were also markedly enriched in other CRISPR knockout
198 SARS-CoV-2 screens conducted in Huh7.5.1 cells [22, 23] consistent with a
199 recent report that SARS-CoV-2 infection is co-dependent on heparan sulfate and
200 ACE2 [56]. Since HS is ubiquitously expressed on the surfaces and in the
201 extracellular matrix of all cell types, EXTL2 may play a central pro-viral role through
202 heparan sulfate production that may determine SARS-CoV-2 tropism.
203 In addition to sgRNAs that were enriched following infection, the screen enabled
204 identification of sgRNAs that were depleted in virus-infected cultures suggesting
205 the genes targeted by these sgRNAs may have an anti-viral function. However,
206 gene disruption by itself may affect cell viability resulting in non-specific
207 susceptibility to infection. To further evaluate whether the significant depletion of
208 genes was due to a defect in cell growth or to their anti-viral properties, an
209 additional screen was performed in which Calu-3 cells presented with the CRISPR
210 library were allowed to grow for 7 days, at the end of which those containing
211 sgRNAs influencing viability were depleted (Table 3) [57]. Comparison between
212 sgRNAs depleted in these cells which were not subjected to infection to those
213 depleted from the infected cells, identified several bona-fide anti-viral candidates
214 such as MMP23B, LARS2, HUS1, STX4 and RER1 (Table 2). Interestingly, the
215 MMP23B metallopeptidase (MMPs) was reported to be downregulated in the lungs
216 of COVID-19 patients. The reported downregulation of MMP23B in the presence
217 of the virus may represent a host-pathogen cross-talk mechanism which includes
218 a counter-reaction of the virus for avoiding cellular antiviral responses [58].

219 Validation of the genetic screens

220 To validate the candidate genes distinguished by the SARS-CoV-2 screens,
221 individual Calu-3 KO cell-lines were generated by expressing a subset of sgRNAs
222 targeting specific genes which exhibited high levels of enrichment or depletion in
223 the SARS-CoV-2 screens (enrichment score $-\log_{10} > 4$) (Table 1). Correct
224 disruption of targeted genes was confirmed by DNA sequencing of their respective
225 chromosomal loci or by RT-PCR analysis (Supplementary Table 1). The sensitivity
226 of the mutated cells to SARS-CoV-2 infection was then addressed by quantification
227 of the viral titer. Results show that disruption of many pro-viral candidates
228 significantly impaired viral infection, while mutation of anti-viral genes markedly
229 increased SARS-CoV-2 RNA levels (Fig. 1E). In addition, ablation of pro-viral
230 candidates protected cells from SARS-CoV-2-induced cell-death while mutations
231 in anti-viral candidates resulted in increased cell death compared to infected WT
232 cells (Fig. 1F).

233 Since several top pro-viral candidate genes identified in the SARS-CoV-2 screens
234 (e.g. GATA6, IRF6 and CUL5) did not emerge as essential for SARS-CoV-2
235 infection in previously published CRISPR screens carried in other cell types, we
236 addressed the possibility that the observed phenomenon is related to their
237 expression in different cell types. Indeed, inspection of the relative transcription
238 levels of GATA6, IRF6 and CUL5 in published mRNA-seq datasets of Calu-3 [59],
239 A549 [60] and Vero-E6 [61] cell lines, revealed that GATA6 and IRF6 are
240 expressed at much higher levels in Calu-3 cells (IRF6 expression is below
241 threshold in Vero-E6 and A549) (Fig 1G). CUL5 expression appeared to exhibit
242 similar levels in various cell-lines, therefore it is conceivable that its detection in
243 the current screen, may be attributed to a Calu-3 cell-specific modulation in the
244 course of infection. Taken together, the data therefore suggest that some of the
245 host entry factors necessary for SARS infection exhibit cell-line specificity,
246 illustrating the importance of using relevant cell models to maximize the
247 understanding of SARS-CoV-2 entry. Finally, inspection of data from two recently
248 documented Calu-3 infection screens [21, 62] revealed that multiple top pro-viral

249 candidates identified in our screens were enriched at commensurate extent also
250 in these independent screens (Fig 1H).

251 Overall, corroboration of previously reported host-encoded viral-entry factors
252 reported here, together with novel pro-viral host genes as well as the implied
253 functional pathways defined by these factors, demonstrates the high potential of
254 CRISPR-knockout screens to distinguish targets essential for viral pathogenicity
255 which may serve for designing host dependent anti-viral therapy.

256 Functional pathways and interaction networks of SARS-CoV-2 host factors

257 Gene set enrichment analysis (GSEA) confirmed that anti-viral genes (depleted
258 from the library) are strongly enriched for mitochondrial function, specifically
259 mitochondrial translation and respiratory electron transport chain, and translation
260 functions, including translation elongation and amino acid activation (Fig. 2A).
261 Another large group of depleted genes were found to participate in the
262 phosphatidylglycerol biosynthetic process. To examine whether these depleted
263 host-pathways affect the virus specifically or exert an indirect effect on cell viability,
264 GSEA was performed also on the data of the control viability screen conducted
265 with uninfected cells. The analysis revealed that most of the pathways suspected
266 as anti-viral are actually important for cell survival regardless of infection. The only
267 pathway that was confirmed as specific anti-viral was the phosphatidylglycerol
268 biosynthetic process (normalized enrichment score (NES) =-1.94, FDR =0.007 in
269 the infection screen, NES =-1.35, FDR =0.526 in the cell viability screen) (Fig. 2A).
270 Interestingly, phosphatidylglycerol was reported to regulate the innate immune
271 response in lungs [63] and consequently was suggested as a treatment against
272 SARS-CoV-2 infection by restoring the lung tissue [64]. No functional pathways
273 were found to be significantly represented by analysis of enriched genes found as
274 essential (pro-viral) for SARS-CoV-2 infection.

275 For further inspection of these pro-viral genes, STRING-db interaction network
276 analysis was employed for the top 200 enriched genes (Fig. 2B). The connected
277 network components annotated using REACTOME pathways functionally
278 implicated several cellular pathways. A large group of these genes, including the

279 largest cluster, is related to immune system functions, and includes the genes
280 NFKB1, IRF6, IL2Ra and EP300. In addition, the analysis identified gene groups
281 belonging to lipid metabolism, and genes related to vesicle mediated transport,
282 both functions known to be important determinants of viral infection.

283 Differential analysis of host-factors dependencies exhibited by variants of SARS-
284 CoV-2

285 Reported differences in the infectivity as well as in the progression of the disease
286 caused by different variants of SARS-CoV-2 indicate that these emerging variants
287 may require both common and distinct host factors. Identification of these shared
288 and diverged host requirements may enable a better understanding of the host-
289 pathogen interactions characterizing SARS-CoV-2 infection, and most importantly
290 may facilitate the design of future therapies. Accordingly, a comparative analysis
291 of the datasets of the screens involving either one of the SARS-CoV-2 variants:
292 SARS-CoV-2 B.1.1.7 (Alpha), SARS-CoV-2 B.1.351 (Beta), and the original WT
293 SARS-CoV-2, was conducted. The individual variant analysis enabled distinction
294 of the top-scoring host-genes involved in the infection of each SARS-CoV-2
295 lineage (Fig. 3A). The cellular entry factor, ACE2, was found to be highly enriched
296 for all lineages, illustrating that the main mechanism for entry into the target cells
297 is similar for the three SARS-CoV-2 variants and reiterating the robustness of the
298 screens. Another host gene that was consistently highly enriched in the screens of
299 cells infected by the three variants was the transcription factor GATA6. As of today,
300 GATA6 role in SARS-CoV-2 infection was not reported and is extensively
301 addressed below. Conversely, the analysis identified different genes specifically
302 involved in the infection by either one of the variants. Such are ARIH2 and
303 CHMP2B that exhibited a higher enrichment score in the screen of the cells
304 infected by the Alpha and Beta variants, respectively. Additional significantly
305 enriched genes are highlighted in Figure 3A.

306 To further distinguish the role of these host-genes in the infection of each of the
307 variants, a pairwise correlation of the genome-wide datasets was conducted (Fig.
308 3B). In spite of the inherent variability of the experimental system, which may

309 complicate distinction of differential dependencies between screens in
310 comprehensive manner, the top hits, representing genes encoding for functions
311 strongly affected by the infection, exhibited high reproducibility. This is
312 demonstrated by the correlation analysis of gene enrichment between biological
313 replicates (Supplemental Fig. S1). Thus, since only genes strongly enriched or
314 depleted are considered, the present report provides only a partial landscape of
315 the host factors involved in the different VOCs infection. The pro-viral genes,
316 ACE2, and GATA6 were consistently highly enriched in the screens of the cells
317 infected with all variants, while the anti-viral MMP23B LARS2 HUS1 STX4 and RER1
318 were depleted for all three variants. Most interestingly, some genes were enriched
319 in the screen conducted with one mutant while depleted in the screens carried-out
320 with other variants (Fig 3B). Two such genes were KREMEN2 and SETDB1 that
321 in the evaluation of the top five enriched genes of the Alpha variant screen (which
322 exhibited the best correlation between replicates) revealed an opposite pattern in
323 the screens involving the Beta variant and the WT SARS-CoV-2, suggesting that
324 the product of these genes fulfill a distinct role during the life cycle of the Alpha
325 variant. (Fig. 3C). Notably, the proteins KREMEN1 and KREMEN2 have been
326 identified as co-receptors for Dickkopf (Dkk) proteins, hallmark secreted
327 antagonists of the canonical Wnt signaling pathway [65, 66]. In addition,
328 KREMEN1 serves as host-cell entry receptor for a major group of Enteroviruses
329 [67]. Remarkably, in a recent screen in search of additional SARS-CoV-2
330 receptors, KREMEN1 was identified as an alternative viral-entry receptor [68].
331 Thus, the observation documented here suggests that KREMEN2 may play a
332 similar role specifically during the life cycle of the Alpha variant, consequently
333 contributing to its enhanced infectivity compared to other SARS-CoV-2 variants.

334 SETDB1 (SET domain bifurcated histone lysine methyltransferase 1), is a histone
335 H3K9 methyltransferase that contributes together with TRIM28 to heterochromatin
336 formation [69]. Recent studies have drawn attention to the involvement of SETDB1
337 in epigenetic control of the immune response, including antiviral response and IFN
338 production [70-72]. Interestingly, the transcriptional levels of IFN-I, IFN-II, TRIM28,
339 and SETDB1 were found to be elevated in SARS-CoV-2 infected children with mild

340 symptoms, while their levels decreased in children with severe clinical pictures or
341 MIS-C suggesting that they may play important roles in conditioning the evolution
342 of the infection [73]. SETDB1 was also identified in a HCoV-NL63 genetic screen
343 as a possible host chromatin regulator that promote successful infection [22].

344 To validate KREMEN2 and SETDB1 specificity for the Alpha variant sgRNAs
345 targeting either KREMEN2 or SETDB1 were expressed in Calu-3 cells that were
346 subsequently infected by WT-SARS-CoV-2 or by either one of the VOCs. In both
347 KREMEN2 and SETDB1 KO cell lines, a significantly impaired viral infection of the
348 Alpha VOC was measured. However, disruption of either one of the genes did not
349 result in a considerable change in viral titer by infection with the WT-SARS-CoV-2
350 or the Beta variant (Fig. 3D). While the data presented in this report clearly
351 suggests that the KREMEN2 and SETDB1 genes encode functions specifically
352 assisting the Alpha variant infection, additional studies will be required to
353 understand their mechanism of function and strain specificity, and most importantly
354 to determine if their role relates to possible enhanced viral infectivity or
355 pathogenicity.

356 Overall, the comparative analysis shows that the survival-based CRISPR screen
357 provides datasets of host factors common and distinct for a variety of SARS-CoV-
358 2 lineages that should be further validated and taken under consideration for the
359 design of broad-spectrum therapies for controlling SARS-CoV-2 infection.

360 GATA6 is essential for SARS-CoV-2 infection

361 The transcription factor GATA6, emerged as the second-strongest pro-viral host
362 factor (inferior only to the viral receptor ACE2) for all three variants tested in the
363 screens. GATA6 is a member of a small family of zinc finger DNA-binding
364 transcription factors that play an important role in the regulation of cellular
365 differentiation. Of note, GATA6 was shown to promote the transcription of SFTPA
366 gene, which is involved in immune and inflammatory responses, and lowers the
367 surface tension in the alveoli [74, 75]. Both GATA6 and SFTPA genes were
368 upregulated in SARS-CoV-2-infected lungs, while the GATA6 antagonist LMCD1

369 was downregulated [45]. To confirm the essentiality of GATA6 for SARS-CoV-2
370 infection, the expression of GATA6 in Calu-3 cells was abrogated by CRISPR-
371 mediated targeting of GATA6, followed by inspecting the sensitivity of cells to
372 SARS-CoV-2 infection. CRISPR-mediated ACE2 disruption in Calu-3 cells served
373 as a positive control. The gene targeting manipulations indeed resulted in depletion
374 of GATA6 and ACE2 expression as determined both by Real-Time PCR and
375 Western blot analysis (Fig. 5B, 5C). As expected, while WT Calu-3 cells display a
376 cytopathic effect following WT-SARS-CoV-2 infection, ACE2 gene-disruption
377 protected cells from the infection (Fig. 4A). In agreement with the results of the
378 CRISPR screens, GATA6-disrupted cells were almost fully protected from cell
379 death following WT-SARS-CoV-2 infection (Fig. 4A). Furthermore, the extent of
380 resilience to viral infection was commensurate with that exhibited by cells in which
381 ACE2 expression was abrogated (Fig. 4A). Further investigation of WT-SARS-
382 CoV-2 viral load in infected GATA6-disrupted cells 24 and 48 hours post infection,
383 demonstrated a significant reduction of viral replication subsequent to reduction in
384 GATA6 content (Fig. 4B). Further inspection of the effect of GATA6 disruption on
385 the infection by the Alpha and Beta VOCs resulted with an increased resilience to
386 cell death of GATA6 KO cells as seen by microscopy imaging and crystal violet
387 staining (Fig 4C, 4D), and impaired viral infection (Fig 4E). The effect of GATA6
388 gene disruption was also interrogated on the infectivity of the novel Delta
389 (B.1.617.2) VOC (which emerged in the course of preparing the current report).
390 The data in Fig. 4D and 4E establish that the Delta variant exhibited impaired
391 infectivity in the GATA6 KO cells confirming the strain-independent essentiality of
392 GATA6 for SARS-CoV-2 infection.

393 As mentioned, previously published mRNA-seq transcriptomic datasets of Calu-3
394 [59], A549 [60] and Vero-E6 [61] cell lines, revealed that GATA6 is expressed at
395 much higher levels in Calu-3 cells (Figure 1G), suggesting that GATA6 was not
396 identified in screens carried out in other cell-lines due to cell-type specificity. To
397 further substantiate this hypothesis, GATA6 was disrupted in Vero-E6 cells
398 (Supplemental Fig. S2), and KO cells were subjected to infection of WT-SARS-
399 CoV-2. Results demonstrated similar levels of infection between WT Vero-E6 cells

400 and GATA6 disrupted cells (Fig. 4F). Cell viability following infection was also
401 similar between the WT and GATA6 KO Vero-E6 cells (Fig 4G). It is therefore
402 conceivable that the function fulfilled by GATA6 in Calu-3 cells differs from that in
403 Vero-E6, in line with the fact that GATA6 is a regulatory transcriptional factor which
404 exerts its function by modulating the transcriptional level of various target genes
405 which may not be necessarily the same in different cell lines.

406 To further explore the physiologically and/or clinical relevance of GATA6 to SARS-
407 CoV-2 infection, the level of GATA6 RNA in clinical nasopharyngeal-swab samples
408 from 20 COVID-19 patients was analyzed and compared to that in samples
409 collected from 20 healthy people. The analysis demonstrated that COVID-19
410 patients exhibited significantly higher levels of GATA6 than controls ($p<0.05$) (Fig
411 4H). Of note, the analysis did not reveal statistically relevant differences in ACE2
412 expression between COVID-19 and control healthy individuals (Fig 4H). This
413 observation further demonstrates that GATA6 may be involved in the susceptibility
414 to viral infection, and suggests that GATA6 by itself is upregulated in response to
415 infection by a regulatory inductive circuit different from that of ACE2 receptor.
416 Upregulation of GATA6 was also observed in a recent study in which the host
417 transcriptome from nasopharyngeal-swab samples of four COVID-19 patients was
418 profiled [76]. In line with the above *in-vivo* results, the relative levels of GATA6
419 transcription were found also to be elevated during SARA-CoV-2 infection of Calu-
420 3 cells (Fig 4I).

421 GATA6 is a novel regulator of ACE2 that may serve as a potential host directed
422 therapeutic target

423 To further elucidate which viral life-cycle step is facilitated by GATA6 expression,
424 SARS-CoV-2 infection was visualized by immunofluorescent labeling of the virus
425 in infected GATA6-disrupted cells in comparison to WT cells (Fig. 5A). The
426 analysis enabled detection of SARS-CoV-2 in the cytoplasm of WT cells as soon
427 as 5 hours post infection with increased viral load at 24 hours post infection. In
428 contrast, a significant reduction of the infection of SARS-CoV-2 in the GATA6-
429 disrupted cells was observed suggesting that GATA6 facilitates an early step in
430 the viral life cycle possibly related to the entry of the virus into the cells (Fig. 5A).

431 Since SARS-CoV-2 entry into cells is primarily mediated by ACE2, the expression
432 of ACE2 in ACE2 disrupted, WT and GATA6 disrupted cells was determined by
433 Western-blot analysis. Notably, the decrease in GATA6 was followed by a
434 significant reduction in ACE2 expression compared to control cells (Fig. 5B). Real-
435 Time PCR analysis confirmed the Western-blot results indicating that this effect
436 involves a regulatory mechanism exerted at the transcription-level, suggesting that
437 GATA6 acts as a transcriptional factor affecting ACE2 expression (Fig. 5C). The
438 data were validated by trans-complementation experiments which established that
439 extrachromosomal cDNA-mediated expression of GATA6 (N-terminally triple
440 FLAG-tagged and C-terminally triple AU1-tagged full length human wt GATA6) in
441 GATA6 KO cells restored elevated ACE2 expression, as measured by Western
442 Blot analysis (Fig. 5B). Furthermore, complementation of GATA6 expression by
443 exogenous GATA6 cDNA restored susceptibility of the cells to SARS-CoV-2
444 infection as measured by the virus titers (Fig. 5D) and crystal violet staining (Fig.
445 5E). Based on the data it is possible therefore to assume that the low ACE2 levels
446 associated with abrogation of GATA6 expression are a manifestation of the role of
447 GATA6 in viral entry. However, since GATA6 is a known pleiotropic transcription
448 factor, its abrogation could theoretically affect transcription of additional genes that
449 may have a role in SARS-CoV-2 infection. In an attempt to further confirm that
450 GATA6 is related to viral entry to the cell through regulation of ACE2 expression,
451 GATA6 KO cells over-expressing ACE2 were infected with SARS-CoV-2. The data
452 demonstrated that the expression of ACE2 in GATA6 KO cells restored SARS-
453 CoV-2 titers suggesting that the main mechanism through which GATA6 influences
454 SARS-CoV-2 infection is through modulation of ACE2 expression levels (Fig. 5D).
455 In an attempt to further determine the temporal connection between GATA6
456 expression and that of ACE2, the expression of GATA6 was abrogated by siRNA
457 targeting and the expression of ACE2 was interrogated at early time-points post
458 GATA6 silencing. The analysis showed that ACE2 expression decreases as early
459 as 12 hours post GATA6-siRNA transfection (Fig. 5F).
460 As a transcription factor GATA6 recognizes a well-defined DNA-binding specific
461 consensus site (T/AGATAA/G or reverse complement sequences C/TTATCT/A)

462 [77]. Accordingly, the promoter of the ACE2 gene was screened for the GATA6
463 consensus DNA binding site. The conserved GATA-binding motif was found at
464 nucleotide positions -341 and -403 (upstream of the initiation ATG codon) (Figure
465 5G) [78]. To investigate the possible binding of GATA6 to ACE2 promoter an
466 Electrophoretic Mobility Shift Assays (EMSA) was implemented. Incubation of
467 lysates from HEK293T cells over expressing GATA6 with labeled oligonucleotides
468 derived from the promoter region of ACE2 resulted in the formation of
469 electrophoretic slow-migrating protein-DNA complexes, which were not generated
470 in the presence of competing unlabeled oligonucleotides (Fig. 5H). This
471 observation supports the notion that GATA6 may induce the expression of ACE2
472 via direct binding at a sequence-specific GATA6 consensus site.
473 The connection between GATA6 and ACE2 expression, together with the
474 observations that GATA6 transcription levels were up-regulated in SARS-CoV-2
475 infected cells (Fig. 4I) and SARS-CoV-2 positive clinical samples (Fig. 4H) raised
476 the possibility that over-expression of GATA6 might increase cell susceptibility to
477 viral-infection. To address this possibility, Calu-3 cells over-expressing GATA6
478 were subjected to SARS-CoV-2 infection. Western blot analysis demonstrated that
479 the elevated levels of GATA6 expression were accompanied by increased levels
480 of ACE2 (Supplemental Fig. S3A). Yet, the over-expression of GATA6 did not
481 affect the RNA levels of SARS-CoV-2 measured 48 hours post infection
482 (Supplemental Fig. S3B).
483 CRISPR loss-of-function surveys for host factors based on virus-induced cell
484 death, may identify genes encoding for products essential to the virus, and yet
485 dispensable to cell viability. Accordingly, such host factors exhibiting specific roles
486 in the viral pathogenicity may serve as appropriate candidates for antiviral therapy
487 with minimal host side effects. Therefore, we explored whether pharmacological
488 inhibition of GATA6 affects ACE2 expression and consequently, coronavirus
489 infection. Pyrrothiogatain, previously reported to inhibit the DNA-binding activity of
490 GATA6 and other members of the GATA family [79], was tested for its ability to
491 induce downregulation of ACE2 and subsequent inhibition of viral infection.

492 As expected, the drug exhibited a dose-dependent inhibition of GATA6 binding to
493 ACE2 as shown by Electrophoretic Mobility Shift Assays (Fig 6A, note also the
494 increase in the amount of the free unbound DNA probe upon competition with
495 unlabeled sequences, which confirms the sequence specificity of the binding).
496 Notably, Calu-3 cells retained their viability even at high doses of Pyrrothiogatain
497 (Fig.6B). Inhibition of GATA6 resulted in lower ACE2 expression (Fig. 6C)
498 supporting the causal connection between GATA6 and ACE2. A decrease in the
499 amount of GATA6 protein was also observed (Fig. 6C) suggesting that
500 Pyrrothiogatain may induce a feed-back circuit lowering GATA6 and/or a
501 conformational change affecting its expression. Most importantly, treatment of
502 infected Calu-3 cells with Pyrrothiogatain resulted in a significant decrease in the
503 viral load of the culture (Fig. 6D). Immunofluorescence analysis further evidenced
504 cytoplasmic SARS-CoV-2 staining in untreated cells while significantly reduced
505 infection was observed in Pyrrothiogatain-treated cells (Fig. 5E). The data cannot
506 rule out the possibility that other members of the GATA family are affected by
507 Pyrrothiogatain, yet other previous transcriptomic surveys did not evidence the
508 upregulation of other GATAs neither did our screen distinguish the enrichment of
509 other GATAs upon infection (Table 1). Furthermore, with the exception of GATA6,
510 none of the other 5 members of the GATA family revealed significant levels of
511 transcription in the Vero-E6, A549 and Calu-3 cell lines (Fig. 6F).
512 The data strongly supports the possibility that novel therapeutic strategies to
513 countermeasure viral infection via down-modulation of ACE2 may employ specific
514 GATA6 targeting. GATA6 targeting may seem a rather unlikely therapeutic
515 approach considering the fact that it is a pleiotropic transcription factor affecting
516 many loci. Yet, recently, the involvement of transcription factors in many
517 pathologies prompted preclinical and clinical assessment of their therapeutic
518 value, including studies addressing proteins belonging to the GATA family [80-
519 82]. The possibility to target transcription factors for selective therapeutic
520 intervention, is facilitated by high combinatorial interplay and compensations of the
521 transcription factors which lowers the side effects associated with targeting one
522 particular factor.

523 Since transcription factors (including GATA6) may play different roles in different
524 cell types (for example, GATA6 acts a tumor suppressor in astrocytoma while it is
525 overexpressed in human colon cancer and pancreatic carcinoma), some of these
526 studies, including those focusing on GATA family members, mitigate the undesired
527 effects by combining specificities in gene and tissue targeting.

528 In summary, the screens conducted in human lung epithelial cells, provided a
529 comprehensive catalog of cellular factors and functional pathways critical for the
530 infection of WT-SARS-CoV-2 and additional VOCs. These include known and
531 novel host-factors such as the viral receptor ACE2 and various components
532 belonging to the Clathrin-dependent transport pathway, ubiquitination and
533 Heparan sulfate biogenesis. In addition, the comparative analysis highlights
534 commonalities and differences between SARS-CoV-2 variants and enables the
535 identification of the receptor KREMEN2 and SETDB1 as possible unique genes
536 required only to the Alpha variant. The differences exhibited by the viral variants
537 with respect to the essentiality of specific host factors for their life-cycle is of
538 outmost importance since they may provide an explanation for the reported
539 differences in their pathogenicity, infectivity and disease progression.

540 Finally, the study evidenced the requirement of GATA6 for infection by WT-SARS-
541 CoV-2 as well as the Alpha and Beta variants. Furthermore, analysis of clinical
542 samples of COVID-19 infected patients showed an elevated level of GATA6,
543 suggesting that in the course of the disease, a viral-induced modulation of the level
544 of GATA6 occurs. Further investigations revealed that GATA6 regulates ACE2
545 expression and is critical for the entry step of SARS-CoV-2. Notably,
546 pharmacological inhibition of GATA6 results in down-modulation of ACE2 and
547 consequently to inhibition of the viral infectivity suggesting that this protein may
548 serve as a therapy target. These observations together with the loss-of-function
549 screen data reported here contribute to the better understanding of SARS-CoV-2
550 pathogenesis and may represent an important basis for the future development of
551 host-directed therapies.

552

553

554 **Material &Methods**

555 **Cell lines**

556 HEK293T (ATCC- CRL-3216), Vero-E6 (ATCC- CRL-1586) and Calu-3 cells
557 (ATCC- HTB-55) were cultured in Dulbecco's Modified Eagle Medium (DMEM)
558 with 10% heat-inactivated fetal bovine serum (FBS), 10 mM non-essential amino
559 acids (NEAA), 2 mM L-Glutamine, 1 mM Sodium pyruvate and 1%
560 Penicillin/Streptomycin (all from Biological Industries, Israel) at 37°C, 5% CO₂. All
561 cell lines tested negative for mycoplasma.

562 **Virus stocks**

563 The original SARS-CoV-2 (GISAID accession EPI_ISL_406862) was kindly
564 provided by Bundeswehr Institute of Microbiology, Munich, Germany. SARS-CoV-
565 2 B.1.1.7 (Alpha) and B.1.351 (Beta) and B.1.617.2 (Delta) variants of concern
566 (VOCs) were kindly provided by Michal Mandelboim, MOH Central Virology Lab,
567 Tel Hashomer, Israel. Original, B.1.351 and B.1.617.2 VOC stocks were
568 propagated (2-3 passages) on Vero-E6 cells while B.1.1.7 was propagated on
569 Calu-3 cells. All viruses were tittered on Vero-E6 cells. Handling and working with
570 SARS-CoV-2 virus were conducted in a BSL3 facility in accordance with the
571 biosafety guidelines of the Israel Institute for Biological Research (IIBR).

572 **Genome-wide CRISPR screens**

573 To generate CRISPR KO libraries, a total of 4*10⁸ Calu-3 cells were transduced
574 with lentivirus of human Brunello Human CRISPR library (Addgene #73179, gift
575 from David Root and John Doench) in the presence of 0.5 mg/ml polybrene (TR-
576 1003, Sigma), at a MOI of 0.3. Two days post-transduction, 5 ug/ml puromycin
577 (ant-pr-1, InvivoGen) was added to the media and transduced cells were selected
578 for seven days. Twenty-four hours prior to infection with SARS-CoV-2, 1.5*10⁷
579 Calu-3 library-cells were seeded in 75-cm² flasks. For a control reference for
580 sgRNA enrichment analysis cells were harvested 48 hours after seeding. For
581 viability screen, mock cells were harvested 7 days after seeding and served as a
582 control for the depletion of genes that are essential for cell survival. Three screens,
583 using 3 variants of SARS-CoV-2, were performed with 3*10⁷ cells in each screen
584 which is sufficient for the representation of each sgRNA into ~400 unique cells. All

585 screens were performed in duplicate. For SARS-CoV-2 infection cells were
586 washed once with RPMI without FBS and infected with SARS-CoV-2 virus, at a
587 MOI of 0.02 to 0.04, in the presence of 20 µg per ml TPCK trypsin (Thermo
588 scientific) and 2% FBS. Flasks were incubated for 1 hour at 37 °C to allow viral
589 adsorption. Then, RPMI medium supplemented with 2% FBS, was added to each
590 well [83]. Nine days post infection with SARS-CoV-2, surviving cells pellet was
591 dissolved in 10% triton and boiled for 30 minutes. Genomic DNA (gDNA) was
592 extracted using a QIAamp DNA mini kit (Qiagen). sgRNA sequences were
593 amplified by one-step PCR using primers with illumine adapters and the gDNA as
594 a template. A master mix consisted of 75 µl ExTaq DNA Polymerase (Clontech),
595 1,000 µl of 10X ExTaq buffer, 800 µl of dNTP provided with the enzyme, 50 µl of
596 P5 stagger primer mix (stock at 100 µM concentration), and 2,075 µl water. Each
597 PCR reaction consisted of 50 µl gDNA, 40 µl PCR master mix and 10 µl of uniquely
598 barcoded P7 primer (stock at 5 µM concentration). PCR cycling conditions: an
599 initial 1 min at 95°C; followed by 30 sec at 95°C, 30 sec at 53°C, 30 sec at 72°C, for
600 28 cycles; and a final 10 min extension at 72°C; hold at 4°C. The p5 stagger primer
601 and uniquely barcoded P7 primers were synthesized at Integrated DNA
602 Technologies, Inc. Primers sequences are listed in Supplementary Table S2.
603 Pooled PCR products were purified with Agencourt AMPure XP-SPRI magnetic
604 beads according to manufacturer's instruction (Beckman Coulter, A63880).
605 Samples were sequenced on a Illumine MiSeq platform. Reads were counted by
606 alignment to a reference file of all possible sgRNA present in the library. The read
607 was then assigned to a condition on the basis of the 8 nt index included in the p7
608 primer. The lentiviral plasmid DNA pool was sequenced as a reference.

609 **Analysis of CRISPR-Cas9 genetic screen data.**

610 MAGeCK v0.5.6 [84] was used to count sgRNA from FASTQ files and to analyze
611 the selection effect of genes based on the change in sgRNA distribution, using the
612 robust rank aggregation (RRA) algorithm with normalization to total reads. Directed
613 score for each gene was calculated by taking the enrichment MAGeCK RRA
614 scores for genes with a positive fold change from control and the depletion
615 MAGeCK RRA score for genes with a negative or zero-fold change. Directed

616 scores for sgRNAs was calculated by multiplying the MAGeCK sgRNA scores by
617 1 or (-1) according to the direction of change. These scores were scaled to sd=1
618 and centered to the mean. All genes and their enrichment scores can be found in
619 Table 1.

620 **Pathway and network analysis**

621 Directed scores calculated from MAGeCK RRA scores of all screens combined
622 (treating all screens as one experiment) were used as input for gene set
623 enrichment analysis (GSEA version 4.1) with GO biological process (c5.bp) from
624 MSigDB (version 7.4) [85, 86]. Results were filtered to get significantly enriched
625 pathways with false discovery rate of less than 0.01. To further analyze functional
626 pathways enriched in positive screen hits, the 200 genes that ranked the highest
627 based on MAGeCK enrichment score were selected and used as input for STRING
628 protein-protein interaction network analysis [87] using default parameters. The
629 STRING network was imported into Cytoscape [88]. Genes were highlighted
630 based on association with selected REACTOME pathways. Genes that were not
631 highlighted or connected to at least two other genes were excluded from the graph.

632 **Generation of Vero-E6 and Calu-3 KO cell lines.**

633 DNA oligos (Integrated DNA Technologies, Inc.) containing sgRNA sequences
634 (see Supplementary Table 2) were annealed and ligated into lentiCRISPRv2
635 (Addgene, #52961, gift from Feng Zhang). Lentivirus was packaged by co-
636 transfection of constructs with the 2nd generation packaging plasmids pMD2.G
637 and PsPax using jetPEI (Polyplus-transfection) into 6-well plates with HEK293T
638 cells according to protocol. Sixty hours post transfection supernatants were
639 collected, centrifuged at 1500 rpm for 5 minutes and filtered through a 0.45 µm
640 filter. Calu-3 or Vero-E6 cells were transduced with lentiviruses in the presence of
641 7 ug/ml polybrene (TR-1003, Sigma) and then selected with puromycin for 7 days.
642 Knockout was confirmed by western blot, Real-Time PCR or sequencing. For
643 GATA6 complementation experiment, GATA6 knockout cells were complemented
644 by transfection of 2.5 µg pBabe 3XFLAG-wt GATA6-3XAU1 puro vector (Addgene
645 #72607) using Lipofectamine 3000 (L3000015 ThermoFisher) according to

646 manufacturer's instructions. Seventy-two hours post transfection, the expression
647 of GATA6 was analyzed by western blot.

648 **Infection of Vero-E6 and Calu-3 KO cell lines**

649 Cells were seeded 48 hours prior to infection at a density of 4×10^5 in 12 well plates
650 and infected as described above at a MOI of 0.002. Plates were incubated for 1
651 hour at 37 °C to allow viral adsorption. The medium was then aspirated and
652 replaced with fresh medium. At that point (t=0 hour), 24 hpi and 48 hpi cell medium
653 was taken for viral titration.

654 **Viral titration**

655 Vero-E6 cells were seeded in 12-well plates (5×10^5 cells/well) and grown
656 overnight in growth medium. Serial dilutions of SARS-CoV-2 were prepared in
657 infection medium (MEM containing 2% FBS with NEAA, glutamine, and
658 Penicillin/Streptomycin), and used to infect Vero-E6 monolayers in duplicates or
659 triplicates (200 µl/well). Plates were incubated for 1 hour at 37 °C to allow viral
660 adsorption. Then, 2 ml/well of overlay [MEM containing 2% FBS and 0.4%
661 tragacanth (Merck, Israel)] was added to each well and plates were incubated at
662 37 °C, 5% CO₂ for 72 hours. The media were then aspirated, and the cells were
663 fixed and stained with 1 ml/well of crystal violet solution (Biological Industries,
664 Israel). The number of plaques in each well was determined, and SARS-CoV-2
665 titer was calculated.

666 **Imaging and Immunofluorescence assay**

667 Calu-3 knockout or WT cells were seeded at a density of 4×10^5 in 12 well plates,
668 infected as described above or left uninfected. Imaging was performed on a Nikon
669 eclipse TS100 microscope using a WD 7.0 10X/0.25 Ph1 DL objective and DS-Ri1
670 camera. For Immunofluorescence experiments, Calu-3 knockout or WT cells were
671 seeded at a density of 5×10^4 cells per well in 8-well-µ-slides (Ibidi), infected as
672 described above or left uninfected. Cells were washed once with PBS, fixed with
673 4% paraformaldehyde (PFA) in PBS for 15 minutes and permeabilized with using
674 0.5% Triton X-100 (Sigma T9284) for 2 minutes. The fixed cells were blocked in
675 PBS containing 2% FCS and stained with primary antibodies (diluted 1:200 in
676 blocking buffer) for 1 hour at room temperature. After washing with PBS, cells were

677 incubated with Alexa Fluor 488 conjugated anti-rabbit for 0.5 hour. Nuclei were
678 stained with DAPI (200 µg/ml D9542 Sigma) for 5 minutes at room temperature.
679 Imaging was performed on an LSM 710 confocal scanning microscope (Zeiss,
680 Jena, Germany). Primary antibodies used in this study: Rabbit anti-GATA6
681 (Abcam ab175349), hyperimmune Rabbit serum from intervenous (i.v) SARS-
682 CoV-2 infected Rabbits.

683 **Cell viability assays**

684 The effect of Pyrrothiogatain on Calu-3 cell proliferation was determined using the
685 XTT assay (Cell Proliferation Kit, 20-300-1000, Biological Industries, Bet Haemek,
686 Israel) as per the manufacturer's instructions. Briefly, 10⁵ Calu-3 WT cells were
687 seeded in 96-well plate. Twenty-four hours later, the cells were incubated with
688 Pyrrothiogatain at different concentrations (150, 300, 500 µM) for additional 48
689 hours. Then, XTT reagent was added for 15 minutes before reading the change in
690 absorbance at 650 and 475 nm using the SpectraMax 250 plate reader (Molecular
691 devices). Specific absorbance measurements were given as the mean ± SD
692 absorbance calculated from 2 repeat wells/sample. The mean specific absorbance
693 was normalized at each time point to that of the non-treated control.
694 For crystal violet staining, following 48 hours of SARS-CoV-2 infection the medium
695 was removed from the cells that were then fixed and stained with 0.1% crystal
696 violet solution (Biological Industries, Israel) for 5 minutes. Then stain was aspirated
697 and plates were rinsed once with tap water and air dried.

698 **Analysis of GATA6, CUL5 and IRF6 expression in different cell lines**

699 Published mRNA-seq data used for A549, Vero-E6 and Calu-3 cells are from Kinori
700 et al. 2016, Finkel et al. 2021a and Finkel et al. 2021b., respectively. Gene level
701 values were normalized to TPM (transcripts per million) by dividing the published
702 RPKM values by the sum of each sample and multiplying by one million.

703 **Analysis of clinical samples**

704 Negative and positive qRT-PCR nasopharyngeal-swab samples from symptomatic
705 and asymptomatic individuals were collected as part of routine scanning of nursing
706 homes. Ethical review and approval were waived, since the samples used for this
707 study were leftovers of anonymized samples. No information is available on the

708 level of symptoms manifested by each tested positive individual. Viral RNA was
709 extracted using RNAdvance Viral XP kit (Beckman Coulter). From each sample
710 200 μ L were added to LBF lysis buffer, and further processed on the Biomek i7
711 Automated Workstation (Beckman Coulter), according to the manufacturer's
712 protocol. Each sample was eluted in 50 μ L of RNase-free water. Real-time RT-
713 PCR assays were performed using the SensiFASTTM Probe Lo-ROX one-step kit
714 (Bioline). In each reaction the primers final concentration was 600 nM and the
715 probe concentration was 300 nM. Thermal cycling was performed at 48°C for
716 20 minutes for reverse transcription, followed by 95°C for 2 min, and then 45
717 cycles of 94°C for 15 sec, 60°C for 35 sec. Primers and probes (listed in
718 Supplementary Table S2) were designed using the Primer Express Software
719 (Applied Biosystems) and purchased from Integrated DNA Technologies, Inc.

720 **siRNA inhibition assay**

721 Calu-3 Cells were transfected with siRNA validated for GATA6 or negative control
722 (TriFECTa Kit DsiRNA Duplex, IDT) (listed in Supplementary Table S2) in the
723 presence of Lipofectamine RNAiMAX reagent (Life Technologies), according to
724 manufacturer's standard protocol. At the indicated time after transfection, cells
725 were harvested. All experiments were performed in triplicate, and representative
726 results are reported.

727 **RT-PCR**

728 Total RNA was extracted using RNeasy Mini Kit (Qiagen 74104), reverse
729 transcribed using qScript cDNA Synthesis kit (95047-025, Quanta bio) according
730 to protocols, and subjected to real-time PCR analysis using perfecta SYBR Green
731 FastMix Low ROX (Quanta bio 95074-250). Data shown are the relative
732 abundance of the indicated mRNA normalized to that of GAPDH. Gene-specific
733 primers are listed in Supplementary Table 2.

734 **Western blot**

735 Cells were lysed in RIPA Lysis Buffer (Merck 20-188) in the presence of cOmplete
736 protease inhibitor cocktail (Roche 11697498001). Lysates were nutated at 4°C for
737 10 minutes, then centrifuged at 20,000 \times g for 15 minutes at 4°C. Equal amounts
738 of cell lysates were denatured in 4X Laemmli sample buffer (Bio-RAD

739 #1610747), separated on 4-12% NuPAGE Bis-Tris gels (invitrogen), blotted onto
740 nitrocellulose membranes and immunoblotted with primary antibodies α GATA6
741 (Abcam ab175349, ab22600), α GAPDH (Cell Signaling 14C10), α ACE2 (Sino
742 Biological #10108-T60). Secondary antibody used was IRDye® 800CW
743 conjugated Goat anti-Rabbit (Licor). Reactive bands were detected by Odyssey
744 CLx infrared imaging system (Licor). Protein concentration was measured by the
745 BCA protein assay kit (Pierce 23225). Protein quantification was performed on
746 Licor software.

747 **EMSA**

748 Electrophoretic mobility assay (EMSA). HEK293T cells were transfected with 3 μ g
749 pBabe 3XFLAG-wt-GATA6-3AU1 puro plasmid (Addgene #76207) using
750 Lipofectamine 3000 (L3000015 ThermoFisher) according to manufacturer's
751 instructions. Forty-eight hours post transfection, cells were lysed in RIPA Lysis
752 Buffer (Merck 20-188) in the presence of cOmplete protease inhibitor cocktail
753 (Roche 11697498001) and nutated at 4°C for 10 minutes. The cell lysate was
754 cleared by centrifugation, concentrated and dialyzed into PBS using Amicon Ultra-
755 4 30K (UFC803024, Merck). The EMSA was preformed using two sets of double
756 stranded DNA oligonucleotides of ~40 bp spanning the putative GATA6 binding
757 sites in the promotor region of ACE2. 5'-IRDye700-labeled single-stranded
758 nucleotide probes or PCR primers, as detailed in supplementary Table S2, were
759 purchased from Integrated DNA Technologies, Inc. Complementary single-
760 stranded nucleotides were mixed at 100nM concentration, heated at 100°C for 5
761 minutes, and then cooled down to room temperature to allow duplex formation.
762 Binding reactions were carried out using the Odyssey® EMSA Buffer Kit (829-
763 07910, Li-Cor) according to manufacturer's instructions, in the presence of NP-40
764 and $MgCl_2$. In competition assays, unlabeled competitor probes were included in
765 the binding reactions in 200-fold excess relative to labeled probes. For inhibition
766 of the binding of GATA6 to the promotor region of ACE2 Pyrothiogatain was
767 included in the binding reaction in 50,100 or 500 μ M. The reactions were incubated
768 for 30 minutes at room temperature in the dark. 1X Orange dye was added, and
769 the samples were run on 8% TBE gel in 0.5% TBE buffer (LC6775, Novex) at 70

770 V for 90 min in the dark and imaged on an Odyssey® infrared imaging system (Li-
771 Cor Biosciences).

772 **GATA6 inhibition assay**

773 Pyrrothiogatain (3-(2,5-dimethyl-1H-pyrrol-1yl) thiophene-2- carboxylic acid) was
774 purchased from Santa Cruz (cat #sc-352288A). Cells were treated with the
775 indicated concentration of Pyrrothiogatain (50mM stock dissolved in DMSO) for 48
776 hours prior to infection with SARS-CoV-2. Infection and subsequent
777 immunofluorescence imaging were carried as described above.

778

779

780

781 **Data availability**

782 All data generated or analyzed during this study are included in this published
783 article and its supplementary information files.

784

785

786

787 **Acknowledge**

788 We thank Emanuelle Mamroud and Shahar Rotem for technical advice and helpful
789 discussion; Shay Weiss for biosafety guidance and Tamar Aminov and Inbar
790 Chomsky for technical assistance.

791

792

793

794

795

796

797

798

799

800 References

801

802 1. Fung, T.S. and D.X. Liu, *Human Coronavirus: Host-Pathogen Interaction*. Annu Rev Microbiol, 2019. **73**: p. 529-557.

803 2. Hoffmann, M., H. Kleine-Weber, and S. Pöhlmann, *A Multibasic Cleavage Site in the Spike Protein of SARS-CoV-2 Is Essential*
804 *for Infection of Human Lung Cells*. Mol Cell, 2020. **78**(4): p. 779-784.e5.

805 3. Letko, M., A. Marzi, and V. Munster, *Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other*
806 *lineage B betacoronaviruses*. Nat Microbiol, 2020. **5**(4): p. 562-569.

807 4. Li, W., et al., *Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus*. Nature, 2003. **426**(6965):
808 p. 450-4.

809 5. Zhou, P., et al., *A pneumonia outbreak associated with a new coronavirus of probable bat origin*. Nature, 2020. **579**(7798):
810 p. 270-273.

811 6. Hartenian, E., et al., *The molecular virology of coronaviruses*. J Biol Chem, 2020. **295**(37): p. 12910-12934.

812 7. Shereen, M.A., et al., *COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses*. J Adv Res, 2020.
813 **24**: p. 91-98.

814 8. V'Kovski, P., et al., *Coronavirus biology and replication: implications for SARS-CoV-2*. Nat Rev Microbiol, 2021. **19**(3): p. 155-
815 170.

816 9. Bertram, S., et al., *TMPRSS2 activates the human coronavirus 229E for cathepsin-independent host cell entry and is*
817 *expressed in viral target cells in the respiratory epithelium*. J Virol, 2013. **87**(11): p. 6150-60.

818 10. Hoffmann, H.H., et al., *Functional interrogation of a SARS-CoV-2 host protein interactome identifies unique and shared*
819 *coronavirus host factors*. Cell Host Microbe, 2021. **29**(2): p. 267-280.e5.

820 11. Hoffmann, M., et al., *SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease*
821 *Inhibitor*. Cell, 2020. **181**(2): p. 271-280.e8.

822 12. Shirato, K., M. Kawase, and S. Matsuyama, *Middle East respiratory syndrome coronavirus infection mediated by the*
823 *transmembrane serine protease TMPRSS2*. J Virol, 2013. **87**(23): p. 12552-61.

824 13. Simmons, G., et al., *Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry*. Proc Natl Acad
825 Sci U S A, 2005. **102**(33): p. 11876-81.

826 14. Gordon, D.E., et al., *Comparative host-coronavirus protein interaction networks reveal pan-viral disease mechanisms*.
827 Science, 2020. **370**(6521).

828 15. Gordon, D.E., et al., *A SARS-CoV-2 protein interaction map reveals targets for drug repurposing*. Nature, 2020. **583**(7816):
829 p. 459-468.

830 16. Stukalov, A., et al., *Multilevel proteomics reveals host perturbations by SARS-CoV-2 and SARS-CoV*. Nature, 2021. **594**(7862):
831 p. 246-252.

832 17. V'Kovski, P., et al., *Determination of host proteins composing the microenvironment of coronavirus replicase complexes by*
833 *proximity-labeling*. Elife, 2019. **8**.

834 18. Baggé, J., et al., *Genome-wide CRISPR screening identifies TMEM106B as a proviral host factor for SARS-CoV-2*. Nat Genet, 2021. **53**(4): p. 435-444.

835 19. Daniiloski, Z., et al., *Identification of Required Host Factors for SARS-CoV-2 Infection in Human Cells*. Cell, 2021. **184**(1): p.
836 92-105.e16.

837 20. Heaton, B.E., et al., *SRSF protein kinases 1 and 2 are essential host factors for human coronaviruses including SARS-CoV-2*.
838 bioRxiv, 2020.

839 21. Biering, S.B., et al., *Genome-wide, bidirectional CRISPR screens identify mucins as critical host factors modulating SARS-CoV-2*
840 *infection*. bioRxiv, 2021(doi: <https://doi.org/10.1101/2021.04.22.440848>).

841 22. Schneider, W.M., et al., *Genome-Scale Identification of SARS-CoV-2 and Pan-coronavirus Host Factor Networks*. Cell, 2021.
842 **184**(1): p. 120-132.e14.

843 23. Wang, R., et al., *Genetic Screens Identify Host Factors for SARS-CoV-2 and Common Cold Coronaviruses*. Cell, 2021. **184**(1):
844 p. 106-119.e14.

845 24. Wei, J., et al., *Genome-wide CRISPR Screens Reveal Host Factors Critical for SARS-CoV-2 Infection*. Cell, 2021. **184**(1): p. 76-
846 91.e13.

847 25. Zhu, Y., et al., *A genome-wide CRISPR screen identifies host factors that regulate SARS-CoV-2 entry*. Nat Commun, 2021.
848 **12**(1): p. 961.

849 26. Dagan, N., et al., *BNT162b2 mRNA Covid-19 Vaccine in a Nationwide Mass Vaccination Setting*. N Engl J Med, 2021. **384**(15):
850 p. 1412-1423.

851 27. Shilo, S., H. Rossman, and E. Segal, *Signals of hope: gauging the impact of a rapid national vaccination campaign*. Nat Rev
852 Immunol, 2021. **21**(4): p. 198-199.

853 28. Baden, L.R., et al., *Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine*. N Engl J Med, 2021. **384**(5): p. 403-416.

854 29. Polack, F.P., et al., *Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine*. N Engl J Med, 2020. **383**(27): p. 2603-2615.

855 30. Abdool Karim, S.S. and T. de Oliveira, *New SARS-CoV-2 Variants - Clinical, Public Health, and Vaccine Implications*. N Engl J
856 Med, 2021. **384**(19): p. 1866-1868.

857 31. Faria, N.R., et al., *Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil*. Science, 2021. **372**(6544):
858 p. 815-821.

859 32. Rambaut, A., et al., *A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology*. Nat
860 Microbiol, 2020. **5**(11): p. 1403-1407.

861 33. Tegally, H., et al., *Detection of a SARS-CoV-2 variant of concern in South Africa*. Nature, 2021. **592**(7854): p. 438-443.

862 34. https://covlineages.org/global_report_B.1.1.7.html, PublicHealthEngland. 2020, 2020.

863 35. Andreano, E., et al., *SARS-CoV-2 escape in vitro from a highly neutralizing COVID-19 convalescent plasma*. bioRxiv, 2020.

865 36. Huang, B., et al., *Serum sample neutralisation of BBIBP-CoV and ZF2001 vaccines to SARS-CoV-2 501Y.V2*. Lancet Microbe, 2021. **2**(7): p. e285.

866 37. Madhi, S.A., et al., *Efficacy of the ChAdOx1 nCoV-19 Covid-19 Vaccine against the B.1.351 Variant*. N Engl J Med, 2021. **384**(20): p. 1885-1898.

867 38. Wang, Z., et al., *mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants*. Nature, 2021. **592**(7855): p. 616-622.

868 39. Weisblum, Y., et al., *Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants*. Elife, 2020. **9**.

869 40. Wu, K., et al., *mRNA-1273 vaccine induces neutralizing antibodies against spike mutants from global SARS-CoV-2 variants*. bioRxiv, 2021.

870 41. Health, E.P., *Investigation of novel SARS-CoV-2 variant - Variant of Concern 202012/01 - Technical briefing 3 London, United Kingdom*. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/950823/Variant_of_Concern_VOC_202012_01_Technical_Briefing_3_-_England.pdf, 2020.

871 42. Latif, A.A., et al., *P.1 Lineage Report*. outbreak.info https://outbreak.info/situation-reports?pango=P.1&loc=BRA&loc=USA&loc=USA_US, 2021.

872 43. Latif, A.A., et al., *B.1.351 Lineage Report* <https://outbreak.info/situation-reports?pango=B.1.351>, 2021.

873 44. Doench, J.G., et al., *Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9*. Nat Biotechnol, 2016. **34**(2): p. 184-191.

874 45. Islam, A. and M.A. Khan, *Lung transcriptome of a COVID-19 patient and systems biology predictions suggest impaired surfactant production which may be druggable by surfactant therapy*. Sci Rep, 2020. **10**(1): p. 19395.

875 46. Valerdi, K.M., et al., *The Role of the Host Ubiquitin System in Promoting Replication of Emergent Viruses*. Viruses, 2021. **13**(3).

876 47. Cao, Z., et al., *Ubiquitination of SARS-CoV-2 ORF7a promotes antagonism of interferon response*. Cell Mol Immunol, 2021. **18**(3): p. 746-748.

877 48. Zhang, H., et al., *Ubiquitin-Modified Proteome of SARS-CoV-2-Infected Host Cells Reveals Insights into Virus-Host Interaction and Pathogenesis*. J Proteome Res, 2021. **20**(5): p. 2224-2239.

878 49. Joly, S., et al., *Interferon Regulatory Factor 6 Has a Protective Role in the Host Response to Endotoxic Shock*. PLoS One, 2016. **11**(4): p. e0152385.

879 50. Bayati, A., et al., *SARS-CoV-2 infects cells after viral entry via clathrin-mediated endocytosis*. J Biol Chem, 2021. **296**: p. 100306.

880 51. Wang, H., et al., *SARS coronavirus entry into host cells through a novel clathrin- and caveolae-independent endocytic pathway*. Cell Res, 2008. **18**(2): p. 290-301.

881 52. Feng, X.H., et al., *The tumor suppressor Smad4/DPC4 and transcriptional adaptor CBP/p300 are coactivators for smad3 in TGF-beta-induced transcriptional activation*. Genes Dev, 1998. **12**(14): p. 2153-63.

882 53. Sherman, E.J., et al., *Identification of ACE2 modifiers by CRISPR screening*. bioRxiv, 2021.

883 54. Cagno, V., et al., *Heparan Sulfate Proteoglycans and Viral Attachment: True Receptors or Adaptation Bias?* Viruses, 2019. **11**(7).

884 55. Zhu, W., J. Li, and G. Liang, *How does cellular heparan sulfate function in viral pathogenicity?* Biomed Environ Sci, 2011. **24**(1): p. 81-7.

885 56. Clausen, T.M., et al., *SARS-CoV-2 Infection Depends on Cellular Heparan Sulfate and ACE2*. Cell, 2020. **183**(4): p. 1043-1057.e15.

886 57. Hart, T., et al., *High-Resolution CRISPR Screens Reveal Fitness Genes and Genotype-Specific Cancer Liabilities*. Cell, 2015. **163**(6): p. 1515-26.

887 58. Rosa, B.A., et al., *IFN signaling and neutrophil degranulation transcriptional signatures are induced during SARS-CoV-2 infection*. Communications Biology, 2021. **4**(1): p. 290.

888 59. Finkel, Y., et al., *SARS-CoV-2 uses a multipronged strategy to impede host protein synthesis*. Nature, 2021. **594**(7862): p. 240-245.

889 60. Bercovich-Kinori, A., et al., *A systematic view on influenza induced host shutoff*. Elife, 2016. **5**.

890 61. Finkel, Y., et al., *The coding capacity of SARS-CoV-2*. Nature, 2021. **589**(7840): p. 125-130.

891 62. Rebendenne, A., et al., *Bidirectional genome-wide CRISPR screens reveal host factors regulating SARS-CoV-2, MERS-CoV and seasonal coronaviruses*. bioRxiv, 2021: p. 2021.05.19.444823.

892 63. Voelker, D.R. and M. Numata, *Phospholipid regulation of innate immunity and respiratory viral infection*. J Biol Chem, 2019. **294**(12): p. 4282-4289.

893 64. Bollag, W.B. and J.N. Gonzales, *Phosphatidylglycerol and surfactant: A potential treatment for COVID-19?* Med Hypotheses, 2020. **144**: p. 110277.

894 65. Mao, B., et al., *Kremen proteins are Dickkopf receptors that regulate Wnt/beta-catenin signalling*. Nature, 2002. **417**(6889): p. 664-7.

895 66. Zebisch, M., et al., *Structure of the Dual-Mode Wnt Regulator Kremen1 and Insight into Ternary Complex Formation with LRP6 and Dickkopf*. Structure, 2016. **24**(9): p. 1599-605.

896 67. Staring, J., et al., *KREMEN1 Is a Host Entry Receptor for a Major Group of Enteroviruses*. Cell Host Microbe, 2018. **23**(5): p. 636-643.e5.

897 68. Gu, Y., et al., *Interaction network of SARS-CoV-2 with host receptome through spike protein*. bioRxiv, 2020.

898 69. Schultz, D.C., et al., *SETDB1: a novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins*. (0890-9369 (Print)).

899 70. Jiang, Y., et al., *Epigenetic activation during T helper 17 cell differentiation is mediated by Tripartite motif containing 28 (2041-1723 (Electronic))*.

900 71. Kamitani, S., et al., *KAP1 regulates type I interferon/STAT1-mediated IRF-1 gene expression*. (1090-2104 (Electronic)).

931 72. Krischuns, T., et al., *Phosphorylation of TRIM28 Enhances the Expression of IFN- β and Proinflammatory Cytokines During*
932 *HPAIV Infection of Human Lung Epithelial Cells.* (1664-3224 (Electronic)).

933 73. Tovo, P.A., et al., *COVID-19 in Children: Expressions of Type I/II/III Interferons, TRIM28, SETDB1, and Endogenous*
934 *Retroviruses in Mild and Severe Cases.* LID - 10.3390/ijms22147481 [doi] LID - 7481. (1422-0067 (Electronic)).

935 74. Bruno, M.D., et al., *GATA-6 activates transcription of surfactant protein A.* J Biol Chem, 2000. **275**(2): p. 1043-9.

936 75. Silveyra, P. and J. Floros, *Genetic complexity of the human surfactant-associated proteins SP-A1 and SP-A2.* Gene, 2013.
937 **531**(2): p. 126-32.

938 76. Islam, A., et al., *Transcriptome of nasopharyngeal samples from COVID-19 patients and a comparative analysis with other*
939 *SARS-CoV-2 infection models reveal disparate host responses against SARS-CoV-2.* (1479-5876 (Electronic)).

940 77. Chou, C.F., et al., *ACE2 orthologues in non-mammalian vertebrates (Danio, Gallus, Fugu, Tetraodon and Xenopus).* Gene,

941 2006. **377**: p. 46-55.

942 78. Pedersen, K.B., et al., *The transcription factor HNF1 α induces expression of angiotensin-converting enzyme 2 (ACE2) in*
943 *pancreatic islets from evolutionarily conserved promoter motifs.* Biochim Biophys Acta, 2013. **1829**(11): p. 1225-35.

944 79. Nomura, S., et al., *Pyrrothiogatain acts as an inhibitor of GATA family proteins and inhibits Th2 cell differentiation in vitro.*
945 *Sci Rep*, 2019. **9**(1): p. 17335.

946 80. Bushweller, J.A.-O., *Targeting transcription factors in cancer - from undruggable to reality.* (1474-1768 (Electronic)).

947 81. Henley, M.A.-O. and A.A.-O. Koehler, *Advances in targeting 'undruggable' transcription factors with small molecules.* (1474-
948 1784 (Electronic)).

949 82. Huigol, D.A.-O., et al., *Transcription Factors That Govern Development and Disease: An Achilles Heel in Cancer.* LID -
950 10.3390/genes10100794 [doi] LID - 794. (2073-4425 (Electronic)).

951 83. Yahalom-Ronen, Y., et al., *A single dose of recombinant VSV- Δ G-spike vaccine provides protection against SARS-CoV-2*
952 *challenge.* Nat Commun, 2020. **11**(1): p. 6402.

953 84. Li, W., et al., *MAGECK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens.*
954 *Genome Biol*, 2014. **15**(12): p. 554.

955 85. Subramanian, A., et al., *Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide*
956 *expression profiles.* Proc Natl Acad Sci U S A, 2005. **102**(43): p. 15545-50.

957 86. Liberzon, A., et al., *The Molecular Signatures Database (MSigDB) hallmark gene set collection.* Cell Syst, 2015. **1**(6): p. 417-
958 425.

959 87. Szklarczyk, D., et al., *STRING v11: protein-protein association networks with increased coverage, supporting functional*
960 *discovery in genome-wide experimental datasets.* Nucleic Acids Res, 2019. **47**(D1): p. D607-d613.

961 88. Shannon, P., et al., *Cytoscape: a software environment for integrated models of biomolecular interaction networks.* Genome

962 *Res*, 2003. **13**(11): p. 2498-504.

963

964

965

966

967

968

969

970

971

972

973

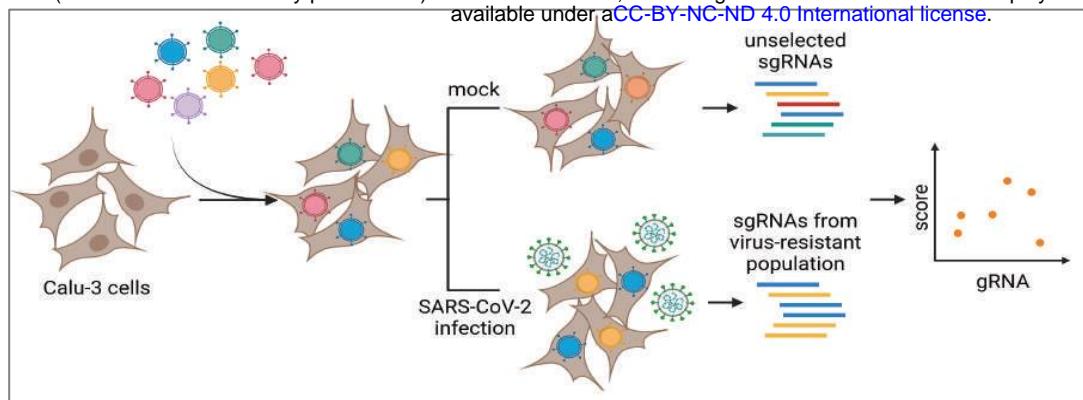
974

975

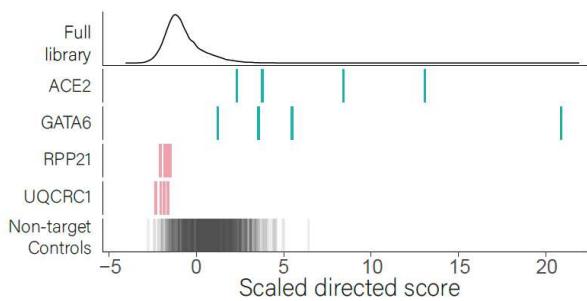
976

977

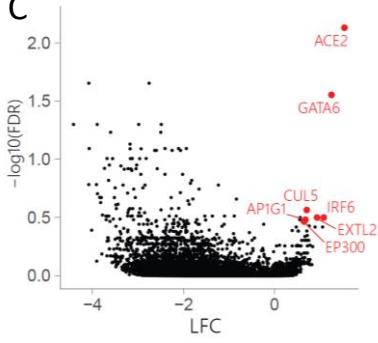
978

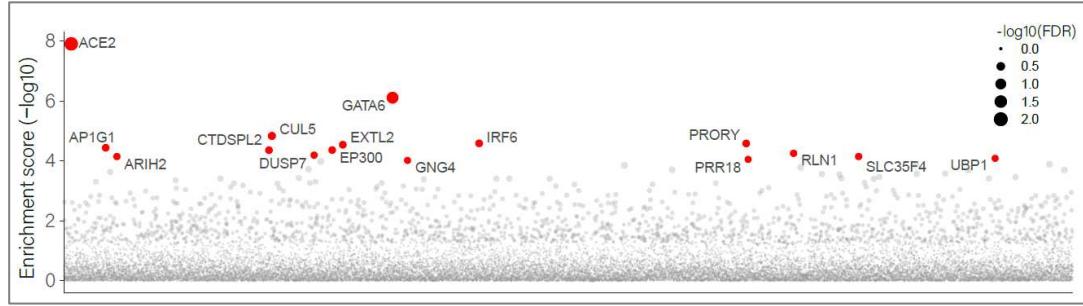

979

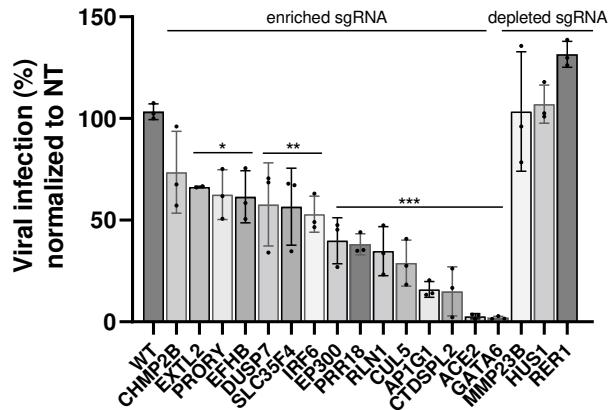
980

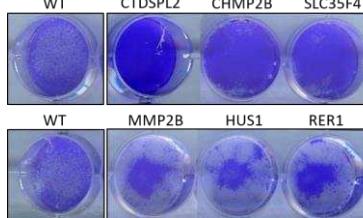

981

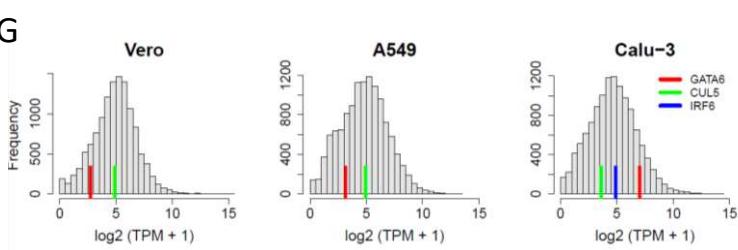
982

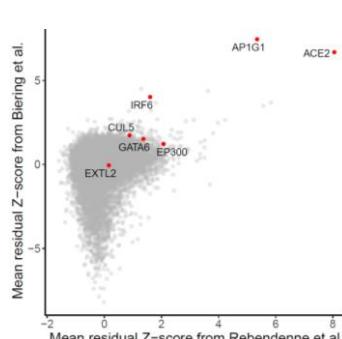

A


B

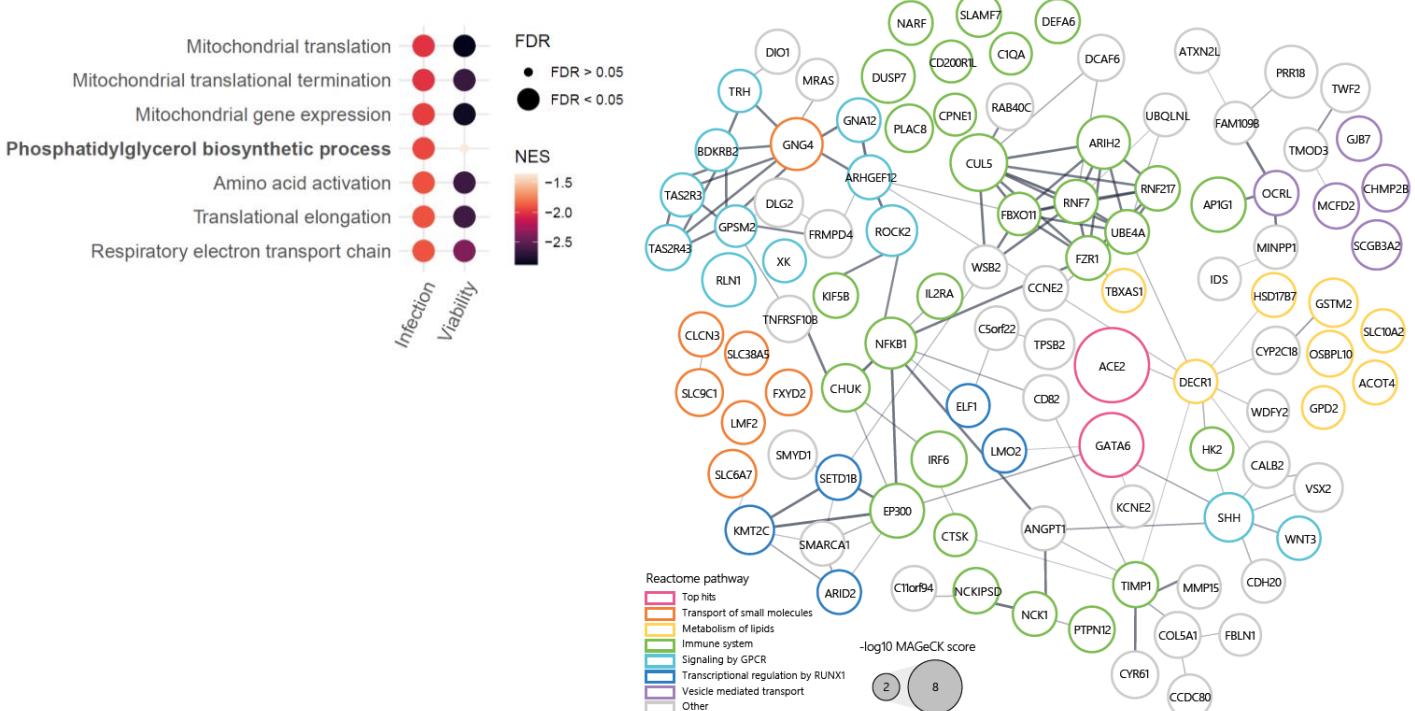

C


D

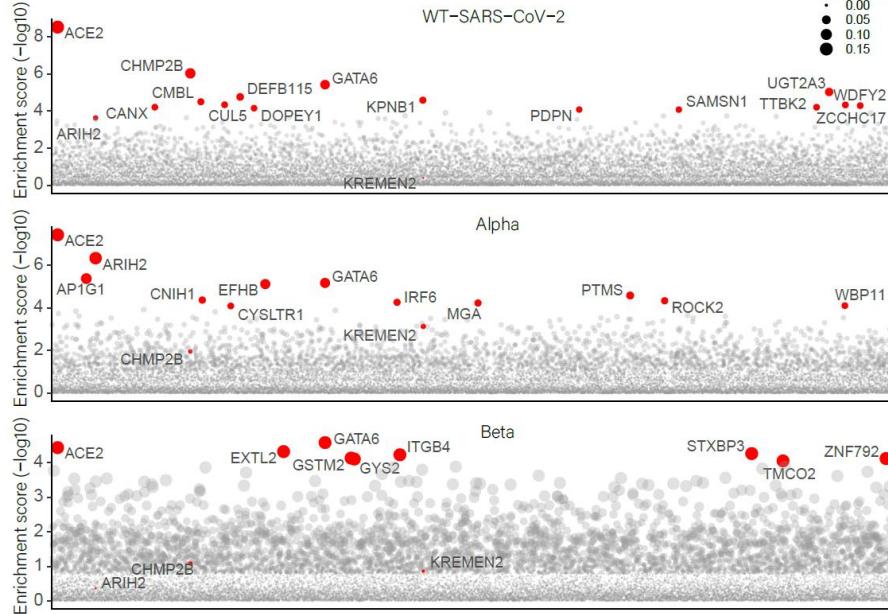

E


F

G



H


Figure 1. CRISPR genome-wide screens in human Calu-3 cells identify host factors important for infection by wild-type SARS-CoV-2 and variants of concern. **(A)** Schematic of genome-wide CRISPR screening workflow for the identification of SARS-CoV-2 host factors. Calu-3 cells were transduced with the Brunello CRISPR library, selected with puromycin and infected with WT-SARS-CoV-2, Alpha or Beta VOCs. Surviving cells were harvested 7-9 days post infection (dpi). The abundance of each sgRNA in the mock controls and selected population was determined by high-throughput sequencing and a gene enrichment analysis was performed. The figure was created with [BioRender.com](https://biorender.com). **(B)** Performance in the screens of example sgRNAs. The density across the screens is plotted for the full library (top) and for the 4 sgRNAs targeting top resistance hits, top sensitization hits and the non-targeting control sgRNA. **(C)** Volcano plot showing top genes conferring resistance and sensitivity to SARS-CoV-2. Top pro-viral candidates identified in our screens are displayed. **(D)** Gene enrichment score for CRISPR screens of WT-SARS-CoV-2 and VOCs infection. Enrichment scores were determined by MaGECK. **(E)** real-time PCR quantification of WT-SARS-CoV-2 levels in wild-type and CRISPR-edited Calu-3 cells. A non-targeting (NT) sgRNA was used as control. Cells were infected using MOI=0.002 for 48 hours. Data were analyzed by one-way ANOVA with Tukey's multiple comparison test. Shown are means \pm SD. *p < 0.05; **p < 0.005; ***p < 0.0001. **(F)** Cell viability assay of wild-type and individual CRISPR-edited Calu-3 cells infected with WT-SARS-CoV-2 at MOI of 0.002 for 48 hours and stained with crystal violet. One of three repetitions is shown. **(G)** Histograms of mRNA levels in Calu-3, Vero-E6 and A549 cells [66-68], normalized to transcripts per million (TPM). Red, green and blue lines represent the levels of GATA6, CUL5 and IRF6 respectively in each dataset. IRF6 is below threshold in A549 and Vero-E6 cells. **(H)** Comparative analysis of previously reported SARS-CoV-2 knockout screens performed in the Calu-3 cell-line [21, 62]. Top pro-viral candidates identified in our screens are displayed.

A

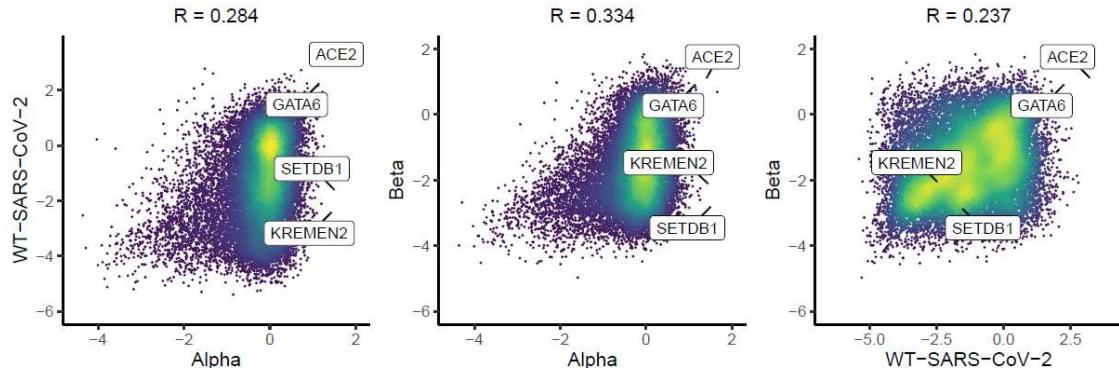
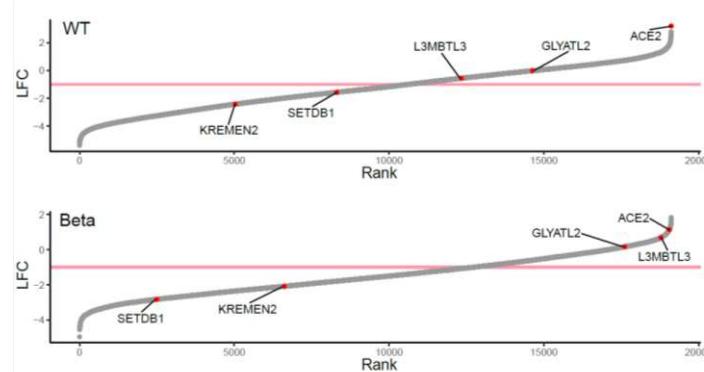
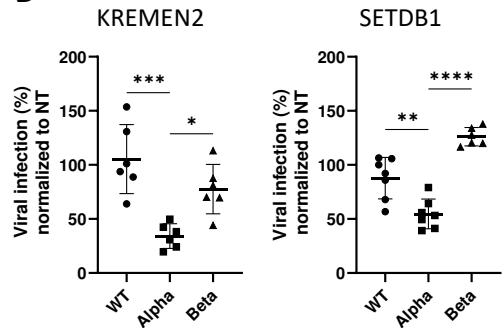
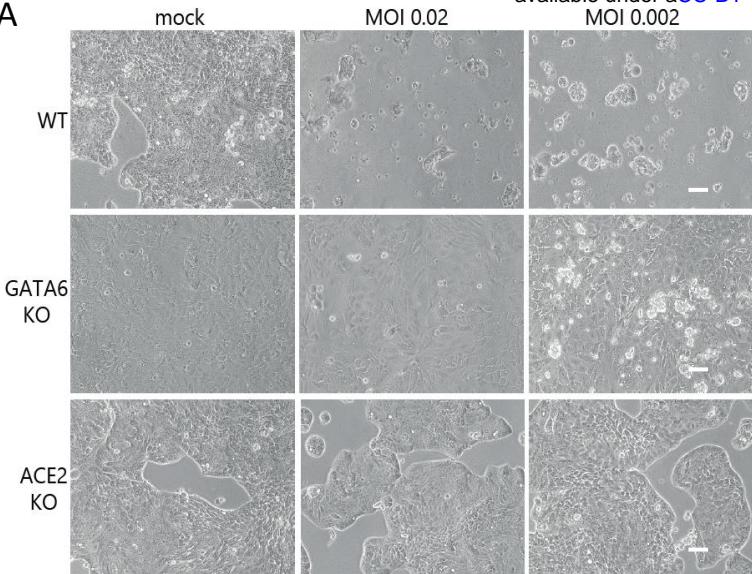


Figure 2. Gene set enrichment and interaction networks analysis identify functional pathways important for wild-type SARS-CoV-2 and variants of concern infection. (A) Gene set enrichment analysis (GSEA) was performed by analysis of the directed scores of all genes from the WT-SARS-CoV-2 and VOCs screens combined (infection), and for the uninfected cell viability screen (viability). Results from the infection screens were filtered to get significantly enriched pathways with false discovery rate (FDR) of less than 0.01. The enrichment of each of these pathways in each screen is represented as bubbles colored by Normalized enrichment score (NES) and sized by significance levels. **(B)** Protein-protein interaction network for top 200 enriched hits from all strain screens combined based on STRING analysis. Edge thickness represents interaction score. Nodes are colored by selected REACTOME pathways and sized according to log10 transformed screen enrichment score


A


B

C



D

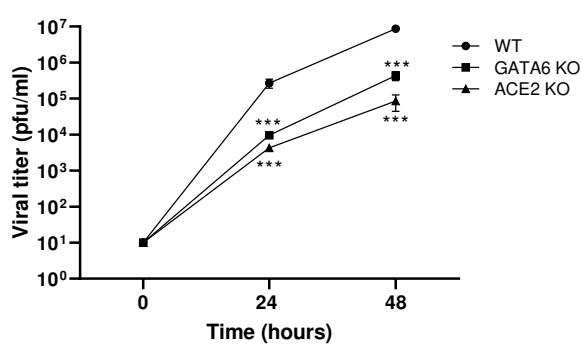
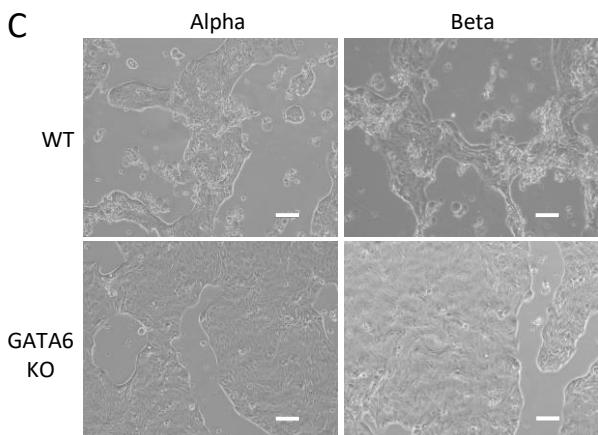
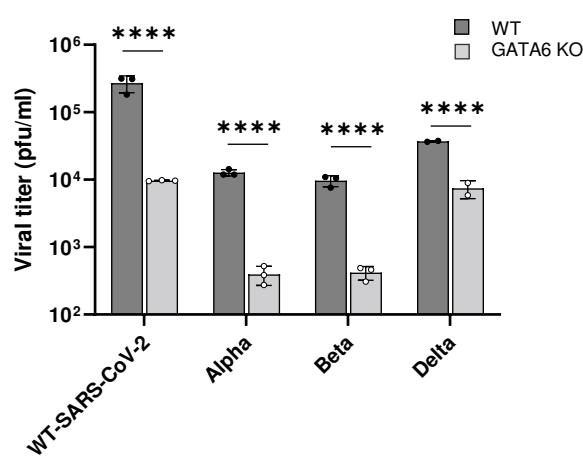
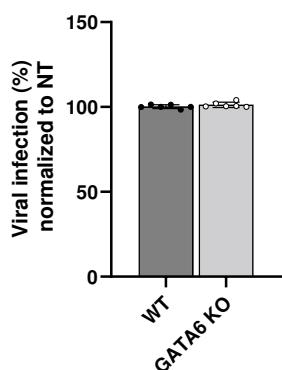


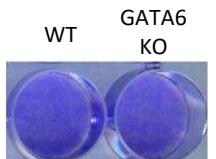
Figure 3. Differential analysis of variants of SARS-CoV-2 screens highlights shared and specific host-factors dependencies. **(A)** Gene enrichment score for CRISPR screens of WT-SARS-CoV-2, Alpha and Beta variants infection. Enrichment scores were determined by MaGECK. **(B)** Scatter plot depicting gene enrichment in WT-SARS-CoV-2, Alpha and Beta variants screens. R, Pearson correlation. **(C)** Rank plot showing the log fold-change (LFC) of genes in the WT-SARS-CoV-2 screen (top) or the Beta variant screen (bottom) and its rank according to their LFC (lowest LFC ranked 1). Each gene is shown as a grey point. The top five most enriched genes in the Alpha variant screen (based on fold-change) are labeled and shown in red. A pink line marks LFC of -1. **(D)** real-time PCR quantification of WT-SARS-CoV-2, Alpha and Beta VOCs levels in infected KREMEN2 and SETDB1 knockout Calu-3 cells. Cells were infected using MOI=0.002 for 48 hours. A non-targeting (NT) sgRNA was used as control. Data were analyzed by one-way ANOVA with Dunnett's multiple comparisons test, comparing each experimental condition with Alpha variant. Shown are means \pm SD. *p < 0.05; **p < 0.001; ***p < 0.0005; ****p < 0.0001.

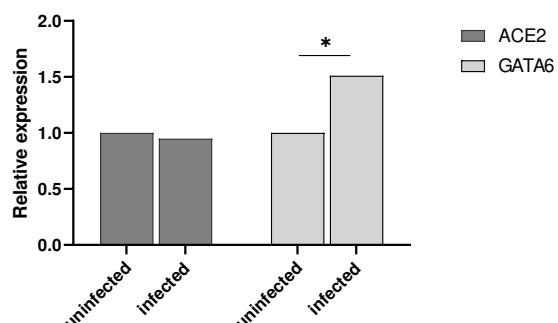

A

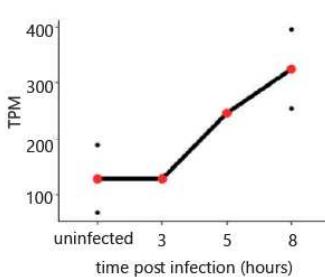
B


C

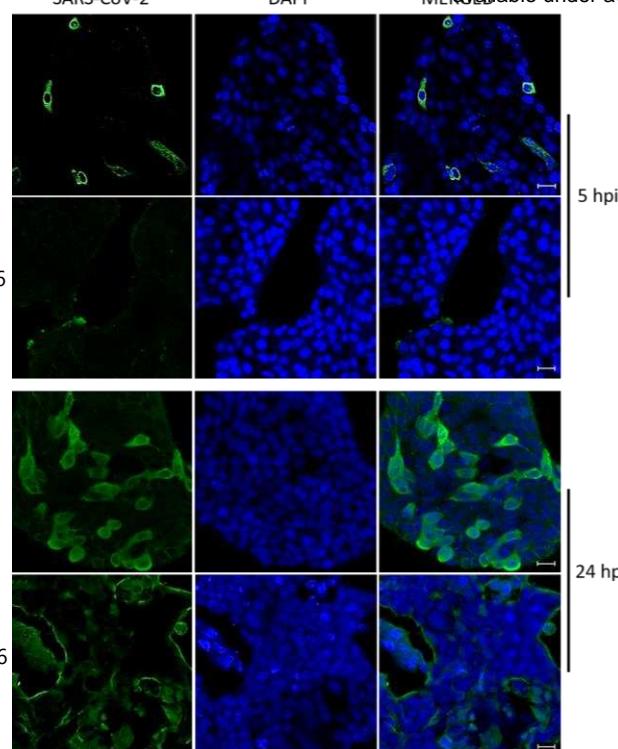

D

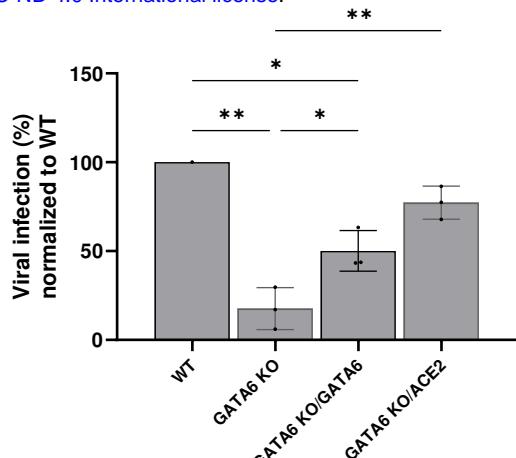

E


F


G

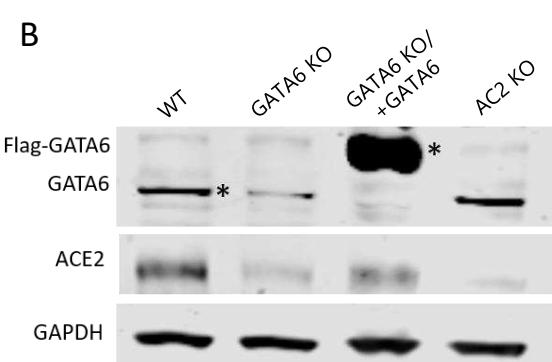
H

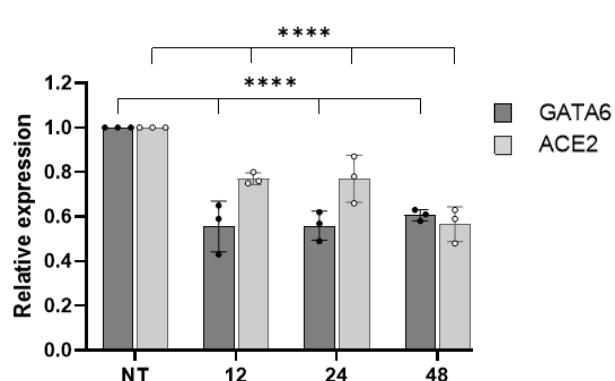

I

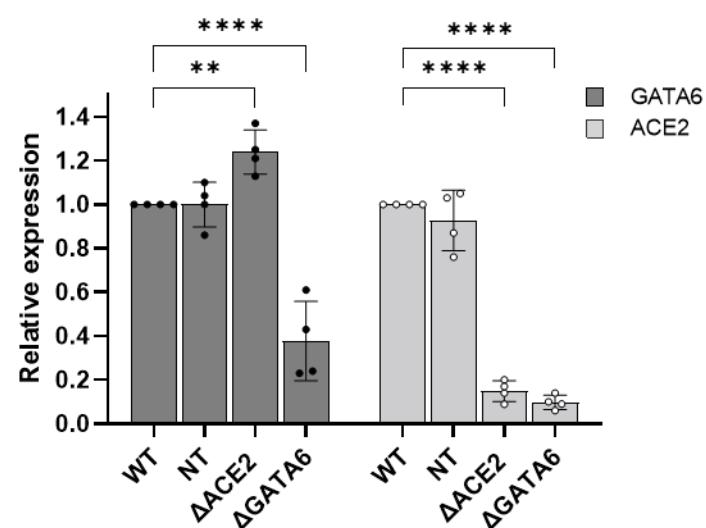

Figure 4. GATA6 is a pro-viral host factor that is upregulated in response to infection. (A)

Control, GATA6 and ACE2 disrupted Calu-3 cells were infected with WT-SARS-CoV-2 at the indicated MOI. Cell viability was visualized by light microscopy 48 hours post infection. Scale bar 100um. Representative images of three independent replicates are shown. **(B)** Supernatants were collected from WT and GATA6 knockout cells infected with SARS-CoV-2 at the indicated time points. Virus production, as measured by plaque-forming units (PFU) per milliliter, was determined by plaque assay. Representative results of two independent experiments are shown. **(C)** Control and GATA6 disrupted Calu-3 cells were infected with the Alpha or the Beta VOCs at MOI=0.002. Cell viability was visualized by light microscopy 48 hours post infection. Scale bar 100um. Representative images of three independent replicates are shown. **(D)** Cell viability assay of Control and GATA6 disrupted Calu-3 cells infected with the indicated SARS-CoV-2 variant at MOI of 0.002 for 48 hours, and stained with crystal violet. One of three repetitions is shown. **(E)** real-time PCR quantification of WT-SARS-CoV-2, Alpha, Beta and Delta VOCs levels in infected control and GATA6 disrupted Calu-3 cells. Cells were infected using MOI=0.002 for 48 hours. Data were analyzed by one-way ANOVA with Šídák's multiple comparisons test. Shown are means \pm SD. ***p < 0.0001. **(F)** real-time PCR quantification of control and GATA6 disrupted Vero-E6 cells infected with WT-SARS-CoV-2 at MOI of 0.002 for 48 hours. Shown are means \pm SD. Data were analyzed by two-tailed student's t-test. **(G)** Cell viability assay of Control and GATA6 disrupted Vero-E6 cells infected with WT-SARS-CoV-2 at MOI of 0.002 for 48 hours, and stained with crystal violet. One of three repetitions is shown. **(H)** real-time PCR measurements of ACE2 and GATA6 mRNA levels relative to GAPDH amount in negative (uninfected) and positive (infected) nasopharyngeal swab samples from symptomatic and asymptomatic individuals. Data were analyzed by two-tailed student's t-test, *p<0.05. **(I)** Expression levels of GATA6 at different times along SARS-CoV-2 infection in Calu-3 cells [67] normalized to transcripts per million (TPM) values. Values from single replicates shown for 03hr and 05hr. Mean values of duplicates shown for uninfected and 08hr in red, and individual replicate values are presented as black points.

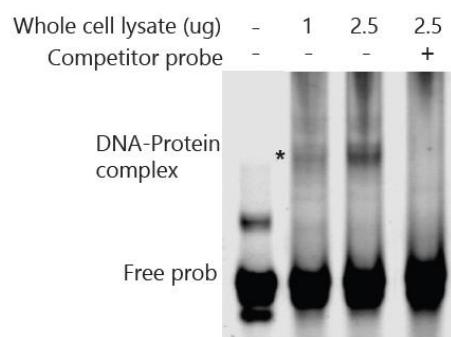
A


-B

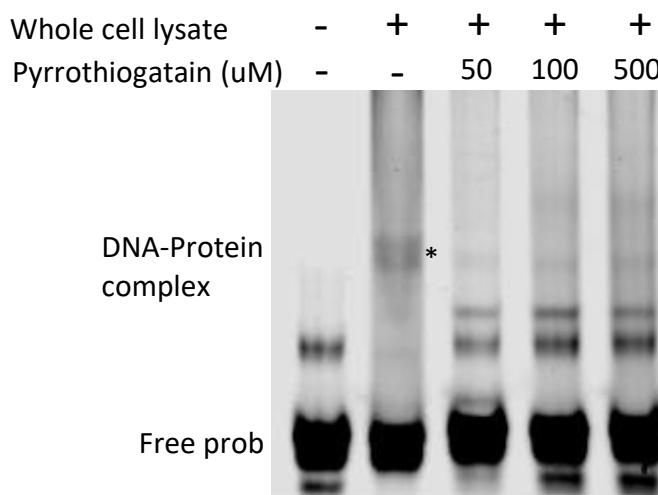

F


B

E


6

6


GGGGAGATCACAAAGCTGGAGAGATAGAGACGGTCTGACTAACACGGTGAACCCGGTCTCTATTAAAAAA
TACAAAGAAAATCTGGCTGGGGCTGTGTTGCGGACCTGACTGGCTGGGGACTGAGGCGAC
ATGGCTGCAAGCTTGGGGAGCAGGACCTGTTGACGACGGATCGCAGGCTGGGGAC
AGACCCGAGACTCATCTCCTAAGAAAAAAAGAAAAAAACCTGAGAAATGATGAAATTCTCATAAAGACAA
AGGAAAATCATGATATTTCGAGGAAAATGTTGGGAGCAGTAAAGTGTCTGGGAAATGATGTTCTGCA
ATTTAAAATTAATGATGAGAACCTATTTATGAAATTTGTTCAAAACATACACACACACAACTATTCCTC
ATGATGCTGGTCTGGGCTCTGGGCTGAGTAAAGAAAATTTGTTCTGCA
CTGGGCTGAGTAAAGAAAATTTGTTCTGCA
TCTGAGGAAAATTTAACCAAAACTGGGCTTGTGTTGATGCGGATTAATGAACTGAGGAGGAAAGGAAATGTC
TAGGGTAAAGAAATGAACTTATCTGTTGATCTTTAAAGGAAATTTCTAAATGCTGATGACATCT
GCTCTCCTGGAGGATGACTTATATGGCTGACAGATGTTGACTGTTGCTCTCTTCTTCTTCTT
TAGCTGAGGTTCTGGCTACCGGGGACCCAACTCAAGACGCTGAGACAGAAATTCATCAGCGAGGTTT
TAGCTGAGGTTCTGGCTACCGGGGACCCAACTCAAGACGCTGAGACAGAAATTCATCAGCGAGGTTT

H

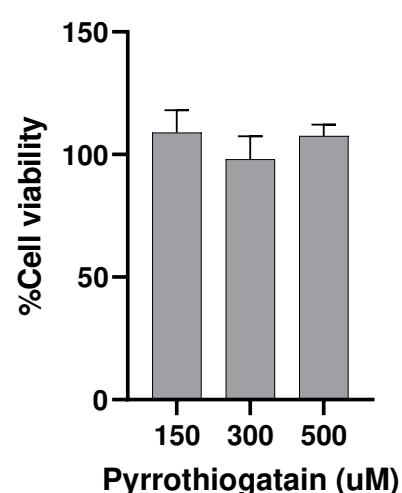
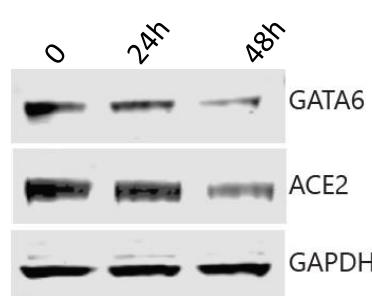
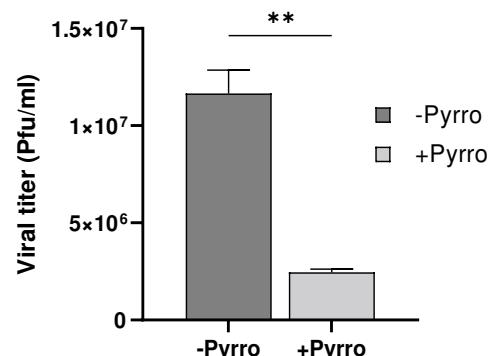
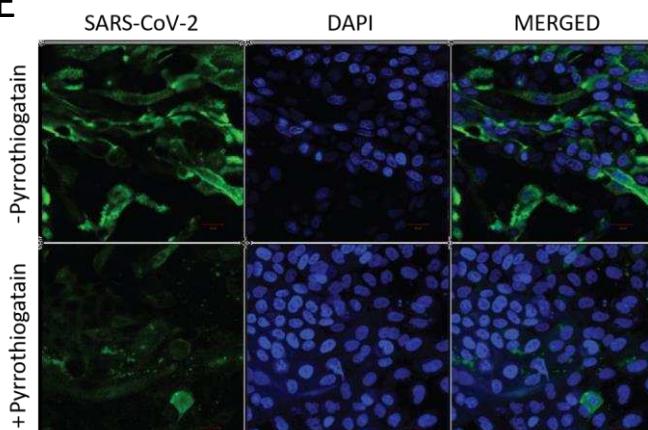
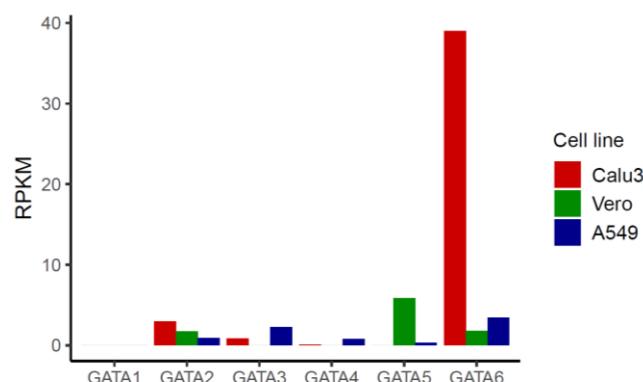


Figure 5. GATA6 is a novel regulator of ACE2. (A) WT-SARS-CoV-2 infected control and GATA6-disrupted Calu-3 cells were fixed 5 and 24 hours post infection and stained with antisera against SARS-CoV-2 (green) and DAPI (blue). Scale bar, 20um. **(B)** Western blot for the detection of GATA6 and ACE2 levels was performed in WT, ACE2 knockout, GATA6 knockout and complemented Calu-3 cells. **(C)** ACE2 and GATA6 mRNA levels relative to GAPDH amount were analyzed in WT, NT control, ACE2 and GATA6 knockout Calu-3 cells by real time PCR. **(D)** real-time PCR quantification of WT-SARS-CoV-2 in infected WT, GATA6 knockout and GATA6 knockout complemented by GATA6 or ACE2 expression Calu-3 cells. Cells were infected using MOI=0.002 for 48 hours. Data were analyzed by one-way ANOVA with Tukey's multiple comparison test Shown are means \pm SD. *p < 0.05; **p < 0.005. **(E)** Cell viability of control, GATA6 knockout and GATA6 knockout complemented by GATA6 or ACE2 cells infected with WT-SARS-CoV-2 variant at MOI of 0.002 for 48 hours, and stained with crystal violet. One of three repetitions is shown. **(F)** Cells transfected with a control or siRNAs targeting GATA6 were analyzed by real-time PCR for GATA6 and ACE2 expression relative to GAPDH amount. Data were analyzed by one-way ANOVA with Tukey's multiple comparison test Shown are means \pm SD. ****p < 0.0001. **(G)** ACE2 ATG codon upstream sequences from nucleotide -1 to -820 are shown. Sequences shown framed in bold are potential GATA binding sites. **(H)** Electrophoretic Mobility Shift Assays (EMSA) of lysates from HEK293T cells over expressing GATA6 with labeled oligonucleotides derived from the promoter region of ACE2 results in the formation of protein-DNA complexes, which was prevented by competitive unlabeled oligonucleotides.

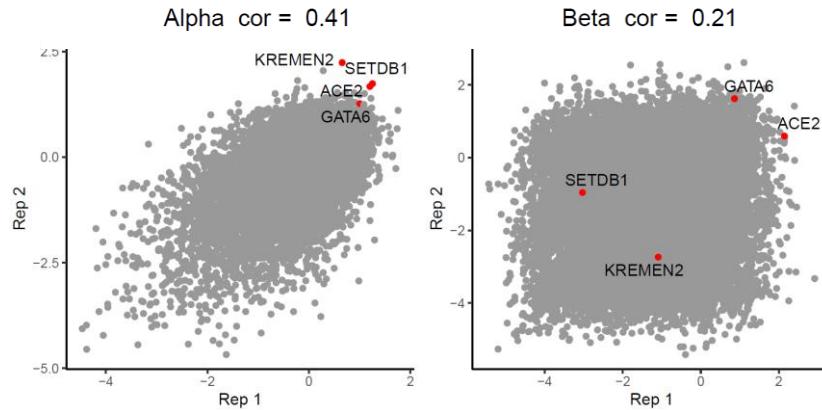

A


B

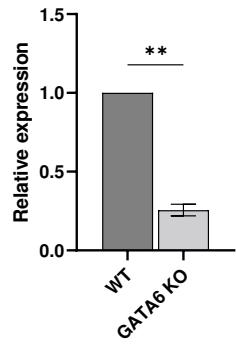

C


D

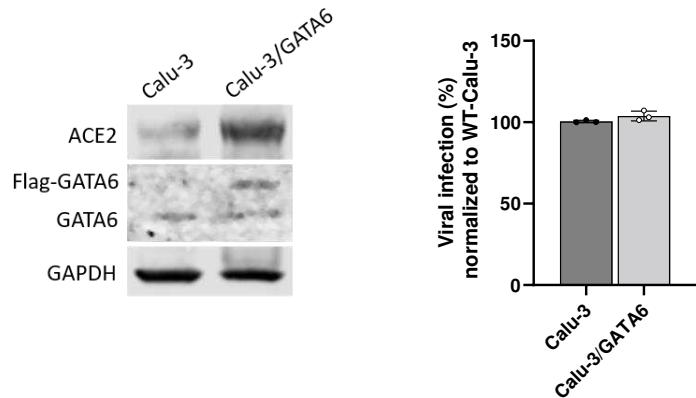
E



F


Figure 6. GATA6 may serve as a potential host directed therapeutic target. **(A)** Electrophoretic mobility shift assay (EMSA) of lysates from HEK293T cells over expressing GATA6 with labeled oligonucleotides derived from the promoter region of ACE2 in the presence of various concentrations of Pyrrothiogatain (0 to 500 μ M). **(B)** The effect of various concentrations of Pyrrothiogatain on Calu-3 cell proliferation was determined using the XTT assay and presented as a percentage of cell viability of untreated cells. **(C)** Calu-3 cells were treated with 500uM Pyrrothiogatain and the expression of GATA6 and ACE2 were analyzed by Western blot at the indicated time. **(D)** real-time PCR quantification of WT-SARS-CoV-2 in Calu-3 cells that were pretreated with 500uM Pyrrothiogatain. Cells were infected using MOI=0.002 for 48 hours. Data were analyzed by two-tailed student's t-test. Shown are means \pm SD. **p < 0.01. **(E)** Calu-3 cells pretreated with 500uM Pyrrothiogatain and infected with WT-SARS-CoV-2. Cells were fixed 24 hours post infection and stained with antisera against SARS-CoV-2 (green) and DAPI (blue). Scale bar, 20um. **(F)** mRNA read densities (reads per kilobase million, RPKM) of the six members of the GATA family in uninfected Calu-3 (red), Vero-E6 (green) and A549 cells (blue) [66-68].

Supplemental Fig. S1. LFCs in each replicate of alpha and beta


Supplemental Fig. S1. Reproducibility of the log fold change (LFC) of sgRNAs between replicates of the screens of Alpha and Beta VOCs. Top pro-viral candidates identified in our screens are displayed.

Supplemental Fig. S2. Disruption of GATA6 in Vero-E6 cells

Supplemental Fig. S2. real-time PCR measurements of GATA6 mRNA levels relative to GAPDH amount in Control and GATA6 disrupted Vero-E6 cells.

Supplemental Fig. S3. Over-expression of GATA6 in Calu-3 cells

Supplemental Fig. S3. (A) Western blot for the detection of GATA6 and ACE2 levels was performed in control and GATA6-over expressed Calu-3 cells. **(B)** real-time PCR quantification of WT-SARS-CoV-2 in control and GATA6-over expressed Calu-3 cells. Cells were infected using MOI=0.002 for 48 hours. Data were analyzed by two-tailed student's t-test. Shown are means \pm SD.