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Abstract

Multivariate biological data are often modeled using networks in which nodes represent a biological variable (e.g.,

genes) and edges represent associations (e.g., coexpression). A Gaussian graphical model (GGM), or partial correlation

network, is an undirected graphical model in which a weighted edge between two nodes represents the magnitude of their

partial correlation, and the absence of an edge indicates zero partial correlation. A GGM provides a roadmap of direct

dependencies between variables, providing a valuable systems-level perspective. Many methods exist for estimating

GGMs; estimated GGMs are typically highly sensitive to choice of method, posing an outstanding statistical challenge.

We address this challenge by developing SpiderLearner, a tool that combines a range of candidate GGM estimation

methods to construct an ensemble estimate as a weighted average of results from each candidate. In simulation studies,

SpiderLearner performs better than or comparably to the best of the candidate methods. We apply SpiderLearner to

estimate a GGM for gene expression in a publicly available dataset of 260 ovarian cancer patients. Using the community

structure of the GGM, we develop a network-based risk score which we validate in six independent datasets. The risk

score requires only seven genes, each of which has important biological function. Our method is flexible, extensible,

and has demonstrated potential to identify de novo biomarkers for complex diseases. An open-source implementation

of our method is available at https://github.com/katehoffshutta/SpiderLearner.

Introduction

Gaussian graphical models (GGMs) are a modeling framework for network-based analyses of multivariate data.

This framework begins with the assumption that data are sampled from a multivariate normal distribution; under this

1

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 14, 2021. ; https://doi.org/10.1101/2021.07.13.452248doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.13.452248
http://creativecommons.org/licenses/by/4.0/


assumption, a GGM is defined as a graph in which nodes correspond to variables and weighted edges correspond to

the magnitude of the partial correlation between them (1). In this framework, the absence of an edge between nodes

corresponds to zero partial correlation, i.e., conditional independence between the variables, given the other variables

in the network.

The weighted adjacency matrix of a GGM consists of the partial correlations between nodes. Let X ∼ Np(0,Σ)

be a centered p-dimensional multivariate normal random variable, and let X−i,−j represent X with the ith and jth

variables removed. The partial correlation between Xi and Xj is defined as:

ρXi,Xj |X−i,−j
=

Cov[(Xi, Xj |X−i,−j)]
√

V ar[(Xi|X−i,−j ]
√

V ar[(Xj |X−i,−j)]
(1)

Under the assumption of multivariate normality, a particularly useful relationship holds between the precision

matrix Θ = Σ−1 and the partial correlation (2). Let θij represent the i, jth element of Θ; it can be shown that

ρXi,Xj |X−i,−j
= −

θij
√

θiiθjj
(2)

Equation 2 shows that estimating a GGM is equivalent to estimating Θ. In the case where the sample size n is

much larger than the number of predictors p, a maximum likelihood estimate of Θ can be found simply by inverting the

sample covariance. When n is close to or less than p, this inverse is undefined or numerically unstable, meaning this

method cannot be used. The usual approach in this setting is the graphical lasso, which estimates a sparse precision

matrix by optimizing the penalized likelihood function (3; 4; 5)

`(Θ) = log |Θ| − tr(SΘ)− λ||Θ||1 (3)

where S is the sample covariance matrix of the observed data and λ > 0 is a non-negative tuning parameter, with

higher values of λ leading to sparser estimates of Θ. Several existing open-source software resources implement various

versions and extensions of the graphical lasso, including methods for selecting the tuning parameter λ. For example,

the glasso R package implements the original algorithm developed in 2008 by Friedman et. al. as augmented by

computational advances developed in 2011 by Witten et. al. (3; 6). The huge R package incorporates the graphical

lasso algorithm and additionally provides options for a tuning-insensitive method called tiger published by Liu et

al. in 2017 (7),(8). The bootnet R package includes a broad range of different network estimation methods, seven of

which are for GGM estimation, in a framework for bootstrap estimation of network accuracy (9).

There is clearly no shortage of options for a researcher who is interested in estimating a GGM; this is both a

blessing and a curse. Estimating a GGM using these packages requires the researcher to make several decisions with

regard to data preprocessing, tuning parameter selection, choice of scoring criteria for model selection, and selection of

hyperparameters for these scoring criteria. The final estimated GGM may be highly sensitive to these choice, making

it difficult to compare GGMs across studies and assess reproducibility (10; 11; 12). Because it is impossible to know
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a priori which approach is best for a given problem, researcher bias toward use of a particular “favorite method” can

have a large impact on the estimation and interpretation of a GGM, consequently affecting the scientific conclusions

inferred.

Ensemble methods are a broad class of statistical approaches which follow the general principle of combining

several different candidate models to generate a single ensemble model (13; 14). One such method is the Super

Learner approach of van der Laan et al (15). Super Learner uses an internal cross-validation scheme to fit a convex

combination of candidate algorithms (“learners”) that minimizes a user-defined loss function. This convex combination

is the Super Learner ensemble model. Large-sample properties of the Super Learner are established by comparison

to the expected loss (i.e., risk) of an oracle model, which is the best model among all possible convex combinations

given the true, unknown, data generating process. Under mild conditions on the loss function and the set of candidate

learners, the expected difference between the risk of the Super Learner ensemble model and the risk of the oracle model

converges to zero as the sample size goes to infinity(15).

Here, we develop SpiderLearner, a network estimation tool which applies the Super Learner approach to the prob-

lem of fitting a GGM by optimizing a likelihood-based loss function through the use of cross-validation. Our approach

improves GGM estimation by circumventing the complicated decision-making burden described above. The Spider-

Learner considers a library of candidate GGM estimation methods and constructs the optimal convex combination of

their results, eliminating the need for the researcher to make arbitrary decisions in the estimation process. Through

simulation studies, we demonstrate that the SpiderLearner achieves equal or better performance than each of the

candidate approaches according to several criteria (out-of-sample likelihood, bias, mean squared error (MSE), matrix

correlation).

Previous work has shown that the use of network models in prediction problems for disease outcomes is a promising

area of work (e.g.,(16; 17; 18)). We connect this previous work to ours by presenting an illustrative application of the

SpiderLearner to develop a robust risk score for ovarian cancer prognosis based on a publicly-available gene expression

dataset (19; 20).

The SpiderLearner improves the applicability of GGMs as a network modeling framework, creating a more robust

methodology by using data-driven ensemble learning to eliminate the need for researchers to choose an estimation

approach. Our risk score application demonstrates the potential of the SpiderLearner to discover meaningful biological

insights in complex multivariate data.
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Materials and methods

SpiderLearner model formulation

The foundations for a Super Learner-type method are (i) specifying a library of candidate algorithms, (ii) specifying

a loss function, and (iii) implementing a cross-validation scheme to determine the optimal convex combination of the

candidates (21). We introduce the foundations of our method similarly, but focus first on (ii) and (iii); we address (i)

when describing our simulation study design.

To develop the loss function for the SpiderLearner, we begin by supposing that we have a library of M different

candidate methods and have applied each candidate to obtain M estimated GGMs for a given input dataset. Our next

goal is to estimate a weighted combination of these M estimates that may provide an even better fit than each method

does alone, in the spirit of the Super Learner approach(15). We consider first a basic test-train setting, in which we

assume the availability of two independent datasets Xtrain and Xtest, drawn at random from the same population.

Let Θ̂
(train)
1 , . . . , Θ̂

(train)
M denote the estimated precision matrices from the application of the M different methods to

Xtrain. We seek a convex combination

ΘSL = α1Θ̂
(train)
1 + α2Θ̂

(train)
2 + · · ·+ αM Θ̂

(train)
M ;

M
∑

m=1

αm = 1;αm ≥ 0 (4)

that minimizes the negative log-likelihood in the independent dataset Xtest:

−`(ΘSL) = − log(Pr(Xtest|ΘSL)) (5)

Let X
(i)
test denote the data vector for the ith observation in the test dataset. In the GGM setting, where X

(i)
test|Θ ∼

MVN(0,Θ), i = 1, . . . , n, the log likelihood can be expressed as:

`(ΘSL) ∝ −
n

2
log(|ΘSL|)−

1

2

n
∑

i=1

(X
(i)
test)

TΘSLX
(i)
test (6)

We negate the log likelihood and incorporate our definition of ΘSL from Equation 4 to develop a loss function in

terms of the coefficients α = α1, . . . , αM :

Q(α) =
n

2
log
(

|α1Θ̂
(train)
1 + · · ·+ αM Θ̂

(train)
M |

)

(7)

+
1

2

n
∑

i=1

(X
(i)
test)

T
(

α1Θ̂
(train)
1 + · · ·+ αM Θ̂

(train)
M

)

X
(i)
test (8)

This loss function 12 is then minimized, subject to the constraints of the convex combination:

α̂ = argmin
α:

∑
M
m=1

αm=1;αm≥0 {Q(α)} (9)
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Standard constrained optimization algorithms can such as those implemented in the the solnp function from the

R package Rsolnp (22) can be used to find the coefficients α that solve 9 on the test dataset. Once these coefficients

have been found we complete the process by running the original M candidate methods again using the full dataset

X = Xtrain ∪ Xtest, obtaining estimates Θ̂1 . . . , Θ̂M . We then use these estimates to construct the SpiderLearner

estimate of the precision matrix as:

Θ̂SL =
M
∑

m=1

α̂mΘ̂m (10)

The train-test approach is limited in that the estimate of the out-of-sample loss will tend to be (i) an overestimate

due to the relatively small size of the training dataset, and (ii) suffer from high variability due to the sensitivity of

the approach to the characteristics of the training and test datasets (23). To overcome these limitations, we extend

our approach from the simple train-test setting described above to K-fold cross-validation, where K > 2. K-fold

cross-validation has the advantage of permitting the user to navigate the bias-variance tradeoff in the estimation of

out-of-sample loss (23).

Briefly, we begin the K-fold cross-validation by partitioning the data X into K folds of approximately equal size

∼ n/K. We next repeat the above process of determining the precision matrix estimator Θ̂SL K times; each time,

data from the kth fold is withheld (k = 1, . . . ,K) as the test set while the remaining (K − 1) of the folds serve as the

training set.

To provide further detail, we first introduce some notation. Let Xk be the kth fold of the dataset X, and let X−k be

the remainder of the dataset X with the kth fold withheld. Let Θ̂
(−k)
m be the precision matrix estimate for method m

trained on X−k, and let X
(i)
k be the ith observation in fold K. We define Θ

(−k)
SL , which is a function of α, as:

Θ
(−k)
SL = α1Θ̂

(−k)
1 + · · ·+ αM Θ̂

(−k)
M (11)

Next, we define Qk(α) to be the loss of the estimate Θ
(−k)
SL evaluated on the withheld data Xk:

Qk(α) =
n

2
log
(

|Θ
(−k)
SL |

)

+
1

2

n
∑

i=1

(X
(i)
k )TΘ

(−k)
SL X

(i)
k (12)

Let Q̄(α) be the average loss aross K folds:

Q̄(α) =
1

K

K
∑

k=1

Qk(α) (13)

Let nk be the number of observations in the kth fold. Then the K-fold cross-validated coefficient estimator of α̂ is:
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α̂ = argmin
α:

∑
M
m=1

αm=1;αm≥0

{

1

K

K
∑

k=1

(

−
nk

2
log(|Θ

(−k)
SL |)−

1

2

nk
∑

k=1

(X
(i)
k )TΘ

(−k)
SL X

(i)
k

)}

(14)

Finally, let Θ̂m be the precision matrix estimate from method m using the full dataset. We then define the K-fold

cross-validated SpiderLearner estimator as:

Θ̂SL =

M
∑

m=1

α̂mΘ̂m (15)

A diagram of this workflow for M = 4 estimation methods and K = 5 cross-validation folds is shown in Figure 1.

The choice of K may depend on a variety of factors including sample size and number of predictors (i.e., dimensionality

of the problem); in practice, K = 5 and K = 10 have demonstrated generally good balance in the bias-variance trade

off(23). We discuss the choice of K further in the Results section.

Large-sample properties

The large-sample properties of Super Learner derived by (15) require a bounded loss function. Our loss function

Q̄(α) (Equation 12) is not bounded; therefore, it is not clear if the large-sample oracle results of (15) apply with the

log likelihood-based loss function evaluated on multivariate normal data. (24) note that oracle results also hold for

certain types of unbounded loss functions as described in (25); however, it is not straightforward to formally show that

Q̄(α) meets the necessary criteria (see S1 Appendix in the Supplement for details). We note this as an area for future

work, while observing that in practice the log likelihood is often used as a loss function for Super Learner estimation

(e.g., (26; 27; 28)), and the log likelihood loss is provided as part of the standard implementation of SuperLearner

(29).

We additionally explored a transformation that permits the application of the oracle results of (15). Specifically,

Q̄(α) can be transformed into a bounded loss function Q̄′(α) by applying the inverse logit function:

Q̄′(α) =
exp(Q̄(α))

1 + exp(Q̄(α))
(16)

In practice, this transformation can be sensitive to the scale of Q̄(α) and quickly become numerically equal to one

for a broad range of α. We observed good behavior by scaling Q̄(α) to the sample size n and number of predictors p:

Q̄′(α) =
exp( 1

np
Q̄(α))

1 + exp( 1
np

Q̄(α))
(17)

However, we suspect that further issues with the numerical stability of this transformation are possible and en-

courage diagnostics such as testing the value of Q̄′(α) for different values of α when using this transformation in

practice.
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P(       |           ) P(       |          )P(       |           )

P(     |       ) 
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with
eBIC
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RIC

glasso 
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hub 
glasso

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Fold 1      Fold 2        Fold 3        Fold 4       Fold 5

Likelihood
evaluated on 
held-out test 
data

P(        |           ) P(        |          )

Figure 1: (a) Data are partitioned into five folds. Each fold is left out from the model fitting process in turn. (b)
Every candidate model is fit on the training data in each fold. This generates an (M = 4)×(K = 5) array of estimated
matrices. (c) For each held-out dataset k and coefficient set α = (α1, . . . , α4), the estimator Θ̂(−k) is calculated from
the estimates obtained in (b). The likelihood of the estimator given the held-out data is then calculated. The process
is repeated across all K = 5 folds and averaged to yield our loss function. (d) The loss function is minimized to yield
the optimal coefficients α̂, subject to the constraints of the convex combination. (e) The M = 4 methods are used to
fit Θ̂1, . . . , Θ̂4 on the whole dataset. (f) The final SpiderLearner estimator Θ̂SL is calculated as the convex combination
of the coefficients selected in (d) with the models fit in (e).
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Equation 12 is used as the loss function in the simulation and application sections below, while the original loss

function (Equation 12) and the bounded loss function (Equation 17) are both provided as options in the Spider-

Learner implementation. A comparison of performance of the original and bounded loss functions can be found in

Supplementary Figure S1.
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Simulation study

To assess the performance of the SpiderLearner algorithm, we conducted several simulation studies with varying

sample sizes and numbers of predictors (Table 1a). In all simulations, a variety of network topologies and densities

were considered (Table 1b). The simulation workflow (Figure 2) consisted of (i) designing gold-standard networks

corresponding to each topology and density, (ii) assigning edge weights to the network based on an observed distribution

of partial correlations from a real biological dataset and converting the associated weighted adjacency matrices to valid

precision matrices , (iii) sampling multivariate normal data based on the precision matrices from (ii), (iv) using various

methods, including our proposed ensemble method, to estimate the original network from the sampled data, and (v)

comparing the estimated network to the original gold standard used to generate the data.

Simulation n p q .9 ∗ n/q
A 10,000 50 1275 7.06
B 1,600 50 1275 1.13
C 100 50 1275 0.07
D 60 100 5050 0.01

(a) Simulation study dimensionality. n represents the sample size; p, the number of predictors in the network; q, the number
of parameters that need to be estimated in the model; .9 ∗ n/q: the sample size-to-parameter ratio in each training set in the
10-fold cross-validation.

Topology Density igraph Function Simulated
Density
(A,B,C)

Simulated
Density (D)

Random Low sample gnp 0.053 0.061
Random High sample gnp 0.219 0.194
Small World Low sample smallworld 0.082 0.061
Small World High sample smallworld 0.204 0.202
Scale-Free Low sample pa 0.079 0.059
Scale-Free High sample pa 0.192 0.191
Hub-and-Spoke Low sample pa 0.079 0.059
Hub-and-Spoke High sample pa 0.192 0.191

(b) Gold-standard networks were constructed using a variety of functions from the igraph package. Graph density is a function
of the parameters used in each function as well as the number of predictors in the graph, and cannot be exactly specified.
Parameters used in this study were chosen to achieve approximately 6 percent dense graphs in the low-density cases and 20
percent dense graphs in the high-density cases.

Table 1: Details of the simulation study designed to test the robustness of the SpiderLearner algorithm to differences
in dimensionality and topology.

We explored four different network topologies in our simulations: random, small world, scale-free, and hub-and-

spoke. Each topology has unique characteristics that may be relevant for biological data.

Random graph In an Erdös-Renýı/Gilbert random graph on p nodes, it is assumed that each of the
(

p
2

)

possible

edges is equally likely to exist, according to some fixed probability π (30; 31). A random graph can be constructed by

sampling each edge independently from a Bernoulli(π) distribution (31). The degree distribution of a random graph

is approximately a Poisson distribution (32).

Small world graph A small world graph is characterized by a type of community structure that is absent in

the random graph and which results in a shorter average path length (33). A small world graph on p nodes can be
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Figure 2: Simulation study workflow. In (i) we design gold-standard networks. In (ii), we assign edge weights to
the gold standards by sampling from the distribution of partial correlations observed in the CATHGEN dataset and
convert the corresponding adjacency matrices to precision matrices. In (iii), we sample multivariate normal data based
on the precision matrices from (ii). In (iv), we estimate the networks from the sampled data. In (v), we compare the
estimated network to the gold standard.
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simulated by beginning with a circular lattice in which each node is connected to k of its neighbors. From this point,

the graph is “rewired” by going around the lattice and reconnecting each edge to a different node at random with

some fixed rewiring probability π. These random disruptions of the lattice structure create shortcuts across the graph,

leading to the lower average path length for the graph as a whole.

Scale-free graph A scale-free graph is characterized by a power law degree distribution that can be simulated by

considering an empty graph on p nodes and adding edges k-at-a-time following a growth and preferential attachment

model, in which the probability that a particular node gets another edge added to it is proportional to how many

edges it already has (34; 32). A log-log plot of the degree distribution (i.e., log frequency vs. log degree) in a scale-free

graph is approximately a straight line; thus the model for generating this graph is referred to as linear preferential

attachment.

Hub-and-spoke graph A hub-and-spoke graph arises in a similar way as the scale-free graph does, but the

probability that an edge is added to a particular node is proportional to the kth power of the degree of that node,

for some k > 1 (superlinear preferential attachment) (32). This graph is characterized by hub nodes with very high

degree and non-hub nodes with very low degree.

We explore these topologies along with graphs of different edge densities, where the edge density of a graph is defined

as the number of edges divided by
(

p
2

)

, the number of possible edges on p nodes. For each of the four topologies, we

simulated networks with two different density levels (low density: approximately 6 percent dense, and high density:

approximately 20 percent dense). A visualization of these gold-standard networks shown in Figure 3.

Random − Low Density Small World − Low Density Scale−Free − Low Density Hub−and−Spoke − Low Density

Random − High Density Small World − High Density Scale−Free − High Density Hub−and−Spoke − High Density

Figure 3: Sample graph topologies simulated using the igraph R package. Node size and color indicate degree; larger
nodes have higher degree.
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Designing gold-standard networks

The igraph package in R was used to simulate gold-standard networks (35). For random networks, the sample gnp

function was used (36). For small world networks, the sample smallworld function was used (33). For scale-free and

hub-and-spoke networks, the sample pa function was used (Table 1b).

In an effort to create a realistic edge weight distribution from a biological distribution, we used metabolomics

data from the CATHeterization GENetics (CATHGEN) biorepository as a starting point (37). The CATHGEN

biorepository consists of data from a prospectively-collected clinical study of ∼ 10, 000 participants undergoing cardiac

catheterization with scheduled annual followup at Duke University Hospital; further details of the study population

have previously been published in (37). Measurements of 407 metabolites were available for 136 of these participants,

including 68 participants with incident coronary artery disease (CAD) and an equal number of participants without

CAD during follow up; further description of this metabolomics study can be found in (38). We used the graphical

lasso with the eBIC scoring criterion (hyperparameter γ = 0) to estimate a GGM for this dataset. The resulting

distribution of the nonzero partial correlations was skewed right with several high outliers (Supplementary Figure S2).

We used the histogram of the edge weights as a discrete probability distribution from which to sample edge weights

for our simulated networks (bin size 0.01, range -0.32 to 0.76).

To use the weighted adjacency matrix to sample from the multivariate normal distribution, we begin by obtaining

a valid precision matrix using Equation 2. For simplicity, we assume θii = θjj = 1, which gives the (i, j) entry of the

precision matrix as:

θij = −ρij|X
−i,−j

(18)

We use this relationship to determine the full precision matrix Θ. Although there is no guarantee that a matrix

generated with this approach will be positive definite, we observed positive definite matrices for most of the simulations

in this paper. In cases where matrices were not positive definite, we performed a “boosting” step involving adding a

small multiple of the magnitude of the minimum eigenvalue to the diagonal of the matrix. For a p×p precision matrix

A with minimum eigenvalue λA
min, this correction is:

A′ = A+ 1.01 ∗ |λA
min| ∗ Ip (19)

where Ip is the p× p identity matrix. This is similar to the approach taken by Tan et. al. in (39).

Sampling, estimation, dimensionality, and candidate methods

To sample network data from the gold-standard networks, we inverted each estimated precision matrix Θ to find the

corresponding covariance matrix Σ,then simulated a sample of size n by drawing X1, . . . , Xn ∼ MVN(0,Σ). Finally,

we estimated precision matrices from this sample in three ways: (i) by applying candidate methods individually (ii) by
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using a simple mean ensemble model in which each candidate is weighted equally, and (iii) by using the SpiderLearner

(Figure 2).

The dimension of a GGM is typically described in terms of the number of samples n and the number of predictors p

included in the model. Importantly, and in contrast to many regression approaches, p is not the number of parameters

in the model: the precision matrix corresponding to the GGM has q = p ∗ (p − 1)/2 + p unique entries that need to

be estimated. Because of the quadratic relationship between the number of predictors and the number of parameters

to be estimated, dimensionality becomes a major factor in estimation even if a GGM does not include very many

predictors. Dimensionalities simulated in this study are shown in Table 1a.

Nine different candidate methods were considered for input to the ensemble algorithm (Figure 2). Candidate

Methods 1,2,3,6, and 7 use the huge and huge.select functions from the R package huge with the glasso method,

which corresponds to the original graphical lasso (7; 3; 6). The difference between these methods is the choice of

scoring criterion used in the huge.select function to select the tuning parameter (λ in Equation 3). The first

criterion is the extended Bayesian information criterion (eBIC), which optimizes a BIC-type quantity tuned by a

hyperparameter γ, where γ = 0 corresponds to a standard BIC measure and γ = 0.5 is a typical default value for

graphical modeling (12; 40). Candidate Methods 1 and 2 apply this criterion with γ = 0 and γ = 0.5, respectively.

Candidate Method 3 applies a criterion called the rotation information criterion (RIC), which is based on a permutation

strategy that generates a null distribution for comparison (12; 7). Candidate Methods 6 and 7 use a criterion called

the stability approach to regularization selection (StARS), which is a sub-sampling based approach (12; 41). One of

several hyperparameters that can be selected using StARS is stars.thres, which relates to the amount of variability

that is tolerated across the subsamples (41). Candidate 6 applies the StARS criterion with stars.thres = 0.05 and

Candidate Method 7 applies it it with stars.thres = 0.1 (the default). Candidate Method 4 is the hub graphical

lasso, which is an extension of the original graphical lasso that can effectively model hub structures in networks and is

implemented in the hglasso R package (39). Candidate Method 5 is the MLE, i.e., inverse of the sample covariance

as computed with the cov function in base R. Candidate Methods 8 and 9 are similar to Candidate Methods 1 and

2; they also use the original graphical lasso along with an eBIC scoring criterion, but are implemented in the qgraph

R package (42; 43). A difference between the qgraph implementation and the huge implementation is in the default

range of tuning parameters λ considered. Let λ∗ be the smallest value of λ that creates an empty graph; huge uses a

logarithmic sequence of ten candidate λ values between 0.1λ∗ and λ∗, while qgraph uses a larger logarithmic sequence

of length 100 between 0.01λ∗ and λ∗ (7; 43).

We use the following shorthand for these nine methods in the remainder of this paper:

• Candidate Method 1: glasso-ebic-0

• Candidate Method 2: glasso-ebic-0.5

• Candidate Method 3: glasso-ric

• Candidate Method 4: hglasso
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• Candidate Method 5: MLE

• Candidate Method 6: glasso-stars-0.05

• Candidate Method 7: glasso-stars-0.1

• Candidate Method 8: qgraph-ebic-0

• Candidate Method 9: qgraph-ebic-0.5

While Candidate Method 5 is typically well-defined in Simulations A-C (barring multicollinearity), it is not in

Simulation D, where n < p. Therefore, Simulation D excludes Candidate Method 5.

Assessing estimation performance

Once a precision matrix is estimated, we compare it to the original, data-generating, gold-standard precision matrix

in order to assess performance. We begin by introducing notation that will be helpful in defining our performance

metrics. Let Θ̂ be an estimate of the true p × p precision matrix Θ, and let θ̂ij and θij represent the corresponding

elements of each. We define the error matrix ∆ as Θ̂−Θ, and refer to its i, jth element as:

δij = θ̂ij − θij (20)

Note that, although the true precision matrix is symmetric, the estimated matrix may not be: a notable example of

possible asymmetry is in the graphical lasso algorithm (44). Therefore, we consider every element of the error matrix

∆ rather than just upper or lower triangular components when assessing estimation performance.

One area of interest is to assess error in the estimated edge weights in the GGM. Because these edge weights follow

directly from the estimated precision matrix, we begin by focusing our efforts on quantifying error in the precision

matrix itself. The first metric we use is the based on the size of ∆ as assessed by the Frobenius norm:

||∆||F =

√

√

√

√

p
∑

i=1

p
∑

j=1

δ2ij (21)

To obtain a quantity that can be compared across topologies, we scale ||∆||F by the Frobenius norm of the true

precision matrix, ||Θ||F , defining the relative Frobenius norm (RFN) as

RFN =
||∆||F
||Θ||F

(22)

We are interested in the generalizability of the SpiderLearner to independent datasets. For this purpose, we assessed

the out-of-sample log likelihood of each estimated precision matrix on a new, independent sample of the same size

generated from the same gold-standard precision matrix.
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Next, we considered bias and MSE for each matrix entry. For R simulated replicates of multivariate normal data

sampled according to the same gold-standard precision matrix, the replicate-estimated bias of element θ̂ij is given

by:

Biasij =
1

R

R
∑

r=1

δ
(r)
ij (23)

Similarly, the replicate-estimated mean squared error of an element δij is given by:

MSEij =
1

R

R
∑

r=1

(δ
(r)
ij )2 (24)

Because most of the candidate models in the ensemble learner are shrinkage methods, we expect that MSE will

vary based on the size of each element. Moreover, some methods penalize the diagonal of the precision matrix while

others do not. We therefore summarized performance by investigating this element-wise bias and MSE in six cate-

gories: (i) the zero elements of the gold-standard matrix, (ii-iv) small, medium, and large entries, corresponding to

the bottom quartile, middle 50%, and top quartile of the off-diagonal non-zero matrix elements of the gold-standard

matrix, and (v) the diagonal elements of the gold-standard matrix.

In some cases, it may be of interest to assess the performance of a method at estimating the edge set of the GGM,

rather than its edge weights. In this case, GGM estimation is essentially a classification problem, where each possible

edge (i, j) is classified as either included in the network or excluded from the network. For this purpose, it is necessary

to classify edges in some way. In Simulations A-C, where the MLE is included as a candidate learner, it is likely

that the estimated GGM will be completely connected as the MLE will not contain entries that are exactly zero.

For these three simulations, we therefore construct a sparser graph by thresholding based on the significance of the

Fisher-transformed partial correlation coefficient (see Supplement for details). We control the FWER at level α = 0.05

with a Bonferroni correction (45).

In Simulation D, the Fisher-transformed partial correlation is not well-defined (see Supplement). We therefore

classify any non-zero partial correlation coefficient as an edge. Because the MLE is not included in Simulation D,

this classification yields a graph that is not completely connected. This methodology is described in detail in the

Supplement.

As an additional measure, we calculated the matrix RV coefficient, an analogue of a correlation coefficient,

between estimated and gold-standard matrices, as implemented in the R package MatrixCorrelation (46; 47).
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Results

We conducted 100 iterations for each of the eight network topologies in each of Simulations A-D. Results for

Simulation A and Simulation D are presented here; results for Simulation B and Simulation C are presented in the

Supplement. To provide some perspective of computation times, a table of runtimes for various values of n and p is

available in Supplementary Table S1.

Simulation A: Sample size >> number of features, parameters estimated (n >> p, q)

Ensemble weights for Simulation A are shown in Table 2a. The SpiderLearner algorithm selected at least three

different methods to have nonzero weights for each topology, demonstrating that combining multiple candidate al-

gorithms is indeed important from a likelihood-based loss perspective. For every topology, qgraph-ebic-0 and the

inverse sample covariance (i.e., MLE) were included in the combination, although the weights varied broadly by

topology, with qgraph-ebic-0 weights ranging from 0.03 for the low-density hub-and-spoke topology to 0.42 for the

low-density scale-free topology and the MLE weights ranging from 0.28 for the low-density random graph topology

to 0.59 for the high-density random graph topology. The hub glasso was included in seven out of eight topologies

(excluding the low-density scale-free topology), again with broadly varying weights (0.10-0.63). The glasso-ebic-0

was selected for minor contributions in the low-density scale-free case(0.33) and the high-density scale-free case (0.08).

The glasso-ric,glasso-stars-0.05 and glasso-stars-0.1 methods were weighted zero for all topologies.

Results for the relative Frobenius norm of the error matrix are shown in Figure 4a. It can be easily seen that

the performance of each method varied highly according to this metric, emphasizing the importance of our approach.

The SpiderLearner performed better than the individual candidates and better than the simple mean ensemble model

across all settings considered. The performance as assessed by out-of-sample log likelihood can be seen in Figure 4b.

Again, the SpiderLearner performed well; we note that variability of the out-of-sample log likelihood was not as high

as that of the RFN.

The element-wise bias and MSE for the five entry categories (zero, small, medium, large, and diagonal) are shown

in Supplementary Figure S4. For the SpiderLearner as well as all the candidate methods, bias varied by entry category.

The MLE showed the smallest bias in each case, which is logical given that it was the only non-shrinkage method

employed. The SpiderLearner performed better than or comparably to the remainder of the algorithms in terms of the

magnitude of bias, while having the added benefit of smaller variability of bias for most elements. The exception was

for the true zero elements, in which the SpiderLearner incorporated the MLE and had a higher variability accordingly.

A similar pattern was observed for MSE.

Sensitivity and specificity of each method in Simulation A are shown in Supplementary Table S2 and S3, respectively.

The SpiderLearner was more sensitive than some candidate methods and less sensitive than others; it was more sensitive

than the simple mean in every case. It had perfect specificity (as did most candidate methods), selecting no false

positives. This observation may be due to the conservative nature of our threshold, which is based on a Bonferroni
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(a) Relative Frobenius norm, Simulation A.

(b) Out-of-sample log likelihood, Simulation A.
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glasso -
ebic - 0

glasso
- ebic -
0.5

glasso -
ric

hglasso mle glasso -
stars -
0.05

glasso -
stars -
0.1

qgraph
- ebic -
0

qgraph
- ebic -
0.5

Erdos-Renyi Low 0 0 0 0.57 0.28 0 0 0.15 0
Erdos-Renyi High 0 0 0 0.33 0.59 0 0 0.08 0
Small World Low 0 0 0 0.46 0.39 0 0 0.15 0
Small World High 0 0 0 0.19 0.55 0 0 0.26 0
Scale Free Low 0.33 0 0 0 0.25 0 0 0.42 0
Scale Free High 0.08 0.08 0 0.1 0.51 0 0 0.23 0
Hub-and-Spoke Low 0 0 0 0.63 0.34 0 0 0.03 0
Hub-and-Spoke High 0 0 0 0.36 0.57 0 0 0.06 0

(a) Simulation A

glasso -
ebic - 0

glasso
- ebic -
0.5

glasso -
ric

hglasso glasso -
stars -
0.05

glasso -
stars -
0.1

qgraph
- ebic -
0

qgraph
- ebic -
0.5

Erdos-Renyi Low 0 0 0 0.02 0.07 0.21 0.68 0.01
Erdos-Renyi High 0 0 0 0.06 0.09 0.61 0.23 0
Small World Low 0.01 0.01 0.01 0.02 0.03 0.07 0.37 0.48
Small World High 0 0 0 0.08 0.21 0.61 0.09 0
Scale Free Low 0 0 0 0.03 0.05 0.23 0.65 0.03
Scale Free High 0 0 0 0.09 0.14 0.76 0.01 0
Hub-and-Spoke Low 0 0 0 0.02 0.04 0.21 0.57 0.15
Hub-and-Spoke High 0 0 0 0.1 0.15 0.74 0.01 0

(b) Simulation D

Table 2: Average weight for each method as selected by SpiderLearner in N=100 simulations.

correction (see Supplement).

Simulation D: Sample size < number of features << number of parameters estimated

(n < p << q)

Ensemble weights for Simulation D are shown in Table 2b. The SpiderLearner algorithm selected at least four

of the candidate methods in every case. Interestingly, the glasso-ebic-0, glasso-ebic-0.5, and glasso-ric con-

tributed the least to the ensemble in Simulation D after being important players in Simulation A. On the other hand,

glasso-stars-0.05 and glasso-stars-0.1 both contributed to the ensemble in all eight cases in Simulation D, but

they were not selected in any case in Simulation A. The hub graphical lasso was a highly-weighted candidate in most

cases in Simulation A, but had very low weights in Simulation D. These observations are further evidence of the

important of considering multiple methods when estimating a GGM: the performance (in the log-likelihood sense) of

estimates from different methods varies broadly based on the characteristics of the true underlying network.

Results for the RFN in Simulation D are shown in Figure 4c. We generally saw the SpiderLearner performing

comparably to the qgraph-ebic-0 candidate method and qgraph-ebic-0.5, two methods which were typically highly

weighted in the ensemble (Table 2b). The out-of-sample log likelihood performance is shown in Figure 4d. The

SpiderLearner again performed well when compared to the remainder of the methods. The hub graphical lasso had

notably lower out-of-sample log likelihood than the other candidates, suggesting overfitting in this setting.
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Bias and RMSE for Simulation D are shown in Supplementary Figure S10. In Simulation D, the hub graphical

lasso clearly outperformed all the other methods in terms of bias, while suffering a large MSE (i.e., high variance).

The SpiderLearner was able to detect this tradeoff and avoid excessive variance by assigning a low weight to the hub

graphical lasso. Aside from the hub graphical lasso, bias and MSE were comparable across the SpiderLearner, the

simple mean, and the remaining candidate methods for the zero, small, medium, and large entries. Bias differed for

the diagonal entries as some of the candidate methods applied a shrinkage penalty to the diagonal, while some did

not.

In Simulation D, candidate methods either had a moderate sensitivity or a very low sensitivity; the SpiderLearner

fell into the moderate category, with sensitivity around 0.6. (Supplementary Table S10). Many methods with low

sensitivity selected empty graphs, possibly due to the small sample size relative to the number of predictors in this

simulation setting. Specificity was similarly bimodal, with the SpiderLearner, the simple mean, and the hub graphical

lasso having a specificity around 0.45, while other methods had a specificity of near 1 (Supplementary Table S11).

19

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 14, 2021. ; https://doi.org/10.1101/2021.07.13.452248doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.13.452248
http://creativecommons.org/licenses/by/4.0/


The MLE as the estimator for the precision matrix

In simulation settings A,B, and C, the sample size n is larger than the number of predictors p in the model, meaning

that the sample covariance matrix is non-singular, except in the case of multicollinearity. The sample covariance matrix

is the MLE for the population covariance matrix, and because inversion of a non-singular matrix is a continuous

function, the inverted sample covariance matrix is the MLE for the population precision matrix (48; 49). Notably, that

the likelihood-based SpiderLearner model selects models other than the MLE, and that other individual regularized

algorithms perform better than the MLE according to the relative Frobenius norm, matrix RV coefficient, and out-of-

sample likelihood. We hypothesized that this phenomenon was related to the sparsity of the underlying network. To

investigate, we ran the SpiderLearner algorithm on an Erdös-Renýı random graph with a variety of densities (0.05, 0.1,

0.25, 0.5, 0.75, 1) with 30 iterations for each density. As hypothesized, the weight of the MLE in the ensemble model

increases with the density of the graph, as shown in Figure 5. These results suggest that even though the ensemble

loss function does not incorporate a shrinkage penalty, it is still advantageous from the likelihood-based perspective to

shrink estimates of small precision matrix entries to zero in the case where the population precision matrix is sparse.

The takeaway is that shrinkage methods can improve out-of-sample performance even in low-dimensional cases, which

is consistent with results observed in the original LASSO publication (50).

Choice of K

A practical question in this methodology is how to select K in the K-fold cross-validation. Higher values of K give

more training data, meaning the estimates of the candidate precision matrices Θ1, . . . ,ΘM are more accurate and more

precise; however, less data are available to estimate the out-of-sample log likelihood on the left-out test data, meaning

estimates of α will suffer higher bias and variance. Lower values of K give less training data and more out-of-sample

data, but it is not immediately clear that this causes the reverse problem: quality of estimates of α depend both on

the amount of out-of-sample data as well as the quality of the estimates of Θ1, . . . ,ΘM .

It is apparent that there is a complex “Θ-α tradeoff” underlying our method, making it challenging to recommend

a particular choice of K without further investigation. For these reasons, we conducted a simple simulation study to

assess the impact of the use of different values of K. We used the high-density Erdös-Renýı random graph topology

as a gold standard network, generated 100 samples of size n = 150 on p = 50 predictors (q = 1275 parameters to be

estimated), and ran the SpiderLearner algorithm for K ∈ {2, 5, 10, 15, 20, 30}. We then calculated (i) the element-wise

standard deviation of the estimated precision matrix Θ̂SL, (ii) the element-wise bias of Θ̂SL, and (iii) the variability of

the selected coefficients α̂1, . . . , α̂M for each value of K. Because the library includes shrinkage methods, we calculated

summary measures for (i) and (ii) in four categories of the true matrix: zeros, bottom 10 percent of non-zero entries,

middle 80 percent of non-zero entries, and top 10 percent of non-zero entries. Because the true matrix is symmetric,

we only assessed diagonal and lower triangular elements.

Supplementary Figure S11 shows that the element-wise standard deviation of Θ̂SL increases slightly with increases
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Figure 5: Using a random graph topology with six different densities (0.05, 0.1, 0.25, 0.5, 0.75, and 1), we explored
the relationship of the weight of the MLE in the ensemble model with the graph density. In sparse graphs, the MLE
is not weighted heavily by the algorithm; as density increases, the MLE begins to dominate the contribution to the
convex combination.

in K, but that most of the change happens when moving from K = 2 to K = 5 and from K = 5 to K = 10.

Supplementary Figure S12 shows that entry-wise bias decreases substantially as K increases for medium and large

entries; although it slightly increases as K increases for zero entries and for small entries, the magnitude of these

increases is small compared to the decrease in bias for the medium and large entries. Supplementary Figure S13 shows

that the variability of the weights α̂1, . . . , α̂9 is similar across all considered values of K ≥ 5. These results lead us to

suggest that K = 10 is a good choice, with K = 5 as an option for large datasets if computing time is a limitation.
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Selection of candidate GGM library

Existing Super Learner literature suggests that a broad and varied library of candidate learners is beneficial, and

that overfitting or highly variable estimates are typically not observed consequences of a large library size, although

cross-validating the Super Learner itself is recommended as a best practice (15; 24; 51). Practical limitations to library

size include computation time and interpretability. We investigated the sensitivity of model results to the library size

and content in 100 simulated datasets of size n = 1000, p = 50 using the high-density scale-free graph topology. We

used three different libraries: (i) a small baseline library consisting of the hub graphical lasso and the MLE, chosen

due to the ability of the hub graphical lasso to model the scale-free topology and the generally favorable properties of

the MLE, (ii) a medium library consisting of the small library along with the huge-ebic-glasso method with γ = 0

and γ = 0.5, and (iii) a large library consisting of the nine methods used in Simulations A-C. Our results indicate that

while the large library provides the best fit, the results from the medium and small library do not differ substantially

as a whole in this case (Supplementary Figure S14). In addition to this simulation setting, we further explored the

sensitivity of the estimated network to the library selection in a real data example, in which we observed that some

libraries yield similar results while others differ (Supplementary Table S12, Supplementary Figure S16).
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Application: Ovarian cancer risk modeling

Datasets

To demonstrate the application of our method to real data, we used sixteen ovarian cancer gene expression datasets

from the Curated Ovarian Cancer collection of Ganzfried et. al. (20). One of the datasets was used to train a

SpiderLearner model and develop a network-based risk score from the resulting network; the other fifteen were used as

independent validation datasets to evaluate the risk score performance (Figure 6). The training dataset consists of 260

late-stage ovarian cancer patients with gene expression data for 20106 genes, obtained via microarray experiments by

Yoshihara et al. (19) (“Yoshihara dataset”). Characteristics of the Yoshihara dataset have been previously described

in (19), where it is referred to as Japanese data set A. Briefly, the study conducted by Yoshihara et al. included

participants with advanced stage high-grade serous ovarian cancer who underwent debulking surgery followed by

chemotherapy, with followup for up to ten years. Yoshihara et al. assessed overall survival was assessed as the

time from the primary surgery to death due to ovarian cancer. 131 of the 260 patients were living at the end of

the study; we treated these patients’ outcomes as right-censored. Basic characteristics of all sixteen datasets are

shown in Table 3. For details regarding the 15 validation datasets, we refer the reader to the original publications,

also shown in Table 3. In the application below, we used the nine candidate GGM estimation methods described in

Figure 2 as the SpiderLearner library, with K = 10-fold cross-validation. All data are publicly available through the

R package curatedOvarianData (via Bioconductor), and code to reproduce the application workflow is available at

https://github.com/katehoffshutta/SpiderLearnerWorkflow.

Workflow and results

In (19), Yoshihara et al. present a 126-gene signature of high-risk ovarian cancer based on overall survival, defined

as time from primary surgery to death or loss-to-followup. To investigate the relationships between the genes in this

signature, we used SpiderLearner to estimate a GGM for this study setting. We extracted 116 of the genes presented

in (19) from an example dataset in the curatedOvarianData R package. The weights selected by SpiderLearner were

0.69 for hglasso, 0.13 for huge-ebic-0, 0.12 for qgraph-ebic-0, 0.05 for the MLE, and zero for the remainder of the

candidate algorithms.

Community detection is a useful way to identify clusters in graphical models. We applied the cluster walktrap

community detection algorithm as implemented in the igraph R package to detect communities in the SpiderLearner-

estimated GGM as well as the GGMs estimated by the nine candidate algorithms and the simple mean (65; 35). The

cluster walktrap algorithm requires the choice of a step size for the random walk. For each network, we selected the

step size between 1 and 10 that maximized the overall modularity of the network. Estimates for the nine candidate

methods are shown in Figure 7a. The community structure varies notably across methods, further motivating the use

of our ensemble method.

To derive biological insight from the detected communities, we developed a network-based risk score utilizing

23

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 14, 2021. ; https://doi.org/10.1101/2021.07.13.452248doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.13.452248
http://creativecommons.org/licenses/by/4.0/


Dataset Platform ID N
Age: Mean(SD)
missing

Tumor
Stage
(% < 4)
missing

Summary
Stage
(% Late)
missing

Summary
Grade
High (%)
missing

Validated
in KM
Models

Validated
in CoxPH
Models

GSE32062.GPL6480 (19) hgug4112a 260 - 78 100 50 - -
E.MTAB.386 (52) illuminaHumanv2 129 60.71(14.24) 85 99 1 no yes
GSE13876 (53) OperonHumanV3 157 57.95(12.39) - 100 54 13 yes yes
GSE14764 (54) hgu133a 80 - 98 89 68 yes yes
GSE17260 (55) hgug4112a 110 - 80 100 39 no no
GSE18520 (56) hgu133plus2 63 - 100 10 84 10 84 10 no no
GSE19829.GPL570 (57) hgu133plus2 28 - - - - yes no
GSE19829.GPL8300 (57) hgu95av2 42 - - - - no no
GSE26712 (58) hgu133a 195 61.54(11.86) 13 80 13 95 10 95 10 no no
GSE30009 (59) NA 103 62.45(11.14) 80 100 89 2 no no
GSE30161 (60) hgu133plus2 58 62.57(10.61) 91 100 57 4 no yes
GSE32063 (19) hgug4112a 40 - 78 100 42 no no
GSE9891 (61) hgu133plus2 285 59.62(10.59) 3 92 3 84 3 57 6 yes yes
PMID17290060 (62) hgu133a 117 - 85 1 98 1 49 3 yes no
PMID19318476 (63) hgu133a 42 61.46(10.61) 1 76 1 93 1 57 1 yes no
TCGA (64) hthgu133a 578 59.7(11.56) 10 85 15 90 15 83 23 no no

Table 3: Basic characteristics and references for the 16 ovarian cancer datasets used in the SpiderLearner application.

24

.
C

C
-B

Y
 4.0 International license

available under a
w

as not certified by peer review
) is the author/funder, w

ho has granted bioR
xiv a license to display the preprint in perpetuity. It is m

ade 
T

he copyright holder for this preprint (w
hich

this version posted July 14, 2021. 
; 

https://doi.org/10.1101/2021.07.13.452248
doi: 

bioR
xiv preprint 

https://doi.org/10.1101/2021.07.13.452248
http://creativecommons.org/licenses/by/4.0/


topological characteristics of the estimated GGM to identify a set of genes with which to predict overall survival.

We closely followed the approach of (19) in developing their ovarian cancer prognostic index. (19) began by using a

penalized Cox proportional hazards (Cox PH) model to obtain regression coefficients for each of the 126 genes. Next,

the authors calculated a prognostic index as follows:

Prognostic score =
126
∑

i=1

βiXi (25)

where βi was the regression coefficient for gene i in the penalized Cox PH model and Xi was its centered and

standardized gene expression value. Finally, (19) determined the optimal threshold value of their prognostic index by

(i) assigning patients to a high-risk or low-risk group based on a proposed threshold, (ii) calculating the p-value of a

log-rank test for difference in overall survival between the high-risk and low-risk group, and (iii) repeating this process

for a number of thresholds and finding a threshold that minimized the p-value in (ii).

The workflow that we applied is in the same spirit, and is shown in Figure 6a. Rather than using all 126 genes

to produce the score, we aimed to find more a more parsimonious score by leveraging the network structure of the

Yoshihara dataset to select a subset of relevant genes. For each candidate approach, the simple mean, and the

SpiderLearner, we began by identifying the gene in each community with the highest hub score by applying the

hub score function of the igraph R package to the adjacency matrix of the estimated GGM (35; 66). Hub scores

reflect how influential nodes are based on the eigendecomposition of the weighted adjacency matrix of a graph, with

a higher hub score corresponding to more influence (66). Earlier work in bipartite networks of SNPs and genes has

demonstrated that hubs within communities are enriched for disease-associated SNPs (67). We hypothesized that local

hubs in GGM communities might have similar functional leverage and therefore be useful predictors of ovarian cancer

outcomes.

To develop the risk score, we fit Cox PH models regressing days to death on the local hubs in each network using the

survival package in R (68). For GGM estimation method m with local hubs x1, . . . , xp, we denote the corresponding

Cox PH model coefficients as β
(m)
1 , . . . , β

(m)
p . Following the development of the prognostic index in (19), the risk score

for patient i according to method m was calculated as

S
(m)
i =

p
∑

j=1

β
(m)
j xij (26)

where xij is the centered, standardized expression level of gene j for person i.

We next mapped the score in Equation 26 to a binary indicator of high risk or low risk by establishing a threshold

point. As in (19), we selected an optimal threshold for this score by testing a grid of threshold values and selecting the

value attaining largest separation between the estimated Kaplan-Meier survival curves of the high-risk and low-risk

groups in the Yoshihara dataset, as measured by the lowest p-value according to a log-rank test of the difference. For

the ensemble method, this threshold was 0.461 (log-rank test p = 3.7 ∗ 10−10).

The framework for validation of the risk score is shown in Figure 6b. Each of the ten total risk scores and associated
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Figure 6: Workflow for training and validating the network-based risk score.
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Method
N
genes

N validated
datasets/total

median valida-
tion p-value

ensemble 7 6/14 0.08
glasso - ebic - 0 8 1/14 0.37
glasso - ebic - 0.5 116 2/15 0.42
glasso - ric 14 5/15 0.15
hglasso 11 3/14 0.2
MLE 6 0/1 0.9
glasso - stars - 0.05 42 4/15 0.29
glasso - stars - 0.1 19 6/15 0.22
qgraph - ebic - 0 10 3/15 0.11
qgraph - ebic - 0.5 42 4/15 0.29

(a) Results of risk score validation on 15 independent datasets.

Dataset p
Sample
Size

Low
Risk

High
Risk

Median
Survival

Median
Survival
(Low Risk)

Median
Survival
(High
Risk)

Censoring
(%)

GSE13876 0.015 157 119 38 750 900 480 28
GSE14764∗ 0.028 80 59 21 1650 - 1200 74
GSE19829.GPL570 0.03 28 20 8 1440 1440 960 39
GSE9891∗∗ 0.006 285 216 69 1440 1470 1140 59
PMID17290060 0.001 117 93 24 1920 2340 690 43
PMID19318476 0.019 42 33 9 1020 1050 720 48

(b) Survival characteristics of validated datasets.

Table 4: Results from assessing risk score in validation datasets demonstrate that the ensemble network produced the
most robust risk score from the training dataset. Median survival (in days to death) is estimated from the Kaplan-
Meier curves for the six datasets in which the seven-gene risk score validated. ∗In the GSE14764 study, more than half
of the low-risk participants survived past the end of the study, so the median survival was undefined in this group. The
time of last observation in the low-risk group was 1590 days. ∗∗ Vital status missing for 3 participants in GSE9891

thresholds for distinguishing low- vs. high-risk participants was evaluated in 15 independent ovarian cancer datasets

comprised of data available from (20) that contained information on the outcome (days to death) as well as vital status.

A risk score was considered to validate if the log-rank p-value between the Kaplan-Meier estimates for the high-risk and

low-risk groups was less than 0.05. Figure 7c shows the distribution of the validation p-values across the 15 datasets

for the risk score developed from the ensemble network as well as from the nine candidate networks. In some cases,

the optimal threshold score determined from the training dataset was such that there were insufficient samples above

and below the threshold to perform a log-rank test in the validation dataset; these cases are omitted from the boxplot

(MLE: N=14 of 15 studies, ensemble: N=1, hglasso: N=1, glasso-ebic-0: N=1). Table 4a shows further detail

about the validation. Notably, in the case of glasso-ebic-0.5, an empty network was selected. Consequently, every

gene formed its own community and all 116 genes were required to construct the risk score. We can thus use the

glasso-ebic-0.5 case to benchmark the ensemble method vs. a naive approach in which the network structure is not

leveraged to construct the risk score. Figure 7c shows that the ensemble approach provides a considerable gain.

We note that the SpiderLearner risk score model has two important advantages over the risk score developed by

each candidate method. First, it is a much more parsimonious model, requiring only seven predictors to develop a
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Dataset Unadjusted HR p Adjusted HR p Covariates Available
E.MTAB.386 1.53 (1.09,2.13) 0.01 1.49 (1.06, 2.1) 0.02 Age, Tumor Stage < 4
GSE13876 1.58 (1.16,2.15) 0 1.67(1.2,2.31) 0 Age, Summary Grade
GSE14764 2.3 (1.17,4.52) 0.02 2.26 (1.17,4.39) 0.02 Summary Grade, Summary Stage
GSE17260 1.35 (0.76,2.4) 0.31 1.34 (0.74,2.41) 0.33 Summary Grade, Tumor Stage < 4
GSE18520 1.46 (0.93,2.28) 0.1 - - None

GSE19829.GPL570 1.95 (0.85,4.46) 0.11 - - None
GSE19829.GPL8300 1.21 (0.6,2.47) 0.59 - - None

GSE26712 1.18 (0.9,1.55) 0.23 1.04 (0.78, 1.39) 0.78 Age, Tumor Stage < 4
GSE30009 1.22 (0.21,7.04) 0.82 2.51 (0.39,16.06) 0.33 Age, Summary Grade, Tumor Stage < 4
GSE30161 1.89 (1.12,3.19) 0.02 2.03 (1.15, 3.57) 0.01 Age, Summary Grade, Tumor Stage < 4
GSE32063 0.75 (0.35,1.63) 0.47 0.85 (0.38,1.91) 0.69 Summary Grade, Tumor Stage < 4
GSE9891 1.75 (1.26,2.41) 0 1.86(1.33,2.6) 0 Age, Summary Grade, Summary Stage

PMID17290060 1.43 (0.94,2.19) 0.09 1.32 (0.86,2.05) 0.21 Summary Grade, Tumor Stage < 4
PMID19318476 1.9 (0.9,4.03) 0.09 1.9 (0.81, 4.46) 0.14 Age, Summary Grade, Tumor Stage < 4

TCGA 1.15 (0.95,1.38) 0.15 1.17 (0.97,1.41) 0.1 Age, Summary Grade, Summary Stage

Table 5: Estimated unadjusted and adjusted hazard ratios and 95% confidence intervals for the SpiderLearner risk
score. Confidence intervals represent the exponentiated the endpoints of a Wald-type 95% confidence interval for the
log hazard ratio.

risk score that validated in 6 of the 15 validation datasets, whereas the only other method achieving this performance

required 42 genes to do so. Second, it has the lowest median validation p-value across the 15 validation datasets, and

that median approaches nominal significance (SpiderLearner median validation p = 0.08). This result indicates better

risk prediction even among those datasets in which the risk score did not validate according to the p < 0.05 criterion.

In an effort to steer clear of overvaluing p-value thresholds, we emphasize that these overall, non-thresholded, results

also reinforce the robustness of the SpiderLearner risk-score. Kaplan-Meier plots for the SpiderLearner-based risk

score on the six datasets in which it validated are shown in Figure 7d. Similar plots for all 15 datasets are available in

Supplementary Figure S17. Median survival times in the low-risk and high-risk group differ substantially (Table 4b),

suggesting our method is capable of producing findings with clinical relevance.

In order to explore the influence of available clinical covariates on the relationship between our risk score and

survival, we performed an additional analysis involving Cox PH models. We first estimated the unadjusted hazard

ratio of the risk score with a model including only the risk score as a covariate. Next, we estimated the adjusted

hazard ratio, adjusting for the following covariates where available: age at time of pathological diagnosis, summary

grade (low, high), summary stage (early, late), and tumor stage (< 4, 4). The unadjusted hazard ratio for the risk score

was significant in five of the 15 validation sets; in these five cases, the adjusted hazard ratio was also significant (Table

5, Supplementary Figure S18). These results indicate that our risk score provides additional prognostic information

above and beyond that contained in these clinical characteristics. Further, the median p-value of the hazard ratio

of the SpiderLearner risk score was comparable to that of the best candidate methods, even though it used fewer

predictors to generate the score (Supplementary Figure S19).

Inspection of Table 3 shows no substantial differences in age, tumor stage, summary grade, or summary stage

between the datasets in which the risk score validated and those in which it did not. We note that 5 of the 6

validated datasets in which the risk score validated used the hgu133a (Affymetrix Human Genome U133) platform

28

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 14, 2021. ; https://doi.org/10.1101/2021.07.13.452248doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.13.452248
http://creativecommons.org/licenses/by/4.0/


or the hgu133plus2 (Affymetrix Human Genome U133 Plus 2.0) platform, while 8 of the 15 used one or the other of

these. The association between platform and validated status was not statistically significant (Fisher’s exact test, p =

0.12).
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(a) Candidate GGMs and communities. (b) SpiderLearner GGM and communities.

SpiderLearner  − Number of Genes: 7

glasso − ebic − 0  − Number of Genes: 8

glasso − ebic − 0.5  − Number of Genes: 116

glasso − ric  − Number of Genes: 14

hglasso  − Number of Genes: 11

MLE  − Number of Genes: 6

glasso − stars − 0.05  − Number of Genes: 42

glasso − stars − 0.1  − Number of Genes: 19

qgraph − ebic − 0  − Number of Genes: 10

qgraph − ebic − 0.5  − Number of Genes: 42
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(d) Survival differences for validated risk score.

Figure 7: (a) Estimated GGMs and communities for 116 of the genes present in the Yoshihara 126-gene signature for
each of the candidate methods in the SpiderLearner library. Vertices of the same color belong to the same community.
Estimated community structure varied widely by candidate method. (b) SpiderLearner-estimated network, including
the seven local hubs used in the risk score. (c) Boxplots of the validation log rank test p-value testing the null hypothesis
of no difference between high-risk and low-risk estimates as defined by the hub-based risk score versus the two-sided
alternative. The ensemble model shows a better validation performance and uses a more parsimonious risk score model
than other candidates, requiring only seven genes as predictors. (d) The SpiderLearner-based risk score includes the
seven labeled genes in (b) as predictors. For the six of 15 validation datasets in which the SpiderLearner-based risk
score was successfully validated, Kaplan-Meier estimates for the low-risk (risk score = 0) and high-risk (risk-score=1)
groups are shown in (d) along with the p-value of the log-rank test comparing the two curves.
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Discussion

In this work, we establish SpiderLearner, an ensemble method for estimating a Gaussian graphical model (GGM)

from a convex combination of precision matrices estimated using a broad range of existing open-source candidate

methods. In a wide variety of simulation settings, SpiderLearner consistently performed comparably to or better than

each of the candidate methods according to a variety of metrics, including relative Frobenius norm of the error matrix,

matrix RV coefficient, and element-wise MSE. Importantly, some of the individual candidate methods performed quite

poorly; since a researcher’s best option a priori is to simply choose one of the candidate methods at will, our ensemble

method provides a considerable advantage for practical use.

New methods for GGM estimation are being continually developed and assessed. For example, Lartigue et al (2020)

conduct an extensive simulation study on GGM estimation for small sample sizes and present a composite procedure

that uses a likelihood criterion to select a GGM (69). Methods such as these that are specific to the particular research

settings such as the small-sample case are areas for further development. An advantage of SpiderLearner is that such

methods, when developed, can be included as candidate models in the ensemble library.

We demonstrated the practical utility of our approach by modeling the network-level interactions of genes belonging

to a previously published 126-gene signature of high-risk ovarian cancer (19). The seven genes selected by the ensemble

model for inclusion in the risk score are AIMP2, NCKAP1L, SRPX, N4BP2L2,IL1B,RAD17, and RCOR3 (Figure

7b). All seven of these genes have important biological function, with experimental evidence linking their expression

levels to processes such as cell proliferation and immune system function that have implications in the study of the

development, progression, and treatment of cancer.

AIMP2 is an important tumor suppressor gene, and its splice variant AIMP2-DX2 has been shown to be an

effective pharmaceutical target in chemotherapy-resistant ovarian cancer (70).

Recent work demonstrated that in vitro overexpression of SRPX resulted in increased ovarian cancer cell invasion

activity, while shRNA reduction of SRPX mRNA led to a decrease (71).

RAD17 encodes a protein that is related to checkpoint signalling in the cell cycle; RAD17 expression is oscillatory,

and engineered stabilization of RAD17 resulted in disrupted checkpoint signalling and consequent diminished re-entry

into the cell cycle (72).

RCOR3 encodes a protein called CoREST/REST corepressor 3 and is a paralog of RCOR1, a protein which works

together with lysine-specific demethylase 1 (LSD1) in epigenetic regulation of cell fates (73). Upadhyay et al. (2014)

demonstrate that RCOR3 is recruited to target genes by LSD1 along with a protein called growth factor independent

1B transcriptional repressor (GFI1B), decreasing histone demethylation and thus de-repressing target gene expression.

LSD1 is known to repress tumor suppressor gene expression in oncogenesis, and it is suggested that an increase in

RCOR3 expression could attenuate this contribution to oncogenesis.

N4BP2L2 encodes a protein known as (N4BP2L2 full name) or as phosphonoformate immunoassociated protein 5

(PFAAP5) (74). There is evidence that N4BP2L2 is involved in neutrophil deficiency (neutropenia), participating in

31

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 14, 2021. ; https://doi.org/10.1101/2021.07.13.452248doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.13.452248
http://creativecommons.org/licenses/by/4.0/


transcriptional regulation of a neutrophil production pathway (74).

IL1B encodes the interleukin-1β protein, which has been shown to be higher in serum and plasma of ovarian cancer

patients relative to healthy women and has been implicated in important signaling cascades, including the p38/JNK

pathway and the NF-κB pathway (75). NCKAP1L has recently been identified as a novel tumor micro environment-

related biomarker in luminal breast cancer, but has not been previously studied extensively in relation to ovarian

cancer (76). IL1B and NCKAP1L are both members of a number of interesting GO biological processes, including the

regulation of phagocytosis, vascular EGFR regulation, neutrophil chemotaxis and migration, granulocyte chemotaxis,

and regulation of T-cell, interleukin-6, lymphocyte, and mononuclear cell proliferation.

Recent advances have been proposed to improve the applicability and reproducibility of network estimation meth-

ods. (77) propose a Monte Carlo-based method for generating confidence intervals for network statistics, allowing a

researcher to assess whether a network property such as edge presence or node centrality differs from that expected by

random chance. (78) present a bootstrap-based approach which allows researchers to investigate the variability of an

estimated network. (79) develop a network meta-analysis framework that permits integration of estimated networks

across multiple studies. Each of these methods can be in theory be applied to GGMs, but rely on the use of an initial

estimation algorithm. Consequently, results will still remain sensitive to the many choices that the researcher must

make during the estimation process. Our method can thus complement the advances described above, potentially

contributing to improved reproducibility and generalizability in GGM estimation.

A limitation of this approach is its time-consuming nature; for K-fold cross validation with M candidate models,

the time cost of estimating the ensemble model would be about M(K + 1) times the cost of estimating just one

candidate model (assuming all candidates take roughly the same amount of time). Moreover, the number of model

parameters to be estimated by each candidate model grows quadratically with the number of predictors included in

the network, meaning that the computational cost of the ensemble model can quickly become substantial for larger

predictor sets. Because model fitting in each fold is independent, parallelization is a good solution to this problem

when multiple cores are available. We have implemented parallel processing in the SpiderLearner code to help reduce

runtime.

A second limitation lies in the rigidity of the convex combination of precision matrices. The same coefficient is

applied to every element of each precision matrix in the current ensemble model formulation. A more flexible extension

could address this limitation by partitioning matrices into regions determined to be similar across methods (e.g., the

row and column corresponding to a hub node), fitting a convex combination within each partition, and combining

these results to yield the ensemble precision matrix.

Conclusion

The past decade has shown numerous advances in GGM estimation, but the burden has still been left on the

researcher to determine the specifics of the estimation process, including important aspects such as choice of method,
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tuning parameter selection, scoring criteria, and hyperparameter settings. Our SpiderLearner ensemble method re-

moves this barrier, enabling researchers to easily construct a likelihood-based optimal combination from a library of

candidate methods. The parsimonious seven-gene risk score identified by our ensemble network-based approach has

clear statistical relevance as demonstrated by the validation in six of 15 independent validation datasets, and biological

relevance as demonstrated by existing literature on the functions of the seven genes in the SpiderLearner risk score.

SpiderLearner is available as open-source R code at https://github.com/katehoffshutta/SpiderLearner, and

code to reproduce the simulation and application workflows are available at https://github.com/katehoffshutta/

SpiderLearnerWorkflow.
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