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ABSTRACT The search for quantitative trait loci (QTL) that explain complex traits such as yield and flowering time has been
ongoing in all crops. Methods such as bi-parental QTL mapping and genome-wide association studies (GWAS) each have their
own advantages and limitations. Multi-parent advanced generation intercross (MAGIC) populations contain more recombination
events and genetic diversity than bi-parental mapping populations and reduce the confounding effect of population structure
that is an issue in association mapping populations. Here we discuss the results of using a MAGIC population of doubled
haploid (DH) maize lines created from 16 diverse founders to perform QTL mapping. We compare three models that assume
bi-allelic, founder, and ancestral haplotype allelic states for QTL. The three methods have different power to detect QTL for a
variety of agronomic traits. Although the founder approach finds the most QTL, there are also QTL unique to each method,
suggesting that each model has advantages for traits with different genetic architectures. A closer look at a well-characterized
flowering time QTL, qDTA8, which contains vgt1, suggests a potential epistatic interaction and highlights the strengths and
weaknesses of each method. Overall, our results reinforce the importance of considering different approaches to analyzing

genotypic datasets, and show the limitations of binary SNP data for identifying multi-allelic QTL.9

Introduction

The study of quantitative genetics requires the ability to link
differences in phenotype to genotypic variation. Natural
and artificial selection act on phenotypes, but only genetic varia-
tion will result in changes in population means. Maize presents
an excellent model organism to study quantitative genetics
due to the combination of extensive genetic and phenotypic
resources and the ability to create mapping populations. In ad-
dition, maize is one of the most widely produced crops in the
world and is a major source of calories for millions of people.
Decades of research into maize genetics have resulted in the
identification of many quantitative trait loci (QTL) that explain
variation in phenotypes such as yield, flowering time, and plant
height (Buckler et al. 2009; Wang et al. 2006; Wallace et al. 2014;
Beavis et al. 1991; Steinhoff et al. 2012). Such traits are extremely
agronomically important, but are also crucial in terms of fitness
and local adaptation.

Researchers have discovered large-effect QTL for a number
of agronomic traits in maize through the use of different types
of mapping populations (Huang et al. 2015). Any choice of map-
ping population comes with both advantages and limitations.
In particular, different types of populations tend to vary in two
main characteristics: (1) their ability to capture genetic diversity
and (2) their power to detect QTL of small effect. Multi-parent
Advanced Generation Intercross (MAGIC) populations have
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been used in breeding to increase the genetic diversity included
in a mapping population compared to biparental populations
(Huang et al. 2012; Dell’Acqua et al. 2015; Highfill et al. 2016;
Aylor et al. 2011; Kover et al. 2009; Pascual et al. 2015). Com-
pared to genome-wide association panels, MAGIC populations
have more power to detect low frequency alleles and can better
compare allelic effects between haplotypes because the cross-
ing scheme increases the frequency of all parental alleles to
be approximately equal. Simulations of an 8-parent MAGIC
population showed that with a sample size of 300 lines, QTL
accounting for 12% of variance could be detected with a power
of 82% averaged across minor allele frequencies (Dell’Acqua
et al. 2015). Lastly, a MAGIC population avoids confounding
due to population structure that is encountered with genome-
wide association studies (GWAS) because of the break-up of
genome-wide LD.

In this study, we used a MAGIC population of 344 doubled-
haploid lines derived from 16 inbred maize parents developed
by Biogemma to understand how different quantitative genetic
models can impact the identification of QTL. This MAGIC popu-
lation has an intermediate number of founders compared to the
8-parent (Dell’Acqua et al. 2015) and 24-parent (Liu et al. 2020)
MAGIC populations that have been created. Simulations sug-
gest it should have comparable power to larger nested mapping
populations (Dell’Acqua et al. 2015; Yu et al. 2008). Our pop-
ulation differs from all of these in its use of doubled haploids
(DH) instead of recombinant inbred lines. For these reasons, the
Biogemma MAGIC population has great potential to reveal new
insights into the genetic control of quantitative traits in maize.
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In addition to the choice of mapping population, the choice
of how to represent genetic information through association and
QTL mapping can impact the power of a study to detect and
analyze QTL. A bi-allelic model for QTL, often used in GWAS,
assumes that a single causal variant at a locus explains the phe-
notypic variation in the population. Most commonly, genetic
variation is represented as bi-allelic SNPs which segregate in the
population, with each individual possessing either a reference
or alternate allele. With this bi-allelic model, hereafter referred
to as GWASgnp, each marker’s effect captures the total effect of
all variants statistically linked (or correlated) with this marker,
generally a small local region of a chromosome.

An alternative model for the allelic state of QTL can be used
in multi-parent populations, where we assume that each founder
contributes its own allele. In this model, rather than looking at
individual SNPs, we test whole chromosomal segments along
which the founder state is constant for all individuals in a pop-
ulation. As a result, QTL are multi-allelic, with the number of
alleles equal to how many founders were used in the making of
the population. We will refer to this founder model hereafter as
QTLp.

The assumption that each founder contains a functionally
and evolutionarily distinct haplotype in a genomic window,
although likely for biparental mapping populations, becomes
increasingly unlikely as the number of founders increases. This
is because the founders of a population likely share ancestral
haplotypes through identity-by-descent (IBD). A third allelic
model takes into account shared ancestral haplotypes between
founders. This model, hereafter referred to as QT Ly, allows
the number of alleles at each site to vary anywhere from one
to the total number of founders (here 16), based off of the num-
ber of ancestral haplotypes at that site. This has the potential
to increase statistical power compared to the QTLr model by
reducing the number of parameters.

Here we present a maize MAGIC population derived from
16 parents and discuss the performance of three different mod-
els for representing allelic states: bi-allelic, founder, and ances-
tral haplotype allelic models for detecting QTL. Using vgt1, a
well-characterized flowering time QTL with a strong candidate
causal variant that is variable in the population, we demonstrate
differences between the three methods and explore potential
interactions between vgt1 and other genetic variation in the pop-
ulation.

Materials and Methods

Mapping Population

The MAGIC population was derived from 16 inbred maize par-
ents representing the diversity of European flint and U.S. dent
heterotic groups. The 16 founder lines were crossed in a funnel
crossing scheme, and then the resulting synthetic population
was intercrossed for 3 generations with around 1600 individuals
per cycle (Figure 1A) (Supplemental File 1). Finally, 800 lines
were selected from the synthetic population to create doubled
haploids (DH), resulting in 550 MAGIC DH lines at the end
of the process. The MAGIC DH lines were crossed to a tester
MBS847 to produce 344 hybrids (Figure 1A). Due to variation in
flowering time, a subset of the lines could not be crossed to the
tester (Supplemental File 1).

Genotyping
The 16 founder lines and the MAGIC DH lines were all geno-
typed with the Affymetrix 600K Axiom SNP array (Unterseer

et al. 2014), resulting in genotype data for 517,769 SNPs. A total
of 503,902 SNPs were used after filtering out invariant sites and
sites that were not located on autosomal chromosomes according
to the B73 AGPv4 reference genome (Jiao et al. 2017).

Phenotype Data

The MAGIC F1 plants were phenotyped in five different
field locations in four different years, resulting in six distinct
environment-years (Hudson et al. in prep). The environments
represent a range of latitudes and water stress, from vegeta-
tive and flowering water deficit (Nerac 2016) to optimum well-
watered conditions (Graneros 2015). In each environment we
grew a minimum of 292 and a maximum of 309 of the DH lines.
Each genotype was grown with two replicates in each environ-
ment. In all environments, seven traits were measured: grain
yield (GY), plant height (PH), female flowering date (DTS), male
flowering date (DTA), thousand kernel weight (TKW), and har-
vest grain moisture (HGM), and anthesis-silking interval (ASI)
(Hudson et al. in prep). For each of the lines we calculated best
linear unbiased predictor (BLUP) scores for all seven pheno-
types, combining measurements from all environments to get
estimates of the genetic contribution to the phenotype for each
MAGIC line (Aulchenko et al. 2007).

Calculation and Validation of Founder Probabilities

We used the package R/qtl2 (Broman et al. 2019) to determine
founder probabilities of the MAGIC DH lines using the 600K
genotype data and the cross type “riself16”. SNPs used as
markers for the QTLr approach were filtered based on link-
age disequilibrium using an iterative approach where a SNP
was dropped if the R? value of probabilities between it and the
previous SNP was greater than 0.95. After filtering, a total of
4,578 sites were kept.

Due to the fact that the actual crossing scheme and the cross
type input into R/qt]2 differed (DH lines rather than RILs), we
wanted to assess the accuracy of the founder probabilities. This
was done by simulating lines using the actual crossing scheme
and assessing the performance of the calc_genoprobs function
of R/qtl2 in correctly identifying the founder genotype (Figure
1D & E). We developed an R package (R Core Team 2017), magic-
sim (https:/github.com/sarahodell/magicsim) to simulate the lines
using the maize consensus genetic map from (Ogut ef al. 2015)
to generate approximate recombination rates across the chromo-
some. We simulated 100 MAGIC populations constituting 344
lines and assessed founder assignment accuracy as the average
percentage of SNPs where the predicted founder was the same
as the actual founder.

Test for Equal Representation of Alleles

The number of lines that had a probability of a particular founder
greater than 0.8 were used as an approximation of the number
of lines that had that founder at a site. This observed count was
compared to a null expectation of 1/16 for equal distribution
across lines (approximately 21 lines per founder)(Figure 1B).
We performed a X? test for each site to determine if founder
counts significantly deviated from null expectation. We ob-
tained a 5% significance threshold using the X? obtained from
founder counts in 100 simulated populations. The X? tests from
simulated lines were done using reconstructed genotype data
pulled from the 600K genotype data of the 16 founders. We then
used the same methods of calculating founder probabilities with
R/qtl2 used with the actual population. Due to the fact that
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Figure 1 Structure, diversity, and founder representation of the MAGIC population(A) The crossing scheme of the MAGIC popu-
lation. (B) Coverage of each founder across the population on Chromosome 10. The horizontal black line represents the expected
number of lines per founder with equal distribution (21.5). (C) Total coverage of each founder across the population as a percentage.
The black line shows the expectation of equal distribution (6.25%) (D) Founder probabilities for 10 MAGIC DH lines on chromo-
some 10 in physical distance. (E) Founder probabilities for 10 MAGIC DH lines on chromosome 10 in genetic distance.

we used the inferred founder identities of the simulated lines,
rather than the known founder identities, the null distribution
of p-values generated from X? tests of the simulated populations
incorporated uncertainty of founder assignment.

Calculation of Identity-by-Descent and Haplotype Probabilities

The identification of regions of shared genetic sequence between
founder pairs allows collapsing of founders into ancestral hap-
lotypes. IBD was measured from the 600K SNP data of the
founders using the software RefinedIBD (Browning and Brown-
ing 2013) with a sliding window of 10 cM and a minimum IBD
segment length of 0.2 cM. The resulting segments of pairwise
IBD between each of the 16 founders were used to identify dis-
tinct haplotype blocks. We did this by moving along the chro-
mosome, starting a new haplotype block when a segment of
pairwise IBD between founders started or ended (Figure S1).
Then, within blocks, we grouped all founders that were in IBD
with one another into a haplotype and summed the founder
probabilities to obtain haplotype probabilities.

In certain instances, the pairs of founders that were in IBD
with one another in a particular haplotype block formed an
incomplete graph, where not all founders were in IBD with all
other founders (Figure S1). For example, from the results of
RefinedIBD, an incomplete haplotype graph of three founders

would have founder A in pairwise IBD with both founder B and
founder C, but founder B and C not in pairwise IBD. For the
sake of simplicity, we assumed that all founders in a haplotype
were in IBD with one another (we called B and C as in IBD).
However, it is important to note that haplotypes called here may
still possess genetic differences between founders, with some
founders being more different than others.

Markers for the QT Ly mapping approach were filtered for
LD using an iterative approach similar to QTLp: for all haplo-
type blocks with the same number of distinct haplotypes, a SNP
was dropped if the correlation of probabilities between it and
the previous included SNP was greater than 0.95. After filtering,
a total of 11,105 sites were kept to represent haplotype blocks in
the MAGIC DH lines.

Association and QTL Mapping

The R package GridLMM (Runcie and Crawford 2019) was used
to run association mapping using the three different methods
of representing the genotype data. The function GridLMM_ML
was used with the "ML" option. The following three models
were approximated by fitting each locus independently. The
three methods differed in the X matrix used in the mixed linear
model.

The bi-allelic model (GWASgyp) was
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Figure 2 Diversity and Size of Haplotype Blocks The number of unique haplotypes among the 16 MAGIC founders across the 10
chromosomes of maize (A) The number of unique haplotypes per haplotype block and size of haplotype blocks along chromosome
4 in physical distance. (B) Distribution of unique haplotypes per haplotype block across the genome. (C) Distribution of haplotype
block size in physical distance, represented as log10(bp). The black bar represents the average size of 303.7 kb. (D) Distribution of
haplotype block size in genetic distance, represented as cM. The black bar represents the average size of 0.2 cM.

y=p+xsifsit+Zute (1)

where y is the response variable, y is the global mean, xg; is
an 1 x 1 genotype vector for SNP i with reference and alternate
alleles represented as 0 and 1, respectively, B; is the effect size of
the alternate allele, Z is the design matrix, u ~ N(0,02K) is the
random effects of markers across the rest of the genome using
the genomic relationship matrix, K, and € is the error.

The founder model (QTLp):

y=pu+ XpiPri+Zu+e )]

where y is the response variable, y is the global mean, Xp; isan

x f — 1 matrix for marker i and x,; is the probability that at site

i, individual n was derived from founder f, Bri, is the effect size

of each founder allele, Z is the design matrix, u ~ N(0, c2K)

is the random effects of markers across the rest of the genome

using the genomic relationship matrix, K, and € is the error.
The ancestral haplotype model (QTLp):

y=p+XugiPui+Zu+e 3)

where y is the response variable, y is the global mean, Xp; is an
n x h — 1 matrix for marker i and xy,,; is the probability that at
site i, individual # has haplotype h, By;, is the effect size of each
haplotype allele, Z is the design matrix, u ~ N(0,02K) is the
random effects of markers across the rest of the genome using
the genomic relationship matrix, K, and € is the error.
Significance cutoffs for p-values were obtained using per-
mutation testing, taking the 5% cutoff from 1000 permutations

where genotypes were randomized relative to phenotypes for
each method.

Model Comparison

The results of the three models were compared using two main
criteria: (i) presence or absence of identified QTL peaks and (ii)
the size of QTL support intervals. QTL support intervals were
determined by identifying the most significant SNP for a QTL
peak and demarcating the left and right bounds of the QTL as the
left-most and right-most SNPs within a 100Mb window centered
on the highest SNP that have a -log10(p-value) that is 2 log10(p-
values) below that of the highest SNP. The detection of QTL
was compared across the three methods for each phenotype. A
QTL was said to be identified across models if the QTL support
interval for that QTL overlapped. The effect of the model used
on the size of QTL support intervals was investigated using the
QTL which were identified by all three methods (n=26).

The support interval size response variable was represented
both in terms of physical distance (Mb) and genetic distance
(cM).

Estimation of Effect Sizes

We used the R package Ime4qtl to calculate standard errors of ef-
fect sizes relative to the population mean (Ziyatdinov et al. 2018).
For the QTLr model, effect sizes were dropped for individual
founders at some sites if there where fewer than 5 MAGIC lines
that had a probability greater than 0.8 for one of the founders.
This same filtering was done with QT Ly effect sizes for sites
with low representation of particular haplotypes. This was to
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ensure that effect sizes for individual founders and haplotypes
could be effectively estimated. We confirmed that effect sizes
calculated by GridLMM and Ime4qtl matched one another, with
the correlations in effect sizes between the two methods greater
than 0.99.

Tests for Epistasis

We ran a genome scan for epistatic interactions with vgt1. The
probability of the MAGIC lines having the MITE insertion at
vgtl was calculated by summing the founder probabilities for
all founders that have the MITE™ allele at the site closest to
the location of the MITE underlying vgt1 in the B73 APGv4
assembly found on MaizeGDB (Portwood ef al. 2018). Lines that
had uncertain allelic states at the MITE (0.05 > Pr(MITE™) < 0.95)
were dropped for the test. Applying a Bonferroni significance
threshold adjusted for the number of tests, we tested for epistasis
using the 600K genotype data.

We also performed QTL mapping with QT Lr using only the
MITET MAGIC lines. This was to see if there were any other
loci whose effect was only observed in the presence of the MITE.
A normal epistatic model could not be fit with founder alleles
because there were not enough degrees of freedom to compare
each founder. We used the model from Equation 2 using DTA
BLUP scores and the 5% significance threshold for DTA.

Flowering Time Enrichment Test

We used a list of flowering time (FT) genes assembled by (Wang
et al. 2017) to test for enrichment of FT genes in founder X?
peaks. Of the 907 genes, we used 887 which were aligned to
chromosomes 1 through 10 in the B73 AGPv4 assembly (Jiao et al.
2017). To determine a null distribution, we randomly sampled
887 non-FT genes and counted the number that overlapped with
regions within X? peaks. We compared this number to the actual
number of FT genes that overlap with X2 peaks.

Data availability

Genotypic data will be made available through FigShare.
Phenotypic and environmental data will be made avail-
able at FigShare associated with our companion paper,
(Hudson et al. in prep)(tracking number G3-2021-402688)
(https:/ /figshare.com /s /5ee8337defdef63b04ce). Supplemen-
tal files are available at FigShare. File S1 contains a detailed
description of the crossing scheme used to develop the MAGIC
population. File S2 shows Manhattan plots similar to 3 for indi-
vidual environments. File S3 shows founder effect size plots for
vgt1 similar to 4 for individual environments. File S4 is contains
tables of all QTL identified in the study, their locations, and
their effect sizes estimates from the three models. Code used
to run analyses and to generate simulated data can be found at
https://github.com/sarahodell.

Results

MAGIC Population

We developed a 16-parent MAGIC population using temperate
inbred maize lines representative of the diversity of the Flint
and Dent heterotic groups of North America and Europe (Figure
1A). We genotyped 334 MAGIC DH lines from the population
with a 600K SNP genotyping array and measured 7 phenotypes
across 6 environments from hybrids resulting from crossing the
DH lines to an inbred tester, MBS847. Using the phenotype data
from the six environments, we calculated BLUP scores for each

of the MAGIC lines (Hudson ef al. in prep). PCA Analysis of the
MAGIC lines and the 16 founders and tester showed that the
MAGIC lines maintained an expected amount of genetic varia-
tion (Figure S2). In addition, the minor allele frequencies of SNPs
in the 16 founder compared to in the MAGIC lines suggested
that lower frequency SNPs in the founders were brought up in
frequency in the MAGIC lines, which aids in the estimation of
SNP effect sizes (Figure S3).

Simulation and Validation of Founder Probabilities

We partitioned the genomes of individual MAGIC lines into
segments of ancestry from the 16 founders. This allowed us to
determine the predicted contribution of each founder to the pop-
ulation (Figure 1D & E). The founder probabilities determined
using R/qtl2 were able to assign founders to the actual MAGIC
DH lines with high confidence (>0.80) for 96.7 % of the 10 chro-
mosomes of maize. The median size of recombination blocks
was 4.325 Mb and the mean size was 15.761 Mb with a standard
deviation of 29.524 Mb. The average number of crossover events
per line was 123.7 with a standard deviation of 20.73. Our simu-
lations suggest a very high (i = 99.8%, ¢ = 0.011) assignment
accuracy (see Methods). This reinforced our confidence in the
founder probabilities obtained from the actual data.

Identity-By-Descent and MAGIC Haplotypes

In some cases, the model which inferred founder identity in
the MAGIC lines had high uncertainty, with probabilities split
approximately equally between two founders. We hypothe-
sized that this uncertainty was due to the two founders having
very similar genetic sequence at those regions, such that the
model struggled to differentiate the two. To assess the genetic
similarity of the founders, we calculated pairwise Identity-By-
Descent (IBD) between all founders using the software Refined-
IBD (Browning and Browning 2013). As expected, areas of uncer-
tainty in founder probabilities of the DH lines were associated
with regions of IBD between two or more founder lines in that
region of the chromosome (Figure S4).

The results showed that a total of 1.81 Gb (86%) and 1367.5
cM (92.7%) of the genome were in IBD between at least two
different founders. The average size of an IBD segment between
two founders was 140kb (0.51 cM) with a median of 122kb (0.46
cM). Pairwise IBD segments sizes ranged from 8 kb (0.3 cM) to
673 kb (1.61 cM). For founder pairs that were in IBD with one
another, the total percentage of IBD between founders ranged
from 0.0018% (F492 and VAS85) to 4.39% (B73 and A632), with an
average of 0.061%. There were no IBD segments found for 18 of
120 possible pairwise founder combinations. The amount of IBD
segments between the 16 founders and the tester, MBS847, was
mostly low (ranging from 0.14% of the genome for F2 to 3.7% for
B73), with the notable exception of DK63, which was in IBD with
MBS847 for 36.5% of the genome. The Neighbor-Joining Tree
of the relatedness of the 16 founders and MBS847 recapitulated
the IBD results (Figure S5). For a particular founder pair, B73
and A632, there were large segments where the lines shared
haplotypes, and the tree placed them very close together. This
is consistent with the pedigree of the lines, where A632 was
derived from B14, a line from the same heterotic group as B73
(Lorenz and Hoegemeyer 2013).

Due to the widespread Pairwise IBD between the founders,
it appeared that many founders shared ancestral haplotypes.
Within individual blocks of ancestry, we collapsed founder alle-
les that were identical by descent into a single haplotype. The
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genome was broken up into a total of 6,929 haplotype blocks.
Of those blocks, approximately 16% of them (1,152) contained
at least one haplotype whose pairwise IBD between parents
was incomplete, meaning that there was some genetic varia-
tion between founders within those haplotypes that was not
captured by the haplotype designation (see Methods). The num-
ber of unique haplotypes within haplotype blocks varied across
chromosomes, ranging from 6 at the lowest to 16 at the highest
(Figure 2A & B). The average number of unique haplotypes per
haplotype block was 13 (4 = 12.85,0 = 1.71) (Figure 2B). There
was a wide range of haplotype block sizes, with the average
physical size of haplotype blocks being 303.7 kb (¢ = 1.71Mb)
(Figure 2C). The largest haplotype block was 39.3 Mb long on
chromosome 7, which had 16 unique haplotypes. In genetic
distance, haplotype block sizes range from 0 to 3.4 cM, with an
average of 0.20 cM and a median of 0.11 cM (Figure 2D).

QTL Mapping and Association Mapping

We performed association mapping using three models of the
allelic state of QTL. The first method, GWASgyp, used SNP
genotypes obtained from the 600K array, assuming that QTL
are bi-allelic. The second method, QTLF, used probabilities of
founder identity in chromosome segments, assuming that a QTL
had as many alleles as founders. The third method, QT Ly, used
probabilities of haplotype identity in chromosome segments, as-
suming that a QTL had as many alleles as ancestral haplotypes.
We performed QTL mapping separately in each of the 36 envi-
ronment:phenotype combinations, plus the across-environment
averages of the 6 traits, for a total of 42 separate analyses. The
three methods varied in their ability to identify QTL. The major-
ity (26 or 57%) of QTL were identified by all three models, with
6 QTL found in both QTLr and QTLy and 1 QTL was found
in both GWASgnyp and QTLg. In addition, each model found
unique QTL, with 7, 3, and 3 QTL found in only GWASgyp,
QTLp, and QTLy, respectively (Figure S6).

Next we merged QTL of the same phenotype from different
environments based on overlapping support intervals. There
were 20 unique across-environment QTL identified from all
methods, and 10 of these were found in more than one envi-
ronment. We found 12 across-environment QTL using BLUPs
and 2 of these were not identified in any individual environ-
ment. Of these across-environment QTL, 6 (0 unique) QTL were
found in Blois, 2014, 7 (1 unique) in Blois, 2017, 7 (3 unique)
in Graneros, 2015, 5 (1 unique) in Nerac, 2016, 6 (3 unique) in
St.Paul, 2017, and 3 (0 unique) in Szeged, 2017.

Figure 3 shows the Manhattan plots from the three methods
for BLUP DTA overlayed with the support intervals of signif-
icant QTL for all BLUP phenotypes. Analysis with individual
environments identified fewer QTL, but displayed similar pat-
terns (Supplemental File 2). For DTA, all three methods easily
identify two large QTLs, gDTA3-2 on chromosome 3 and gDTAS
on chromosome 8. These QTL correspond to three previously
identified QTL, vgt3 for gDTA3-2 and vgtl and vgt2 for gDTAS.
In addition, there are multiple QTL that are found by only a
subset of the models. Using BLUPs, the GWASgnp method was
able to identify one QTL on chromosome 5 for thousand-kernel
weight, gTKW-5 that was not found in either QTLp or QTLp.
A second QTL on chromosome 3 for DTA, gDTA3-1, was only
found with the QTLy method. A DTA QTL on chromosome
9, gDTA9 and a harvest grain moisture QTL on chromosome 3,
gHGM3-1 were only found using QTLr. However, a QTL for
DTS with overlapping support intervals to gDTA9 was found in

both QTLr and QTLy.

Despite differences in the models, the power to identify and
refine the location of QTL was similar across the three methods.
QTLF was able to identify the most QTL, regardless of changes
in the significance threshold (Figure S7). Individual QTL that
were found in one method at the 5% significance threshold usu-
ally became significant in other methods when the 10% threshold
was used, indicating that the differences in the ability to detect
these QTL between methods is mostly due to differences in
power (Figure S7). Nonetheless, there were multiple QTL that
were identified in only one method. There were 10 QTL that
appeared in only one method, mostly related to grain yield and
thousand kernel weight traits.

Support intervals for QTL were determined using a twofold
change in the logjg p-value of the most significant SNP (see
Methods). The size of GWASgyp support intervals were signifi-
cantly larger than QTLy support intervals in genetic distance
(1.55 M, SE = 0.56, t-ratio = 2.77, p-value = 0.021), but the dif-
ference in physical distance was not significant (t-ratio = 1.97,
p-value = 0.13)(Table S1). There was no significant difference
in the size of QTL support intervals between between QTLf
and QTLp in either physical and genetic distance. Although
on average, the physical and genetic size of GWASgyp support
intervals were larger than those of QT Lr support intervals, the
difference was not significant, perhaps because of a single outlier
QTL in QT Ly with a very large support interval (Figures S8 &
59). When the outlier was dropped from the model, the differ-
ence between GWASgnp and both QTLr and QTLy support
intervals were significant in both genetic (t-ratio = 2.87, p-value
= 0.017; t-ratio = 3.17, p-value = 7.4e-3) and physical distance
(t-ratio = 2.91, p-value = 0.015; t-ratio = 2.68, p-value = 0.027).

Variation around vgt1

One notable QTL that was identified by all three models using
BLUPs (Figure 3) and nearly all individual environments was
qDTAS, a large QTL on chromosome 8 that was strongly corre-
lated with variation in days to anthesis as well as days to silking.
The support interval for this QTL overlapped with two previ-
ously characterized flowering time QTL, vgt1 and vgt2. As a
well-studied, large effect QTL, vgt1 provides a useful benchmark
for comparison of the three allelic models.

At vgtl, the 16 founders are segregating (MITE" /MITE ™)
for the putative causal variant, a MITE insertion in a conserved
non-coding sequence upstream of ZmRap2.7 (Salvi et al. 2007;
Castelletti et al. 2014). Four founders, B73, OH43, VAS85, and B96,
lack the MITE insertion, while the other 12 are MITE™. Look-
ing at the most significant SNP for gDTAS from GWASgnp, the
alternate allele correlated imperfectly with the presence of the
MITE in the founders (r=0.65). We expected to see QT L effect
sizes at this locus that match the allelic state of the founders,
with MITE" founders having earlier effect sizes and MITE™
founders having later effect sizes. However, for some founders
the QTLF effect sizes at vgt1 deviated from those expectations
(Figure 4). Four MITE * founders, A632, F252, C103, and F492,
had DTA BLUP effect size estimates later than the population
average. While only F252 had a 95% confidence interval not
overlapping zero, all had effect sizes significantly later than the
other MITE™ founders (t-ratio = 7.67, p-value <le-4). This pat-
tern was also seen in the effect sizes estimated in individual
environments (Supplemental File 3). Lastly, at the most sig-
nificant hit from QT Ly, founders are grouped into haplotypes
consistent with their allele at the MITE, but there are still far
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more than 2 distinct haplotypes (14). Analysis of the haplotype
structure in the region around vgt1 in the 16 founders showed
clear differences between those that do and do not have the
MITE insertion, but did not differentiate MITE™ late founders
from MITE™" early founders (Figure S10).

One possible explanation for this observation is an epistatic
interaction between vgt1 and other loci in the genome. However,
a genome scan for epistasis between vgt1 and other loci did not
yield any significant interactions (Figure S11). QTLF using only
MAGIC lines predicted to have the MITE had two significant
DTA BLUP QTL in the region of vgt1 (Figure S12). One of these
significant sites is located in close proximity to the causal gene
for vgt2, ZCN8, and may be explained by this linked QTL (Guo
et al. 2018). The second significant site is located 15Mb down-
stream of vgt1, suggesting that some local variation around the
region of vgt] impacts the effect of the QTL on flowering time.
This site may have an epistatic interaction with vgt1 that did
not pass the stringent genome-wide significance threshold. Al-
ternatively, the relationship between the loci could be entirely
additive, but the causal allele may only occur on the MITE*
background.

Founder Representation and Linkage Disequilibrium

Analysis of the MAGIC population showed that the overall
representation of the 16 founders in the MAGIC DH lines was

relatively even, with the highest percentage founder, A654, rep-
resenting 6.7% and the lowest percentage founder, EP1, repre-
senting 5.2%, compared to the expectation of 6.25% for each
founder (Figure 1C). However, multiple chromosome regions
deviated significantly from the expected equal distribution (Fig-
ure 1B). Across individual regions of each chromosomes, 20.4%
of the genome significantly deviated from null expectations com-
pared to 100 simulated populations (5% significance threshold
X2 test p-value < 1.5e-09) (Figure S13). The fact that the X? test
performed on 100 simulated MAGIC populations of 344 indi-
viduals resulted in far fewer significant X?> peaks shows that
the over- and under-representation of certain founder alleles
was greater than would be expected by chance. It also shows
that over- and under-representation of founder alleles in the
population was not due to potential inaccuracy of R/qtl2 in as-
signing founders. These results suggests that a large amount
of the over- and under-representation of founder alleles in the
MAGIC population is biological, rather than a result of model
error, and perhaps evidence of selection for or against particular
founder alleles.

We estimated recombination rates and linkage disequilibrium
across the MAGIC lines. The intra-chromosomal LD structure
shows fast LD decay consistent with many recombination events
(Figure S14). Unexpectedly, there was a large amount of high
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Figure 4 Estimated founder effect sizes for vgt1 Estimates of founder effect sizes relative to the population mean for Days to An-
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inter-chromosomal LD (Figure 5). Of a total of 9,796,630 SNP
pairs with an R? greater than or equal to 0.9, 365,345 (3.7%) of
those pairs came from different chromosomes. The number of
inter-chromosomal high LD regions was more than would be
expected by chance: in 100 simulated populations, there were
no SNP pairs with R? greater than 0.9 detected between chro-
mosomes. A large segment of inter-chromosomal LD between
chromosome 3 and chromosome 8 (Figure 5) overlaps with the
support intervals for gDTAS and gDTA3-2, corresponding to vgt1
and vgt3, respectively, consistent with the possibility of selection
driving differential representation of the founder alleles.

Because individual DH lines were required to overlap in
flowering time with the inbred tester in order to successfully
make F1s for the MAGIC population, we hypothesized that the
evidence of selection we saw in X? peaks and linkage disequilib-
rium might be due to selection on flowering time. In particular,
the tester, MBS847, is a generally later flowering line and is
MITE™ at vgtl (Chardon et al. 2004), providing the opportu-
nity for selection against early flowering alleles. As one test of
this hypothesis, we asked whether genes involved in flowering
were enriched in X2 peaks, but found no evidence of enrichment
(Figure S15).

Discussion

We used three models of QTL allelic states to identify QTL in the
MAGIC population, a bi-allelic model (GWASgyp), a founder
multi-allelic model (QTLr), and an ancestral haplotype mult-
allelic model (QTLp). The GWASgyp method should be most
powerful at identifying QTL for which the causal variant is bi-
allelic and the tagged SNP is in tight LD with the causal variant.

However, for multi-allelic QTL or QTL for which LD is low
between tagged SNPs, this method should have lower power.
QTLp, which assumes that all founders possess distinct alleles,
increases the odds of detecting both QTL that are multi-allelic
and QTL whose causal variant is not in tight LD with any one
tagged SNP. And while the higher number of parameters that
must be fit by this model may also reduce power because the
regions tested are much larger than one SNP, it also reduces the
multiple testing burden. Lastly, QT Ly potentially improves on
the power of QTLr to detect QTL that meet the above criteria
by reducing the number of parameters that must be estimated.
There is, however, the potential for QT L to obscure the signal
of some QTL if founders are called as having the same ancestral
haplotype when they actually differ for a causal variant. Due
to the fact that QT Ly and QTLr only take into account recent
recombination events, whereas GWASgyp uses historical recom-
bination, we predicted that GWASgyp would result in higher
resolution of QTL support intervals. Higher resolution QTL are
ideal in that they make it easier to narrow down candidate genes
and potential causal variants.

The results of using these three models of genetic architecture
to identify QTL suggest that each has its own advantages and
disadvantages in terms of how many and which QTL they can
identify. Overall, the QT Lr model performed the best in terms of
the number of QTL identified, although there were multiple QTL
identified uniquely in all models. The larger size of GWASgnp
support intervals was unexpected, as this method is often used
to fine map QTL regions identified by linkage mapping. We
suspect that this finding is either the result of the somewhat
naive method used to determine QTL support intervals, or resid-
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Figure 5 Inter-chromosomal Linkage Disequilibrium in the
MAGIC Population Ribbons represent regions of R? > 0.8
between consecutive SNPs on different chromosomes. Dark,
solid, red bands are regions larger than 20Mb on at least one of
the chromosomes. Lighter, translucent red bands are regions
greater than 1Mb and less than 20Mb. Grey bands are regions
larger than 10kb.

ual long-distance LD caused by the funnel crossing scheme. A
twofold drop in logyg p-values heavily penalizes QTL that just
pass significance, and the 100Mb window is blind to QTL peaks
that contain multiple QTL. As a result, it is difficult to determine
a reason for the difference in support interval size between the
models.

Previous studies have used variations of these methods to
identify QTL, and some have directly compared them. The use
of combined linkage and association analyses, sometimes re-
ferred to as linkage disequilibrium - linkage association (LDLA)
was first proposed by Meuwissen and Goddard (2001), who
used predicted IBD probabilities between parents using an evo-
lutionary model and applied them to linkage mapping. LDLA
has been used in multiple studies to enhance QTL detection in
multi-parent populations in maize (Giraud et al. 2017; Yu et al.
2008; McMullen ef al. 2009) and other organisms (Hérault ef al.
2018). Jansen et al. (2003) used a haplotype-based method for
QTL mapping and showed through simulation that this strategy
could reduce the number of estimated parameters and, there-
fore, increase power. Different means of determining ancestral
haplotype blocks from parental sequences have been used, with
clusthaplo (Leroux et al. 2014), an extension of the software MC-
QTL (Jourjon et al. 2004), being a commonly used algorithm
in recent studies. Bayesian frameworks have also been imple-
mented in real (Pérez-Enciso 2003) and simulated (Bink et al.
2012) multi-parent populations. Giraud et al. (2014) used both a
haplotype- and founder- based approach in two nested associa-
tion mapping populations of Northern European flint and dent
maize lines created by Bauer et al. (2013) and genotyped with
a 50K SNP array (Ganal et al. 2011). Giraud et al. (2014) used

clusthaplo to determine haplotype blocks based on IBD between
parents and used discrete founder and haplotype values in their
models.

Previous studies have compared similar models differing in a
few notable ways. The type of multi-parent population used in
studies has varied across studies. To our knowledge, comparison
of the performance of these models in a MAGIC population has
not been done. In addition, our method of generating haplotype
blocks in QT L is distinct from previous work. Lastly, the use of
the package GridLMM (Runcie and Crawford 2019) allowed us
to use continuous rather than discrete representations of founder
and haplotype state, which allowed for the incorporation of
uncertainty due to genotyping or model error into our tests for
association.

Interestingly, the performance of bi-allelic, founder, and an-
cestral haplotype models differs across studies. Giraud et al.
(2014) found that their haplotype model outperformed the
founder and SNP models in terms of the number of QTL iden-
tified using EU-NAM Flint and Dent maize populations. In
contrast, Garin et al. (2020) found that in the EU-NAM Flint pop-
ulation, the bi-allelic model detected a larger number of unique
QTL, compared to parental or ancestral haplotype models. Bar-
dol ef al. (2013) found that in two multi-parent dent populations,
their bi-allelic model and ancestral haplotype model generally
outperformed the parental linkage model, although benefits of
these models varied by dataset. The performance of the three
models seems to depend heavily on the diversity of the parents
used to generate the population. For populations with more di-
verse founders, it would be expected that there would be fewer
shared haplotypes between founders, reducing the efficacy of
a haplotype model (Giraud et al. 2014). The fact that the QTLp
model outperformed the QT Ly and GWASgyp in our popula-
tion suggests that the MAGIC population contains a relatively
more diverse representation of European and North American
flint and dent than populations used in previous studies. It is
also possible that the structure of multi-parent populations has
an effect on the performance of the three models, compared to
previous studies which used nested association mapping (Gi-
raud ef al. 2014; Garin et al. 2020) and factorial populations Bardol
et al. (2013).

Differences in the estimated effect sizes across models offer
suggestions as to the reason for their differences in QTL de-
tection. QTL that were only found in the GWASgyp method
most likely have a bi-allelic causal variant. It is likely that the
increased number of parameters in the QT Ly and QT Ly models
reduce statistical power when the true number of functional
alleles is low. Similarly, we predict multi-allelic QTL were more
likely to be identified by the QTLr or QTLy models and not
the GWASgnp method unless the effect size was large. For QTL
that were identified in the QTLy method and not the QTLp
method, there tended to be a lower number of unique ances-
tral haplotypes, suggesting that QT Ly was more successful in
finding these QTL due to improved power when there were
fewer functional alleles than founders. For QTL that were not
identified by the QT Ly method, particularly for QTL that were
successfully identified by QTLF, there are two possible explana-
tions. Because there were more regions tested for QT Ly than
for QT Lp, if the true number of ancestral haplotypes at the QTL
is large, the QT Ly method may actually have lower power than
QTLr because the number of tests is higher. Alternatively, it
may be the result of a failure of QT Ly to accurately represent
the true haplotype structure of the QTL region.
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On the whole, most QTL were found by all three methods,
so there was limited ability to draw reliable conclusions about
underlying mechanisms that caused the methods to perform
better or worse. Generally, the comparison of QTL detection
and effect size estimates suggested that the methods failed and
succeeded on a QTL-by-QTL basis. This is to be expected, as
each QTL is the result of a distinct set of one or more causal
alleles with a unique evolutionary history and pattern of linkage
disequilibrium within the population.

Whether QTL that appeared in only one method are due to
false positives or true differences in the methods’ abilities to
identify QTL with different genetic architectures cannot be de-
termined, but many of the QTL identified in the MAGIC have
underlying candidate genes or have been found in previous
studies, providing support to their biological reality. Multiple
flowering time QTL support intervals overlap or are close by
previously identified flowering time genes and QTL. gDTA9 is
nearby the previously identified maize flowering time gene Zm-
CCT9 (Huang et al. 2018). gDTA3-2 overlaps with vgt3, whose
underlying gene was identified as ZmMADS69 (Liang et al. 2019).
gDTA3-1 is nearby a recently identified flowering time QTL also
associated with phasphatidylcholine levels (Rodriguez-Zapata
et al. 2021). The support interval for gDTAS overlaps with two
flowering time QTL, vgt1, which we discuss in length, and an-
other, vgt2. The causal gene for vgt2 is ZCNS, which is the maize
ortholog of FT in Arabidopsis (Lazakis et al. 2011). Variation in the
promoter region of ZCN8 between temperate maize and teosinte
suggests that earlier flowering alleles were under selection dur-
ing the process of maize domestication (Guo et al. 2018; Bouchet
et al. 2013). It is interesting to note that there is strong overlap in
the support intervals of QTL found on chromosome 3 between
flowering time and harvest grain moisture (Figure 3), perhaps
due to developmental pleiotropy linking flowering time and the
moisture of kernels at harvest. Three GXE QTL were detected in
this population (Hudson et al. in prep) using the QTLr model,
but none overlapped with the main effect QTL we detected in
this study. One of these QTL appeared to be a false positive
resulting from low representation of one of the founders in the
region, indicating the potential for low founder sample size to
confound QTL results.

Due to the fact that the MAGIC population is segregating for
vgtl, it provides an opportunity to further study the mechanism
behind the QTL’s affect on flowering time. One benefit of using
founder and haplotype approaches lies in the potential to dissect
the effects of individual founders and haplotypes within QTL.
This allowed us to look more closely at vgt1 and observe an
interesting pattern of effect sizes that deviated from our expecta-
tions based on previous research. Previous research has shown
that variation in flowering time at this site is strongly correlated
with a MITE insertion about 70kb upstream of the flowering
time regulator, ZmRAP2.7, an APETALA-like transcription fac-
tor, with the presence of the MITE associated with an earlier
flowering time (Castelletti et al. 2014). Within maize heterotic
groups, Flint maize lines tend to possess the early-flowering
allele of vgt1 (MITE+), while dents (such as B73) tend to carry
the late-flowering allele (MITE-) (Salvi et al. 2007). In addition
to being a crucial agronomic trait, flowering time contributes to
local adaptation for annual plants such as maize, ensuring that
individuals can reproduce within the growing season of their
environments. The frequency of the MITE in maize populations
follows a latitudinal gradient, suggesting that the early MITE™
allele was selected for during the process of maize adaptation to

temperate climates (Navarro et al. 2017). It has also been shown
that there are differentially-methylated regions around vgt1 be-
tween B73, landrace maize, and teosinte (Xu et al. 2020). The
hypothesized mechanism of action is that the MITE represses
expression of the negative flowering time regulator,ZmRAP2.7,
possibly due to changes in methylation around the insertion,
resulting in earlier induction of flowering (Castelletti et al. 2014).
However, the MITE has not yet been experimentally shown to
result in earlier flowering. A recent study using multiple multi-
parent populations suggested that variation in the effect of vgt1
in different genetic backgrounds was due to local genetic varia-
tion surrounding vgt1, rather than epistasis with distant loci (Rio
et al. 2020). The observed lack of significant epistasis with vgt1
in this study (Figure S13), combined with our results of MITE™
QTLr (Figure S11), appear consistent with this idea. This find-
ing suggests two possibilities: either (1) that the causal variant
underlying vgt1 is some as-yet unidentified variant that is in
tight, but imperfect linkage disequilibrium with the MITE inser-
tion, or (2) that the MITE insertion directly impacts flowering
time, and that another variant nearby has a modifying effect on
the MITE. This opens up new areas of inquiry for future studies.

The population displayed unexpected patterns of uneven
founder representation along the genome (Figure 1C). The ap-
parent high over- or under-representation of some founder alle-
les may be due to these founders being in close IBD with another
founder, resulting in uncertainty in the founder probabilities.
Nonetheless, the high accuracy of founder assignment and low
number of sites that significantly deviate from equal founder
distribution in our simulations make this explanation seem un-
likely. If we assume that the simulated populations are accurate
representations of the construction of the MAGIC population
without selection, this result would suggest that the differences
in founder representation observed in the actual population may
be due to selection for or against certain founder alleles. The
complex crossing scheme has the potential to introduce the in-
fluence of selection, which may reduce the genetic variation that
we are attempting to study.

Another interesting observation of the population was the
relatively high levels of inter-chromosomal LD (Figure 5), which
deviated significantly from that obtained from simulations. A
potential consequence of inter-chromosomal LD is the chance
for confounding of association analyses, namely resulting in
the detection of "ghost" QTL. Although for the discussed QTL
detected that were in high inter-chromosomal LD with one an-
other, yDTA8 and gDTA3-2, their effects on flowering time were
independent, the chance for false positives and inaccurate sup-
port intervals due to LD structure is still worth noting. Inter-
chromosomal LD has been detected in multiple populations
of domesticated organisms, where breeding has resulted in the
preservation of certain combinations of favorable alleles between
chromosomes (Robbins et al. 2010; Malysheva-Otto et al. 2006).
Strong selection and positive or negative epistasis in natural
populations have also been shown to create a pattern of inter-
chromosomal LD (Kulminski 2011; Gupta et al. 2021; Hench et al.
2019; Petkov et al. 2005). Both of these observations suggest that
forces other than those of random segregation have operated on
the MAGIC population.

Conclusion

The MAGIC population presented here provides a useful re-
source for investigating quantitative trait variation in temperate
maize. As a multi-parent population, it has the advantages

10


https://doi.org/10.1101/2021.07.14.452335
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.14.452335; this version posted July 15, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

of increased diversity compared to bi-parental mapping pop-
ulations, no population structure, and higher power to detect
QTL with lower allele frequencies. Simulations of the MAGIC
population provide an opportunity to validate assignment of
founder identities, as well as generate null expectations for vari-
ous aspects of the population. Overall, we find that a founder
multi-allelic model identifies the most QTL, although all three
models of allelic state are effective at identifying QTL. The bene-
fits of increasing statistical power by reducing model parameters
in bi-allelic and ancestral haplotype models seem to be tempered
by the true allelic complexity of the multi-parent population be-
ing studied. We conclude that if the goal of a study is to find as
many QTL as possible, then it would be most useful consider the
genetic diversity contained within the population in choosing a
model in order to maximize QTL identification.
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Figure S1 Complete and Incomplete IBD Graphs. (left) An example of the creation of haplotype blocks. The presence of pairwise
IBD between two founders along the chromosome is shown as blue blocks. Black verticals show the demarcation of distinct haplo-
type blocks at the start or and of a new pairwise IBD segment. The red and yellow shaded areas show examples of complete and
incomplete founder IBD graphs, respectively. (right) A complete (A) and an incomplete (B) founder IBD graph. In cases where
haplotypes were incomplete, the missing edges (i.e. the edge between Founder 1 and Founder 3) were filled in for downstream
analysis.

Table S1 Size of QTL Support Intervals By Model

Model Avg. Size (Mb) Median Size  Std. Dev (Mb) Avg. Size (cM) Median Size  Std. Dev (cM)
(Mb) (cM)

GWASgnp 17.53 19.67 10.19 7.31 8.21 3.50

QTLr 14.99 10.28 13.64 6.22 5.88 3.78

QTLy 13.72 9.24 10.27 5.75 5.45 3.63
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Figure S2 Principal Component Analysis of the 16 Founders, Tester, and the 344 MAGIC DH Lines. 600K genotype data was
filtered using an LD filter of 1 cM. The points in grey are MAGIC lines. The colored points show the tester, MBS847 (dark grey) and
the 16 founders.
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Figure S3 Minor Allele Frequencies of SNPs in the 16 Founders and the MAGIC lines. The x-axis shows the minor allele fre-
quency of 600K SNPs in the 16 founders. The y-axis shows the minor allele frequency of the corresponding SNPs in the MAGIC
population.
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Figure S4 Overlap between uncertainty in founder probabilities and pairwise Identity-By-Descent between founders. (top) An
example of founder probabilities across chromosome 10 for two MAGIC lines. The y-axis shows the probability of the line being
derived from each of the 16 founders, shown in different colors. (bottom) Pairwise IBD state across chromosome 10 between two
founders, F492 and A654, which correspond to uncertainty in founder probabilities above.
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Figure S5 Neighbor-Joining Tree of the 16 Founders and Tester using the 600K genotype data A UPGMA dendrogram created
using the TASSEL software (Bradbury et al. 2007).

16


https://doi.org/10.1101/2021.07.14.452335
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.14.452335; this version posted July 15, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Number of QTL identifed in shared environments across three methods

25

20

Tolal

S_anly F_only H_anly S_and_F F_and_H s_F_H
Method Combination

Figure S6 Number of Environment-Specific QTL Found by Method S: GWASgnp, F: QT Ly, H: QT Ly. Environment-specific QTL
are QTL for a phenotype that were identified in one environment. QTL were called as found by multiple methods if their support
intervals overlapped (see Methods).
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Figure S7 Total Number of Environment-QTL Found By Method By Significance Threshold S: GWASgyp, F: QTLg, H: QTLy.
Environment-specific QTL are QTL for a phenotype that were identified in one environment. Color indicates new QTL found by
raising the significance threshold from 1% (red) to 5% (green) to 10% (blue).
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Figure S8 Size of QTL Support Intervals for Shared QTL by Method in Genetic Distance (cM) 600K_SNP: GWASgnp,
Founder_probs: QTLr, Haplotype_probs: QTLp. Colors indicate individual Environment-QTL.
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Figure S9 Size of QTL Support Intervals for Shared QTL by Method in Physical Distance (Mb) 600K_SNP: GWASgsnp,
Founder_probs: QTLr, Haplotype_probs: QT L. Colors indicate individual Environment-QTL.
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Figure S10 Haplotype View of the MITE insertion underlying vgt1 in the 16 Founders and tester, MBS847 Red blocks indicates
the location of the MITE insertion. Founders are separated by MITE~, MITE" Early, and MITE" Late based off of their allele
at vgt1 and groupings based on the estimated founder effect size. Created using the haplostrips software (Marnetto and Huerta-

Séanchez 2017)
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Figure S11 Genome Scan for Epistasis with vgt1. Red line indicates a Bonferroni 5% significance threshold.
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Figure S12 Manhattan plot Days to Anthesis BLUPs using only MITE"™ MAGIC lines and QTLF Red points indicate SNPs above
a 5% permutation significance threshold.
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Figure S13 X? Peaks for Deviation from Equal Founder Distribution by Chromosome Red line indicates a 5% significance thresh-
old (-log10(p-value=8.82)) obtained from 100 simulated populations.
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Figure S14 Linkage Disequilibrium of the MAGIC population by Chromosome Average R? of pairwise SNPs broken into bins of
100kb by distance.
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Figure S15 Enrichment of Flowering Time Genes in X? Peaks Density plot of 1,000 permutations of number of 904 randomly se-

lected genes that overlap with X? peaks for over- or under-representation of haplotypes in the MAGIC population. Red line indi-

cates the actual number (284) of FT genes from the list of 904 that overlapped with he peaks.
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