

1 **Title:** A conditioned place preference for heroin is signaled by increased dopamine and direct pathway
2 activity and decreased indirect pathway activity in the nucleus accumbens

3

4 **Short title:** Accumbens activity signals heroin conditioned place preference

5

6 **Authors:** Timothy J. O'Neal¹⁻⁴, Mollie X. Bernstein¹, Derek J. MacDougall³, Susan M. Ferguson²⁻⁴

7

8 **Affiliations:** ¹Graduate Program in Neuroscience, University of Washington, Seattle, WA 98195

9 ²Department of Psychiatry & Behavioral Sciences, University of Washington, Seattle, WA 98195

10 ³Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101

11 ⁴Addictions, Drug & Alcohol Institute, University of Washington, Seattle, WA 98195

12

13 **Contact info:** Susan M. Ferguson (SMF) – smfergus@uw.edu

14

15 **Conflict of interest statement:** The authors declare no competing financial interests.

16

17 **Acknowledgements:** This work was supported by grants from the National Institute on Drug Abuse
18 (F31DA047012 to TJO, R01DA036582 to SMF) and the UW Addictions, Drug & Alcohol Institute (ADAI-
19 0138 to TJO). We thank Dr. John Neumaier and Dr. Michelle Kelly for providing the CAV2-Cre virus, the
20 UW Molecular Genetics Resource Core (P30DA048736) for producing the AAV1-dLight1.3b virus, and
21 Dr. Elizabeth Crummy, Dr. Scott Ng-Evans, and Joshua O'Neal for programming assistance.

22 **ABSTRACT**

23 Initial drug use promotes the development of conditioned reinforcement, whereby the reinforcing
24 properties of a drug become attributed to drug-associated stimuli, such as cues and contexts. A principal
25 role for the nucleus accumbens (NAc) in the response to drug-associated stimuli has been well-
26 documented. In particular, direct and indirect pathway medium spiny neurons (dMSNs and iMSNs) have
27 been shown to bidirectionally regulate cue-induced heroin-seeking in rats expressing addiction-like
28 phenotypes, and a shift in NAc activity towards the direct pathway has been shown in mice following
29 cocaine conditioned place preference (CPP). However, how NAc signaling guides heroin CPP, and
30 whether heroin alters the balance of signaling between dMSNs and iMSNs remains unknown. Moreover,
31 the role of NAc dopamine signaling in heroin reinforcement remains unclear. Here, we integrate fiber
32 photometry for *in vivo* monitoring of dopamine and dMSN/iMSN calcium activity with a heroin CPP
33 procedure in rats to address these outstanding questions. We identify a sensitization-like response to
34 heroin in the NAc, with prominent iMSN activity during initial heroin exposure and prominent dMSN
35 activity following repeated heroin exposure. We demonstrate a ramp in dopamine activity, dMSN
36 activation, and iMSN inactivation preceding entry into a heroin-paired context, and a decrease in
37 dopamine activity, dMSN inactivation, and iMSN activation preceding exit from a heroin-paired context.
38 Finally, we show that buprenorphine is sufficient to prevent the development of heroin CPP and activation
39 of the NAc post-conditioning. Together, these data support the hypothesis that an imbalance in NAc
40 activity contributes to the development of addiction.

41 **SIGNIFICANCE STATEMENT**

42 The attribution of the reinforcing effects of drugs to neutral stimuli (e.g., cues and contexts) contributes to
43 the maintenance of addiction, as re-exposure to drug-associated stimuli can reinstate drug seeking and
44 taking even after long periods of abstinence. The nucleus accumbens (NAc) has an established role in
45 encoding the value of drug-associated stimuli, and dopamine release into the NAc is known to modulate
46 the reinforcing effects of drugs, including heroin. Using fiber photometry, we show that entering a heroin-
47 paired context is driven by dopamine signaling and NAc direct pathway activation, whereas exiting a
48 heroin-paired context is driven by NAc indirect pathway activation. This study provides further insight into
49 the role of NAc microcircuitry in encoding the reinforcing properties of heroin.

50 **INTRODUCTION**

51 The opioid epidemic remains a major public health crisis in the United States, with relapse rates and
52 overdose-related fatalities continuing to rise (Hedegaard et al., 2018). One critical mechanism underlying
53 persistent drug-craving is conditioned drug reinforcement: the attribution of the reinforcing properties of a
54 drug to a previously neutral stimulus (conditioned stimulus (CS); e.g., cues, contexts) (Everitt et al., 2018).
55 Re-exposure to a drug-paired CS can reinstate drug-seeking following action/outcome devaluation
56 (Shaham et al., 2003) or prolonged abstinence (Grimm et al., 2001). The nucleus accumbens (NAc)
57 integrates cortical and subcortical inputs to guide behavioral processes associated with addiction,
58 including associative learning, decision making, and motivation (Gerfen and Surmeier, 2011; Calabresi et
59 al., 2014; Koob and Volkow, 2016). The NAc is heterogeneous, and predominantly comprised of two
60 interspersed populations of medium spiny neurons (MSNs): direct pathway MSNs (dMSNs) that project to
61 the ventral tegmental area (VTA) and primarily express the dopamine (DA) D1 receptor, and indirect
62 pathway MSNs (iMSNs) that project to the ventral pallidum (VP) and primarily express the DA D2
63 receptor. These cell populations can have opposing control over behavioral output, with dMSNs serving
64 as a “go” signal to facilitate behavioral actions and iMSNs serving as a “stop” signal to suppress or
65 terminate unwanted actions (Albin et al., 1989; Kravitz et al., 2010; Cui et al., 2013; Macpherson et al.,
66 2014). Moreover, emerging evidence has demonstrated a role for NAc dMSNs and iMSNs in encoding
67 variability to the addictive effects of illicit drugs (Volkow et al., 2002; Nader et al., 2006; Belin et al., 2008;
68 Bock et al., 2013; Yager et al., 2019; O’Neal et al., 2020), highlighting a central role for NAc MSNs in the
69 transition to addiction.

70

71 Midbrain DA release into the NAc is central to the rewarding effects of illicit drugs (Crummy et al., 2020),
72 and phasic DA release into the NAc promotes drug-seeking (Phillips et al., 2003). In addition to slower
73 modulation of dMSNs and iMSNs via activation of G-protein coupled D1 and D2 receptors, DA can rapidly
74 modulate these neuronal populations via opening of IP_3 receptors and release of intracellular Ca^{2+}
75 (Swapna et al., 2016), a process that is integral for the propagation of Ca^{2+} waves and heterosynaptic
76 plasticity in the NAc (Bailey et al., 2000; Plotkin et al., 2013). *In vivo* imaging of dMSN and iMSN Ca^{2+}

77 activity has revealed a rapid increase in dMSN activity and a progressive decrease in iMSN activity after
78 acute cocaine exposure (Luo et al., 2011), as well as a persistent attenuation of iMSN activity after
79 chronic cocaine treatment (Park et al., 2013); all of which lead to a long-lasting predominance of dMSN
80 over iMSN signaling. Moreover, a ramping of dMSN Ca^{2+} activity along with a concomitant decrease in
81 iMSN activity has been observed in mice preceding entry into a context associated with cocaine treatment
82 (Calipari et al., 2016). Importantly, psychostimulants and opioids have different mechanisms of action and
83 engage non-overlapping subcircuits to promote addictive behaviors (Badiani et al., 2011; Crummy et al.,
84 2020), so the temporal relationship between NAc signaling and heroin-seeking remains unknown.

85

86 While targeted manipulations of dMSNs and iMSNs have demonstrated oppositional control over
87 addictive behaviors (Lobo et al., 2010; Ferguson et al., 2011; O’Neal et al., 2020), it remains to be
88 determined how the acquisition of a heroin CS is encoded by DA, dMSN, and iMSN signaling in the NAc.
89 Thus, we combined fiber photometry for *in vivo* monitoring of NAc DA signaling and dMSN/iMSN Ca^{2+}
90 signaling with a heroin conditioned place preference (CPP) procedure. NAc activity was recorded during
91 early and late conditioning sessions to assess changes in the neural response over the course of
92 conditioning. Following conditioning, we examined temporally precise DA signaling and activity of dMSNs
93 and iMSNs during entries to and exits from contexts that had been paired with either saline or heroin and
94 compared these signals with those recorded pre-conditioning. Finally, we explored the effects of
95 buprenorphine, a partial mu opioid receptor agonist used in opioid-replacement therapy, on the
96 acquisition of heroin CPP and subsequent activation of the NAc.

97

98 MATERIALS AND METHODS

99 Subjects

100 Outbred female ($n = 40$; ~8 weeks old, 175-199 g at arrival; Envigo) and male ($n = 40$; ~8 weeks old, 250-
101 274 g at arrival; Envigo) Sprague-Dawley rats were pair-housed in a humidity- and temperature-controlled
102 vivarium, with *ad libitum* access to food and water throughout the experiments. Rats were acclimated to
103 the vivarium for at least five days and handled for at least three days prior to any procedures. All

104 procedures were done in accordance with the National Institutes of Health's Office of Laboratory Animal
105 Welfare and were approved by the Seattle Children's Research Institute's Institutional Animal Care and
106 Use Committee.

107

108 **Drugs**

109 Diamorphine HCl (heroin) was obtained through the Drug Supply Program of the National Institute on
110 Drug Abuse (NIDA) and was dissolved in sterile saline (0.9%) to a concentration of 1-3 mg/ml and
111 administered at a dose of 1 ml/kg. Buprenorphine was also obtained through the Drug Supply Program of
112 NIDA and was dissolved in sterile saline (0.9%) to a concentration of 0.2 mg/ml and administered at a
113 dose of 1 ml/kg.

114

115 **Viral vectors**

116 Adeno-associated viruses containing Flp recombinase (AAVrg-EF1a-flpo; #55637-AAVrg), Flp-dependent
117 GCaMP6s (AAV8-EF1a-fDIO-GCaMP6s; #105714-AAV8), and Cre-dependent RCaMP1b (AAV1-Syn-
118 FLEX-NES-jRCaMP1b-WPRE-SV40; #100850-AAV1) were acquired from Addgene and had titers of
119 $\geq 1 \times 10^{13}$ viral genomes/ml. dLight1.3b plasmid (AAV1-Syn-dLight1.3b) was acquired from Addgene
120 (#135762) and prepared by the UW Molecular Genetics Resource Core. Canine adenovirus containing
121 Cre recombinase (CAV2-Cre) had a titer of $\sim 2.5 \times 10^9$ viral genomes/ μ l and was prepared as previously
122 described (Kremer et al., 2009).

123

124 **Stereotaxic surgery**

125 Rats were anesthetized with isoflurane (3% induction, 1-2% maintenance; Patterson Veterinary) and
126 injected with meloxicam (1 mg/ml, 1 ml/kg sc; Patterson Veterinary) for analgesia. Following head-fixation
127 in a digital stereotax (Kopf Instruments), the skull was exposed and scored, and craniotomies were drilled
128 above target nuclei. Viral vectors were loaded into 10 μ l gas-tight syringes (Hamilton Company) and
129 infused unilaterally into target nuclei (500 nl per virus, 100 nl/min). Coordinates (in mm, relative to Bregma
130 (Paxinos et al., 1980)) were as follows: NAc [A/P +1.5, M/L +1.0, D/V -7.5], VP [A/P +0.2, M/L +2.0, D/V -

131 8.0], VTA [A/P -5.3, M/L +0.8 D/V -8.3]. To target dMSNs, AAVrg-EF1a-flpo was infused into the VTA and
132 AAV8-EF1a-fDIO-GCaMP6s was infused into the NAc. To target iMSNs, CAV2-Cre was infused into the
133 VP and AAV1-Syn-FLEX-NES-jRCaMP1b-WPRE-SV40 was infused into the NAc. Syringes were left in
134 place for an additional 5 min following infusion and slowly retracted to allow proper diffusion of virus into
135 target nuclei. Following viral infusion, fiber optic cannula (MFC_400/430-0.37_8mm_ZF2.5_FLT; >85%
136 transmittance; Doric Lenses) were implanted in the NAc medial shell [D/V -7.4] and secured with skull
137 screws, metabond (Patterson Dental), and dental cement.

138

139 **Fiber photometry**

140 Three weeks after surgery, fiber photometry recordings were performed using a multiplex photometry
141 system (FP3001; Neurophotometrics Ltd., San Diego, CA). Rats were acclimated to branching fiber optic
142 patch cords (BFP4_400/440/LWMJ-0.37_3m_SMA*-4xFC; Doric Lenses) for at least three days prior to
143 testing, and biosensor expression was confirmed the day prior to testing via brief (~5 min) home cage
144 recordings. For all recordings, LEDs were heated at 100% power for at least 5 min prior to recording to
145 minimize heat-induced LED decay during recordings, then reduced to <50 μ W for the duration of
146 recordings (415 nm and 470 nm: ~12.5 μ W; 560 nm: ~25 μ W). Photometry recordings with a single
147 biosensor (dLight1.3b imaging) used 2-phase cycling of 415 nm and 470 nm LEDs, and recordings with
148 two biosensors (dual GCaMP6s/RCaMP1b imaging) used 3-phase cycling of 415 nm, 470 nm, and 560
149 nm LEDs. Fluorescent signals were bandpass filtered, collimated, reflected by a dichroic mirror, and
150 focused by a 20x objective (0.40 NA) on the sensor of a CMOS camera. Signals were imaged at ~40 Hz,
151 collected via custom-written workflows in Bonsai, and exported for off-line analysis via custom-written
152 Python scripts.

153

154 **Conditioned place preference**

155 *CPP apparatus*

156 Behavioral sessions were conducted in custom-built acrylic chambers (TAP Plastics, Seattle, WA) with
157 two equally sized but visually distinct chambers (15" wide x 15" long x 12" tall), and a smaller center

158 chamber (6" wide x 15" long x 12" tall) separated from the outer chambers via removable guillotine doors
159 (3" wide x 12" tall). The walls of the two outer chambers were covered with visually distinct wallpapers
160 (honeycomb and zebra, both grayscale), and the floor of the entire apparatus was matte black to facilitate
161 behavioral tracking. USB cameras (2.1mm, wide-angle; ELP) were positioned above CPP chambers and
162 interfaced with Bonsai for motion tracking. Video streams were greyscaled and thresholded, and binary
163 region analysis was used to detect animal position within the CPP chambers. Chambers were cleaned
164 between sessions with 70% ethanol (w/v).

165

166 *CPP procedure*

167 Experimental parameters were chosen based on a meta-analysis of heroin CPP by Bardo et al., 1995 to
168 maximize potential effect sizes. The overall CPP procedure included an initial preference test (15 min,
169 beginning at 11:00), eight conditioning sessions (2x/day, 40 min each, beginning at 09:00 and 13:00), and
170 a final preference test (15 min, beginning at 11:00). During the preference tests, the guillotine doors were
171 removed, and subjects were placed in the center of the neutral chamber and allowed to freely explore the
172 full apparatus. During conditioning sessions, subjects received *ip* injections of saline (morning) or heroin
173 (afternoon) and were immediately confined to one of the outer chambers. Saline and heroin pairings were
174 assigned in a pseudorandomized, counterbalanced design to avoid sex or treatment biases with either
175 chamber. Pretreatment injections of buprenorphine were given 10 min prior to injections of saline or
176 heroin, when appropriate. All behavioral testing was done during the light cycle, due to the use of visual
177 cues for conditioning.

178

179 **Immunohistochemistry**

180 After behavioral testing, rats were deeply anesthetized with Euthasol (2 ml/kg *ip*; 3.9 mg/ml pentobarbital
181 sodium and 0.5 mg/ml phenytoin sodium; Patterson Veterinary) and transcardially perfused with
182 phosphate-buffered saline (PBS; pH = 7.4) followed by paraformaldehyde (PFA; 4% in PBS). Brains were
183 extracted, fixed overnight in 4% PFA, post-fixed for >48 h in sucrose (30% in PBS), and sectioned (50
184 μm) with a vibrating microtome. Floating sections were washed (PBS; 3x10 min), blocked (0.25% Triton-

185 X, 5% normal goat serum, PBS; 2h), and incubated with primary antibodies (0.25% Triton-X, 2.5% normal
186 goat serum, PBS; 24h) against Fos (1:800 rabbit anti-cFos, Cell Signaling #2250; RRID: AB_2247211) or
187 tyrosine hydroxylase (1:400 mouse anti-TH, Sigma #MAB318; RRID: AB_2201528). Sections were then
188 washed (PBS; 3x10 min) and incubated with secondary antibodies (0.25% Triton-X, 2.5% normal goat
189 serum, PBS; 2h) conjugated to AF-568 (1:500 goat-anti-rabbit, Life Technologies #A11011; RRID:
190 AB_143157) or AF-647 (1:500 goat-anti-mouse, Life Technologies #A21236; RRID: AB_2535805).
191 Finally, sections were washed (PBS; 3x10min), mounted on slides, and cover-slipped with mounting
192 medium with DAPI (Vectashield). Z-stacks along the rostral/caudal axis of the NAc (A/P +2.5 through A/P
193 +0.7) were collected with confocal microscopy (20x; Zeiss LSM 710), and Fos⁺ cells were quantified using
194 ImageJ (V1.49; NIH) and Adobe Illustrator (CC 2020).

195

196 **Experimental design and statistical analyses**

197 Behavioral and photometry data were collected using custom-written workflows (Bonsai V3.5.2),
198 processed using custom-written Python scripts (V3.7.7), and analyzed using Python and GraphPad Prism
199 (V9.0). Transitions between chambers and cumulative time spent in each chamber were detected via
200 binary region analysis in Bonsai and analyzed in Python. Heroin preference was calculated as the
201 difference in time spent between chambers (i.e., Heroin preference = [time in heroin-paired] – [time in
202 saline-paired]), and final preference was calculated as the change in preference across test sessions (i.e.,
203 CPP score = [Heroin preference, post-conditioning] – [Heroin preference, pre-conditioning]). Change in
204 preference was analyzed using two-way repeated-measures (RM) ANOVA (dose x test) or two-tailed
205 paired *t*-tests, and final preference was analyzed using one-way ANOVA. Equal numbers of female and
206 male rats were included in each experiment, and sex differences in final preference were analyzed using
207 two-way ANOVA (sex x dose) or two-tailed unpaired *t*-tests. Fos⁺ cell counts along the rostral-caudal axis
208 of the NAc were averaged into a single value per rat and analyzed using one-way ANOVAs or two-tailed
209 unpaired *t*-tests for each subregion. Photometry signals were de-interleaved and corrected for
210 photobleaching by fitting the isosbestic signal (415 nm) with a first-order exponential decay curve that
211 was scaled and subtracted from experimental traces (Proulx et al., 2018; Martianova et al., 2019).

212 Linearized photometry traces were then converted to z-scores ($F_n - F_{\text{mean}} / F_{\text{SD}}$) using a rolling window of
213 10 s centered around F_n , and events were identified where $z > 2$ ($p < .05$) with a minimum inter-event
214 interval of 1.5 s. Photometry signals during conditioning sessions were processed (event frequency,
215 average amplitude, variance of amplitudes) and analyzed using two-way RM ANOVA (session x drug)
216 and Kolmogorov-Smirnov tests (cumulative distribution of amplitudes). Photometry signals during test
217 sessions were aligned to transitions between chambers, and the window centered around each transition
218 (-3 s to +3 s) was extracted for analysis. Transition windows were analyzed using two-way RM ANOVA
219 (time x test), the mean signal during transitions of each type were analyzed using two-tailed paired *t*-tests,
220 and the cumulative signal during the transition window (area under the curve [AUC]) was calculated using
221 trapezoidal numerical integration and analyzed using two-tailed paired *t*-tests. Statistical significance for
222 all analyses was set at $p < .05$, and all ANOVAs were followed by Sidak *post-hoc* tests (behavioral and
223 Fos data) or Benjamini and Hochberg FDR tests with $q < .05$ (photometry data). Data are shown
224 throughout as individual subjects and/or mean \pm SEM. Subjects with lack of viral expression ($n = 10$),
225 incorrect fiber placement ($n = 4$), or no change in preference for the heroin-paired chamber ($n = 5$) were
226 excluded from fiber photometry experiments.

227

228 RESULTS

229 Expression of heroin CPP is accompanied by robust activation of the NAc

230 Female and male rats underwent a heroin CPP procedure that included an initial preference test, four
231 days of conditioning, and a final preference test (**Figure 1A**). To identify a dose of heroin that would
232 reliably produce a CPP, rats were conditioned with 0, 1, or 3 mg/kg heroin. A two-way RM ANOVA
233 revealed a significant dose x test interaction on preference for the heroin-paired chamber ($F_{(2,21)} = 5.40$, p
234 = .013), with rats conditioned with 3 mg/kg heroin significantly increasing time spent in the heroin-paired
235 chamber on the post-test compared to the pre-test ($p = .023$; **Figure 1B**). Moreover, a one-way ANOVA
236 revealed a significant main effect of dose on final preference ($F_{(2,21)} = 5.28$, $p = .014$), with rats
237 conditioned with 3 mg/kg heroin ($p = .0091$) but not 1 mg/kg heroin ($p = .078$) developing a stronger CPP
238 for the heroin-paired chamber than rats conditioned with 0 mg/kg heroin (**Figure 1C**). To assess the role

239 of the NAc in expression of a heroin CPP, rats were euthanized 30 min after the final preference test and
240 brains were processed for Fos immunohistochemistry. An unpaired *t*-test revealed a significant effect of
241 dose on Fos activation in the NAc core ($t_{(13)} = 3.54, p = .0036$), with significantly greater activation in rats
242 conditioned with 3 mg/kg heroin (**Figure 1D – 1E**). Similarly, an unpaired *t*-test revealed a significant
243 effect of dose on Fos activation in the NAc shell ($t_{(13)} = 2.94, p = .012$), with significantly greater activation
244 in rats conditioned with 3 mg/kg heroin (**Figure 1F – 1G**). Importantly, two-way ANOVAs revealed no
245 main effect of sex on final preference for the heroin-paired chamber ($F_{(1,18)} = 2.46, p = .13$) or Fos
246 activation in the NAc core ($F_{(1,11)} = 0.0032, p = .96$) or NAc shell ($F_{(1,11)} = 2.17, p = .17$).

247

248 ***In vivo* imaging of DA activity and MSN calcium activity in the NAc**

249 To examine the role of NAc activity in the development and expression of a heroin CPP with temporal
250 precision, CPP was coupled with fiber photometry for *in vivo* monitoring of DA signals, dMSN Ca²⁺
251 signals, and iMSN Ca²⁺ signals. Photometry signal quality was verified prior to starting CPP via brief
252 home cage recordings from pairs of rats (**Figure 2A – 2B**). Recordings were performed using either
253 single-color photometry for DA imaging or dual-color photometry for simultaneous dMSN/iMSN Ca²⁺
254 imaging, with the isosbestic signal (415 nm) interleaved to correct for motion artifacts (**Figure 2C**). DA
255 imaging was performed with the DA sensor dLight1.3b (Patriarchi et al., 2018), a modified D1-type DA
256 receptor with a cpGFP insert that expresses proximally to TH⁺ DA terminals in the NAc (**Figure 2D – 2F**).
257 Dual dMSN/iMSN Ca²⁺ imaging was performed with the green-shifted and red-shifted Ca²⁺ indicators
258 GCaMP6s and RCaMP1b, respectively, which were selectively targeted to dMSNs and iMSNs by infusing
259 different retrogradely transported recombinases into the VTA (AAVrg-flo to target dMSNs) and VP
260 (CAV2-Cre to target iMSNs; **Figure 2G**). GCaMP6s and RCaMP1b expression was detected throughout
261 the NAc, with limited co-expression anywhere along the rostral/caudal axis (**Figure 2H – 2I**). While the
262 majority of rats co-expressed both indicators in the NAc ($n = 8$), a minority exclusively expressed
263 GCaMP6s ($n = 4$) or RCaMP1b ($n = 2$); thus, for all MSN Ca²⁺ imaging experiments, GCaMP6s and
264 RCaMP1b signals were independently analyzed. An overview of the analysis pipeline used for
265 photometry signals is shown in **Figure 2J**. Raw signals were de-interleaved to separate experimental

266 signals from the isosbestic signal, which was then used to linearize experimental signals and remove
267 motion artifacts. Linearized signals were converted to normalized z-scores using a rolling mean algorithm,
268 and significant upward deviations from the mean (“events”) were detected in normalized signals and
269 extracted for additional analysis.

270

271 **The effects of heroin on DA, dMSN, and iMSN signaling change over the course of conditioning**

272 After confirming the quality of photometry signals, rats underwent heroin CPP with a 3 mg/kg conditioning
273 dose. NAc DA signals ($n = 9$), NAc dMSN Ca^{2+} signals ($n = 12$), or NAc iMSN Ca^{2+} signals ($n = 10$) were
274 recorded at four timepoints during conditioning: the saline and heroin pairings on the first day of
275 conditioning (session 1), and the saline and heroin pairings on the fourth day of conditioning (session 4;
276 **Figure 3A – 3B**). For these recordings, pairs of rats were injected with saline or heroin, connected to the
277 photometry system via a branching fiber optic patch cord, and immediately placed into CPP chambers. As
278 recordings were not started until ~ 1 min after rats received *ip* injections, analysis of photometry data was
279 done with a rolling window across the entirety of the conditioning session, rather than using a pre-
280 injection baseline period as a reference. A two-way RM ANOVA revealed a significant session x drug
281 interaction on the frequency of DA events ($F_{(1,8)} = 16.00, p = .004$), with fewer DA events after heroin in
282 session 1 (saline 1 vs heroin 1, $p = .017$) but more DA events after heroin in session 4 (saline 4 vs heroin
283 4, $p = .008$; heroin 1 vs heroin 4, $p = .0007$; **Figure 3C – 3D**). Kolmogorov-Smirnov tests on the
284 cumulative distribution of event amplitudes in each session revealed significant heroin-induced leftward
285 shifts in both session 1 ($D = 0.18, p < .0001$) and session 4 ($D = 0.25, p < .0001$), indicative of heroin-
286 induced suppression of large amplitude DA events (**Figure 3E**). Indeed, two-way RM ANOVAs revealed
287 significant main effects of drug on both the mean amplitude of DA events ($F_{(1,8)} = 25.14, p = .001$) and the
288 variance of DA event amplitudes ($F_{(1,8)} = 10.97, p = .011$), with reduced amplitude (session 1, $p = .017$;
289 session 4, $p = .0085$) and variance (session 1, $p = .0017$; session 4, $p = .008$) of DA events after heroin
290 (**Figure 3F – 3G**).

291

292 A two-way RM ANOVA on the frequency of dMSN Ca^{2+} events revealed a significant session x drug
293 interaction ($F_{(1,11)} = 12.96, p = .0042$) with a selective reduction in dMSN signaling events during the
294 fourth saline session (saline 1 vs saline 4, $p = .0016$), suggesting heroin-induced disruption in the basal
295 level of dMSN Ca^{2+} signaling (**Figure 3H – 3I**). Kolmogorov-Smirnov tests on the cumulative distribution
296 of dMSN event amplitudes revealed significant heroin-induced leftward shifts in both session 1 ($D = 0.53$,
297 $p < .0001$) and session 4 ($D = 0.46, p < .0001$), indicative of heroin-induced suppression of large
298 amplitude dMSN signaling events (**Figure 3J**). Accordingly, a two-way RM ANOVA revealed a significant
299 main effect of drug on the mean amplitude of dMSN events ($F_{(1,11)} = 17.49, p = .0015$) but not the
300 variance of dMSN event amplitudes ($F_{(1,11)} = 1.03, p = .33$), with significant heroin-induced reductions in
301 amplitude in both session 1 ($p = .011$) and session 4 ($p = .0043$; **Figure 3K – 3L**).

302

303 A two-way RM ANOVA on the frequency of iMSN Ca^{2+} events revealed a significant session x drug
304 interaction ($F_{(1,9)} = 19.11, p = .0018$), with an increase in iMSN events after heroin in session 1 (saline 1
305 vs heroin 1, $p = .0073$) but a decrease in iMSN events after heroin in session 4 (saline 4 vs heroin 4, $p =$
306 $.023$; heroin 1 vs heroin 4, $p = .0009$; **Figure 3M – 3N**). Moreover, Kolmogorov-Smirnov tests on the
307 cumulative distribution of iMSN event amplitudes revealed a heroin-induced rightward shift in session 1
308 ($D = 0.49, p < .0001$), but a leftward shift in session 4 ($D = 0.42, p < .0001$; **Figure 3O**). A two-way RM
309 ANOVA on the mean amplitude of iMSN events revealed both a significant main effect of session ($F_{(1,9)} =$
310 $8.37, p = .018$) and a significant session x drug interaction ($F_{(1,9)} = 14.76, p = .004$), with greater iMSN
311 amplitudes after heroin in session 1 (saline 1 vs heroin 1, $p = .0034$) but weaker iMSN amplitudes after
312 heroin in session 4 (heroin 1 vs heroin 4, $p < .0001$; **Figure 3P**). However, two-way RM ANOVAs on the
313 variance of iMSN event amplitudes found no significant main effect of drug ($F_{(1,9)} = 1.76, p = .22$) and no
314 significant session x drug interaction ($F_{(1,9)} = 2.07, p = .18$; **Figure 3Q**).

315

316 **NAc DA signaling increases when entering and decreases when exiting a heroin-paired context**
317 Photometry signals were also recorded during both the initial (“pre-test”) and final (“post-test”) preference
318 tests to assess the role of NAc DA signaling in the expression of a heroin CPP (**Figure 4A – 4B**). A paired

319 *t*-test revealed a significant increase in preference for the heroin-paired chamber during the post-test
320 compared to the pre-test ($t_{(8)} = 5.35, p = .0007$; **Figure 4C**), and an unpaired *t*-test found no sex
321 difference in final preference for the heroin-paired chamber ($t_{(7)} = 0.51, p = .62$; data not shown).
322 Transitions between the center chamber and the saline- and heroin-paired chambers were timestamped
323 and aligned to photometry signals, and the window centered around each transition (-3 s to +3 s) was
324 isolated for analysis. A two-way RM ANOVA revealed a significant time x test interaction during entries to
325 the saline-paired chamber ($F_{(119,952)} = 1.30, p = .023$), with significantly weaker DA signaling in the 0.5 s
326 centered around entry in the post-test ($p < .008$; **Figure 4D**). Moreover, paired *t*-tests found significantly
327 weaker DA signaling at the moment of entry ($t_{(8)} = 4.62, p = .0017$) as well as across the entire entry
328 window ($t_{(8)} = 3.94, p = .0043$) in the post-test (**Figure 4E – 4F**). However, a two-way RM ANOVA
329 revealed no significant time x test interaction during exits from the saline-paired chamber ($F_{(119,952)} = 1.12,$
330 $p = .19$), and paired *t*-tests found no significant difference in DA signaling at the moment of exit ($t_{(8)} =$
331 $0.63, p = .55$) or across the exit window ($t_{(8)} = 0.31, p = .76$) in the post-test (**Figure 4G – 4I**). Conversely,
332 a two-way RM ANOVA revealed a significant time x test interaction during entries to the heroin-paired
333 chamber ($F_{(119,952)} = 13.01, p < .0001$), with significantly greater DA signaling in the 1s centered around
334 entry in the post-test ($p < .008$; **Figure 4J**). Additionally, paired *t*-tests found significantly larger DA signals
335 at the moment of entry to the heroin-paired chamber ($t_{(8)} = 6.70, p = .0002$) as well as across the entire
336 entry window ($t_{(8)} = 6.47, p = .0002$) in the post-test (**Figure 4K – 4L**). Finally, a two-way RM ANOVA
337 revealed a significant time x test interaction during exits from the heroin-paired chamber ($F_{(119,952)} = 3.04,$
338 $p < .0001$), with significantly stronger DA signaling ~2 s preceding exit ($p < .004$) but significantly weaker
339 DA signaling in the 1 s centered around exit ($p < .003$) in the post-test (**Figure 4M**). Paired *t*-tests also
340 found significantly weaker DA signals at the moment of exit from the heroin-paired chamber ($t_{(8)} = 7.19, p$
341 $< .0001$) but no difference in the DA signal across the entire exit window ($t_{(8)} = 0.0064, p > 0.99$) in the
342 post-test (**Figure 4N – 4O**).
343
344 **NAc dMSN signaling increases when entering and decreases when exiting a heroin-paired context**

345 Photometry signals were also recorded during the preference tests to assess the role of NAc dMSN
346 signaling in the expression of a heroin CPP (**Figure 5A – 5B**). A paired *t*-test revealed a significant
347 increase in preference for the heroin-paired chamber during the post-test compared to the pre-test ($t_{(11)} =$
348 3.17, $p = .009$; **Figure 5C**), and an unpaired *t*-test found no sex difference in final preference for the
349 heroin-paired chamber ($t_{(10)} = 0.16$, $p = .88$; data not shown). A two-way RM ANOVA revealed a
350 significant time x test interaction during entries to the saline-paired chamber ($F_{(79,869)} = 5.26$, $p < .0001$),
351 with significantly weaker dMSN signaling from 1 s preceding to 1.5 s following entry ($p < .008$) in the post-
352 test (**Figure 5D**). Moreover, paired *t*-tests found significantly weaker dMSN signaling at the moment of
353 entry ($t_{(11)} = 5.83$, $p = .0001$) as well as across the entire entry window ($t_{(11)} = 3.26$, $p = .0076$) in the post-
354 test (**Figure 5E – 5F**). However, a two-way RM ANOVA revealed no significant time x test interaction
355 during exits from the saline-paired chamber ($F_{(79,869)} = 1.27$, $p = .063$), and paired *t*-tests found no
356 significant difference in dMSN signaling at the moment of exit ($t_{(11)} = 0.20$, $p = .84$) or across the exit
357 window ($t_{(11)} = 0.069$, $p = .95$) in the post-test (**Figure 5G – 5I**). Conversely, a two-way RM ANOVA
358 revealed a significant time x test interaction during entries to the heroin-paired chamber ($F_{(79,869)} = 18.71$,
359 $p < .0001$), with significantly greater dMSN signaling in the 2 s centered around entry in the post-test ($p <$
360 .002; **Figure 5J**). Additionally, paired *t*-tests found significantly larger dMSN signals at the moment of
361 entry to the heroin-paired chamber ($t_{(11)} = 9.34$, $p < .0001$) as well as across the entire entry window ($t_{(11)}$
362 = 3.87, $p = .0026$) in the post-test (**Figure 5K – 5L**). Finally, a two-way RM ANOVA revealed a significant
363 time x test interaction during exits from the heroin-paired chamber ($F_{(79,869)} = 5.78$, $p < .0001$), with
364 significantly weaker dMSN signaling in the 1 s centered around exit ($p < .002$) in the post-test (**Figure**
365 **5M**). Paired *t*-tests also found significantly weaker dMSN signals at the moment of exit from the heroin-
366 paired chamber ($t_{(11)} = 6.29$, $p < .0001$) but no difference in the dMSN signal across the entire exit window
367 ($t_{(11)} = 2.00$, $p = 0.071$) in the post-test (**Figure 5N – 5O**).
368

369 **NAc iMSN signaling decreases when entering and increases when exiting a heroin-paired context**
370 Photometry signals were also recorded during the preference tests to assess the role of NAc iMSN
371 signaling in the expression of a heroin CPP (**Figure 6A – 6B**). A paired *t*-test revealed a significant

372 increase in preference for the heroin-paired chamber during the post-test compared to the pre-test ($t_{(10)} =$
373 $3.28, p = .0084$; **Figure 6C**), and an unpaired *t*-test found no sex difference in final preference for the
374 heroin-paired chamber ($t_{(8)} = 0.42, p = .68$; data not shown). A two-way RM ANOVA revealed a significant
375 time x test interaction during entries to the saline-paired chamber ($F_{(79,711)} = 2.88, p < .0001$), with
376 significantly stronger iMSN signaling from 0.5 s preceding to 1.5 s following entry ($p < .006$) in the post-
377 test (**Figure 6D**). Moreover, paired *t*-tests found significantly greater iMSN signaling at the moment of
378 entry ($t_{(9)} = 3.50, p = .0067$) as well as across the entire entry window ($t_{(9)} = 2.32, p = .045$) in the post-test
379 (**Figure 6E – 6F**). However, a two-way RM ANOVA revealed no significant time x test interaction during
380 exits from the saline-paired chamber ($F_{(79,711)} = 0.67, p = .99$), and paired *t*-tests found no significant
381 difference in iMSN signaling at the moment of exit ($t_{(9)} = 1.33, p = .22$) or across the exit window ($t_{(9)} =$
382 $2.23, p = .053$) in the post-test (**Figure 6G – 6I**). Conversely, a two-way RM ANOVA revealed a significant
383 time x test interaction during entries to the heroin-paired chamber ($F_{(79,711)} = 2.40, p < .0001$), with
384 significantly weaker iMSN signaling in the 1 s centered around entry in the post-test ($p < .003$; **Figure 6J**).
385 Additionally, paired *t*-tests found significantly smaller iMSN signals at the moment of entry to the heroin-
386 paired chamber ($t_{(9)} = 2.55, p = .031$) as well as across the entire entry window ($t_{(9)} = 3.64, p = .0054$) in
387 the post-test (**Figure 6K – 6L**). Finally, a two-way RM ANOVA revealed a significant time x test
388 interaction during exits from the heroin-paired chamber ($F_{(79,711)} = 1.63, p = .0008$), with significantly
389 stronger iMSN signaling in the 1 s centered around exit ($p < .006$) in the post-test (**Figure 6M**). Paired *t*-
390 tests also found significantly stronger iMSN signals at the moment of exit from the heroin-paired chamber
391 ($t_{(9)} = 3.57, p = .006$) as well as across the entire exit window ($t_{(9)} = 3.53, p = 0.0064$) in the post-test
392 (**Figure 6N – 6O**).
393

394 **Buprenorphine pretreatment blocks the development of heroin CPP**

395 Buprenorphine is used for opioid replacement therapy due to its ability to weakly activate mu opioid
396 receptor signaling and prevent the binding of other opioids (e.g., heroin), and was recently shown to
397 occlude heroin-evoked DA release into the NAc (Isaacs et al., 2020). To determine whether
398 buprenorphine could similarly prevent the acquisition of heroin CPP, rats underwent a modified CPP

399 procedure with 0 or 0.2 mg/kg buprenorphine given 10 min prior to each conditioning session (**Figure**
400 **7A**). A two-way RM ANOVA revealed a significant dose x test interaction on heroin preference ($F_{(1,14)} =$
401 8.52, $p = .012$), with a significant increase in time spent in the heroin-paired chamber for rats pretreated
402 with 0 mg/kg buprenorphine ($p = .0086$) but not 0.2 mg/kg buprenorphine ($p = .73$; **Figure 7B**). Moreover,
403 an unpaired *t*-test revealed significantly lower final preference for the heroin-paired chamber in rats
404 pretreated with 0.2 mg/kg buprenorphine ($t_{(14)} = 2.83$, $p = .014$; **Figure 7C**). To assess the impact of
405 buprenorphine pretreatment during conditioning on NAc activation during the final preference test, rats
406 were euthanized 30 min after the final preference test and brains were processed for Fos
407 immunohistochemistry. Unpaired *t*-tests revealed significantly lower levels of Fos activation in both the
408 NAc core ($t_{(14)} = 4.78$, $p = .0003$) and NAc shell ($t_{(14)} = 6.20$, $p < .0001$) for rats pretreated with 0.2 mg/kg
409 buprenorphine during conditioning (**Figure 7D–7G**). Importantly, two-way ANOVAs revealed no main
410 effect of sex on final preference for the heroin-paired chamber ($F_{(1,12)} = 1.40$, $p = .26$) or Fos activation in
411 the NAc core ($F_{(1,12)} = 1.09$, $p = .32$) or NAc shell ($F_{(1,12)} = 0.26$, $p = .62$).

412

413 **DISCUSSION**

414 Here, we sought to examine the role of NAc signaling in the acquisition and expression of heroin CPP by
415 coupling fiber photometry recordings with a heroin CPP procedure that induces Fos activation in the NAc
416 during expression of heroin CPP. We identified differences in the neural response to heroin over the
417 course of conditioning, with suppression of NAc activity during early conditioning but enhancement of NAc
418 activity during late conditioning. Next, we demonstrated that entering a heroin-paired context is
419 accompanied by increased dopamine and dMSN Ca^{2+} signaling along with decreased iMSN Ca^{2+}
420 signaling, while exiting a heroin-paired context is accompanied by increased iMSN signaling along with
421 decreased dopamine and dMSN signaling. Finally, we show that buprenorphine pretreatment during
422 conditioning is sufficient to prevent the expression of heroin CPP and concomitant activation of the NAc.
423 Together, these data reveal a central role for the NAc in the reinforcing effects of heroin, in accordance
424 with the hypothesis that an imbalance in signaling between the accumbal direct and indirect pathways
425 drives addictive behaviors.

426

427 **Dopaminergic modulation in the NAc contributes to heroin conditioning**

428 While the contribution of DA to the rewarding effects of most potentially addictive drugs (e.g.,
429 psychostimulants, nicotine) is well-established (Crummy et al., 2020), the role of DA in opioid reward is
430 more complicated (Badiani et al., 2011). Opioids increase phasic DA release, and both D1 receptor
431 blockade and D2 receptor deletion blocks morphine reward (Johnson and North, 1992; Shippenberg et
432 al., 1993; Maldonado et al., 1997; Sellings and Clarke, 2003). However, bilateral 6-OHDA lesions of the
433 NAc can block or have no effect on morphine reward (Shippenberg et al., 1993; Sellings and Clarke,
434 2003), and chronic blockade of both D1 and D2 receptors potentiates the rewarding effects of low doses
435 of heroin (Stinus et al., 1989). During conditioning, we identified noteworthy effects of heroin on DA
436 signaling: a significant reduction in large amplitude DA events during both early and late conditioning
437 sessions, a significant reduction in the frequency of DA events during early conditioning, and a significant
438 enhancement in the frequency of DA events during late conditioning. This shift from suppression to
439 elevation across conditioning suggests sensitization of the dopaminergic response to heroin and supports
440 a role for DA in the acquisition of heroin CPP. After conditioning, we detected a significant increase in DA
441 signaling preceding entries to the heroin-paired chamber, as well as significant decreases in DA signaling
442 preceding exits from the heroin-paired chamber and entries to the saline-paired chamber, indicating
443 emergent selectivity for DA signaling in response to a heroin-paired context. Notably, a recent study using
444 DA imaging in the NAc medial shell following heroin administration reported a significant rise in tonic DA
445 signaling over a period of minutes, relative to a pre-injection baseline (Corre et al., 2018). We did not
446 observe a similar effect on DA signaling during conditioning, although we believe this is largely due to
447 lack of a pre-injection baseline in the study design. Future work will expand upon this data to better
448 understand how heroin conditioning is altering tonic signaling in the NAc, in addition to phasic changes.

449

450 **An imbalance in accumbal activity develops during heroin conditioning**

451 The ability of DA to alter overall accumbal activity is dependent not only on dopaminergic modulation of
452 individual MSNs but also on the network implications of such modulation. Although dMSNs and iMSNs

453 can be differentiated according to their downstream targets (VTA and VP, respectively), both subtypes of
454 MSNs are heavily interconnected in a local microcircuit of lateral inhibition within the NAc (Burke et al.,
455 2017). Indeed, although dMSNs are more likely to collateralize with other dMSNs than iMSNs (Taverna et
456 al., 2008), D2 receptor-mediated disinhibition of iMSN lateral inhibition onto dMSNs is necessary for the
457 locomotor sensitizing effects of cocaine (Dobbs et al., 2016). An imbalance between dMSNs and iMSNs
458 can thereby shape the ability of DA to modulate accumbal activity, with the overall balance in signaling
459 guiding vulnerability to the reinforcing effects of drugs.

460

461 We observed a shift in the response of NAc iMSNs to heroin over the course of conditioning, with a
462 prominence of iMSN signaling during early conditioning (enhanced iMSN frequency and amplitudes) and
463 a suppression of iMSN signaling during late conditioning (reduced iMSN frequency and amplitudes). This
464 inhibition of iMSN signaling – mediated in part by an enhanced dopaminergic response to heroin during
465 late conditioning – would release nearby dMSNs from tonic lateral inhibition, allowing direct pathway
466 signaling to dominate. Interestingly, however, we did not observe a sensitized dMSN response to heroin
467 over the course of conditioning; rather, we observed a transient reduction in dMSN signaling during the
468 fourth saline session, indicating a weakening of basal dMSN tone over the course of heroin conditioning.
469 In addition to heroin-induced disruptions in NAc activity over the course of conditioning, we identified
470 context-dependent changes in MSN signals post-conditioning. dMSN signals were significantly stronger
471 when entering the heroin-paired context, but significantly weaker when exiting the heroin-paired or
472 entering the saline-paired contexts. Conversely, iMSN signals were significantly weakened when entering
473 the heroin-paired context, but significantly stronger when exiting the heroin-paired or entering the saline-
474 paired contexts. These data indicate selective tuning of dMSNs to the heroin-paired context, and are in
475 consistent with previous findings of elevated dMSN signaling during re-exposure to a cocaine-paired
476 context (Calipari et al., 2016).

477

478 **Disrupting opioid signaling prevents development of heroin CPP**

479 In our final experiment, we show that pretreatment with buprenorphine during conditioning blocked the
480 development of a heroin CPP and associated Fos activity in the NAc. Although buprenorphine weakly
481 activates mu opioid receptors to mildly elevate DA release, it also prevents heroin from binding to the
482 same receptors and driving larger phasic DA release (Isaacs et al., 2020). The buprenorphine dose used
483 in the present study was selected based on a previous report that described a bell-shaped curve for
484 buprenorphine-stimulated DA release into the NAc: significant increases in DA release with 0.01 – 0.04
485 mg/kg buprenorphine, but no change in DA release with 0.18 – 0.7 mg/kg buprenorphine (Isaacs et al.,
486 2020). Moreover, twice daily injections of 0.1 – 0.4 mg/kg buprenorphine were sufficient to significantly
487 attenuate cocaine self-administration in rats, with no differences observed between 0.1 and 0.4 mg/kg
488 (Carroll and Lac, 1992). Thus, our dose of buprenorphine administered prior to each conditioning session
489 likely produced comparably low levels of DA release in both chambers, preventing the acquisition of a
490 strong conditioned response to heroin.

491

492 **Technical considerations**

493 Although dMSNs and iMSNs have canonically been assumed to project exclusively to the VTA and VP,
494 respectively, growing evidence has demonstrated that dMSNs project equally strong to the VTA and the
495 VP (Kupchik et al., 2015; Creed et al., 2016). Importantly, the viral strategy used here has been shown to
496 target largely non-overlapping populations of neurons in the NAc with bidirectional control over cue-
497 induced heroin-seeking (O’Neal et al., 2020). In the present study we not only did not observe co-
498 expression of GCaMP6s and RCaMP1b within the NAc, but we also observed oppositional dMSN and
499 iMSN signals during transitions in the post-test, similar to what has previously been reported during
500 cocaine CPP (Calipari et al., 2016). Furthermore, although dual-color imaging runs the risk of signal
501 crosstalk and contamination (Meng et al., 2018), our dMSN-GCaMP6s and iMSN-RCaMP1b signals were
502 highly uncorrelated throughout testing (pre-conditioning r^2 : mean = 0.02, range = 3.4e-7 to 0.08; post-
503 conditioning r^2 : mean = 0.05, range = 4.0e-3 to 0.17). Additionally, there is concern that the viral strategy
504 used to target dMSNs may have led to undesired expression of GCaMP6s in DA terminals in the NAc.
505 While retrograde AAVs have a higher tropism for axon terminals, some evidence has suggested they may

506 also infect cell bodies at the site of infusion (Tervo et al., 2016); moreover, AAV8s have been shown to
507 undergo some degree of retrograde transport, particularly when infused near DA terminals (Masamizu et
508 al., 2011; Löw et al., 2013). However, using TH immunohistochemistry, we did not detect GCaMP6s
509 expression in either DA terminals in the NAc or in DA cell bodies in the VTA (data not shown).

510

511 **Conclusions**

512 Together, these data highlight a central role for NAc dMSN, iMSN, and DA signaling in the acquisition and
513 expression of heroin CPP. Future work will investigate the role of NAc signaling in encoding individual
514 vulnerability to the rewarding and motivating effects of heroin, with a particular focus on the relative
515 strength of dMSNs and iMSNs between individuals sensitive to versus resistant to the conditioned
516 reinforcement produced by heroin.

517 **REFERENCES**

518 Albin, R. L., Young, A. B., and Penney, J. B. (1989). The functional anatomy of basal ganglia disorders.
519 *Trends Neurosci.* doi:10.1016/0166-2236(89)90074-X.

520 Badiani, A., Belin, D., Epstein, D., Calu, D., and Shaham, Y. (2011). Opiate versus psychostimulant
521 addiction: The differences do matter. *Nat. Rev. Neurosci.* doi:10.1038/nrn3104.

522 Bailey, C. H., Giustetto, M., Huang, Y. Y., Hawkins, R. D., and Kandel, E. R. (2000). Is Heterosynaptic
523 modulation essential for stabilizing hebbian plasticity and memory. *Nat. Rev. Neurosci.*
524 doi:10.1038/35036191.

525 Bardo, M. T., Rowlett, J. K., and Harris, M. J. (1995). Conditioned place preference using opiate and
526 stimulant drugs: A meta-analysis. *Neurosci. Biobehav. Rev.* doi:10.1016/0149-7634(94)00021-R.

527 Belin, D., Mar, A. C., Dalley, J. W., Robbins, T. W., and Everitt, B. J. (2008). High impulsivity predicts the
528 switch to compulsive cocaine-taking. *Science (80-)*. doi:10.1126/science.1158136.

529 Bock, R., Hoon Shin, J., Kaplan, A. R., Dobi, A., Markey, E., Kramer, P. F., et al. (2013). Strengthening
530 the accumbal indirect pathway promotes resilience to compulsive cocaine use. *Nat. Neurosci.*
531 doi:10.1038/nn.3369.

532 Burke, D. A., Rotstein, H. G., and Alvarez, V. A. (2017). Striatal Local Circuitry: A New Framework for
533 Lateral Inhibition. *Neuron*. doi:10.1016/j.neuron.2017.09.019.

534 Calabresi, P., Picconi, B., Tozzi, A., Ghiglieri, V., and Di Filippo, M. (2014). Direct and indirect pathways
535 of basal ganglia: A critical reappraisal. *Nat. Neurosci.* doi:10.1038/nn.3743.

536 Calipari, E. S., Bagot, R. C., Purushothaman, I., Davidson, T. J., Yorgason, J. T., Peña, C. J., et al.
537 (2016). In vivo imaging identifies temporal signature of D1 and D2 medium spiny neurons in cocaine
538 reward. *Proc. Natl. Acad. Sci. U. S. A.* doi:10.1073/pnas.1521238113.

539 Carroll, M. E., and Lac, S. T. (1992). Effects of buprenorphine on self-administration of cocaine and a
540 nondrug reinforcer in rats. *Psychopharmacology (Berl)*. doi:10.1007/BF02244812.

541 Corre, J., van Zessen, R., Loureiro, M., Patriarchi, T., Tian, L., Pascoli, V., et al. (2018). Dopamine
542 neurons projecting to medial shell of the nucleus accumbens drive heroin reinforcement. *eLife*.
543 doi:10.7554/eLife.39945.

544 Creed, M., Kaufling, J., Fois, G. R., Jalabert, M., Yuan, T., Lüscher, C., et al. (2016). Cocaine exposure
545 enhances the activity of ventral tegmental area dopamine neurons via calcium-impermeable
546 NMDARs. *J. Neurosci.* doi:10.1523/JNEUROSCI.1703-16.2016.

547 Crummy, E. A., O'Neal, T. J., Baskin, B. M., and Ferguson, S. M. (2020). One Is Not Enough:
548 Understanding and Modeling Polysubstance Use. *Front. Neurosci.* 14.
549 doi:10.3389/fnins.2020.00569.

550 Cui, G., Jun, S. B., Jin, X., Pham, M. D., Vogel, S. S., Lovinger, D. M., et al. (2013). Concurrent activation
551 of striatal direct and indirect pathways during action initiation. *Nature*. doi:10.1038/nature11846.

552 Dobbs, L. K. K., Kaplan, A. R. R., Lemos, J. C. C., Matsui, A., Rubinstein, M., and Alvarez, V. A. A.
553 (2016). Dopamine Regulation of Lateral Inhibition between Striatal Neurons Gates the Stimulant
554 Actions of Cocaine. *Neuron*. doi:10.1016/j.neuron.2016.04.031.

555 Everitt, B. J., Giuliano, C., and Belin, D. (2018). Addictive behaviour in experimental animals: Prospects
556 for translation. *Philos. Trans. R. Soc. B Biol. Sci.* doi:10.1098/rstb.2017.0027.

557 Ferguson, S. M., Eskenazi, D., Ishikawa, M., Wanat, M. J., Phillips, P. E. M., Dong, Y., et al. (2011).
558 Transient neuronal inhibition reveals opposing roles of indirect and direct pathways in sensitization.
559 *Nat. Neurosci.* doi:10.1038/nn.2703.

560 Gerfen, C. R., and Surmeier, D. J. (2011). Modulation of Striatal Projection Systems by Dopamine. *Annu.*
561 *Rev. Neurosci.* doi:10.1146/annurev-neuro-061010-113641.

562 Grimm, J. W., Hope, B. T., Wise, R. A., and Shaham, Y. (2001). Incubation of cocaine craving after
563 withdrawal. *Nature*. doi:10.1038/35084134.

564 Hedegaard, H., Miniño, A. M., and Warner, M. (2018). Drug Overdose Deaths in the United States, 1999-
565 2017. *NCHS Data Brief*.

566 Isaacs, D. P., Leman, R. P., Everett, T. J., Lopez-Beltran, H., Hamilton, L. R., and Oleson, E. B. (2020).
567 Buprenorphine is a weak dopamine releaser relative to heroin, but its pretreatment attenuates
568 heroin-evoked dopamine release in rats. *Neuropsychopharmacol. Reports*. doi:10.1002/npr2.12139.

569 Johnson, S. W., and North, R. A. (1992). Opioids excite dopamine neurons by hyperpolarization of local
570 interneurons. *J. Neurosci.* doi:10.1523/jneurosci.12-02-00483.1992.

571 Koob, G. F., and Volkow, N. D. (2016). Neurobiology of addiction: a neurocircuitry analysis. *The Lancet Psychiatry*. doi:10.1016/S2215-0366(16)00104-8.

573 Kravitz, A. V., Freeze, B. S., Parker, P. R. L., Kay, K., Thwin, M. T., Deisseroth, K., et al. (2010).
574 Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry.
575 *Nature*. doi:10.1038/nature09159.

576 Kremer, E. J., Boutin, S., Chillon, M., and Danos, O. (2009). Canine Adenovirus Vectors: an Alternative
577 for Adenovirus-Mediated Gene Transfer. *J. Virol.* doi:10.1128/jvi.74.1.505-512.2000.

578 Kupchik, Y. M., Brown, R. M., Heinsbroek, J. A., Lobo, M. K., Schwartz, D. J., and Kalivas, P. W. (2015).
579 Coding the direct/indirect pathways by D1 and D2 receptors is not valid for accumbens projections.
580 *Nat. Neurosci.* doi:10.1038/nn.4068.

581 Lobo, M. K., Covington, H. E., Chaudhury, D., Friedman, A. K., Sun, H. S., Damez-Werno, D., et al.
582 (2010). Cell type - Specific loss of BDNF signaling mimics optogenetic control of cocaine reward.
583 *Science* (80-). doi:10.1126/science.1188472.

584 Löw, K., Aebischer, P., and Schneider, B. L. (2013). Direct and retrograde transduction of nigral neurons
585 with AAV6, 8, and 9 and intraneuronal persistence of viral particles. *Hum. Gene Ther.*
586 doi:10.1089/hum.2012.174.

587 Luo, Z., Volkow, N. D., Heintz, N., Pan, Y., and Du, C. (2011). Acute cocaine induces fast activation of D1
588 receptor and progressive deactivation of D2 receptor striatal neurons: In vivo optical microprobe [Ca
589 2+] i imaging. *J. Neurosci.* doi:10.1523/JNEUROSCI.2369-11.2011.

590 Macpherson, T., Morita, M., and Hikida, T. (2014). Striatal direct and indirect pathways control decision-
591 making behavior. *Front. Psychol.* doi:10.3389/fpsyg.2014.01301.

592 Maldonado, R., Saiardi, A., Valverde, O., Samad, T. A., Roques, B. P., and Borrelli, E. (1997). Absence of
593 opiate, rewarding effects in mice lacking dopamine D2 receptors. *Nature*. doi:10.1038/41567.

594 Martianova, E., Aronson, S., and Proulx, C. D. (2019). Multi-fiber photometry to record neural activity in
595 freely-moving animals. *J. Vis. Exp.* doi:10.3791/60278.

596 Masamizu, Y., Okada, T., Kawasaki, K., Ishibashi, H., Yuasa, S., Takeda, S., et al. (2011). Local and
597 retrograde gene transfer into primate neuronal pathways via adeno-associated virus serotype 8 and

598 9. *Neuroscience*. doi:10.1016/j.neuroscience.2011.06.080.

599 Meng, C., Zhou, J., Papaneri, A., Peddada, T., Xu, K., and Cui, G. (2018). Spectrally Resolved Fiber

600 Photometry for Multi-component Analysis of Brain Circuits. *Neuron*.

601 doi:10.1016/j.neuron.2018.04.012.

602 Nader, M. A., Morgan, D., Gage, H. D., Nader, S. H., Calhoun, T. L., Buchheimer, N., et al. (2006). PET

603 imaging of dopamine D2 receptors during chronic cocaine self-administration in monkeys. *Nat.*

604 *Neurosci*. doi:10.1038/nn1737.

605 O'Neal, T. J., Nooney, M. N., Thien, K., and Ferguson, S. M. (2020). Chemogenetic modulation of

606 accumbens direct or indirect pathways bidirectionally alters reinstatement of heroin-seeking in high-

607 but not low-risk rats. *Neuropsychopharmacology* 45, 1251–1262. doi:10.1038/s41386-019-0571-9.

608 Park, K., Volkow, N. D., Pan, Y., and Du, C. (2013). Chronic cocaine dampens dopamine signaling during

609 cocaine intoxication and unbalances D1 over D2 receptor signaling. *J. Neurosci*.

610 doi:10.1523/JNEUROSCI.1935-13.2013.

611 Patriarchi, T., Cho, J. R., Merten, K., Howe, M. W., Marley, A., Xiong, W. H., et al. (2018). Ultrafast

612 neuronal imaging of dopamine dynamics with designed genetically encoded sensors. *Science* (80-.

613). doi:10.1126/science.aat4422.

614 Paxinos, G., Watson, C. R. R., and Emson, P. C. (1980). AChE-stained horizontal sections of the rat brain

615 in stereotaxic coordinates. *J. Neurosci. Methods*. doi:10.1016/0165-0270(80)90021-7.

616 Phillips, P. E. M., Stuber, G. D., Helen, M. L. A. V., Wightman, R. M., and Carelli, R. M. (2003).

617 Subsecond dopamine release promotes cocaine seeking. *Nature*. doi:10.1038/nature01476.

618 Plotkin, J. L., Shen, W., Rafalovich, I., Sebel, L. E., Day, M., Savio Chan, C., et al. (2013). Regulation of

619 dendritic calcium release in striatal spiny projection neurons. *J. Neurophysiol*.

620 doi:10.1152/jn.00422.2013.

621 Proulx, C. D., Aronson, S., Milivojevic, D., Molina, C., Loi, A., Monk, B., et al. (2018). A neural pathway

622 controlling motivation to exert effort. *Proc. Natl. Acad. Sci. U. S. A.* doi:10.1073/pnas.1801837115.

623 Sellings, L. H. L., and Clarke, P. B. S. (2003). Segregation of amphetamine reward and locomotor

624 stimulation between nucleus accumbens medial shell and core. *J. Neurosci*.

625 doi:10.1523/jneurosci.23-15-06295.2003.

626 Shaham, Y., Shalev, U., Lu, L., De Wit, H., and Stewart, J. (2003). The reinstatement model of drug
627 relapse: History, methodology and major findings. *Psychopharmacology (Berl)*. doi:10.1007/s00213-
628 002-1224-x.

629 Shippenberg, T. S., Bals-Kubik, R., and Herz, A. (1993). Examination of the neurochemical substrates
630 mediating the motivational effects of opioids: Role of the mesolimbic dopamine system and D-1 vs.
631 D-2 dopamine receptors. *J. Pharmacol. Exp. Ther.*

632 Stinus, L., Nadaud, D., Deminière, J. M., Jauregui, J., Hand, T. T., and Le Moal, M. (1989). Chronic
633 flupentixol treatment potentiates the reinforcing properties of systemic heroin administration. *Biol.*
634 *Psychiatry*. doi:10.1016/0006-3223(89)90052-8.

635 Swapna, I., Bondy, B., and Morikawa, H. (2016). Differential Dopamine Regulation of Ca²⁺ Signaling and
636 Its Timing Dependence in the Nucleus Accumbens. *Cell Rep.* doi:10.1016/j.celrep.2016.03.055.

637 Taverna, S., Ilijic, E., and Surmeier, D. J. (2008). Recurrent collateral connections of striatal medium
638 spiny neurons are disrupted in models of Parkinson's disease. *J. Neurosci.*
639 doi:10.1523/JNEUROSCI.5493-07.2008.

640 Tervo, D. G. R., Hwang, B. Y., Viswanathan, S., Gaj, T., Lavzin, M., Ritola, K. D., et al. (2016). A
641 Designer AAV Variant Permits Efficient Retrograde Access to Projection Neurons. *Neuron*.
642 doi:10.1016/j.neuron.2016.09.021.

643 Volkow, N. D., Wang, G. J., Fowler, J. S., Thanos, P., Logan, J., Gatley, S. J., et al. (2002). Brain DA D2
644 receptors predict reinforcing effects of stimulants in humans: Replication study. *Synapse*.
645 doi:10.1002/syn.10137.

646 Yager, L. M., Garcia, A. F., Donckels, E. A., and Ferguson, S. M. (2019). Chemogenetic inhibition of
647 direct pathway striatal neurons normalizes pathological, cue-induced reinstatement of drug-seeking
648 in rats. *Addict. Biol.* doi:10.1111/adb.12594.

649

650

651 **FIGURE LEGENDS**

652

653 **Figure 1 | Expression of heroin CPP is accompanied with NAc activation**

654 **A**, Timeline for heroin CPP procedure. Rats underwent two preference tests (15 min each) separated by
655 eight conditioning sessions (2x/day, 40 min each), and activation of the NAc during the post-test was
656 assessed via Fos immunohistochemistry. **B-C**, Rats conditioned with 3 mg/kg heroin spent more time in
657 the heroin-paired chamber during the post-test and developed a significant preference for the heroin-
658 paired chamber. **D-E**, Representative images and quantification of Fos in the NAc core. **F-G**,
659 Representative images and quantification of Fos in the NAc shell. $n = 8/\text{group}$; scale bar = 50 μm ; $^*p <$
660 $.05$, $^{**}p < .01$

661

662 **Figure 2 | Experimental design for fiber photometry recordings in the NAc. A**, Timeline for

663 photometry recordings prior to CPP. Rats underwent brief (~5 min) recordings in their home cages to
664 verify signal quality. **B**, Experimental setup. Rats were connected to a fiber photometry system via a
665 branching fiber optic patch cord for *in vivo* recordings. **C**, LED configuration for single or dual color
666 imaging with interleaved isosbestic wavelength. **D-E**, Viral strategy for dopamine imaging and expression
667 of dLight1.3b throughout the NAc. **F**, Representative dLight expression with TH staining of DA terminals
668 in the NAc. **G-H**, Viral strategy for dMSN/iMSN imaging and expression of GCaMP6s and RCaMP1b
669 throughout the NAc. **I**, Representative GCaMP and RCaMP expression in the NAc. **J**, Analysis pipeline
670 for photometry data. Raw signals were de-interleaved to separate channels, then linearized and
671 converted to z-scores. Events were detected and extracted from normalized signals, and event
672 characteristics were examined. +: optic fiber location; TH: tyrosine hydroxylase; scale bar = 100 μm

673

674 **Figure 3 | Heroin conditioning disrupts DA, dMSN, and iMSN signaling in the NAc. A-B**, Timeline

675 and experimental design for photometry recordings during CPP conditioning sessions. **C, H, M**,
676 Representative signals collected during conditioning. **C-D**, Heroin reduced the frequency of DA events in
677 session 1 but increased the frequency of DA events in session 4. **E-G**, Heroin reduced the frequency of

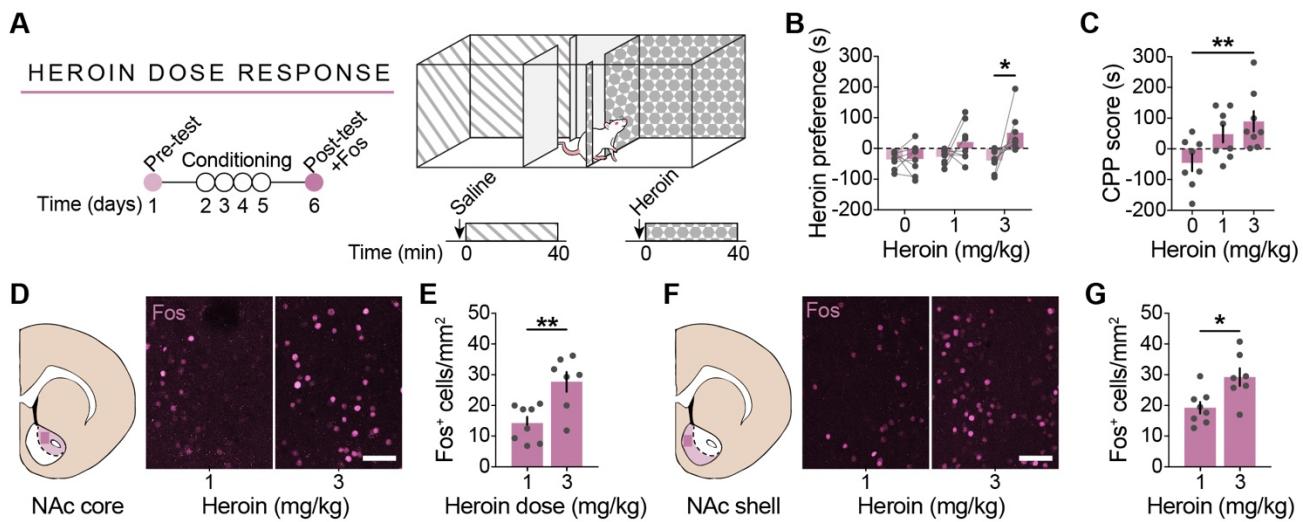
678 large amplitude DA events, the average amplitude of DA events, and the variance of DA event
679 amplitudes. **H-I**, The frequency of dMSN events after the fourth saline pairing was significantly lower than
680 after the first saline pairing. **J-L**, Heroin reduced the proportion of large dMSN events and the average
681 amplitude of dMSN events but had no effect on the variance of dMSN events. **M-N**, Heroin increased the
682 frequency of iMSN events in session 1 but reduced the frequency of iMSN events in session 4. **O-P**,
683 Heroin increased the proportion of large amplitude iMSN events and the average amplitude of iMSN
684 events in session 1 but decreased the proportion of large amplitude iMSN events and the average
685 amplitude of iMSN events in session 4. **Q**, The variance of iMSN events was unchanged during
686 conditioning. $n = 9-12$ rats; $*p < .05$, $**p < .01$, $***p < .001$, $****p < .0001$ (saline vs heroin); $##p < .01$, $###p < .001$ (session 1 vs session 4)

688

689 **Figure 4 | Increased DA signaling precedes entry to a heroin-paired context. A-B**, Timeline and
690 strategy for NAc DA recordings during CPP test sessions, and representative DA traces collected during
691 the pre- and post-test. **C**, Rats significantly increased preference for the heroin-paired chamber after
692 conditioning. **D-O**, NAc DA signals aligned to transitions in the CPP chamber. Following conditioning, **D-F**,
693 DA signaling was significantly attenuated when entering the saline-paired chamber and **G-I**, unchanged
694 when exiting the saline-paired chamber. Following conditioning, **J-L**, DA signaling was significantly
695 enhanced when entering the heroin-paired chamber and **M-O**, significantly attenuated when exiting the
696 heroin-paired chamber. $n = 9$ rats; $*p < .05$, $**p < .01$, $***p < .001$, $****p < .0001$

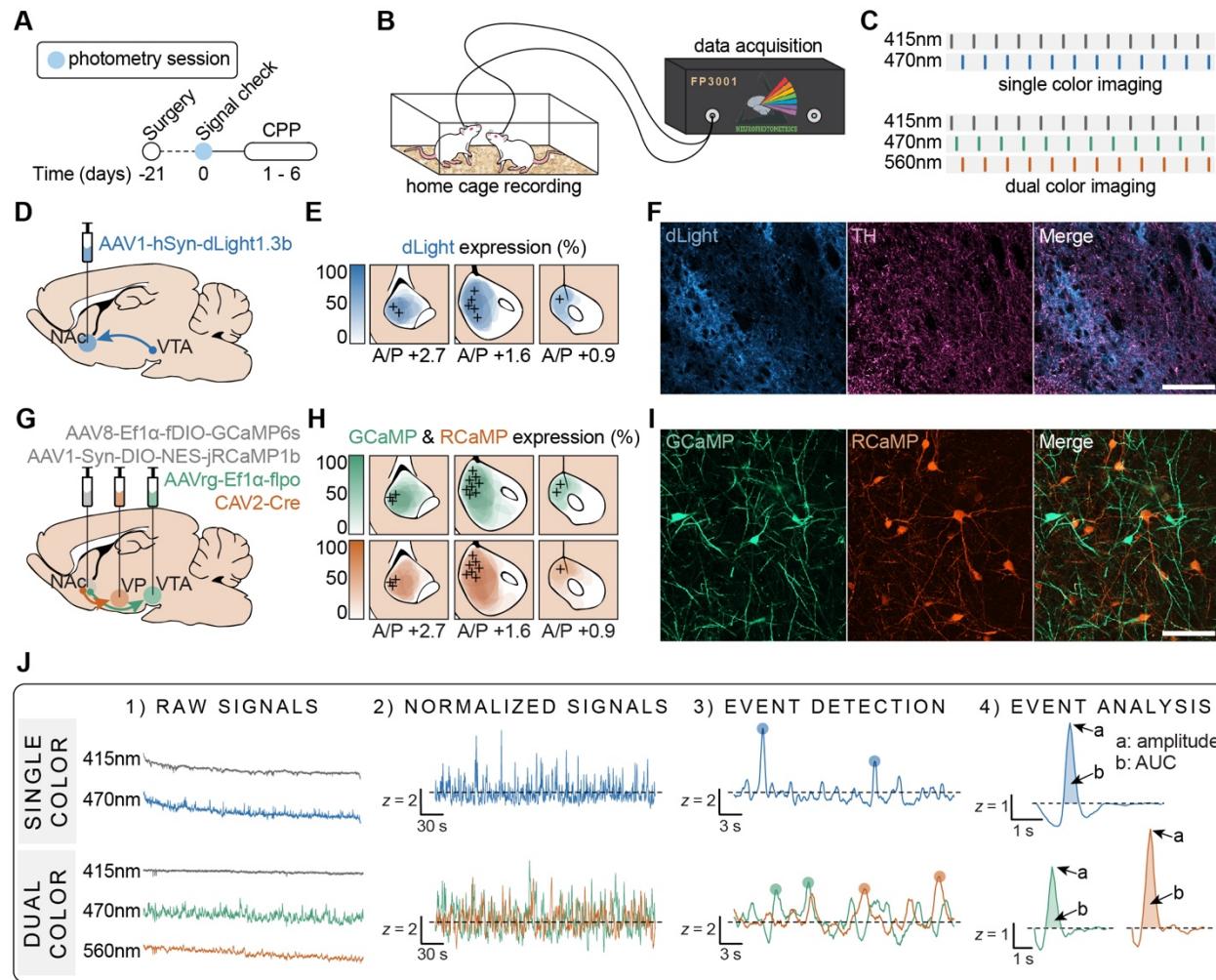
697

698 **Figure 5 | Increased dMSN signaling precedes entry to a heroin-paired context. A-B**, Timeline and
699 strategy for NAc dMSN recordings during CPP test sessions, and representative dMSN traces collected
700 during the pre- and post-test. **C**, Rats significantly increased preference for the heroin-paired chamber
701 after conditioning. **D-O**, NAc dMSN signals aligned to transitions in the CPP chamber. Following
702 conditioning, **D-F**, dMSN signaling was significantly attenuated when entering the saline-paired chamber
703 and **G-I**, unchanged when exiting the saline-paired chamber. Following conditioning, **J-L**, dMSN signaling

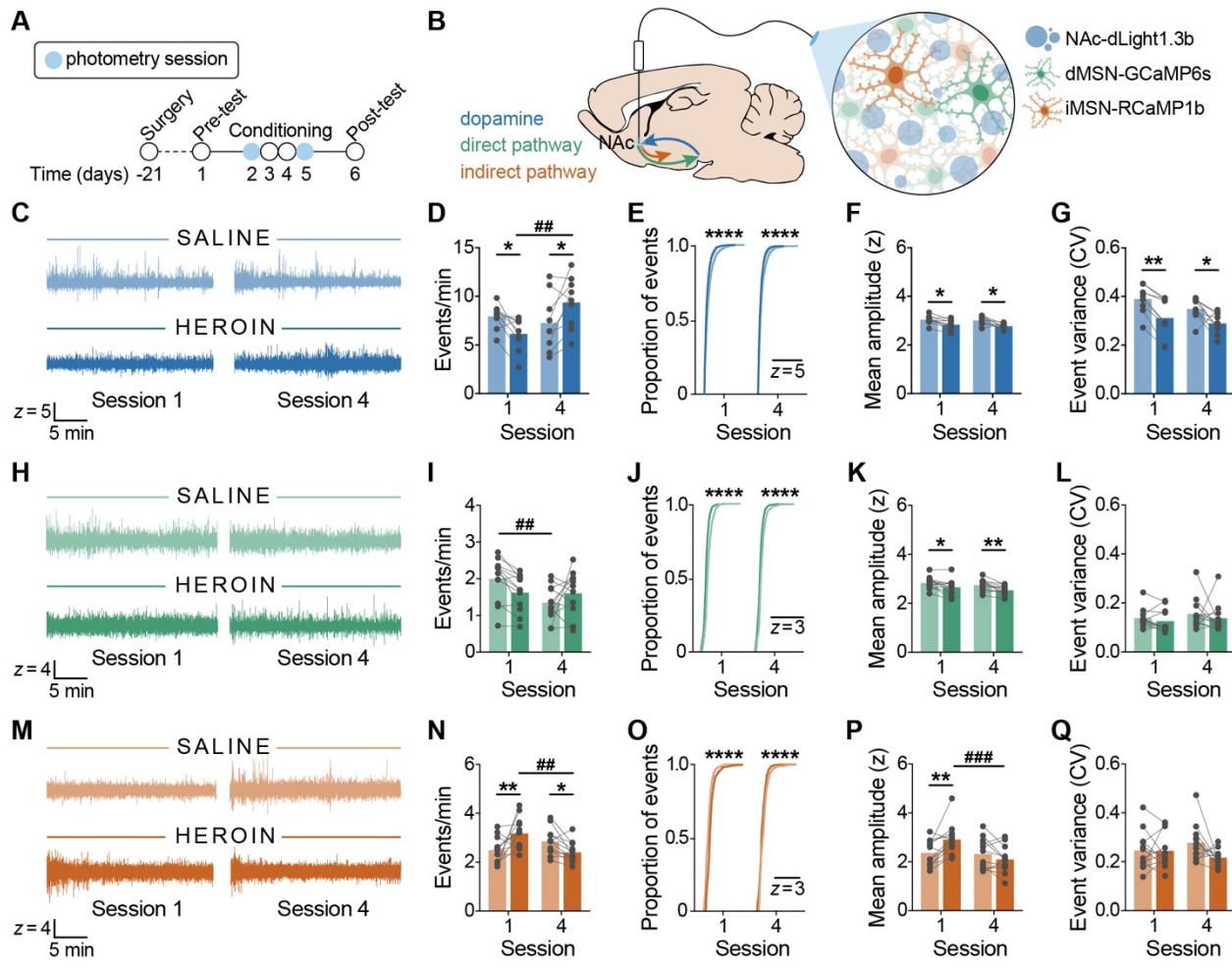

704 was significantly enhanced when entering the heroin-paired chamber and **M-O**, significantly attenuated
705 when exiting the heroin-paired chamber. $n = 12$ rats; $^{**}p < .01$, $^{***}p < .001$, $^{****}p < .0001$

706

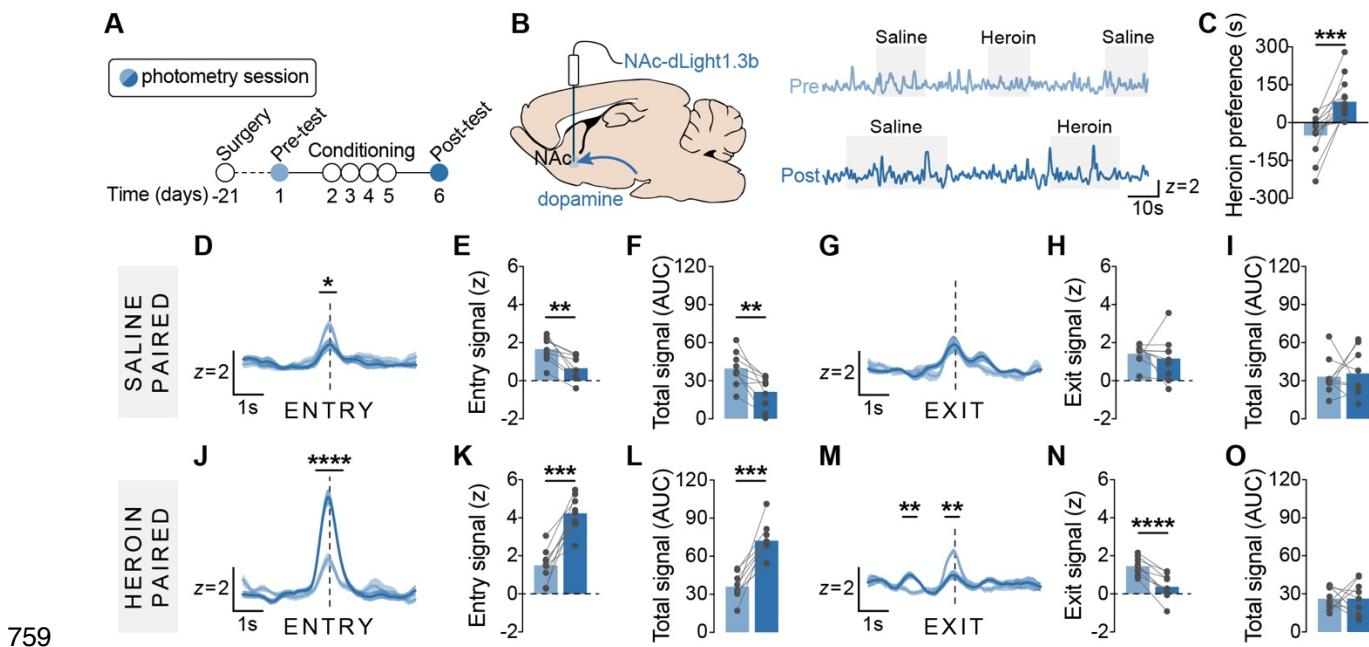
707 **Figure 6 | Decreased iMSN signaling precedes entry to a heroin-paired context. A-B**, Timeline and
708 strategy for NAc iMSN recordings during CPP test sessions, and representative iMSN traces collected
709 during the pre- and post-test. **C**, Rats significantly increased preference for the heroin-paired chamber
710 after conditioning. **D-O**, NAc iMSN signals aligned to transitions in the CPP chamber. Following
711 conditioning, **D-F**, iMSN signaling was significantly enhanced when entering the saline-paired chamber
712 and **G-I**, unchanged when exiting the saline-paired chamber. Following conditioning, **J-L**, iMSN signaling
713 was significantly attenuated when entering the heroin-paired chamber and **M-O**, significantly enhanced
714 when exiting the heroin-paired chamber. $n = 10$ rats; $^{*}p < .05$, $^{**}p < .01$

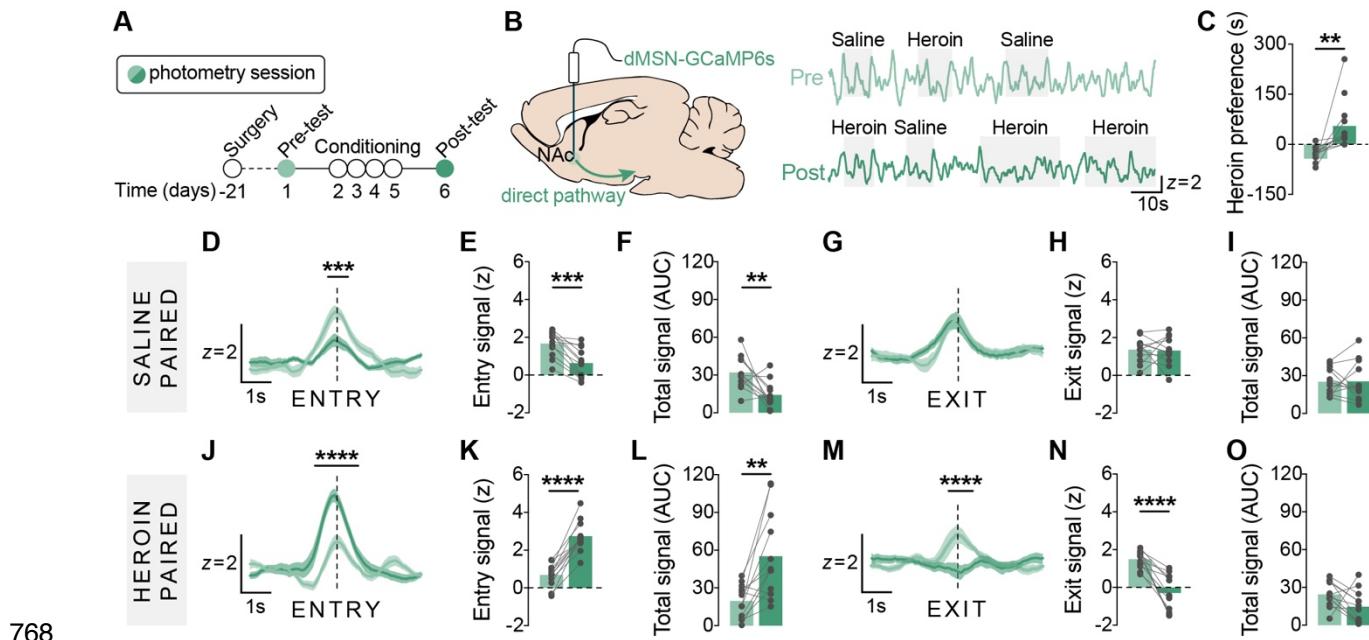

715

716 **Figure 7 | Acquisition of heroin CPP is blocked by buprenorphine. A**, Timeline for buprenorphine
717 experiment. Testing was performed as described in **Figure 1**, but rats received buprenorphine
718 pretreatment 10 min prior to each conditioning session. **B-C**, Rats pretreated with 0.2 mg/kg
719 buprenorphine spent significantly less time in the heroin-paired chamber during the post-test than those
720 pretreated with 0 mg/kg buprenorphine and did not develop a preference for the heroin-paired chamber.
721 **D-G**, Representative images and quantification of Fos in the NAc. Rats pretreated with 0.2 mg/kg
722 buprenorphine had significantly less Fos in both subregions of the NAc than those pretreated with 0
723 mg/kg buprenorphine. $n = 8$ /group; scale bar = 50 μ m; $^{*}p < .05$, $^{**}p < .01$, $^{***}p < .001$, $^{****}p < .0001$

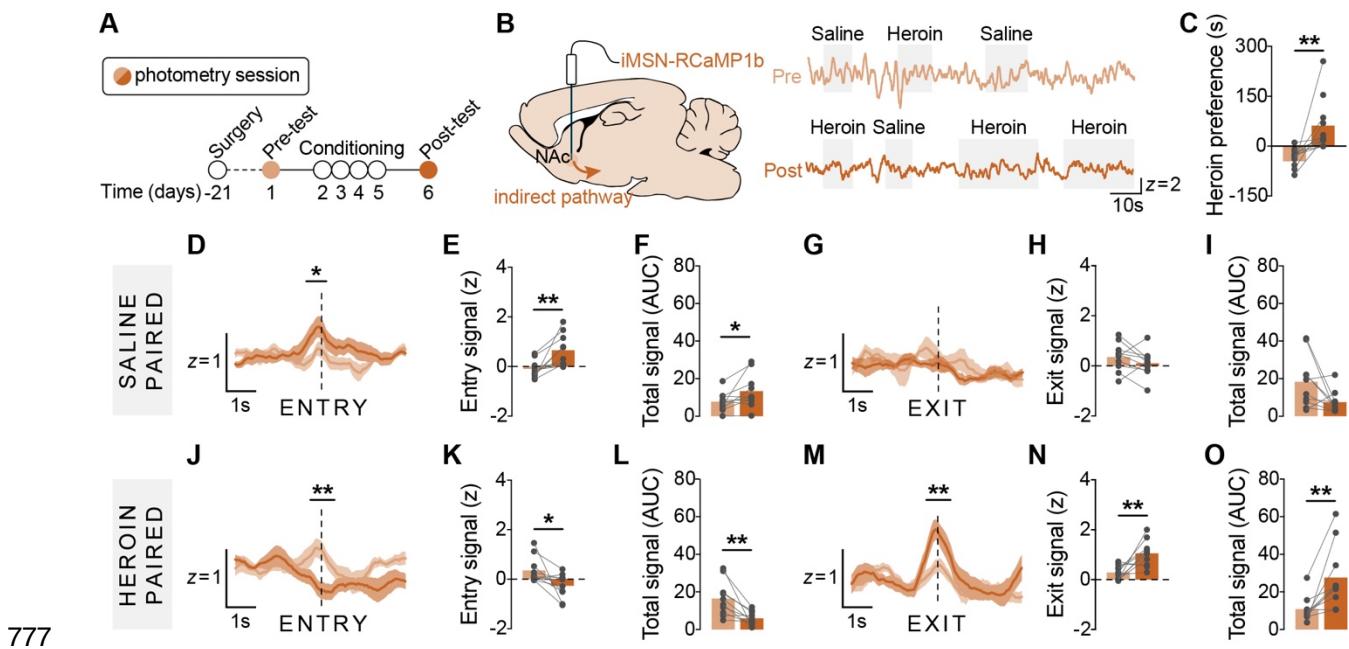

724 **Figure 1 | Expression of heroin CPP is accompanied with NAc activation**

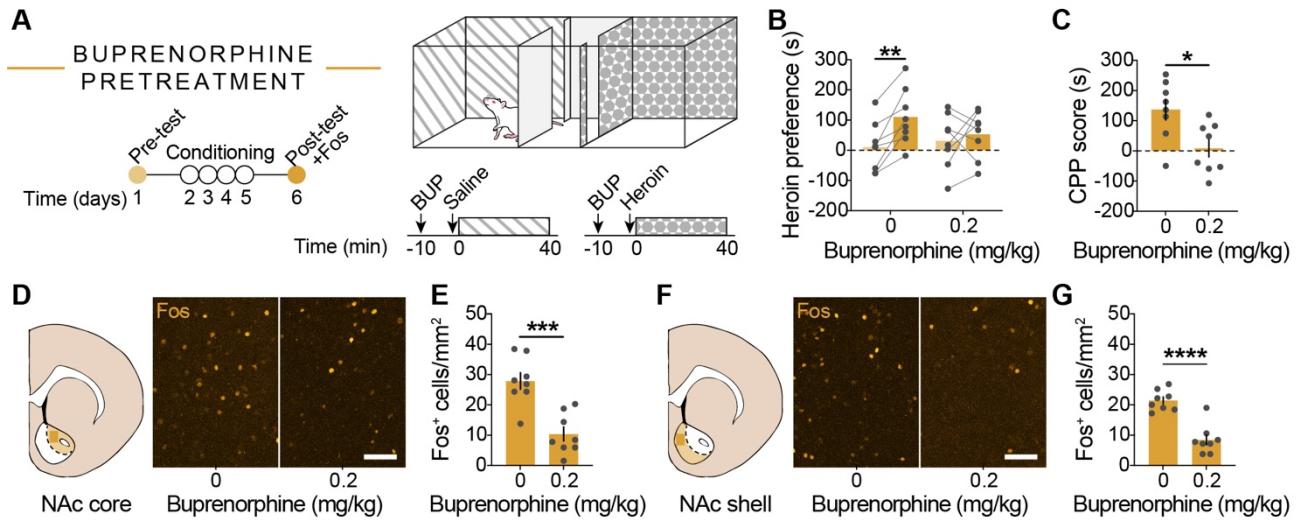
725 **A**, Timeline for heroin CPP procedure. Rats underwent two preference tests (15 min each) separated by
726 eight conditioning sessions (2x/day, 40 min each), and activation of the NAc during the post-test was
727 assessed via Fos immunohistochemistry. **B-C**, Rats conditioned with 3 mg/kg heroin spent more time in
728 the heroin-paired chamber during the post-test and developed a significant preference for the heroin-
729 paired chamber. **D-E**, Representative images and quantification of Fos in the NAc core. **F-G**,
730 Representative images and quantification of Fos in the NAc shell. $n = 8/\text{group}$; scale bar = $50 \mu\text{m}$; $^*p <$
731 $.05$, $^{**}p < .01$


732


733 **Figure 2 | Experimental design for fiber photometry recordings in the NAc. A**, Timeline for
 734 photometry recordings prior to CPP. Rats underwent brief (~5 min) recordings in their home cages to
 735 verify signal quality. **B**, Experimental setup. Rats were connected to a fiber photometry system via a
 736 branching fiber optic patch cord for *in vivo* recordings. **C**, LED configuration for single or dual color
 737 imaging with interleaved isosbestic wavelength. **D-E**, Viral strategy for dopamine imaging and expression
 738 of dLight1.3b throughout the NAc. **F**, Representative dLight expression with TH staining of DA terminals
 739 in the NAc. **G-H**, Viral strategy for dMSN/iMSN imaging and expression of GCaMP6s and RCaMP1b
 740 throughout the NAc. **I**, Representative GCaMP and RCaMP expression in the NAc. **J**, Analysis pipeline
 741 for photometry data. Raw signals were de-interleaved to separate channels, then linearized and
 742 converted to z-scores. Events were detected and extracted from normalized signals, and event
 743 characteristics were examined. +: optic fiber location; TH: tyrosine hydroxylase; scale bar = 100 μ m

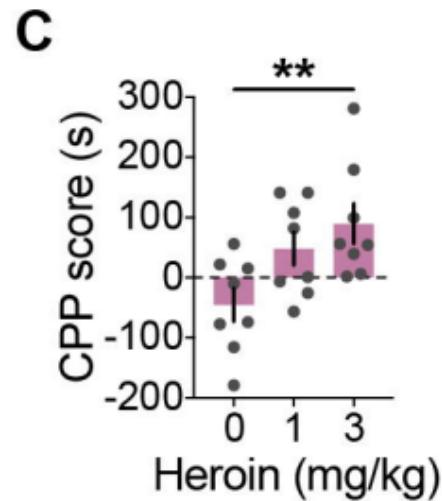
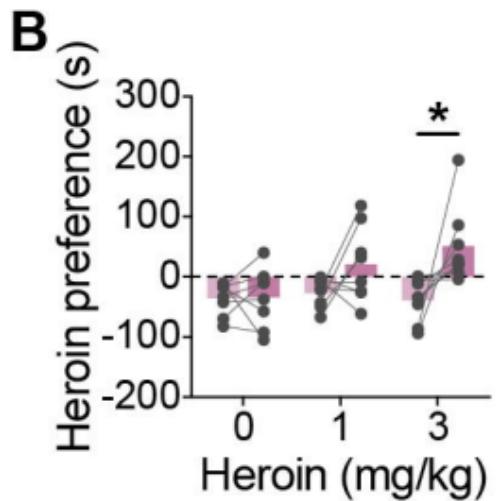
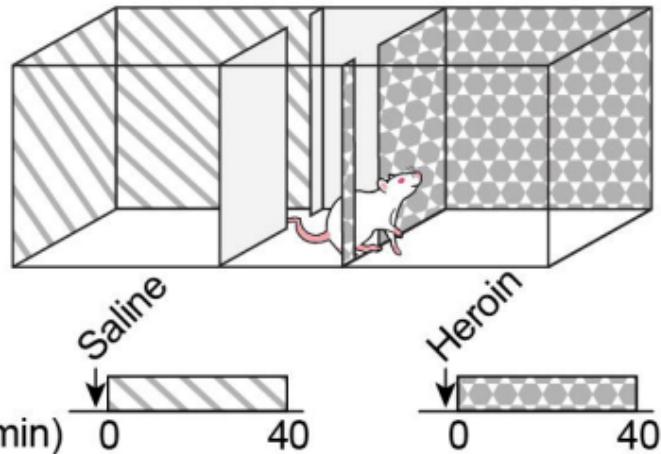
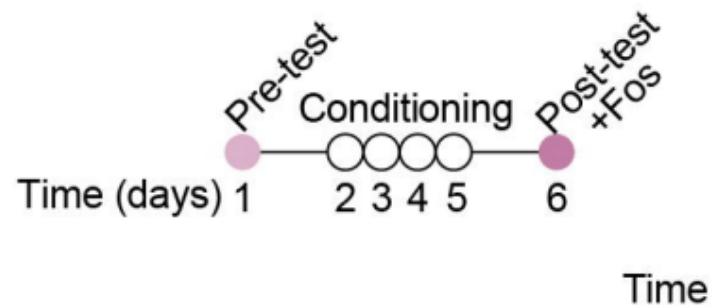
745 **Figure 3 | Heroin conditioning disrupts DA, dMSN, and iMSN signaling in the NAc. A-B**, Timeline
 746 and experimental design for photometry recordings during CPP conditioning sessions. **C, H, M**,
 747 Representative signals collected during conditioning. **D**, Heroin reduced the frequency of DA events in
 748 session 1 but increased the frequency of DA events in session 4. **E-G**, Heroin reduced the frequency of
 749 large amplitude DA events, the average amplitude of DA events, and the variance of DA event
 750 amplitudes. **H-I**, The frequency of dMSN events after the fourth saline pairing was significantly lower than
 751 after the first saline pairing. **J-L**, Heroin reduced the proportion of large dMSN events and the average
 752 amplitude of dMSN events but had no effect on the variance of dMSN events. **M-N**, Heroin increased the
 753 frequency of iMSN events in session 1 but reduced the frequency of iMSN events in session 4. **O-P**,
 754 Heroin increased the proportion of large amplitude iMSN events and the average amplitude of iMSN
 755 events in session 1 but decreased the proportion of large amplitude iMSN events and the average

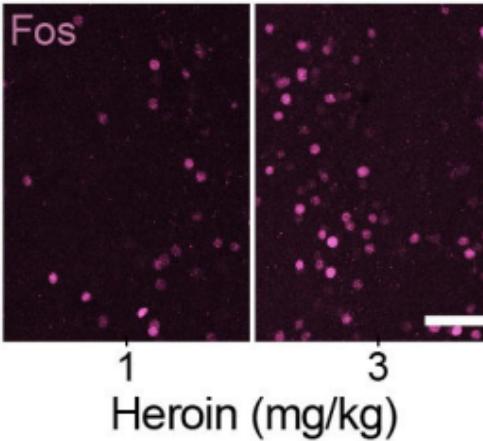
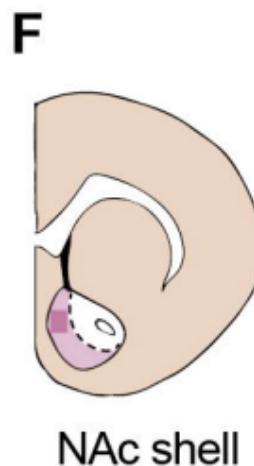
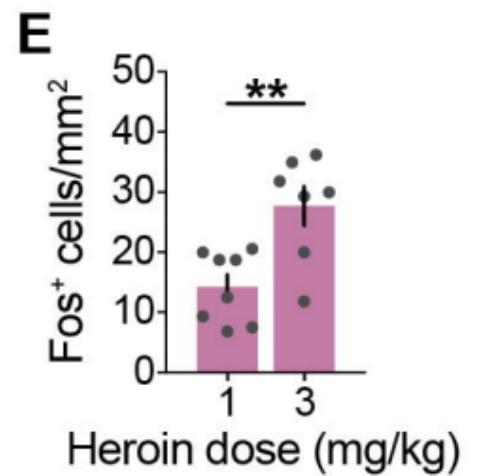
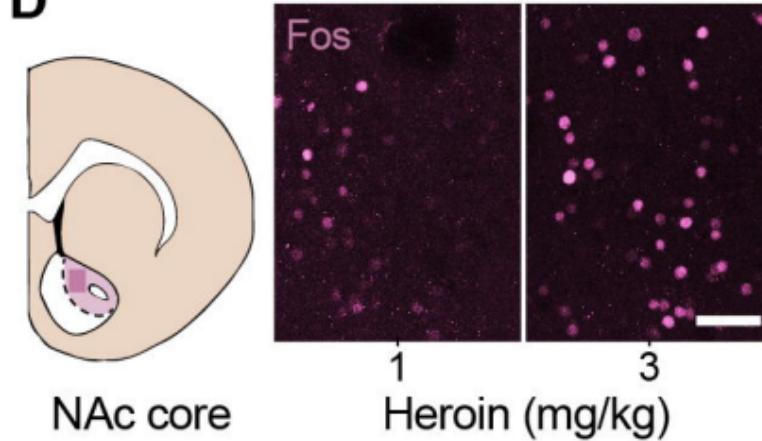

756 amplitude of iMSN events in session 4. **Q**, The variance of iMSN events was unchanged during
757 conditioning. $n = 9-12$ rats; $*p < .05$, $**p < .01$, $***p < .001$, $****p < .0001$ (saline vs heroin); $##p < .01$, $###p$
758 $< .001$ (session 1 vs session 4)


768

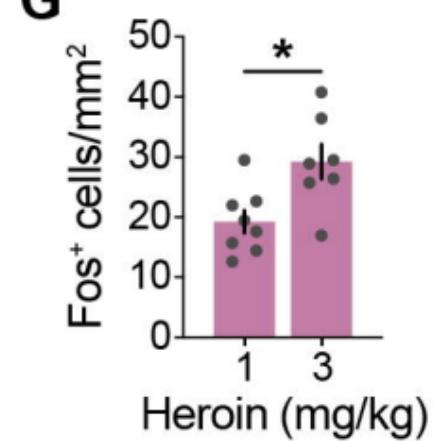
769 **Figure 5 | Increased dMSN signaling precedes entry to a heroin-paired context. A-B**, Timeline and
770 strategy for NAc dMSN recordings during CPP test sessions, and representative dMSN traces collected
771 during the pre- and post-test. **C**, Rats significantly increased preference for the heroin-paired chamber
772 after conditioning. **D-O**, NAc dMSN signals aligned to transitions in the CPP chamber. Following
773 conditioning, **D-F**, dMSN signaling was significantly attenuated when entering the saline-paired chamber
774 and **G-I**, unchanged when exiting the saline-paired chamber. Following conditioning, **J-L**, dMSN signaling
775 was significantly enhanced when entering the heroin-paired chamber and **M-O**, significantly attenuated
776 when exiting the heroin-paired chamber. $n = 12$ rats; $**p < .01$, $***p < .001$, $****p < .0001$

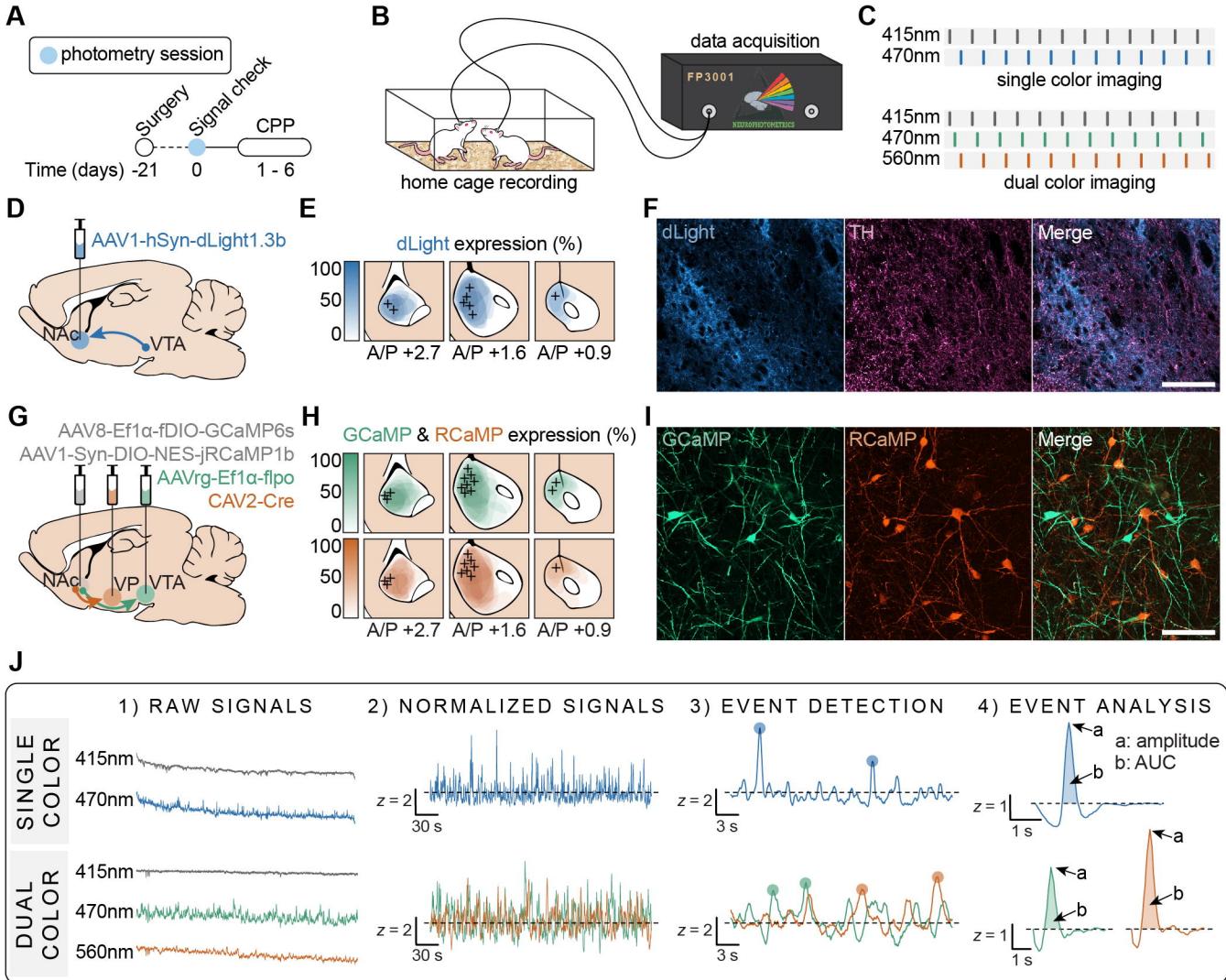
777 **Figure 6 | Decreased iMSN signaling precedes entry to a heroin-paired context. A-B, Timeline and**
778 strategy for NAc iMSN recordings during CPP test sessions, and representative iMSN traces collected
779 during the pre- and post-test. **C**, Rats significantly increased preference for the heroin-paired chamber
780 after conditioning. **D-O**, NAc iMSN signals aligned to transitions in the CPP chamber. Following
781 conditioning, **D-F**, iMSN signaling was significantly enhanced when entering the saline-paired chamber
782 and **G-I**, unchanged when exiting the saline-paired chamber. Following conditioning, **J-L**, iMSN signaling
783 was significantly attenuated when entering the heroin-paired chamber and **M-O**, significantly enhanced
784 when exiting the heroin-paired chamber. $n = 10$ rats; $*p < .05$, $**p < .01$

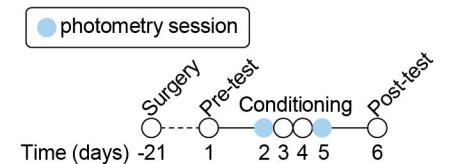
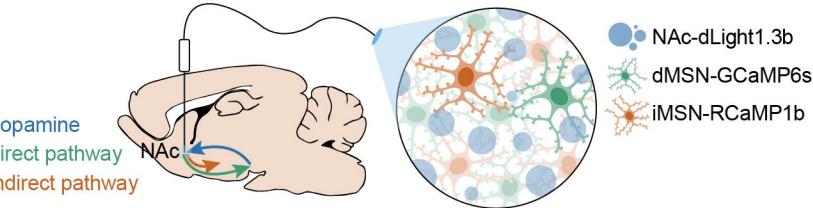
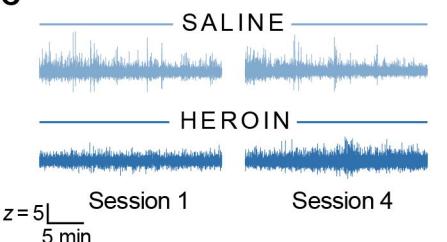
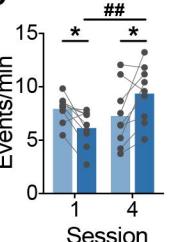
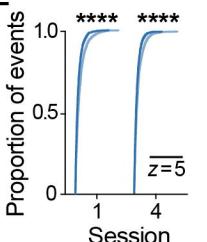
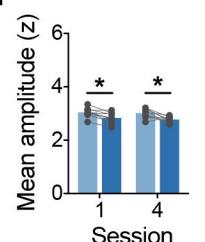
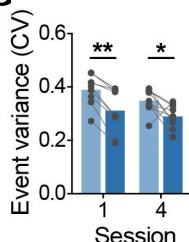
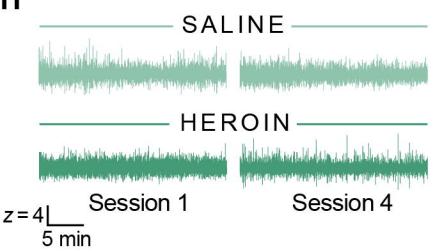
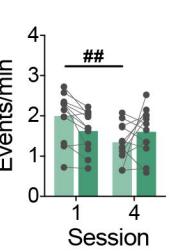
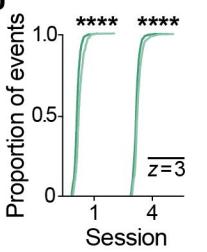
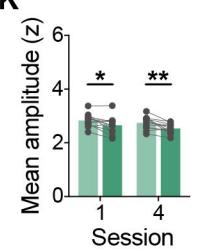
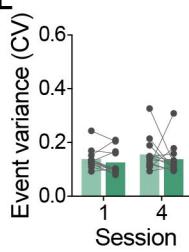
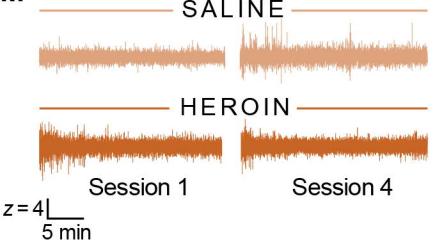
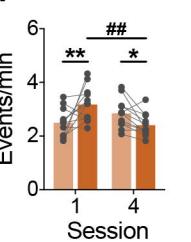
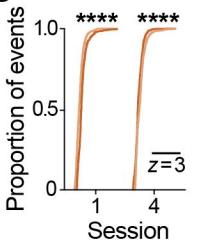
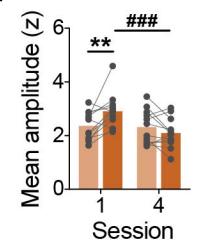
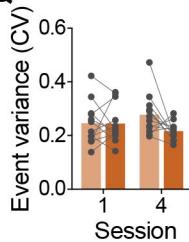




785

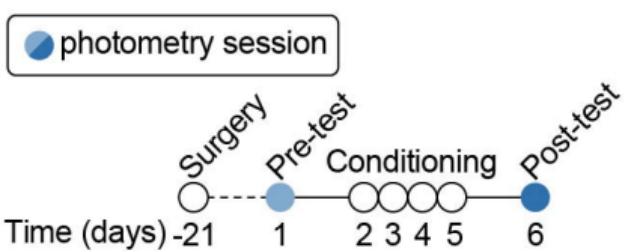
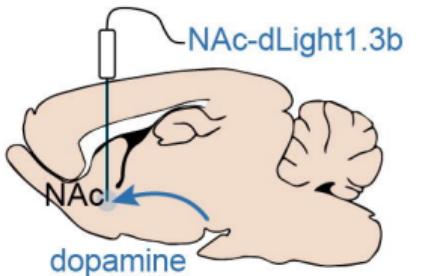
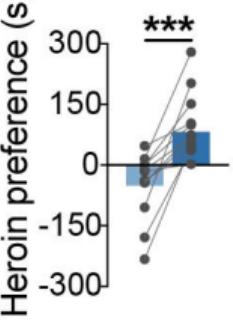
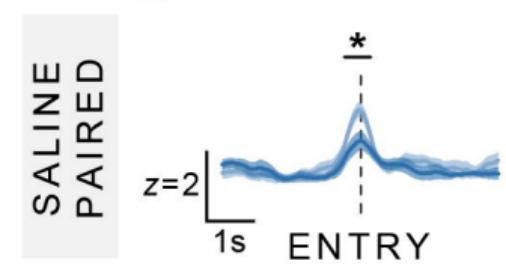
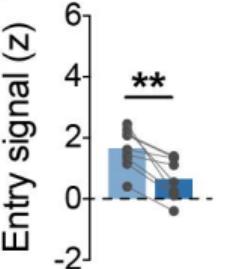
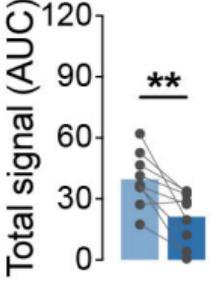
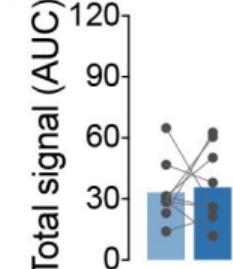
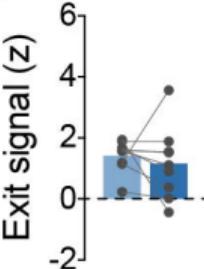
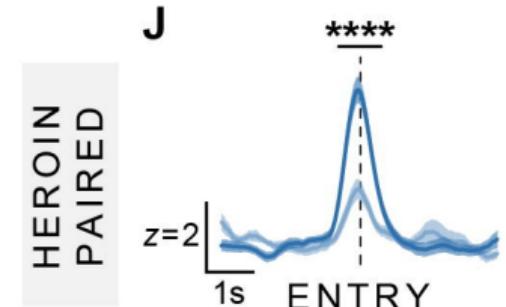
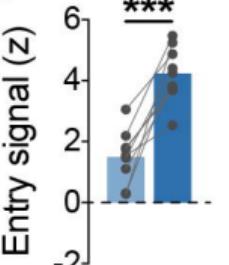
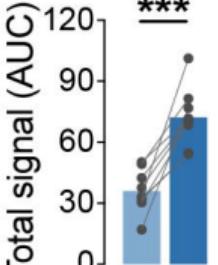
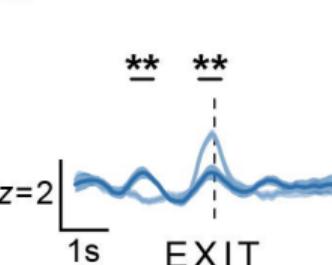
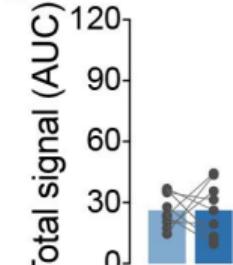
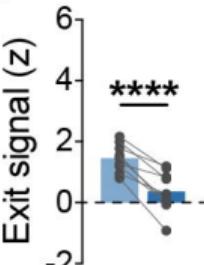




786

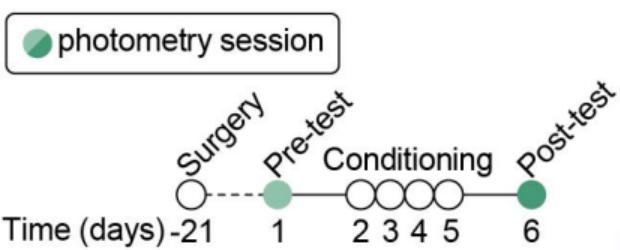
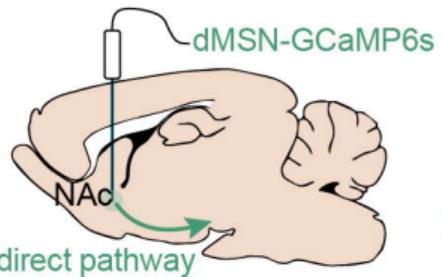
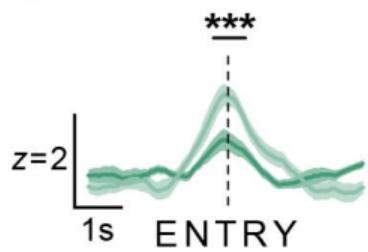
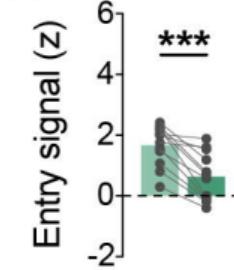
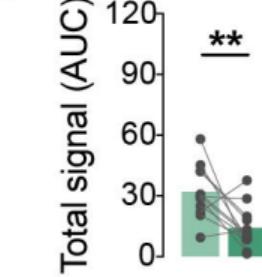
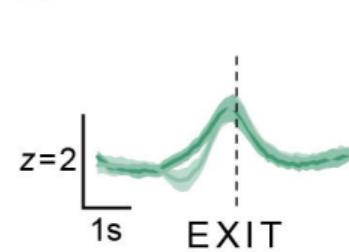
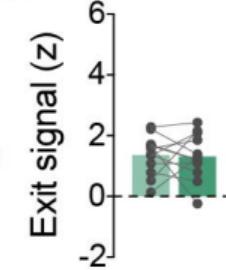
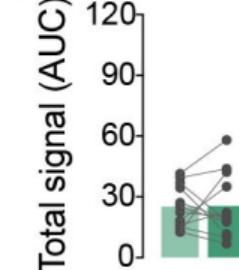
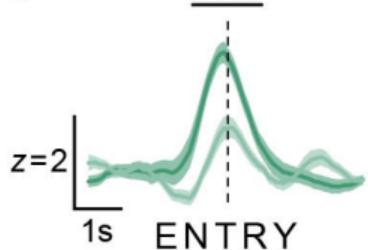
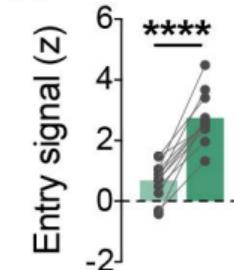
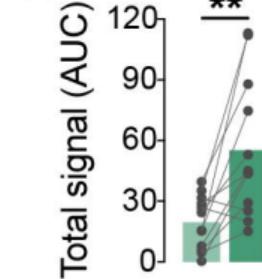
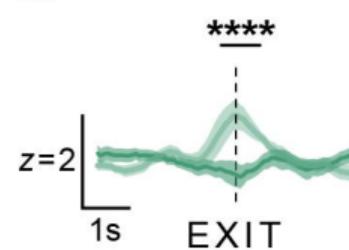
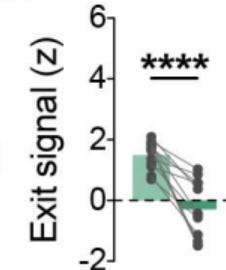
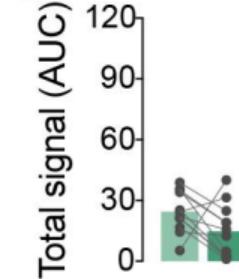
787 **Figure 7 | Acquisition of heroin CPP is blocked by buprenorphine.** **A**, Timeline for buprenorphine
788 experiment. Testing was performed as described in **Figure 1**, but rats received buprenorphine
789 pretreatment 10 min prior to each conditioning session. **B-C**, Rats pretreated with 0.2 mg/kg
790 buprenorphine spent significantly less time in the heroin-paired chamber during the post-test than those
791 pretreated with 0 mg/kg buprenorphine and did not develop a preference for the heroin-paired chamber.
792 **D-G**, Representative images and quantification of Fos in the NAc. Rats pretreated with 0.2 mg/kg
793 buprenorphine had significantly less Fos in both subregions of the NAc than those pretreated with 0
794 mg/kg buprenorphine. $n = 8$ /group; scale bar = $50 \mu\text{m}$; * $p < .05$, ** $p < .01$, *** $p < .001$, **** $p < .0001$

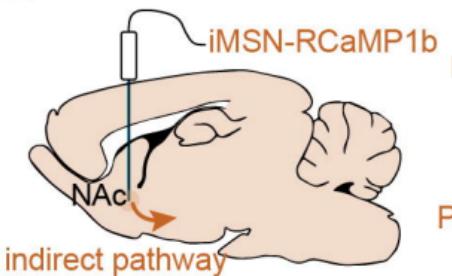

A HEROIN DOSE RESPONSE




















D

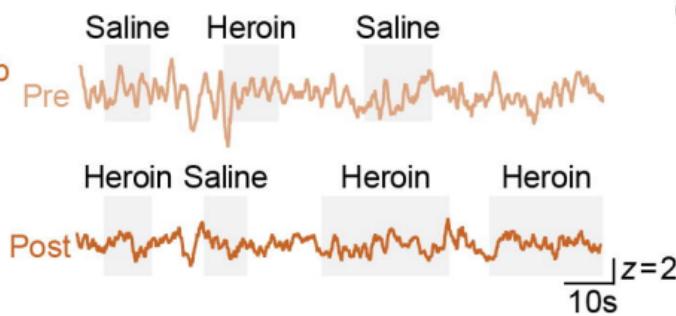
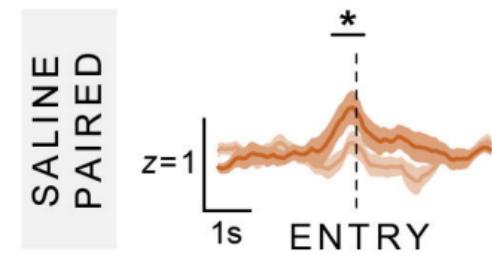
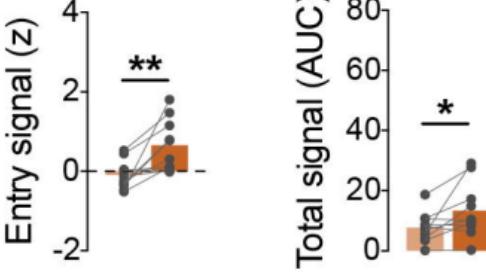
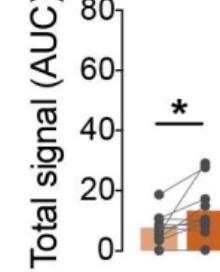
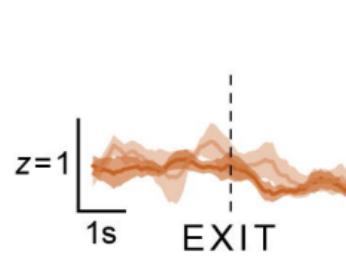
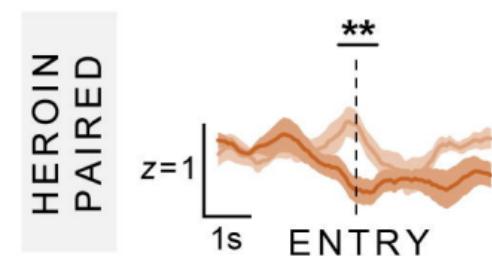
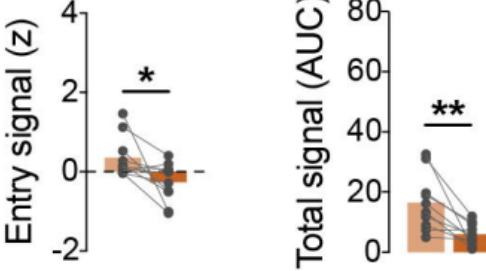
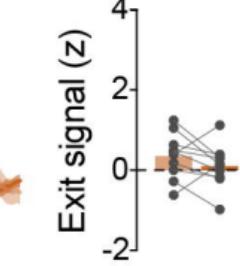
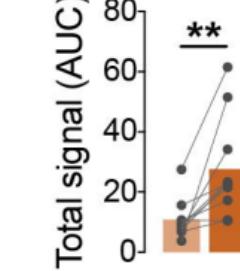
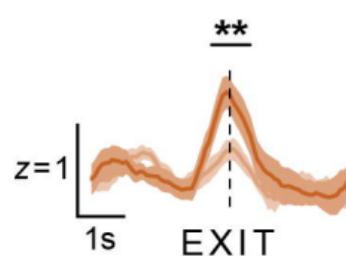
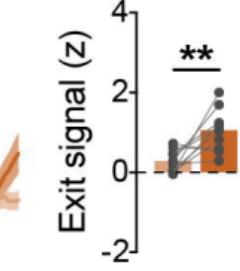














G

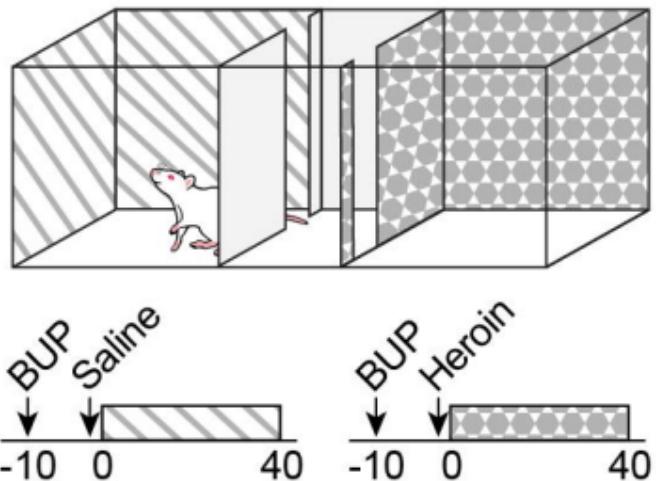
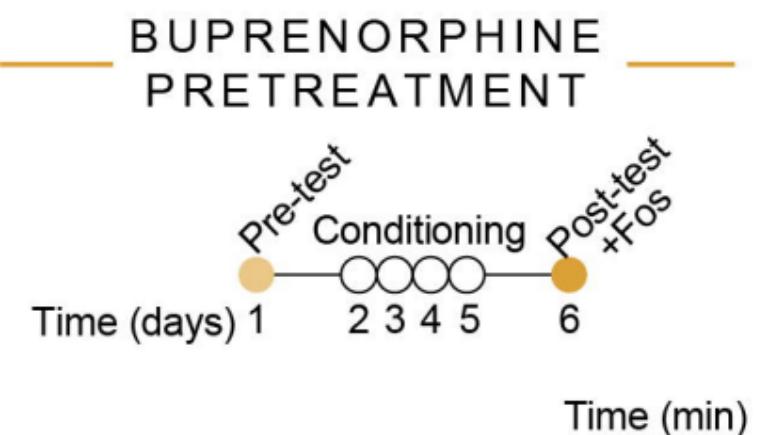
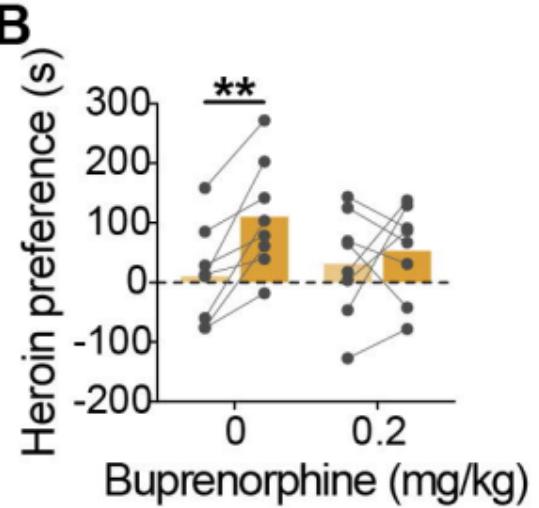
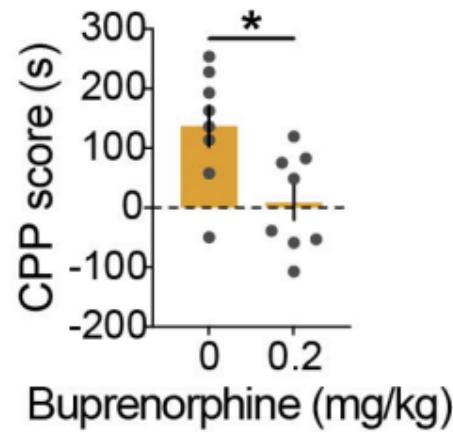
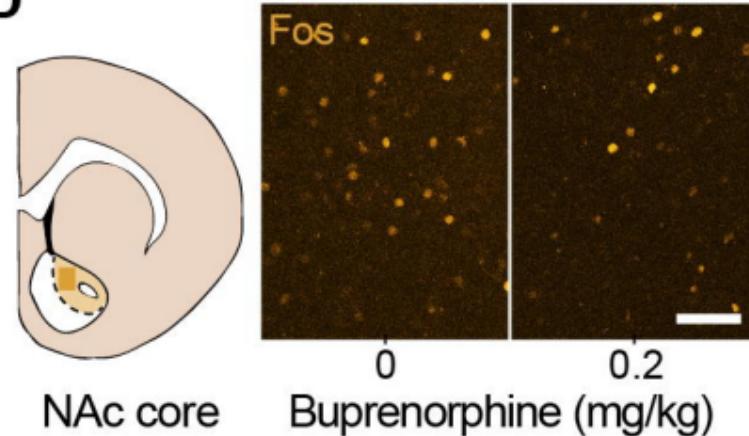
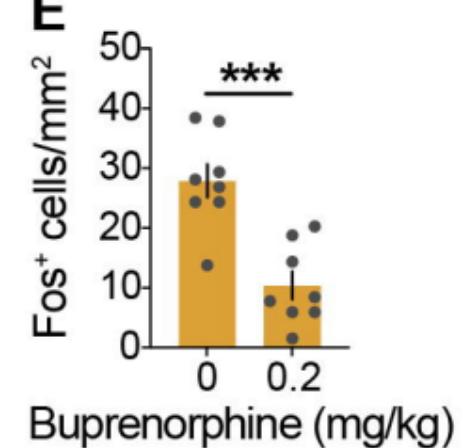
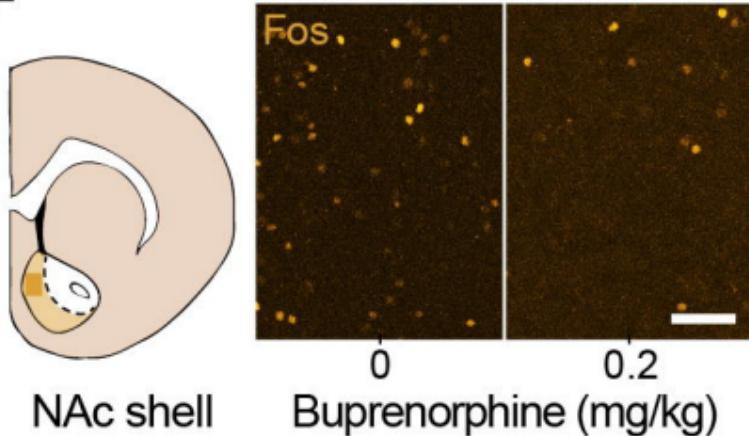
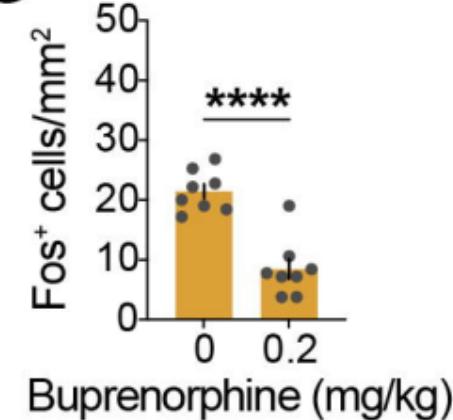



A**B****C****D****E****F****G****H****I****J****K****L****M****N****O****P****Q**

A**B****C****D****E****F****G****H****J****K****L****M****N**

A**B****C****D****E****F****G****H****I****J****K****L****M****N****O**












A**B**









Saline Heroin Saline

Heroin Saline

Heroin

Heroin

C**D****E****F****G****J****K****L****H****O****M****N**

A**B****C****D****E****F****G**