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Summary  45 

• Canola varieties exhibit discernible variation in drought avoidance and drought 46 

escape traits, suggesting its adaptation to water-deficit environments. However, 47 

the underlying mechanisms are poorly understood.  48 

• A doubled haploid (DH) population was analysed to identify QTL associated 49 

with water use efficiency (WUE) related traits. Based on the resequenced 50 

parental genome data, we developed sequence-capture based markers for fine 51 

mapping. mRNA-Seq was performed to determine the expression of candidate 52 

genes underlying QTL for carbon isotope discrimination (Δ13C). 53 

• QTL contributing to main and QTL × Environment interaction effects for Δ13C 54 

and for agronomic WUE were identified. One multi-trait QTL for Δ13C, days to 55 

flower, plant height and seed yield was identified on chromosome A09, in the 56 

vicinity of ERECTA. Interestingly, this QTL region was overlapped with a 57 

homoeologous exchange event (HE), suggesting its association with the major 58 

QTL. Transcriptome analysis revealed several differentially expressed genes 59 

between parental lines, including in HE regions. 60 

• This study provides insights into the complexity of WUE related genes in the 61 

context of canola adaptation to water-deficit conditions. Our results suggest that 62 

alleles for high Δ13C contribute positively to canola yield. Genetic and genomic 63 

resources developed herein could be utilised to make genetic gains for improving 64 

canola WUE.  65 

 66 
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Introduction  77 

Drought is the major abiotic stress that reduces the yield potential of various crops, 78 

especially in arid and semi-arid regions, of which 89% of regions are prevalent in 79 

Oceania (Koohafkan & Stewart, 2008). No doubt the impact of drought stress on crop 80 

productivity can be alleviated through irrigation at the ‘critical’ stages of plant 81 

development. However, in recent years fresh water, suitable for irrigation, is becoming 82 

scarce for crop production, required to meet the demand of a burgeoning human 83 

population (Gleick, 2000). Predicted climatic patterns such as debilitating drought and 84 

heat-wave episodes and their possible increased frequency further pose a significant 85 

threat to crop production (Smith & De Smet, 2012; Mills et al., 2018). The proportion of 86 

arable land per capita is also decreasing at a significant rate due to population growth 87 

and land degradation (http://www.fao.org/sustainability/). Therefore, improving crop 88 

varieties that have high yield potential and utilise water more effectively or require less 89 

water could provide a part of the solution to reduce the negative impacts of drought 90 

stress and increase productivity and food security (Passioura, 1977; Kijne et al., 2003; 91 

Blum, 2009; Bertolino et al., 2019; Leakey et al., 2019).  92 

In nature, to cope with water-deficit conditions, plants have evolved different strategies 93 

such as drought escape, drought avoidance and drought tolerance (Levitt, 1980; Ludlow, 94 

1989; Zhu et al., 2016; Rodrigues et al., 2019). Through tiny microscopic pores in the 95 

surface of leaves called stomata, plants assimilate CO2 for photosynthesis by trading-off 96 

water, required for transpiration and other biological processes. This close intimacy 97 

between productivity and water use contributes to the adaptation of plants to their 98 

growing environments. Therefore, genetic variation in WUE and transpiration efficiency 99 

(TE, biomass production/transpirational water loss) that occurs as a result of intentional 100 

(via breeding/selection) and unintentional selection in nature provides an opportunity to 101 

identify and assemble useful alleles for improving the productivity of various crops.  102 

WUE can be measured at the single leaf level as intrinsic WUE (iWUE), defined as the 103 

ratio of the photosynthetic CO2 assimilation rate (A) over transpirational water loss 104 

(stomatal conductance, gsw) or as whole-plant vegetative WUE, as the ratio of total dry 105 

matter production to total water transpired or as an integrated whole-plant WUE, as the 106 
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ratio of biomass or seed yield to evapotranspiration (Farquhar & Richards, 1984; 107 

Zhengbin et al., 2011; Leakey et al., 2019; Raman et al., 2019). iWUE assessments using 108 

the gas-exchange method are very challenging to be accurately performed, particularly 109 

in the large breeding populations, as WUE is regulated by a myriad of plant 110 

development, physiological, biochemical and molecular networks (Moore et al., 2009; 111 

Takahashi et al., 2018). Farquhar and Richards (1984) proposed Δ13C as a time-112 

integrated surrogate trait for measuring TE both at the single leaf level and at the whole 113 

plant level, as C3 plants discriminate less against 13C during photosynthesis with 114 

increased water deficit stress. The negative relationship between WUE and Δ13C has 115 

been verified in A. thaliana (Masle et al., 2005) and in some agricultural crop plants 116 

(Farquhar et al., 1982; Ehleringer, 1993; Hall et al., 1994; Rebetzke et al., 2008; Des 117 

Marais et al., 2014; Raman et al., 2019), with some exceptions where nil or weak 118 

associations were observed (Hammer et al., 1997; Monneveux et al., 2007; Devi et al., 119 

2011; Raman et al., 2020b). 120 

Canola, being the second most important oilseed crop grown worldwide with a global 121 

production of 75 million tons (FAO STAT, http://www.fao.org/), is often cultivated in 122 

arid and semi-arid regions and faces periodic drought. Despite its economic significance 123 

to the oilseed industry as well as being an essential rotational crop in agricultural 124 

production systems, little research has been conducted on traits contributing to its 125 

drought tolerance (McVetty et al., 1989; Knight et al., 1994; Matus et al., 1995; Fletcher et al., 126 

2015; Fletcher et al., 2016; Pater et al., 2017; Hossain et al., 2020; Raman et al., 2020a; Raman 127 

et al., 2020b). More recently, it was shown that two canola inbred lines, BC1329 and 128 

BC9102 vary by ~ 2%o in their Δ13C signatures (Hossain et al., 2020). However, the 129 

genetic basis of variation in Δ13C and other integrated WUE traits such as plant biomass, 130 

flowering time and seed yield was not deciphered. Thus, a comprehensive understanding 131 

of the genetic and physiological bases underlying WUE is central to developing 132 

strategies for resilience to water deficit conditions. 133 

 134 

Herein, through comprehensive analyses based on extensive phenotypic and 135 

physiological measurements, genetic and genomic studies, we demonstrate that multiple 136 

genetic and environmental determinants underlie plasticity in multi-dimensional drought 137 

avoidance traits such as Δ13C, early vigour, plant height and seed yield, and drought 138 
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escape traits such as flowering time in canola. We also show that one of the QTL for 139 

multi-traits; Δ13C, days to flower, plant height and seed yield on chromosome A09 is 140 

subjected to homoeologous recombination.  141 

 142 

Materials and methods 143 

 144 

Plant materials 145 

In total, 223 doubled haploid (DH) lines derived from the F1 cross between advanced 146 

breeding lines ‘BC1329’ (maternal parent) and ‘BC9102’ (paternal parent) were utilised 147 

for different genetic analysis experiments. An F2 population comprising 744 lines 148 

derived from a single F1 plant from BC1329/BC9102 was employed for fine 149 

mapping/verification of QTL associated with Δ13C. 150 

Phenotypic evaluation for WUE traits 151 

Four experiments were conducted in order to (i) determine the genomic regions that 152 

influence the expression of the traits associated with WUE (Experiments 1-3) and (ii) 153 

determine the relationship between Δ13C, iWUE and integrated WUE related traits under 154 

wet and dry conditions (Experiment 4). Experiments 1 and2 were performed under 155 

natural field conditions to measure WUE at the plot level; Experiment 3 is a pot 156 

experiment for single plant level WUE measurements and Experiment 4 is a rain-out 157 

shelter experiment with wet and dry irrigation regimes for measuring WUE at the single 158 

leaf level. Details of the experimental designs are presented in Table S4. Monthly 159 

weather statistics for average atmospheric temperatures and rainfall are also presented 160 

(Fig. S1).  161 

 162 

Phenotypic trait measurements  163 

Several agronomic, gas exchange and other physiological traits were measured for 164 

genetic analysis. A summary of the experiments in terms of their aim, trial layout, 165 

genetic material evaluated, and the traits measured are presented (Table S1, Fig. S2). 166 

Details of trait measurements are given in our recent study (Raman et al., 2020b) and 167 

summarised in Table S2. A brief description of the traits measured is given below. 168 
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Plant development and agronomic traits 169 

Δ
13C, flowering time, plant height and seed yield were measured for Experiments 1-4 170 

and normalised difference in the vegetative index (NDVI) was measured only for 171 

Experiment 2. Δ13C was determined from multi-phase experiments with appropriate 172 

experimental designs (Smith et al., 2006)) to account for the variations attributed to 173 

field/pot and laboratory conditions. The δ13C composition was determined using Vienna 174 

Pee Dee Belemnite (VPDB) as the ultimate reference. Δ13C was calculated from the δ13C 175 

values assuming the isotopic composition of CO2 in the air to be -7.8‰ on the VPDB 176 

scale, as described previously (Farquhar & Richards, 1984). Fresh and dry weights of the 177 

leaf and leaf thickness were also measured from F2 plants and row plots under wet 178 

conditions in Experiment 4. 179 

 180 

Physiological traits 181 

The gas exchange measurements were taken at the single leaf level for the plots under 182 

wet conditions in Experiment 4, as this relationship varies under different water-deficit 183 

levels. We determined iWUE by measuring light-saturated assimilation rate (A) and 184 

stomatal conductance to the diffusion of water vapour (gsw). The 5th fully expanded leaf 185 

of each of the 72 lines of BC1329/BC9102 DH population (06-5101DH), including 186 

parental lines, was tagged and utilised for gas exchange measurements.  187 

 188 

Light microscopy 189 

A leaf disc (9.08 cm2 size) was taken from each of two replicate canola lines from 190 

Experiment 4 (wet block), fixed and stored in 70% ethanol as detailed (Table S4). Leaf 191 

sections were stained using a method modified from Rae et al. (2020) and were imaged 192 

using 488 nm excitation and 500-560 nm emission on a Leica SP8 confocal microscope. 193 

 194 

Genotyping and linkage map construction 195 

Genotyping of DH lines was carried-out using the genotyping-by-sequencing (GBS) 196 

based DArTseq approach (Raman et al., 2014). Sequence polymorphisms were used for 197 

linkage map construction following the method detailed in Raman et al (2016). The 198 

markers that showed complete segregation between each other were ‘binned’ into a 199 

unique locus and the resulting ‘bin’ map was used to identify trait-marker associations. 200 
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To obtain the physical position of markers, DArTseq sequences were aligned with the 201 

Darmor-bzh reference assembly version 4.1 using the default parameter settings with the 202 

Bowtie program.  203 

 204 

Statistical methods  205 

Commensurate with the aims of the experiments and the structure of the data sets, for 206 

Experiments 1-3 whole genome, single-step quantitative trait loci (QTL) analyses were 207 

performed on each trait using an extension of the approach developed by Verbyla and 208 

Cullis (2012) within a multi-environment trial (MET) analysis framework using factor 209 

analytic linear mixed models (FA-LMM) (Smith et al., 2015). Whereas, each trait 210 

measured on Experiment 4 is analysed individually using appropriate linear mixed 211 

models (LMM). A detailed description of the methods is presented (Table S4).  212 

 213 

All analyses were performed in ASReml-R (Butler et al., 2018), which provides residual 214 

maximum likelihood (REML) estimates of variance parameters, empirical best linear 215 

unbiased predictions (EBLUPs) of random effects and empirical best linear unbiased 216 

estimates (EBLUEs) of fixed effects. The extent of genetic control of traits was 217 

investigated by calculating line mean H2 (broad-sense heritability) as the mean of the 218 

squared accuracy of the predicted DH line effects as described previously (Cullis et al., 219 

2006) and found to be dependent on the environment. The across environment summary 220 

measure of Overall performance (OP) proposed by Smith and Cullis (2018) was used to 221 

identify lines of interest. We examined the relationships of Δ13C with agronomic traits 222 

(seed yield, days to flowering, plant height and NDVI) using pair-wise correlations of 223 

Overall performance estimates from the MET analysis of each trait or the EBLUPs from 224 

the LMM analysis of each trait.  225 

Identification of candidate genes for WUE 226 

Arabidopsis thaliana genes which had been annotated with various WUE-related terms 227 

were retrieved from the TAIR 10 database (https://www.arabidopsis.org/). These genes 228 

were then used to identify putative homologues in canola.  229 

 230 

Resequencing and structural variation analysis of parental lines  231 
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Libraries from high-quality genomic DNA from both parental lines, BC1329 and 232 

BC9102, were constructed using the Illumina TruSeq DNA preparation kit, following 233 

the manufacturer’s instructions (Illumina). Whole-genome resequencing (2 x 150 bp) 234 

was performed at the Novogene facility (Novogene Co., Ltd, Hong Kong) using the 235 

Illumina HiSeq 2000 sequencing platform. The coverage of the parental lines ranged 236 

from 77.6× (BC1329, 102.6 Gb) to 83.8× (BC 9102, 112.4 Gb). Read mapping to the 237 

‘Darmor-bzh’ reference assembly (version 4.1, 238 

http://www.genoscope.cns.fr/brassicanapus/data/), SNP and InDel (< 50-bp) calling, 239 

structural variation (SV, ≥ 50-bp) detection and identification of HE event (≥ 10-kb 240 

windows) was performed as described in Raman et al. (2021).  241 

 242 

Development of sequence-capture based DArTAg markers  243 

We processed sequence data for target QTL regions on A09 and C09 chromosomes 244 

(Table S12) and selected 154 SNPs for DArTag oligo-synthesis. Oligos were synthesised 245 

by IDT (Ultramer DNA Oligos, http://idtdna.com) at 200 pmol scale, pooled in the 246 

equimolar amount into a single assay and used for processing 8 plates of DNA with the 247 

F2 population and a control canola sample using a proprietary DArTag assay (Targeted 248 

Genotyping - Diversity Arrays Technology) using 384 plate format. For each plate, a 249 

sample of the pooled product was also run on agarose gel and compared against positive 250 

control before proceeding with the sequencing process. The libraries were sequenced on 251 

Illumina Hiseq2500 with an average volume of sequencing per sample at 43,225 252 

sequencing reads (median at 46,389) and average read depth per assay at 280. Marker 253 

data were extracted using DArT PL's proprietary algorithm deployed a plugin in 254 

KDCompute application framework (https://www.kddart.org/kdcompute.html).  255 

 256 

RNA sequencing and differential gene expression analysis  257 

Parental lines, BC1329 and BC9102 of DH population were grown in three replicates 258 

under both wet (100% field capacity) and dry (50% field capacity) treatments in a 259 

glasshouse (Table S4). The clean sequence reads (100 bp single-end reads) for 12 260 

samples that had per base sequence quality with >96% bases above Q30 were aligned 261 

against the B. napus reference Darmor-bzh (Version 4.1), using STAR aligner (v2.5.3a) 262 

(https://github.com/alexdobin/STAR/blob/master/doc/STARmanual.pdf). The raw 263 
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counts of reads mapping to each known gene was used to perform differential expression 264 

analysis using edgeR (version 3.30.3) 265 

(https://bioconductor.org/packages/release/bioc/html/edgeR.html) using R version 4.0.3. 266 

A generalised linear model approach was then used to quantify the differential 267 

expression between the groups. The differentially expressed genes (DEGs) were 268 

obtained using a false discovery rate (FDR < 0.05). Heatmaps showing the expression 269 

pattern of genes in A09 and C09 QTL regions were produced using the 270 

ComplexHeatmap R package (Gu et al., 2016).  271 

 272 

Results  273 

Substantial genetic variation in Δ13C and other WUE traits 274 

We observed high levels of genetic variation in Δ13C and other WUE related traits in the 275 

DH mapping population. The significant source of genetic variation was from the 276 

additive component (genetic markers), which ranged from 21.5% for NDVI to 79.1% for 277 

days to flower (Table S5, Additive M1, %). Broad sense heritability estimates for Δ13C 278 

and other integrated WUE related traits (plant height, NDVI, flowering time and seed 279 

yield) were variable, ranging from low (56%) to high (98%), depending on the nature of 280 

trait and growing environment (Table S6). Estimated additive and total (additive plus 281 

non-additive) genetic correlations between environments revealed that there are strong 282 

correlations between environments for both additive and total genetic variance with 283 

values greater than 0.89 and 0.83, respectively, for all traits (Table S7). Overall 284 

performance estimates for Δ13C ranged from 18.73 to 21.25‰ and displayed 285 

transgressive segregation among DH lines across phenotypic environments (Fig. 1a, 286 

Table S8). Up to 2.52‰ variation in Δ13C was observed among DH lines that equates to 287 

a 5-fold increase compared with the parental lines. 288 

Relationships between WUE traits at plot level 289 

To determine the relationships between Δ13C and other WUE related traits, pair-wise 290 

correlations were obtained using the genotype Overall Performance estimates across 291 

environments (Fig. 1b). The Δ13C showed a negative correlation with days to flower (r = 292 

- 0.58), while positive correlations were observed with NDVI, a proxy for plant vigour (r 293 

= 0.37), plant height (r = 0.45) and seed yield (r = 0.59). Flowering time showed a 294 

negative correlation with seed yield (r = - 0.63). The promising DH lines that had high 295 
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WUE of yield (high Δ13C) for use in canola breeding programs based on the Overall 296 

performance estimates are presented in Fig. 1c. DH line 06-5101-137 had the maximum 297 

Δ
13C (21.25‰) among the DH progenies. 298 

 299 

Relationships between physiological WUE (single leaf level) and integrated WUE 300 

(whole plant level) 301 

Significant variation for both A and gsw was observed, although H2 estimate of iWUE 302 

was low (Table S9). This may have occurred due to variable VPD across gas exchange 303 

measurements during the experiment, highlighting the plasticity of iWUE and Δ13C as 304 

traits. Genotype EBLUPs for A and gsw ranged from 4.97 to 17.15, and 0.11 to 0.38, 305 

respectively (Table S9). Pairwise correlations revealed that both A and gsw are dependent 306 

on each other with a correlation of 0.56 (Fig. 2a). We observed a negative correlation 307 

between Δ13C and iWUE (r = - 0.16), indicating that DH lines with low Δ13C have 308 

higher iWUE, consistent with the findings made earlier (Farquhar & Richards, 1984). There 309 

was a more negative correlation between iWUE and gsw (r = - 0.46) in comparison to A 310 

(r = -0.27), suggesting that gsw is the predominant driver for variation in iWUE 311 

parameters.  312 

This study showed that Δ13C correlates negatively with iWUE but it (Δ13C) correlates 313 

positively with seed yield (Fig. 2a). Under well-watered conditions, there were negative 314 

correlations between Δ13C and days to flower, A and iWUE. We further investigated 315 

relationships between leaf water content (LWC) at a single leaf level and WUE traits at 316 

the whole plant level and found that LWC show a negative relationship with Δ13C, but it 317 

did not show any relationship with seed yield (Fig. 2a). Further, the estimated genetic 318 

correlations between wet and dry blocks for seed yield (Fig. 2b) and plant height, the 319 

only two traits measured after imposing water stress at the first flowering stage, were 320 

very high (0.93 for both traits). This suggests that genotype by irrigation block 321 

interaction is small. High Δ13C lines revealed higher yield across irrigation blocks 322 

compared to low Δ13C lines. 323 

 324 

Genetic basis underlying Δ13C and WUE related traits 325 
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We constructed a linkage map that includes 8,985 DArTseq markers onto 24 linkage 326 

groups (LGs), representing all the 19 chromosomes of B. napus (Table S10). To reduce 327 

computation time for genetic analysis, we produce a ‘bin’ map of 1793 markers that 328 

spanned a total of 1965.29 cM, with an average interval of 1.10 cM between adjacent 329 

loci.  330 

 331 

Multi-environment QTL analysis identified a total of 29 QTL (15 QTL for main-effects 332 

and 14 for QTL (Q) × Environment (E) interactions) for variation in Δ13C and other 333 

WUE related traits (Table 1, Table S11). For leaf Δ13C, three QTL main effects that 334 

showed statistically significant (LOD ≥3) associations were identified on chromosomes 335 

A08, A09 and C09, while one 'suggestive' QTL (LOD >2.5 but less than 3) was located 336 

on chromosome A07 (Table 1, Fig. 3a). We identified QTL for phenotypic plasticity in 337 

different traits between three growing environments (Q × E effects) on A02, A05, A08, 338 

A09, A10, C02, C03, C06, C07 and C09 chromosomes (Table S11). For Δ13C plasticity, 339 

two QTL were identified on chromosomes A02 and C06, although the size of allelic 340 

effects were environment-dependent (Table S11). Collectively, QTL explained 38% of 341 

genotypic variation in Δ13C (Table S5, VAFm). 342 

 343 

Comparative localisation of QTL  344 

Three QTL for multi-traits on chromosomes A01, A08 and A09 were colocalised to the 345 

same genomic regions (Table 1). One QTL delimited with marker 3153720 for variation 346 

in Δ13C was colocated with days to flower, plant height and seed yield on chromosome 347 

A09 (Table 1, Fig. 3a). We further sought a correlation between allelic effects of 348 

markers and variation in Δ13C, days to flower, plant height and seed yield (Fig. 3b-e). Up 349 

to 68% of allelic effects were explained by the same marker allele (Fig. 3e), suggesting 350 

pleiotropic relationships between these traits and/or tight genetic linkage between them.  351 

 352 

Verification of QTL for Δ13C  353 

We validated the genetic control, the linkage between DArTseq markers and Δ13C (in 354 

DH population) and focused on the identification of candidate gene(s) underlying the 355 

majority of genetic variation in Δ13C at QTL regions on chromosomes A09 and C09 356 
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(Table 1). The Δ13C values showed a wide range distribution among F2 lines (Fig. 4a). 357 

Unlike DH lines, Δ13C exhibited a positive correlation with flowering time and LWC, 358 

and a negative correlation with SLW (Fig. 4b-d). Our anatomical analysis of leaf discs 359 

that revealed both parental lines BC1329 and BC9102 differ in thickness and 360 

arrangement of palisade and spongy mesophyll cells: BC1329 (192 μm) had high 361 

porosity with large airspaces compared to BC9102 (184 μm, Fig. 4e-f), which may 362 

facilitate gas exchange, thus leading to efficient water use.  363 

Genetic analysis revealed that several DArTag markers show significant segregation 364 

distortion (deviating from the normal segregation consistent with 1:2:1 ratio for 365 

codominance, or 3:1 ratio for dominance) on chromosomes A09 and C09 (Table S12), 366 

suggesting that the Δ13C region could be subjected to structural variation. Genome scan 367 

using linear marker regression revealed that DArTag markers positioned at 28,598,612 368 

bp on chromosome A09, and 46318271 bp on C09 of the Darmor-bzh genome exhibit 369 

statistically significant association with Δ13C variation (Fig. S3).  370 

Physical mapping and candidate genes associated with WUE near Δ13C QTL 371 

To identify potential candidate genes involved in the Δ13C variation, we interrogated 372 

genomic regions underlying the significantly associated markers in both the mapping 373 

(DH) and validation populations (F2). In the DH population, DArTseq 3153720 ‘bin’ 374 

marker revealed the complete linkage with another 12 markers, which were localised 375 

within 1.49 Mb region, spanning 28.35 Mb to 29.35 Mb (Table S10, Fig. S3). 376 

Annotation of genomic interval revealed that several genes including ERECTA 377 

(BnaA09g40540D), PYL2 (BnaA09g40690D), H+ATPase-5 (BnaA09g41340), LEA18 378 

(BnaA09g42180D) and Protein Kinase (BnaA09g42220D) on chromosome A09 and on 379 

its homoeologous chromosome C08, and HAC11 (BnaC09g46960D), floral repressor 380 

FLC (FLC.C09a; BnaC09g46500 and FLC.C09b; BnaC09g46540D), Myc-type BHLH 381 

(BnaC09g46950D, BnaC09g47080D on homoeologous group C09/A10 chromosomes 382 

are likely candidates to be involved in Δ13C variation (Table S13, Fig. S3). DArTag 383 

marker (physical position on the Darmor-bzh genome: 28,598,612 bp) on chromosome 384 

A09 was located within 93 kb of the ERECTA gene that controls transpiration efficiency 385 

in A. thaliana (Masle et al., 2005). 386 

 387 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 10, 2021. ; https://doi.org/10.1101/2021.07.08.451711doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.08.451711
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 

 

Δ
13C QTL region on chromosome A09 is subjected to homoeologous exchange (HE) 388 

We observed significant segregation distortion among marker alleles on chromosomes 389 

A09 and C09 in both mapping (DH) and validation (F2) populations and inconsistency in 390 

collinearity across both genetic and physical maps (Table S12). To investigate whether 391 

QTL region on A09 is subjected to structural variation, we performed HE analysis 392 

utilising resequencing data of the parental lines. Sequence mapping revealed 26 genomic 393 

regions undergone HE events, varying from 90 kb to 870 kb, including the A09 multi-394 

trait QTL region (29.3 to 29.5 Mb), BC9102 from C08 chromosome, as a result of 395 

homoeologous recombination (Fig. 5a, Table S14). However, in the maternal line 396 

BC1329, no such event was identified (Fig. 5b).  397 

 398 

Gene expression changes for Δ13C variation in the A09 and C09 QTL intervals between 399 

the parents 400 

To investigate the expression of candidate genes that underlie the Δ13C variation on 401 

chromosomes A09 and C09, we examined the leaf tissue-specific transcriptome of the 402 

two parental lines: BC1329 and BC9102 under wet and dry conditions. We found that a 403 

total of 60 genes on A09 and 51 genes on C09 underlying Δ13C QTL regions were 404 

significanty differentially expressed between the two parental lines (Table S15). Of the 405 

DEGs, several of them such as Casein Kinase 2 α4 (BnaA09g42220D), Cation-406 

transporting P-type ATPase (BnaA09g41340D, BnaA09g42040D), BEL1-like 407 

homeodomain protein 4 (BnaA09g41850D), Spermidine disinapoyl acyltransferase 408 

(BnaA09g41960D), Protein Kinase (BnaA09g42220D, BnaA09g41970D), HEC3 409 

(BnaC09g46950D), and serine carboxypeptidase (BnaC09g47000D), are related with 410 

water use, water use efficiency and response to water stress 411 

(https://www.arabidopsis.org/). We also found that the expression levels of genes in 412 

BC9102 (with HE event) such as BnaA09g41850D, BnaA09g41970D (wall-associated 413 

receptor kinase-like 14), BnaA09g41990D (cyclin-dependent kinase inhibitor), 414 

BnaA09g42000D (nicotinate phosphoribosyltransferase 2), BnaA09g42030D (RNA 415 

recognition motif domain), and BnaA09g42040D were significantly higher (at least 2-416 

fold) than those of BC1329 (without HE event) (Fig. 6, Table S15), suggesting that HE 417 

may be responsible for expression variation at the Δ13C-QTL region on A09. 418 

 419 
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DISCUSSION  420 

 421 

Canola reveals considerable variation for Δ13C 422 

We found substantial genotypic variation in Δ13C, from 18.78 to 21.23‰ among DH, 423 

and 20.9 to 27.2‰ among F2 lines. An earlier study has shown that an increase of 0.5‰ 424 

in δ13C can lead to 25% more transpiration efficiency (TE = biomass gained/water 425 

transpired) in Arabidopsis (Juenger et al., 2005). Extrapolating this relationship, which is 426 

positive between δ13C and TE, and negative between Δ13C and TE, canola F2 lines with 427 

6.3‰ higher Δ13C values than parental lines (22.8 to 23.5‰) should reduce WUE 428 

theoretically by 315%, which is impossible. It reflects the dependence of the sensitivity 429 

on the general level of Δ13C. For example, Masle et al. (2005) found that at the level 430 

they saw in Arabidopsis, an increase in Δ13C of 1‰ was associated with a 15%  decrease 431 

in TE. Previous studies revealed that canola lines display a range of variation in Δ13C 432 

(18.7 to 23.7‰). Triazine tolerant (TT) accessions show higher Δ13C values compared to 433 

conventional open-pollinated varieties and hybrids (Matus et al., 1995; Pater et al., 2017; 434 

Hossain et al., 2020; Raman et al., 2020b). In this study, we utilised non-TT accessions for 435 

genetic analysis. Our research thus provides an additional genetic resource for 436 

understanding the genetic and physiological basis, as well as improving WUE in canola.  437 

 438 

Integrated WUE is partly driven by fitness traits 439 

This study showed that DH lines that discriminate less between 12C and 13C as carbon 440 

source for photosynthesis (low Δ13C) show higher iWUE at the single leaf level (Fig. 441 

2a). However, low Δ13 lines did not produce high yield (agronomic WUE; seed 442 

yield/unit of water used at the whole plot level) suggesting that selection for low iWUE 443 

at a single leaf level is useful for improving seed yield (r = 0.34, Fig. 2a), rather than 444 

using low Δ13C as a surrogate trait for predicting high seed yield in canola, consistent 445 

with our earlier findings (Raman et al., 2020b). This inconsistent relationship between 446 

Δ
13C and seed yield could be due to genotypic variation in WUE being driven by 447 

variation in water use rather than by variation in assimilation per unit of water applied 448 

(Kobata et al., 1996; Blum, 2005; Sinclair, 2018). WUE, being a multi- dimensional trait 449 

can also be driven with other ‘fitness’ traits that reduce evapo-transpiration rate and crop 450 

water use. For example, high Δ13C lines with faster growth (NDVI, a proxy for plant 451 
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vigour and plant height) could provide quicker canopy cover, which enables plants to 452 

reduce water loss from soil evaporation, thus increasing seed yield (r = 0.45 to 0.72, Fig. 453 

1b). This is partly supported by in this study showing high correlation between plant 454 

fitness and seed yield and tight linkage of corresponding QTL (Fig. 1-3). In addition, 455 

Δ
13C exhibited negative correlations with flowering time (r= - 0.58; DH population), and 456 

a positive correlation with NDVI, plant height and seed yield (Fig. 1b), suggesting that 457 

high Δ13C lines tend to ‘escape’ via accelerating growth and flowering - an evolutionary 458 

trait for adaptation to terminal drought stress. Our results showed that genotypes with 459 

low Δ13C had less canopy cover, late flowering and lower seed yield; these 460 

characteristics are typical for plants with drought avoidance strategy (TE). However, 461 

under terminal water-deficit situations, low Δ13C lines could yield poorly due to the 462 

shorter seed filling period, accompanied with high temperatures. It remains to establish 463 

how low Δ13C lines which require a longer season for seed filling, perform in climates 464 

that are not prone to environmental constraints (non-water deficit/heat stress). 465 

 466 

Genetic and environmental determinants affect phenotypic trait expression 467 

We observed plasticity between Δ13C, and flowering time evaluated under field/pot and 468 

rain-out shelter (negative correlation, Fig. 1b, 2A) but a positive correlation under 469 

glasshouse conditions (Fig. 4b). This could be due to growing conditions (non- water 470 

stress condition, 100% field capacity) and nature of leaf tissue (discs without much 471 

vascular tissue) analysed for Δ13C.  472 

Our comprehensive multi-environment QTL analysis showed that by using well-473 

designed multiphase experiments (Table S3), and efficient statistical models (Table S4), 474 

both genetic and environmental determinants underpinning phenotypic variation can be 475 

deciphered for traits of interest (Table S11). For example, we identified QTL for the 476 

main effects (on A01, A07, A08 and A09) and Q x E interaction effects (on A02 and 477 

C06) that describe Δ13C plasticity across different environments (Table S11). Multi-478 

environment based QTL analysis is a more powerful approach to dissect complex traits 479 

than the traditional QTL approaches (Zhang et al., 2010) but it was not used to uncover 480 

the genetic basis of WUE traits in canola previously. Consistent detection of Δ13C-QTL 481 

across three environments suggests that these loci contribute to the adaptive capacity of 482 
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DH lines to water-deficit stress conditions and thus translating to economic seed yield 483 

(~1 t/ha). Across field environments, DH lines were subjected to water deficit 484 

conditions, right from stem elongation to seed maturity (rainfall ranged from 225 to 235 485 

mm over seven months of growing season, Fig. S2). Colocation of QTL for seed yield, 486 

Δ
13C and plant height at the same genomic regions and stable allele (BC9102), 487 

contributing to trait variation that suggest multi-trait QTL on chromosome A09 are 488 

associated with effective water use. Early flowering showed a negative relationship with 489 

seed yield (Table 1), reiterating crosstalk between drought stress signalling and 490 

flowering time pathways (Des Marais et al., 2012). 491 

It was interesting that none of the Δ13C QTL that we identified for main effect and Q x E 492 

interactions (Table S11) were detected in the Skipton/Ag-Spectrum population (Raman 493 

et al., 2020b). In an independent study, Mekonnen et al., (2020) identified three QTL for 494 

δ
 13C on chromosomes A02, A09, and C08 in the North American B. napus mapping 495 

population. However, none of the QTL were consistently detected across environments. 496 

It is yet to establish whether the genomic region on chromosome A09 or its 497 

homoeologous counterpart C08 (QTL for root pulling force, plant height and δ 13C) is 498 

the same as found in our study, as the authors did not report the physical positions of 499 

QTL marker-intervals. In addition, there was a poor marker coverage on chromosome 500 

C08 in our genetic mapping population (13 markers, Table S10), which may have led to 501 

QTL (if any) being undetected in the unmapped regions, especially in HE region. These 502 

studies suggest that several genomic regions on A02, A03, A07, A09, C03, C06, C08, 503 

and C09 control variation in Δ13C, thus, genetic architecture of Δ13C is rather complex. 504 

 505 

A priori genes regulating WUE and efficient water use underlie QTL for Δ13C 506 

Coarse and high-resolution mapping approaches utilised herein facilitated the validation 507 

of genomic regions for Δ13 variation and delimited candidate genes in canola, which are 508 

implicated in leaf-level WUE (Hersen et al., 2008; Cutler et al., 2010; Youn et al., 2016; Tao 509 

et al., 2018; Menéndez et al., 2019). For example, this study identified and validated a 510 

QTL that influences multiple traits; Δ13C, days to flower,  plant height and seed yield on 511 

chromosome A09 that map within 92 kb of the ERECTA gene (Table S13). In different 512 

plant species, ERECTA and ERECTA Like 1,2 genes encoding leucine-rich repeat protein 513 
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kinases, regulate stomatal density and patterning, inflorescence architecture, ovule 514 

development, transpiration, and thermo-tolerance (Torii et al., 1996; Godiard et al., 2003; 515 

Shpak et al., 2003; Masle et al., 2005; Meng et al., 2012; Pillitteri & Torii, 2012; Bemis et al., 516 

2013; Shen et al., 2015; Guo et al., 2020). ERECTA is also shown to control spikelet 517 

number- a component trait of grain yield via crosstalk between a Mitogen-activated 518 

protein kinase (MAPK) signalling pathway and cytokinin metabolism in rice. However, 519 

we did not find any difference in the level of expression of ERECTA between parental 520 

lines differing in Δ13 (unpublished data). We also localised several stress-responsive 521 

genes, including DEGs that may contribute to drought avoidance strategies via signal 522 

transduction pathways, encoding functional proteins (LEA18, RD20, glycine 523 

metabolism, CAT) and regulatory proteins, including transcription factors (bHLH, 524 

MYB, TINY2, ATHB6), protein kinases (Tyrosine protein kinase, Wall-associated 525 

receptor kinase-like 14, MAPK, SNF1-related protein kinase) and receptors (ABA 526 

receptor PYL12), phosphatases (PP2C), and calmodulins (CPK17) (Jonak et al., 2002; Des 527 

Marais et al., 2014; Jagodzik et al., 2018; Yong et al., 2019) within QTL intervals associated 528 

with Δ13C variation (Table 1, Table S13, S15). Plant expressing PYL12, and SRK2C 529 

genes are shown to improve the water use and drought tolerance (Yang et al., 2016) 530 

whereas ABC transporter (ABCG22) and ABA responsive kinase gene, MPK12 reduced 531 

the WUE (Des Marais et al., 2014). Our data hint that genes affecting stomatal 532 

characteristics (RD20, ERECTA), leaf thickness and water-deficit responsive genes 533 

described above likely underlie WUE and drought avoidance traits, while Q x E 534 

interactions are likely driven by environmental cues (PHYTOCHROME C was mapped 535 

with 6.2 kb from Δ13C-QTL on C06, Table S13). 536 

Our results suggest that a QTL region underlying Δ13C, flowering time, plant height and 537 

seed yield on chromosome A09 may be subjected to HE. Homoeologous recombination 538 

is associated with presence-absence variation (Nicolas et al., 2007; Hurgobin et al., 2018). 539 

Recently, a major QTL for homoeologous recombination, BnaPh1 was mapped on A09 540 

(Higgins et al., 2021) and this was located within 5 Mbp of the QTL region that is 541 

associated with multiple traits. It is possible that the same genomic region may be 542 

involved in regulating WUE in diverse canola accessions and require further research.  543 
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In summary, this current study demonstrates that measures of iWUE, Δ13C and 544 

integrated WUE are complex and modulated by environmental and genetic determinants, 545 

including those subject to homoeologous exchange. Our findings on identification of 546 

useful variation in Δ13C (up to 6.3‰) and its underlying basis of variation in WUE traits, 547 

including their plasticity across environments, and identification of favourable alleles for 548 

increasing WUE would provide potential resources for developing new drought tolerant 549 

varieties for drier-environments to continue making genetic gains in the breeding 550 

programs. 551 
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Legends of Figures 790 

 791 

Fig. 1: Genetic variation in WUE traits and their relationships among doubled haploid 792 

lines derived from the cross, BC1329/BC9102. a: Frequency distribution of the Overall 793 

performance estimates for Δ13C. Estimates for the parental lines are shown with arrows; 794 

b: Pair-wise correlations of the Overall performance estimates between Δ13C (‰) and 795 

other WUE related traits; c: Top four DH lines that showed the highest Δ13C based on 796 

Overall performance estimates across environments in relation to control commercial 797 

varieties of canola and the parental lines are shown. 798 

 799 

Fig. 2: Relationships between Δ13C, gas exchange measurements (CO2 assimilation (A), 800 

stomatal conductance (gsw), and intrinsic water use efficiency (iWUE), plant 801 

developmental and agronomic traits (LWC: leaf water content; DTF: Days to flower; 802 

PH: Plant height and SY: Seed yield) of selected 70 DH lines of the BC1329/BC9102 803 

population, representing extremes (High and low values) in Δ13C and their parents. a: 804 

Pair-wise correlations of the genotype EBLUPs are plotted. DH lines were grown under 805 

rain-out shelter with wet and dry conditions. b: Relationships between Δ13C and seed 806 

yield for wet and dry blocks. Genotype EBLUPs for Δ13C and seed yield are plotted. 807 

Parental lines and the DH lines with high and low Δ13C are labelled.  808 

 809 

Fig. 3: Distribution and relationships between Overall performance estimates of Δ13C, 810 

days to flower (DTF), plant height (PH) and seed yield (SY) and DArTseq marker 811 

alleles for the QTL (3153720) that colocalized in the same genomic region on 812 

chromosome A09. Manhattan plot showing LOD scores for associations between 813 

DArTseq markers and Δ13C (a). QTL main effects are labelled with the respective trait 814 

(for days to flower, plant height and seed yield only the 3153720 QTL is shown) and 815 

QTL x Environment interactions are labelled with the trait followed by ‘Q × E’ (only 816 

shown for Δ13C). LOD scores presented in the Manhattan plot are from the genome scan 817 

for the QTL main effects where the LOD scores of the significant QTL are replaced with 818 

the ones from the final model. The black dash line indicates the threshold value for 819 

significant SNPs at LOD ≥ 3. Box plots showing the distribution of the Overall 820 

performance estimates for Δ13C, days to flower, plant height and seed yield partitioned 821 
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into allele combinations, ‘AA (BC1329)’ and ‘BB (BC9102)’, for the SNP marker 822 

3153720 (b). Pair-wise correlations of Overall performance estimates between Δ13C vs 823 

days to flower (c), Δ13C vs plant height (d) and Δ13C vs seed yield (e) are partitioned 824 

into different allelic combinations. 825 

 826 

Fig. 4: Distribution and relationships of the traits measured for an F2 validation 827 

population derived from the BC1329/BC9102, grown under non-stress conditions.  The 828 

frequency distribution of Δ13C (‰) among 744 F2 lines (a). Pair-wise correlations 829 

between Δ13C and DTF (b), Δ13C and LWC (c) and Δ13C and SLW (d) are shown. Δ13C: 830 

Carbon isotope discrimination; DTF: Days to flower; LWC: Leaf water content; SLW: 831 

Specific leaf weight. Leaf sections showing differences in air spaces (AS, marked with 832 

arrow) between parental lines BC1329 (e) and BC9102 (f). EP: epidermis; PM: palisade 833 

mesophyll (comparatively regular elongated cells); SM: spongy mesophyll (irregular 834 

cells) 835 

 836 

 837 

Fig. 5: Homoeologous exchange (HE) events detected between parental lines of doubled 838 

haploid population derived from the BC1329/BC9102. Genomic sequences that 839 

undergone HE are shown in Table S14. Substituted and ‘translocated’ reads are 840 

highlighted in Blue and Red colour, respectively. 841 

 842 

Fig. 6: Expression profiles of differentially expressed genes (DEGs) in A09 (a) and C09 843 

9b) QTL regions under water-deficit and water non-deficit conditions of the parental 844 

lines of the doubled haploid population derived from the BC1329/BC9102. The 845 

normalised read counts were plotted as a heatmap and genes were clustered according to 846 

the basis of their expression pattern. The genes in the heatmap were subjected to 847 

homoeologous exchange (HE) as well as the genes map within QTL region for Δ13C. 848 

DEGs that map within HE regions are highlighted in green boxes. 849 

  850 
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Table 1: Quantitative trait loci (main effects) for carbon isotope discrimination (Δ13C) and agronomic traits (DTF: Days to flower; NDVI: 851 

Normalised difference vegetative difference; PH: Plant height; SY: Seed yield) evaluated in doubled haploid lines from BC1329/BC9102, across 852 

three environments. LOD scores, allelic effect, parental allele and percentage of genetic variance explained (R2) were also provided. QTL x 853 

Environment interactions for each environment are presented in supplementary Table S11. Putative candidate genes underlying QTL x 854 

Environment interactions are given in Table S13. Suggestive QTL having LOD ≤3 are in italics whereas consistent markers that were associated 855 

with multiple traits are in bold font.  856 
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SY 27246553 

 

C06 35071983 

 

6.33 8.81 
 

0.07 BC132

9 

GDSL-like lipase-

BnaC06g36590D (11.75) 

SKP1-BnaC06g36600D (5.06) 

Galactose oxidase- 

BnaC06g36610D (3.40) 

Hap15-BnaC06g36630D (3.03) 

PH 3147080 

 

C07 30323351 

 

2.36 3.66 
 

2.41 BC132

9 

Lipase-BnaC07g23920D (2.28) 

VH1-interacting kinase -

BnaC07g23950D (28.05) 

DTF 5053011|F|0-62:G>A-

62:G>A 

 

C08 22278532 

 

2.06 7.12 
 

-0.88 BC910

2 

CYCB2;3- BnaC08g19340D 

(23.99) 

SUMO- BnaC08g19350D (8.55) 

CAT3- BnaC08g19360D (2.48) 

RWP-RK- BnaC08g19370D 

(15.01) 
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Tyrosine-protein kinase-

BnaC08g19380D (27.23) 

Δ
13C  3158874 C09 46623311 6.57 18.51 

 
-0.17 BC910

2 

Hydroxyproline-rich 

glycoprotein- BnaC09g47070D 

(6.48) 

Myc-type, basic helix-loop-helix 

(bHLH)- BnaC09g47080D 

(0.72) 

Phosphate-induced protein 1- 

BnaC09g47090D (3.74) 

Epoxide hydrolase-like, 

alpha/beta-hydrolase- 

BnaC09g47100D (20.30) 

DTF 3152507 

 

C09_ran 3981494 

 

4.21 14.02 
 

1.39 BC132

9 

TIP1-BnaC09g54140D (0.45) 

Fatty acid synthase-

BnaC09g54150D (10.95) 
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