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Many drugs interact with ion channels in the cells

of the heart and trigger heart rhythm disorders with

potentially fatal consequences. Computational modeling

can provide mechanistic insight into the onset and

propagation of drug-induced arrhythmias, but the effect

of drugs on the mechanical behavior of the heart remains

poorly understood. Here we establish a multiphysics

framework that integrates the biochemical, electrical, and

mechanical effects of drugs from single cardiac cells to

the overall response of the whole heart. For the example

of the drug dofetilide, we show that drug concentrations

of 3.0x and 4.8x increase the heart rate to 122 and 114

beats per minute, increase the myofiber stretches up to

10%, and decrease tissue relaxation by 6%. Strikingly,

the drug-induced interventricular and atrial-ventricular

dyssynchrony results in a 2.5% decreased and 7%

increased cardiac output, respectively. Our results

demonstrate the potential for multiphysics, multiscale

modeling towards understanding the mechanical

implications of drug-induced arrhythmias. Knowing

how differing drug concentrations affect the performance

of the heart has important clinical implications in drug

safety evaluation and personalized medicine.
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Motivation

All medications have side effects. Drug-induced ventricular

arrhythmia and sudden cardiac death are rare but severe

adverse events that should be avoided at all cost.

Consequently, when a new drug is developed, the

proarrhythmic potential of the new compounds is a key

concern. The current gold standard pharmacological

pro-arrhythmic risk stratification combines in vitro experiments

to quantify pharmacological blocking of specific cardiac ion

channels, with electrocardiographic large animal experiments

and clinical studies focusing on changes in tissue activation

duration. Although these biomarkers show good sensitivity,

they are costly and have poor specificity, potentially blocking

safe new drugs from ever reaching the market (38). To

develop novel and more accurate drug-induced arrhythmia

biomarkers, multiphysics multiscale models mechanistically

couple what a pharmacologist sees in a single cell experiment

to what a physician sees in a clinical electrocardiogram (7).

As part of these efforts, our group has recently proposed

an electrophysiological exposure-response simulator that

integrates the interaction between multiple drug compounds

and specific ionic currents at the cellular scale with the

intrinsic cardiac anisotropic conductivity at the tissue scale

and the transmural heterogeneity and tissue organization

at the organ scale (42). This framework allows us to

conduct in silico drug trials for multiple drugs at various

concentrations (46), providing risk categories that correlate

well with reported drug-induced arrhythmia incidence (43).

Based on these results, we trained and validated a

binary risk classifier that accurately predicts the critical

pro-arrhythmic drug concentration (45). From a clinical

perspective however, a binary risk classification only provides

a limited insight into the malignancy of the arrhythmic

event. Dependent on the periodicity of the drug-induced

arrhythmia, the cardiac output can increase, decrease

or stay relatively constant. Consequently, short-duration

non-sustained arrhythmogenicity can have multiple outcomes

for the patient. In this study, we extended our framework

to provide insights into the changing cardiac output of

the heart at varying arrhythmogenic drug concentrations.

More specifically, we use the electrophysiogical activation

sequence to drive biomechanical tissue contraction in the

human heart and study the resulting hemodynamic effects

on the whole-body cardiovascular circulation. Doing so,

we compute a drug’s pharmacological potential to impede

efficient propulsion of blood through the heart chambers and

the rest of the body. As such, we extend what a physician

sees in a clinical electrocardiogram to what a patient feels

and how likely they are to survive specific dosage-dependent

drug-induced arrhythmia events.

Methods

Cardiac electrophysiology. We simulate the

electrophysiological behavior of cardiac tissue using

the monodomain model (41). The main variable of the

monodomain model is the transmembrane potential φ, the

difference between the intra- and extra-cellular potentials. The

transmembrane potential is governed by a reaction-diffusion

equation (20)

φ̇= div(D · ∇φ) +fφ . (1)

Here, we introduce the source term fφ which represents the

ionic currents across the cell membrane and the conductivity

tensor D, which we further decompose into fast D‖ and

slow D⊥ signal propagation parallel and perpendicular to the

cardiac mucle fiber direction f respectively (12),

D =D‖f ⊗f +D⊥[I−f ⊗f ] . (2)

In general, the ionic currents fφ(φ,q(φ); t) are functions of

the transmembrane potential φ and a set of state variables

q(φ) (22; 53), where the state variables themselves are

governed by ordinary differential equations, q̇ = g(φ,q(φ); t) .
The number of currents and state variables determines the

complexity of the model and varies for different cell types. To

simulate the electrophysiological behavior of the Purkinje fiber

network, we choose the Stewart model for human Purkinje

fiber cells (47). A characteristic feature of this model is the

automaticity of its action potential, which enables the cells to

self-excite without an external stimulus. This model is based
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on 14 ionic currents

I =ICaL + INa + ICab + INab + IKr

+ IKs + IK1 + Ito + If + Isus

+ INaK + IpCa + IpK + INaCa

(3)

that are defined through 20 state variables. To study the

spatiotemporal action potential evolution in the myocardium,

we select the O’Hara-Rudy model for human ventricular

cardiomyocytes (27). This model was developed based on

a vast amount of human experimental data and includes

description of key ionic currents for drug-induced arrhythmias.

More specifically, the model is based on 15 ionic currents,

I =ICaL + INa + ICaNa + ICaK + ICab

+ INab + IKb + IKr + IKs + IK1

+ Ito + INaK + IpCa + INaCa,i + INaCa,ss

(4)

of which we replaced the fast sodium current INa of the

original O’Hara-Rudy model with a modified fast sodium

current of the ten Tusscher model (48) to model propagation

in tissue scale simulations (36). These 15 transmembrane

ion currents are defined through a total of 39 state variables.

To account for regional specificity, we reparametrize the

cardiomyocyte cell model for three different cell types:

endocardial, mid-wall, and epicardial cells (27).

We incorporate drug effects by blocking the currents of

the pharmacologically affected ion channels on the Purkinje

and cardiomyocyte cell membrane. Based on discrete

experimental patch clamp measurements of the fractional ion

channel block at various drug concentrations (8), we fit a

Hill-type equation

β =
Ch

ICh
50 +Ch

, (5)

to describe fractional blockage β at any possible drug

concentrations C. Here, the drug’s concentration-specific ion

channel block is completely described by two parameters: the

exponent h and the concentration IC50 required to achieve

a 50% current block. We focus on the drug dofetilide, an

anti-arrhythmic drug typically used for treating atrial fibrillation.

This drug is a selective IKr blocker, characterized by the Hill

parameters hKr = 0.65 and IC50,Kr = 1.55 nM. To apply the

drug at a desired concentration C, we calculate the fractional

blockage βKr and scale the rapid delayed rectifier potassium

ion channel conductance,

Idrug
Kr

= [1 −βKr ]IKr (6)

by multiplying the baseline current IKr with the fractional

blockage [1−βKr ]. Based on previous work which delineated

the critical concentrations of dofetilide for developing

arrhythmic events (44), we focus in particular on applying

dofetilide at 3x, 4.8x, and 18.5x its free plasma concentration,

Cmax = 2.1 nM. This corresponds to dofetilide concentrations

of 6.3 nM, 10.1 nM, and 38.9 nM and a rapid delayed rectifier

potassium current IKr channel block of 75%, 80%, and 90%

respectively.

To solve the governing equations 1–6 we adopt the finite

element software package Abaqus Unified FEA (part of

3DExperience Simulia software suite, Dassault Systemes,

Providence, RI, USA) (1). We exploit the structural similarities

of the electrophysiological problem with a heat transfer

problem with a non-linear heat source. We discretize the

transmembrane potential as a nodal degree of freedom and

the ionic currents and gating variables as internal variables

(12). Motivated by the small time step size to resolve the fast

dynamics during the initial phase of the action potential, we

adopt an explicit time integration scheme.

Cardiac mechanics. To model the mechanical behavior of

cardiac tissue, we solve the equilibrium equations derived

from Newton’s laws of motion and the conservation of mass.

Solving for a static state of equilibrium, these equations

translate to

∇σ+ρfϕ = 0

σ = σT
(7)

where σ is the Cauchy stress tensor, ρ is the material

density and fϕ is the body force per unit mass. Additional

boundary conditions truncate the computational domain.

To solve the resulting system of equations, we prescribe

constitutive relations between the Cauchy stress σ and the

tissue deformation and electrophysiology. We first assume

the tissue stress state consists of individual passive and active

contributions,

σ = σpass +σact . (8)

We characterize the kinematics of finite deformation using the

deformation gradient

F = ∇ϕ, (9)

where ϕ denotes the deformation field that maps particles X
in the undeformed material configuration B0 to particles x =
ϕ(X,t) in the deformed material configuration B. We perform

a multiplicative decomposition of the deformation gradient into

its volumetric F vol and isochoric F̄ contribution

F = F̄ ·F vol , (10)

where F vol = J1/3I and the Jacobian J = det(F ). It follows

that F̄ = F ·F−1
vol

= J−1/3F . We deduce measures of tissue

stretch using the right and left Cauchy-Green tensors, defined

as C = FTF and B = FFT . Their isochoric counterparts

are defined by C̄ = F̄
T
F̄ = J−2/3C and B̄ = F̄ F̄

T
=

J−2/3B. To describe a constitutive stress-stretch relationship

that is invariant under superposed rigid body deformations, we

define the following stretch invariants

Ī1 = C : I = det(C̄)

Ī4f = C : (f0 ⊗f0)

Ī4s = C : (s0 ⊗s0)

Ī4fs = C : sym(f0 ⊗s0)

(11)

Here f0 and s0 describe unit orientation vectors along the

considered local material point’s myofiber and sheet direction

in the undeformed configuration, respectively. We describe

the passive hyperelastic behavior of myocardial tissue using

the Holzapfel-Ogden and Arruda-Boyce strain energy function

(15; 13; 2). We decompose the strain energy into an isochoric

contribution ψ̄ and a volumetric contribution ψvol, which reads

ψpass = ψvol + ψ̄ = ψvol + ψ̄iso + ψ̄aniso (12)

and further decompose the isochoric strain energy into an

isotropic and anisotropic contribution. These strain energy
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contributions read

ψvol =
1

D

(

J2 − 1

2
− lnJ

)

ψ̄iso =
a

2b
exp[b(Ī1 − 3)]

ψ̄aniso =
∑

i=f,s

ai

2bi

(

exp
[

bi(Ī4i − 1)2
]

− 1
)

+
afs

2bfs

(

exp
[

bfs(Ī4fs)2
]

− 1
)

(13)

Here ψ̄iso corresponds to the strain energy contributions

of the isotropic ground matrix material, whilst ψ̄aniso

consolidates the anisotropic strain energy contributions of the

cardiomyocytes and the families of collagen fibers embedded

within the tissue. By deducing the second Piola-Kirchoff stress

tensor Spass from the strain energy function, we compute the

passive Cauchy stress tensor using push-forward operations

σpass = J−1FSpassF
T ,

σpass = σvol + σ̄iso + σ̄aniso (14)

We deduce the following volumetric, isotropic and anisotropic

passive Cauchy stress contributions,

σvol =
1

D

(

J −
1

J

)

I

σ̄iso =aexp
[

b
(

Ī1 − 3
)]

B

σ̄iso =2af

(

Ī4f − 1
)

exp
[

bf

(

Ī4f − 1
)2

]

f ⊗f

+ 2as

(

Ī4s − 1
)

exp
[

bs

(

Ī4s − 1
)2

]

s⊗s

+afsĪ4fs exp
[

bfs

(

Ī4fs

)2
]

(f ⊗s+s⊗f)

(15)

where f = Ff0 and s= Fs0 respectively denote the myofiber

and sheet directions in the deformed configuration.

We describe the active stress contribution using a

time-varying elastance model (51) which depends on

the regional action potential and sarcomere stretch state λf

(Frank-Starling effect):

σact = Tact

([

Ca2+
]

,λf

)

(f ⊗f +ν s⊗s) (16)

where ν describes the active stress interaction between

adjacent muscle fibers along the sheet direction s (30). The

depolarization of the cardiac tissue drives the onset of the

active stress generation.

We solve the governing equations 7–16 within the finite

element software package Abaqus (1). We set up a

Fortran-based user-defined material subroutine describing the

Cauchy stress with respect to the deformation invariants,

membrane potential (temperature; electrophysiology - heat

transfer analogy, ex supra) and time.

Finite element implementation. The basis for our simulation

is the Living Human Heart Model, an anatomically accurate

four-chamber model of the healthy human heart (4;

32). The underlying anatomic geometry is based on

magnetic resonance imaging of a healthy, 30-year old, 50th

percentile U.S. male (54). Images were reconstructed from

0.75 mm thick slices using a medium soft-tissue kernel with

retrospective electrocardiogram gating. Data acquisition

and reconstruction were performed during 70% diastole.

The resulting anatomically accurate model includes all four

chambers, and the major vessels including the aorta, the

pulmonary arteries and the superior vena cava. We prescribe

the complex myocardial and atrial architecture of myofiber f0

and sheet s0 orientations using rule-based algorithms based

on observations from histology and DT-MRI (24; 5; 30).

In this study, we neglect mechano-electrical feedback (40)

and successively solve the electrical and mechanical problem.

The balance between accuracy and computational cost

with respect to element size and critical time step for the

defined electrophysiological and mechanical problem leads

to two different sets of spatiotemporal discretizations (34; 3).

Consequently, we use two different meshes; one to solve the

electrophysiological problem in both ventricles specifically and

one to subsequently couple the electrophysiological results to

the full heart model’s mechanical behavior. For each case, we

simulate five seconds without any drug administration followed

by an additional five seconds of drug exposure to study the

effect of dofetilide on the mechanical behavior and pump

efficiency of the heart.

Electrophysiological drug response.

Ventricular tissue model Given our focus on drug-induced

ventricular arrhythmogenesis and the fact that the atria are

electrically isolated from the ventricles, we concentrate on

electrophysiological drug effects in the ventricles. Motivated

by the relationship between element size and critical time

step size in explicit methods, we converted the ventricular

geometry into a regular discretization of cube elements

with a constant edge length of 0.3 mm across the entire

domain. This results in a discretization with 6,878,459

regular linear hexagonal finite elements, 7,519,918 nodes,

and 268,259,901 internal variables. For the flux term,

we include tissue anisotropy using the fiber definitions f0

and assign longitudinal and transverse conductivities D‖ =

0.090 mm2/ms and D⊥ = 0.012 mm2/ms (26). For the

source term, we employ a body flux subroutine to incorporate

the ionic currents Iion in the solid element formulation (1). To

account for and assign regional variations in cell type, we ran

a series of Laplace problems using the finite element mesh

with different essential boundary conditions (33). From the

solutions, we defined the different cell types across the wall,

20% of endocardial cells, 30% of mid wall cells, and 50% of

epicardial cells. This arrangement ensures positive T-waves

in the healthy baseline electrocardiogram (28).

Purkinje network model The inclusion of the Purkinje

network is critical to model correct excitation patterns (20).

We create the network as a fractal tree that grows on the

endocardial surface (39). This results in a discretization with

39,772 linear cable elements, 39,842 nodes, and 795,440

internal variables. For these Purkinje fiber elements, we

developed a linear user element with a discrete version of

equation 1. We only connect the Purkinje network to the

ventricular tissue at the terminals of the fractal tree (35).

For these connections, we use 3,545 resistor elements with

a resistance of 1.78Ωm, i.e., χ = 140 mm−1 and Cm =
0.01µF/mm2 (26), between each endpoint of the network

and the closest node of the ventricular mesh (6). This

allows us to adopt distinct cellular models with different resting

potentials for ventricular cells and Purkinje cells. Including

resistor elements ensures a bi-directional conduction between

Purkinje network and surrounding tissue. For the flux term, we

set a conductivity of D = 3.0 mm2/ms.
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Figure 1. Spatial discretization to compute the electrophysiological and mechanical solution. A mismatch in required spatiotemporal discretization to solve

the electrophysiological and mechanical problem leads to two different mesh sizes. To quantify the effects of the drug dofetilide on the activation sequence of the

heart, we discretized the ventricles using 39,772 linear cable elements describing the Purkinje fibers and 6,878,459 regular linear hexagonal elements describing the

myocardial tissue. Concomitantly, we computed the biomechanical behavior of the ventricles using a mesh consisting of 192,040 tetrahedral elements. We meshed

the atria and proximal vasculature using 98,683 additional tetrahedral elements.

Electrocardiogram Computation To calculate pseudo

electrocardiograms, at every point x ∈ B across the heart

we project the heart vector ∇φ onto the direction vector

∇(1/||r||) and integrate this projection across the entire

cardiac domain B (19; 20),

φe(xe) = −

∫

B

∇φ · ∇
1

||r||
dV with r = ‖xe −x‖ . (17)

The vector r points from current point x to the electrode

position xe. To mimic one of the pre-cordial leads in the clinical

electrocardiogram, we place the electrode 2 cm away from the

left ventricular wall. This pre-cordial lead is commonly used

to study T waves and QT intervals (14), which are critical to

assess the risk of drug toxicity (37).

Mechanical drug response.

Electromechanical coupling For the mechanical problem, a

coarser spatial discretization suffices to compute accurate

responses (4). Therefore, we discretized the ventricles

using 192,040 linear tetrahedral elements with a mean

edge size of 2.5 mm and 44,182 nodes. Consequently,

the electromechanical coupling requires the interpolation

of a three-dimensional 7,519,918 nodal temperature field

to a three-dimensional 44,182 nodal temperature field.

This was accomplished using Abaqus’s temperature field

interpolation functionality between dissimilar meshes in

subsequent analyses (1). The full heart mesh, including

atria and proximal vasculature parts, comprises 76,282 nodes

and 290,723 elements and local fiber- and sheet-orientation

assignments. This discretization introduces 228,846 degrees

of freedom for the vector-valued deformation. We decribe

the atrial action potential, which is not explictly simulated in

the electrophysiological ventricular drug-exposure response

simulator, using a physiological amplitude step function (18).

We report quantitative myofiber stretches across the left and

right ventricular wall according to the temporal mean value

(and the 95% confidence interval).

Coupling to cardiovascular circulation In order to provide

realistic loading conditions and hemodynamic boundary

conditions for the atria and ventricles in the heart

model, a closed-loop lumped parameter model was set

up in Abaqus (4). This lumped parameter model

comprises the surface-based fluid cavity representation of

the four chambers and additional unit cube fluid cavities

representing the arterial and venous systemic and pulmonary

circulation respectively. We model the mitral/tricupus valve,

the aortic/pulmonary valve, and the systemic/pulmonary

resistance flow resistances between these chambers using

fluid exchange resistors. We model chamber-specific

structural compliances of the additional arterial, venous, and

pulmonary chambers using capacitors on one free wall of the

unit cube fluid cavities. Since we deduce the geometry of the

heart at 70% diastole with the heart already hemodynamically

loaded, we estimate the in vivo stress state at the beginning of

the simulation using an inverse prestressing method (11; 29).

Pressure-volume loops and cardiac output The pressure and

volume in the left and right ventricle is computed using

the hemodynamic fluid-cavity definition of both chambers in

Abaqus. From these measurements, the pressure-volume

loops in both ventricles are extracted. We compute
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the average stroke volume using the last three simulated

dynamically changing pressure volume loops. The average

case-specific heart rate is computed based on the average

time difference between the last three strokes. Similarly,

the time difference between the maximum left and right

ventricular contraction is extracted from the last three

ventricle-specific contraction sequences. The instantaneous

left and right ventricular cardiac output is computed based

on the outflow from the left and right ventricular fluid cavity

respectively. A 2-second rolling average of this instantaneous

outflow expressed as average outflow per minute provides

a more descriptive insight on how the cardiac output

changes with respect to different administered dofetilide drug

concentrations.

Results

Electrophysiological drug effects. Figure 2 and the

Supplementary Video show the different activation patterns for

the baseline case, dofetilide 3x, dofetilide 4.8x and dofetilide

18.5x. These cases correspond to zero, 75, 80 and 90%

block of the Ikr ion channel current respectively. For the

baseline case, where no drug is applied, we observe a

regular activation sequence that repeats itself ten times in

the electrocardiogram. The QRS complex, which represents

the fast depolarization driven by the Purkinje network, is

preceded by a P wave, which highlights the atrial activation.

By blocking the Ikr current 75%, induced by administration

of 3x dofetilide five seconds after drug-free pacing, we see

a disruption in the periodic rhythm of the ventricles, leading

to arrhythmogenesis that shares features of torsades de

pointes. The first electrophysioligcal depolarization wave after

drug administration is still driven by the Purkinje network,

as shown in the first snapshot, followed by a delay in

repolarization, which leads to a secondary activation caused

by early afterdepolarizations in a group of midwall cells. The

case of 80% block of Ikr induced by 4.8x dofetilide also

shows drug-induced arrhythmogenicity, which is qualitatively

similar to the 75% block case. However, the differences

in both activation patterns and electrocardiogram recordings

highlight the chaotic nature of the arrhythmia, where only

a small perturbation in Ikr block leads to a significantly

different temporal evolution of the transmembrane potential.

At 3x dofetilide, the left and right ventricle first get activated

from base to apex and subsequently from right to left

ventricle. At 4.8x dofetilide administration, the depolarization

wave evolves towards a left to right ventricular activation

sequence. The final case of 90% block of Ikr caused by 18.5x

dofetilide shows an arrhythmia that is closer to ventricular

fibrillation, as there are multiple spiral waves driving contractile

tissue activation. This chaotic behavior is reflected in the

electrocardiogram, where the QRS complexes during the

arrhythmia are less defined, with a lower amplitude.

Mechanical drug effects. Figure 3 and the Supplementary

Video highlight the effect that different drug concentrations

have on the time sequence of regional myocyte activation over

time. The shown snapshots correspond to the time points

from Figure 2 with a delay of 50ms (to showcase the locally

induced myocardial contraction following a depolarization

wave). Figure 4 showacases the left and right ventricular

myofiber stretch evolution over time during the five seconds

after drug administration. For the baseline no-drug case, the

orchestrated depolarization wave of both the left and right

ventricle from apex to base causes the ventricles to contract

collectively, pushing the blood volume out to the systemic

and pulmonary circulation in one cooperative squeeze.

More specifically, the myofiber stretches during maximum

contraction measure 0.768 (95% CI: 0.651 - 0.898) and

0.711 (95% CI: 0.620 - 0.950) for the left and right ventricle

respectively. Moreover, the myocardium is fully relaxed during

the atrial contraction, allowing an optimal additional filling of

the ventricles during the atrial kick. The myofiber stretches at

full relaxation amount to 1.072 (95% CI: 0.981 - 1.165) and

1.058 (95% CI: 0.926 - 1.201) for the left and right ventricle

respectively. The myofiber contraction and relaxation remain

in complete sync with an average absolute time difference of

25ms between maximum left and right ventricular contraction.

For the left ventricle, we compute minimum and maximum

myofiber stretches of 0.651 and 1.179 respectively. The 3x

dofetilide-induced arrhythmogenicity leads to dissynchronous

myocardial contraction and relaxation patterns within the

ventricles. Consequently, the myocardial tissue is in active

contraction and passive tension at the same time, as can

be seen from the wider shaded regions of myofiber stretch

variability in Figure 4. In more detail, for dofetilide 3x

we compute left and right ventricular myofiber stretches of

0.778 (95% CI 0.661 - 0.918) and 0.723 (95% CI 0.626

- 0.959) at maximum contraction and myofiber stretches

of 1.022 (95% CI 0.883 - 1.128) and 0.972 (95% CI

0.804 - 1.100) at maximum relaxation. The drug-induced

torsadogenic activation sequence leads to a general right-left

ventricular contraction dyssynchrony, during which the right

ventricle contracts on average 117 ms prior to the left

ventricle. Administration of 3x dofetilide leads to minimum

and maximum left ventricular myofiber stretches of 0.657 and

1.289. The mechanical effects of 4.8x dofetilide administration

are similar to 3x dofetilide, however an important difference

between both cases can be found in dyssynchrony. In

contrast to 3x dofetilide, upon 4.8x dofetilide administration

both left and right ventricular contraction remain synchronized.

We compute an average 25 ms time difference between left

and right ventricular peak contraction, which agrees with

the no-drug baseline case. Similar to 3x dofetilide, the left

and right ventricular myofiber stretches after 4.8x dofetilide

administration amount to 0.777 (95% CI 0.657 - 0.917) and

0.731 (95% CI 0.622 - 0.989) at maximum contraction, and

1.013 (95% CI 0.861 - 1.153) and 0.994 (95% CI 0.817 -

1.145) at maximum relaxation. 4.8x dofetilide affects the

minimum and maximum left ventricular myofiber stretches

measuring 0.657 and 1.298 respectively. For both 3x and 4.8x

dofetilide administration, the maximum myofiber stretches are

approximately 10% higher compared to the baseline no-drug

case, and typically occur just prior to overall ventricular

contraction. This effect arises from the partial contraction

of the myocardial tissue during the interventricular pressure

buildup phase, causing the tissue that is not activated yet to

stretch beyond the baseline physiological stretch range. At

the same time, the minimum left ventricular myofiber stretches

at 3x and 4.8x dofetilide administration remain relatively

comparable to the no-drug baseline case, showcasing the

contractile capacity of the tissue is not heavily affected. Upon

18.5x dofetilide administration, the spatiotemporal stretch

patterns in Figure 3 are completely irregular, as can be

expected from ventricular fibrillation. Consequently, little

synchronicity in ventricular contraction and relaxation remains

as can be seen from the large shaded temporal myofiber

stretch variability shown in Figure 4. The left and right
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Figure 2. Time evolution of the transmembrane potential for different concentrations of dofetilide. Snapshots are taken at different timepoints for different

cases of drug-induced IKr channel block, showcasing the contractile and relaxing deformation in correspondence to the color-plotted electrical activation pattern in

the heart. At the top of each row, the computed electrocardiogram signal is shown in black, where the grey vertical lines depict the showcased snapshots for each

specific case.

ventricular myofiber stretches amount to 0.858 (95% CI 0.726

- 1.113) and 0.786 (95% CI 0.627 - 1.137) during maximum

contraction and 1.017 (95% CI 0.783 - 1.246) and 0.961

(95% CI 0.690 - 1.185) during maximum tissue relaxation.

We compute maximum contractile myofiber stretches of

0.715 and maximum relaxing myofiber stretches of 1.262

upon 18.5x dofetilide administration. It should be noted

that periodicity in overall ventricular contraction-relaxation

fades at this drug concentration, showcased by the smaller

amplitude of the mean temporal myofiber stretch evolution

and the minimum left ventricular myofiber stretches remaining

relatively constant around 0.750 during the last three
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Figure 3. Spatiotemporal evolution of the myofiber stretch for different concentrations of dofetilide. Snapshots are taken at different timepoints for each case,

showcasing the effect that blocking of the IKr channel, in correspondence to different administered concentrations of dofetilide, has on the spatiotemporal contraction

of the heart.
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Figure 4. Time evolution of the left and right ventricular myofiber stretch for different concentrations of dofetilide. The temporal myofiber evolution for the

left (red) and right ventricle (blue) for each case in correspondence to different administered concentrations of dofetilide. The solid lines showcase the temporal mean

value of the myofiber stretch for each respective ventricle whilst the transparent shaded regions represent the ventricle-specific 95% myofiber stretch confidence

intervals.

seconds. During the 18.5x dofetilide-induced ventricular

fibrillation, the right-left ventricular dyssynchrony rises to

a 92 ms time difference between left and right ventricular

peak contraction. Overall, the myofiber stretch variability

amounts to a temporally averaged standard deviation of 0.118,

0.114, 0.133 for dofetilide 3x, 4.8x and 18.5x administration

respectively. Compared to the no-drug baseline averaged

myofiber stretch variability of 0.066, it can be seen how
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Figure 5. The pharmacological effects of dofetilide on the ventricular pressure-volume loops. Pressure-volume loops showcase the efficiency and frequency

of heart contraction for each studied case. For the no-drug case, the pressure-volume loop remains the same. For a 75% IKr channel block (dofetilide 3x), the

end-diastolic volume decreases significantly and fluctuates whilst the heart rate increases. For a 80% IKr channel block (dofetilide 4.8x), the end-diastolic volume

drops moderately and the heart rate increases. For a 90% IKr channel block (dofetilide 18.5x), the end-diastolic volume drops significantly and the end-systolic

volumes increase for both ventricles whilst the heart rate increases.
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Figure 6. The pharmacological effects of dofetilide on the cardiac output. Cardiac output for the left ventricle (LV - red) and right ventricle (RV - blue) expressed

instantaneously (dotted line - l/s) and as a 2-second rolling average (full line - l/min) for the normal case (left column), the mild case (middle column) and the severe

case (right column).

dofetilide affects an effective synchronized contraction of the

whole ventricle, and leads to decreasing cardiac pumping

efficiency.

This decreasing cardiac pump efficiency is shown in more

detail with respect to the overall cardiovascular circulation in

Figure 5. The no-drug baseline pressure-volume loop for the

left and right ventricle is shown in the left column. When no

drug is administered the stroke volume remains constant at

72 ml. At 3x dofetilide administration, the stroke volume drops

to 29 ml and 20 ml for the left and right ventricle respectively.

This stroke volume change is mostly caused by a drop

in the end-diastolic volume, whilst the end-systolic volume

stays approximately the same. The average arrhythmic heart

rate after 3x dofetilide administration increases to 123 bpm.

At a 80% IKr channel block induced by a 4.8x dofetilide

administration, the stroke volume drops from 72 ml to 35 ml

for both ventricles. Again, the drop in stroke volume is

mostly caused by a smaller end-diastolic volume, whilst the

end-systolic volume stays approximately constant. Dofetilide

4.8x causes the average arrhythmic heart rate to increase to

114 bpm. At a dofetilide administration of 18.5x, the stroke

volume drops to 20 ml for the left ventricle and to 17 ml for

the right ventricle. In this case, the drop in stroke volume is

caused by both a decrease in the end diastolic volume and an

increase in the end-systolic volume. The average arrhythmic

heart rate increases to 109 bpm.

Figure 6 quantifies the combined effect of drug-induced

changing heart rates and stroke volumes on the instantaneous

and average cardiac output, denoted by a dotted and solic line

respectively, for both the left and right ventricle, highlighted

in red and blue respectively. Shown here, 3x dofetilide

administration leads to a +5% increase and a -10% decrease

in the cardiac output for the left and right ventricle respectively.

For 4.8x dofetilide administration, the cardiac output has

moderately increased after 5seconds of drug exposure.

More specifically, the left and right ventricular cardiac

output increased +11% and +3% respectively compared to

the baseline cardiac output with no drug exposure. A

18.5x dofetilide administration causes a severe -46% and

-64% decrease in left and right ventricular cardiac output

respectively.
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Discussion

Many drugs - not just cardiac drugs - can have serious side

effects. One of the most dangerous side effects entails

the development of cardiac arrhythmias. More specifically,

the development of torsades de pointes - a specific type

of polymorphic ventricular tachycardia characterized by a

gradual change in amplitude and twisting of the QRS

complexes around an isoelectric line on the electrocardiogram

(9) - can be especially lethal. Torsades de pointes are

often transient but can, in severe cases, lead to ventricular

fibrillation causing myocardial damage and even sudden

cardiac death. Given its typically short-termed episodic

nature, most torsadogenic episodes remain under the radar

(17; 50), which leads to limited knowledge on the clinical

behavior of the heart during such episodes. When picked

up, the clinical evidence of these arrhythmia typically confines

itself to electrocardiogram recordings. Pressure-volume loop

measurements or flow measurements within a clinical setting

are therefore typically unavailable. In this work, we use

computational modeling to gather otherwise unattainable

insights into the mechanical behavior of the human heart

during drug-induced ventricular arrhythmogenicity episodes.

To understand the genesis and development of drug-induced

ventricular arrhythmia, cardiac electrophysiology needs to

represent both the fast ionic subcellular mechanisms and

the slower spatiotemporal cell-tissue-organ scale diffusion

process in one and the same framework. To provide

accurate physiological outputs and compute potential spiral

wave formation, we need a very fine-scaled spatiotemporal

discretization of the computational domain (34). Cardiac

deformation, on the other hand, is governed by smoother

spatial and slower temporal scales. Solving the biomechanical

balance equations accurately can therefore be achieved

with a much coarser spatio-temporal discretization of

the computational domain (3). Given this mismatch in

required spatio-temporal discretization and the exponential

dependency of computation time on the amount of degrees

of freedom to be computed (16), we set up a unidirectional

forward electromechanical coupling framework. More

specifically, we first computed the electrical propagation

of the action potential through the ventricles using a

fine-resolution exposure-response simulator (41). Next, the

computed spatiotemporal transmembrane potential evolution

drives the biomechanical contraction of the cardiac tissue.

Given that contractility response of the tissue is critically

affected by pre-load and after-load conditions (25), we

incorporated an active tension law that depends on

the local and temporal sarcomere stretch state λf and

coupled the electromechanical heart model to a realistic

zero-dimensional surrogate lumped parameter network model

of the cardiovascular circulation.

We successfully build an electrophysiological model that

inherently captures the regional specificity of the ventricular

myocardium and probes the dynamic interplay of its

endocardial, midwall, epicardial, and Purkinje cells (42).

By extending this model with the dose-dependent effect of

dofetilide on the transmembrane ion channel currents, we

developed a mechanistic exposure-response simulator that

is able to predict the three-dimensional excitation profiles

and electrocardiogram recordings shown in Figure 2. The in

silico predicted dose-dependent torsadogenic risk of dofetilide

agrees favorably with clinical and experimental findings

(41; 46). By extending this multiscale framework to a

multi-physics framework taking into account the mechanical

behavior of the heart and its hemodynamic interaction with

the surrounding cardiovascular circulation, we are now able to

compute the pharmacological effects that different dosages

of dofetilide have on the temporal mechanical behavior

of myocardial tissue, as showcased in Figure 3 and 4.

Studying the phamarcological effects of different dosages

of dofetilide on cardiac pump efficiency involves a complex

interplay between regional tissue de- and repolarization,

regional tissue contraction and relaxation, and continuously

changing hemodynamic loading conditions through the heart’s

connection with the surrounding cardiovascular circulation.

Therefore, we can only fully appreciate these effects by

concomitantly studying the myofiber stretch state in Figure

4, the pressure-volume loops depicted in Figure 5 and the

corresponding cardiac output in Figure 6.

For the no-drug baseline case, both ventricles push out the

blood in one cooperative synchronized contraction, followed

by an extended relaxation phase allowing for atrial blood to

refill the ventricle during early diastole and the atrial kick at

end diastole. The myofiber stretches cooperatively switch

between a contractile and relaxing state, showcased by the

low shaded temporal myofiber stretch variability in Figure

4. Naturally, the corresponding pressure-volume loops and

cardiac output remain constant.

Upon 3x dofetilide administration, the resulting torsadogenic

activation sequence causes an important left-right

ventricular contractility dyssynchrony. Immediately after

drug administration, the left ventricular contraction starts

to trail the right ventricular contraction. Additionally, the

drug-induced torsadogenic swirling electrophysiological

activation sequence drives the heart rate up to 123 bpm,

which causes the ventricles to contract twice before the atria

contract. Consequently, the passive atrial-ventricular filling

time is significantly shortened, leading to a decreased mean

myofiber stretch state during tissue relaxation in Figure 4 and

a drop in the left and right ventricular end-diastolic volumes in

Figure 5. The corresponding drop in the stroke volume leads

to the decreasing instantaneous cardiac output showcased in

Figure 6. The increased heart rate also causes an important

dyssynchrony between the atrial kick and the ventricular

filling phase, further affecting efficient diastolic ventricular

filling and decreasing the end diastolic volume. Initially,

the atrial kick trails the ventricular contraction, however at

specific timepoints within the simulated five-second drug

administration timeframe, this dyssynchrony temporarily

catches up, as can be appreciated from the fluctuating

end diastolic volume evolution in Figure 5. Interestingly, the

decreased cardiac output is counterbalanced by the increased

heart rate, which partially recovers the expected decrease in

cardiac output in Figure 6. For 4.8x dofetilide (80% IKr block),

we see a similar combined effect of heart rate and ventricular

filling. However, in this case, the torsadogenic activation

sequence does not cause a left-right ventricular contraction

dyssynchrony. Additionally, a heart rate of 114bpm leads to

an atrial kick that leads the ventricular contraction, eventually

becoming completely out of phase with the ventricular filling

phase at the end of the five second simulated timeframe.

This explains the gradual drop in stroke volume in Figure

5. For 3x and 4.8x dofetilide administration, differences

in cardiac output in Figure 6 result from dose-dependent

interventricular and atrial-ventricular dyssynchronies. Our

results showcase a decreased and increased cardiac output
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for 3x dofetilide and 4.8x dofetilide, highlighting how higher

arrhythmogenic drug concentration can impact the cardiac

output in a non-intuitive way. Even though the 3x and 4.8x

dofetilide induced arrhythmogeneis affects the cardiac output,

the depolarization waves swirling around the ventricles still

lead to a somewhat temporally structured contraction of

the whole ventricle. The resulting active force build up still

leads to a decent contraction of the full ventricle, leading to

end-systolic volumes that are only slightly larger than for the

baseline no-drug case.

For the 18.5x dofetilide case however, the completely chaotic

depolarization patterns no longer lead to a synchronous

contraction, as can be seen by the large myofiber stretch

variability through the whole arrhythmogenic episode in Figure

4. As a result, both the left and right ventricular end-systolic

volumes are considerably larger than normal. At the same

time, the small re-entrant waves that flicker around the heart

also strongly impact the diastolic filling time, leading to

decreased end-diastolic volumes. The resulting decrease in

stroke volume is so large that the resulting cardiac output

in Figure 6 drops significantly. Therefore, the risk for

sudden cardiac death at 18.5x dofetilide administration can

be expected to be significantly higher than for 3x and 4.8x

dofetilide-induced arrhythmia episodes.

Apart from a more mechanistic sudden cardiac death risk

stratification, our framework also gives important insights

into drug-induced arrhythmogenic overstretching of the tissue.

The tissue stretch state is believed to play an important

role in pathophysiological growth and remodeling processes

(30). Compared to the no-drug baseline case, each

drug-induced arrhythmogenic episode showcased increased

myofiber stretches in Figure 4. As such, it can be

appreciated that our framework provides both acute and

chronic mechanistic insights into heart health during and after

drug-induced arrhythmogenenesis.

Although our study provides valuable insight into the

simultaneous pro-arrhythmic and inotropic liabilities of

pharmacological therapies, it has several important limitations

that we need to keep in mind when interpreting its results:

First, the one-way coupling scheme used in this study does

not take into account mechano-electrical feedback (40). It

has recently been shown that two-way electromechanical

coupling can partially mitigate the action potential duration

induced by dofetilide, raising the critical concentration

inducing early afterdepolarization onset (25). Second, even

though the well-established O’Hara Rudy model used for

describing the electrophysiological behavior of the ventricular

cardiomyocytes was developed based on a vast amount of

human experimental data, a novel update to this model has

recently been proposed (49) which reports, amongst others, a

re-assessment of the myocardial pro-arrhythmic sensitivity to

IKr blockage. Both these limitations might affect the critical

drug concentration at which arrhythmia start developing in

this study (e.g. 3x dofetilide). Third and final, this study

used a unidirectional excitation-contraction model that takes

into account myocardial preload and a critical depolarization

threshold. Further model development providing a

bidirectional coupling between human electrophysiology and

active tension generation (21; 40) will allow us to implement

more detailed active tension generation models that take into

account calcium dynamics, actin-myosin crossbridge cycling

transition states and force-frequency responses. Importantly,

these coupled models need to remain computationally

tractable to be able to compute multiple serial heart beats

and potential steady state outcomes. This is a challenging

endeavor given the very stiff system of ordinary differential

equations for the electrophysiology problem and the amount

of state dependent variables in the contraction-excitation

coupling, that can require up to 40x2400 CPU hours for

simulating one heart cycle, even in a semi-implicit, operator

splitted, MPI optimized framework (23). Future work therefore

also needs to study the sensitivity of inotropic whole body level

results (e.g. end-diastolic and -systolic volumes, ventricular

and atrial dyssynchrony, tachycardia) on the biophysical

details of the underlying cellular models, and whether or not

(potentially machine learning-based) reduced order models

can speed up these computations (10).

Conclusion

This study provides a human-based multiscale and

multiphysics mechanistic framework that couples the

effect that a drug has on one singular ion channel down

at the subcellular level all the way up to a changing

cardiovascular circulation at the whole body level. The

developed framework provides a granular insight in

malignancy of concentration-dependent drug-induced

ventricular arrhythmia. Our simulations extend the binary

pro-arrhythmic risk classification paradigm for different drug

concentrations to an assessment of arrhythmia-severity in

light of clinical output metrics as pressure-volume loops and

cardiac output. Here, we showed the clinical differences

between three drug-induced arrhythmic episodes which

results from the fine balance between electrophysiological

action potential duration and depolarization times on the one

hand and the contractile behavior of the myocardial tissue

combined with the contraction of the atria and the connection

to the surrounding cardiovascular circulation on the other

hand.
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