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Abstract

Most of the attention in the surveillance of evolution of SARS-CoV-2 has been centered on
single nucleotide substitutions in the spike glycoprotein. We show that in-frame deletions (IFDs)
also play a significant role in the evolution of viral genome. The percentage of genomes and
lineages with IFDs is growing rapidly and they co-occur independently in multiple lineages,
including emerging variants of concerns. IFDs distribution is correlated with spike mutations
associated with immune escape and concentrated in proteins involved in interactions with the
host immune system. Structural analysis suggests that IFDs remodel viral proteins’ surfaces at
common epitopes and interaction interfaces, affecting the virus’ interactions with the immune
system. We hypothesize that the increased frequency of IFDs is an adaptive response to elevated
global population immunity.

Summary

Monitoring of SARS-CoV-2 genome evolution uncovers increased frequency and non-random
distribution of in-frame deletions in recently emerged lineages.

Main text

Deletions, or more generally insertions/deletions (indels), are the second most common
modifications in the evolution of viral genomes after single nucleotide polymorphisms (SNPs),
and yet receive little attention (/). One of the reasons for that is that their consequences on
protein structure and function are more challenging to determine than that of single point
mutations. Long, loss-of-function deletions removing entire proteins or functional domains could
be deleterious (2) or attenuating (3), however, the effects of shorter, function modifying deletions
are mostly unknown. They tend to happen in the loops between secondary structure elements,
rarely affecting the overall structure of proteins, but may be altering the binding specificity or
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protein-protein interaction surfaces (4), in few studied examples leading to increased drug
resistance and immune escape in viruses (/, 5). Their evolutionary dynamics and overall
consequences for fitness for any virus, including SARS-CoV-2, remain mostly unaddressed.

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) first emerged in Wuhan, China
and subsequently spread worldwide. Its high mutability (6), typical for RNA viruses (7) but
exacerbated by the scale of the COVID-19 pandemic, has resulted in the emergence of multiple
lineages. Higher infectiveness and lower efficacy of the current vaccines have been reported for
at least two lineages, B.1.351 (8) and P.1 (9, 10). New lineages combining these two features are
still emerging, such as
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(RDRs), in the N-terminal domain (NTD) of the spike glycoprotein were shown to play a role in
immune escape (/5). These deletions provide an example of a new paradigm of the effects of
deletions on viral genomes and proteins — instead of loss-of-function they modify it by
remodeling protein surfaces, affecting major antibody epitopes (/7) and, possibly, protein-
protein interaction networks. Our analysis presented here expands on these examples and
provides an overview of the dynamics of deletions in the evolution of the SARS-CoV-2 genome.
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Large-scale analysis of SARS-CoV-2 genomes (see the Methods section) shows that percentage
of genomes with at least one IFD and the fraction of lineages with 1-5 IFDs is growing in time
(Figs. 1A and B). The recent increase in the number of IFDs was observed in distinct branches
of the phylogenetic tree (Fig. 1C), including emerging VOC:s. For instance, the B.1.1.7 lineage is
defined by 17 founder genome modifications, including three IFDs (NSP6 A106-108, spike A69-
70 and spike A144). Additional IFDs and their combinations are found in B.1.1.7 sub-lineages
(Fig. S1).

Most IFDs are concentrated in specific regions of NSP1, NSP3, NSP6, ORF3a, ORF6, ORF7a,
ORF7b, ORF8, nucleocapsid and spike glycoprotein (Fig. 1D and Table S1), all of which are
involved in interactions with the host immune system (/8). At the same time, proteins involved
in the replication—transcription complex show very few or no IFDs (Fig. 1D and Table S1).
Many IFD-prone regions such as the loops in the spike NTD overlap with mutation hotspots
(Fig. 1D) that are thought to be driven by host immune system pressure (13, 79, 20). Therefore,
we hypothesize that the emergence of IFDs in the same hotspots is a response to the same
pressure. This is supported by the recent studies where both spike-NTD substitutions and indels
were demonstrated to accelerate virus adaptation to the host and immune escape (15, 19, 20).
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This parallels findings in HIV-1 where deletions in spike glycoprotein regions encoding surface-
exposed disordered loops were found to mediate escape from neutralizing antibodies elicited by
earlier variants of the virus (Z, 3).
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Fig. 3. Recurrent deletion regions (RDRs) of NSP1 and NSP6
(A) Global phylogenetic trees of 569,352 SARS-CoV-2 genomes

(GISAID as of April 15" 2021) showing recurrence of the most
frequent in-frame deletions (IFDs) positioned on NSP1-RDRs and
NSP6-RDR as black dots. (B) and (C) represent coordinates of RDRs

shorter IFDs in this region
are recurring more
frequently (Fig. 3A).

of NSP1 and NSP6, respectively. The number of genomes containing a

: . . ) The NSP6 RDR (residues
specific IFD is provided on the left side of each plot.

99-108) is the second
most common RDR in SARS-CoV-2, with the A106-108 observed in more than 300K genomes
(Fig. 3C). It independently occurred as a founder modification for several well-known VOCs —
B.1.1.7, B.1.351 and P.1, but also some of the newly emerged ones such as B.1.525 in Nigeria
and Europe and B.1.526 in New York and Europe (Figs. 3A and 4). Signatures of positive
selection for NSP6 A106-108 were recently reported (22). The well-studied IFDs in spike NTD
were classified as belonging to RDR1 (residues 60-75), RDR2 (residues 139-146), RDR3
(residues 210-213), and RDR4 (residues 242-248) (15). IFDs in NTD-RDR1 and RDR2 are more
frequent (compared to RDR3 and RDR4. Several lineages with new spike IFDs (expanding
spike-RDR4) and IFDs in other proteins are now emerging (Fig. S3).
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We observe an
increasing number of
genomes with
independent co-
occurrence of
multiple spike-IFDs
with IFDs in other
proteins, especially
NSP6-1FDs (Fig. 4
and Table S3).
NSP6-1FDs
independently co-
occurred with spike-
IFDs located in
RDRI1 and RDR2 in
B.1.1.7 and B.1.525
variants, with IFDs
located in RDR2 in
B.1.526.1 and
B.1.1.318 variants
and IFDs in RDR4 in
B.1.351 variant (Fig.
4B and C). This
suggests that
different [FD
combinations in
NSP6 and spike-
RDRs might play a
role in higher
transmissibility,
prolonged infection,
and immune escape
in recent VOCs (Fig.
4B and C and Table
S3).

Independent co-
occurrence of [FDs in
different lineages
might reflect

signatures of adaptive evolution by recurrence or recombination. Several VOCs such as B.1.1.7
and B.1.351 which have simultaneous spike and NSP6-IFDs were found to have higher
transmissibility, infectivity or immune escape properties than the previously dominant lineages
such as B.1.177 (23) with almost no IFD (Fig. 4 and Table S3) which could again highlight
possible role of simultaneous spike and NSP6-IFDs in immune evasion. Increasing number of
IFDs also results in SARS-CoV-2 genome size decrease over time, especially in the recent VOCs
(Fig. S4A and B). Although direct association of genome size with viral fitness is difficult to
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prove, there is evidence of replicative advantage associated with smaller genome size in RNA
viruses (2, 24, 25).

In conclusion, we report the increasing rate of recurrent IFDs during the progress of the COVID-
19 pandemic, mostly recurring in SARS-CoV-2 proteins involved in interactions with the host
immune system, reflecting the host immune selective pressure. Most IFDs are found in recurrent
deletion regions, that typically are found in loops close to the epitope regions. Deletions in such
regions facilitates immune escape by remodeling the epitope surfaces and prolong infection of
these lineages. Such RDRs should be the subject of mutation surveillance as much as common
escape mutations. It is likely that increase in the number of IFDs and RDRs in recent lineages is a
sign of the virus adapting to the increasing pool of resistant hosts, but more research is needed to
decisively prove this point.

Methods
Data collection

Multiple sequence alignment (MSA) data, and metadata of complete SARS-CoV-2 genomes
(1,028,386) were retrieved from GISAID (https://www.gisaid.org/) as of April 12, 2021. Briefly,
full alignment (msa_0412.fasta) provided by GISAID was based on 1,028,386 submissions to
GISAID EpiCoV. GISAID pipeline excludes duplicate, low-quality sequences (>5% N content)
and incomplete sequences (length <29,000 bp). Then, GISAID pipeline used this cleaned data to
create MSA file of 961,734 sequences using MAFFT (26) with hCoV-19/Wuhan/WIV04/2019
(EPI_ISL 402124; GenBank: MN996527) used as reference (27).

Identification of in-frame deletions

We used an in-house Perl script to identify variations in each genome based on GISAID MSA file
as of April 12, 2021. On top of GISAID’s cutoffs for excluding genomes with high N content
and low-quality genomes, we applied additional filtering after variant calling to avoid spurious
IFDs and IFDs with shifted positions arising from high N content. Thus, genomes with N content
more than 0.05% and more than 200 mutations were excluded resulting in a total 0£ 958,696 SARS-
CoV-2 genomes which were used in this study. Additionally, to avoid reporting spurious IFDs
arising from sequencing errors or errors in MSA, we used GISAID MSA file with no gaps in
reference (obtained with keep reference length option) (26) to confirm the exact positions of the
identified deletions.

Analyzing SARS-CoV-2 in-frame deletions in the context of PANGO lineages

We used assigned PANGO lineages (28) and GISAID (29) global divergent tree which includes
569,352 genomes as of April 15", 2021 to investigate the distribution of IFDs across SARS-CoV-
2 genomes. We used ggtree R package (30) to visualize distributions of IFDs on the GISAID global
divergent tree.

Assessing differences in the rate of in-frame deletions between SARS-CoV-2 proteins

The method we recently used in assessing the significant under-mutated and over-mutated proteins
during SARS-CoV-2 evolution (37) was used here to identify proteins with a high rate of IFDs.
Briefly, we counted the total number of IFDs (except singletons which are usually regarded as
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unreliable) for each protein (except for NSP11, ORF3b, ORF9b and ORF14 as these are too short
for significance analysis). We then used a two-sided binomial test to compare the rate of deletions
in each protein to the rate of deletions in the background (all proteins) to identify proteins with
high rates of IFDs. Since in our previous study (3/) we showed that ORF1lab is less frequently
mutated and is likely under more stringent purifying selection compared to the genes coding for
structural and accessory proteins (ORFs 2-10) we applied an additional statistical comparison of
IFD rates to only non-structural proteins to identify NSPs (NSP1-NSP16) with higher rate of IFDs
compared to others. For this specific comparison, we run a two-sided binomial test using only
ORF1lab (corresponding to proteins NSP1-NSP16) as background. Adjusted p-values (g-values)
were calculated using false discovery rate (FDR) method. Proteins with odds ratio more than 1 and
q-values less than 0.05 were considered as proteins with significantly increased rates of IFDs.

Visualization of in-frame deletions on proteins’ 3-dimensional (3D) structures

We used PyMol (32), and Coronavirus3D (33) for studying and visualization of IFDs in the
context of protein 3-dimensional structure (3D). Their 3D coordinates were downloaded from the
Protein Data Bank (PDB) (34). For proteins with no available 3D structures we used, if available,
models predicted by homology modeling or ab initio predictions
(https://deepmind.com/research/open-source/computational-predictions-of-protein-structures-
associated-with-COVID-19, https://zhanglab.decmb.med.umich.edu/COVID-19/) or SwissModel
(35), noting in the discussion their hypothetical nature. It should be noted that even for some
proteins with available 3D structures we used models predicted by homology modeling or ab
initio predictions when the IFDs were located in the regions of the protein with unresolved
structures. Information on protein domain boundaries was based on PDB (https://www.rcsb.org/)
structures when available or on UniProt and the literature (Table S4).

The positions of transmembrane helices for proteins with no available 3D structures were
identified with the TMHMM16 server (36). IEDB server (Bepipred Linear Epitope Prediction 2.0)
(37) was used to predict B-cell epitopes for NSP1, NSP2, NSP3, NSP6, Spike, Nucleocapsid,
ORF3a, ORF7a, and ORF8 proteins as proteins with significantly increased rate of IFDs.

Visualization of in-frame deletions (I1FDs) on the phylogenetic tree

We mapped the number of IFDs for each genome (1 IFD to maximum 5 IFDs per genome was
recorded) on the Nextstrain time-resolved tree (38) which includes 3899 genomes sampled
between Dec 2019 and March 31%, 2021. We used ggtree R package (30) to visualize the tree.

Visualization of in-frame deletions on alignment file

We extracted one representative genome for each of the most frequent IFDs (seen in multiple
genomes) positioned on protein RDRs from the GISAID MSA file with no gaps in the reference
using an in-house Python script and visualized it using R packages ggmsa and Biostrings and
counted the number of genomes harboring each type of IFD.

Statistical analysis of the most recurrent in-frame deletions in SARS-CoV-2

To identify the most frequent recurrent IFDs in SARS-CoV-2 genomes, we used the GISAID
global tree (569,352 genomes as of April 15", 2021) and screened it to find independent
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occurrences of each IFD (29). The most frequent IFDs (observed in at least 400 genomes in all the
analyzed lineages) that occurred independently in more than three independent branches of the
GISAID global tree and in at least two different lineages were considered recurrent IFDs. Regions
with different recurrent IFDs which occurred in adjacent residues (up to 5 residues apart) were
called recurrent deletion regions (RDRs). Every RDR involves 2-15 amino acid residues.

We also calculated the recurrence of each IFD as the function of time of sample collection,
geographical location, PANGO lineages, and GISAID clades. Briefly, we classified genomes into
16-time bins based on the month and year of the data collection. Similarly, we classified genomes
into 6 geographical locations (continents). Genomes were also grouped based on the GISAID
clades into 9 groups (clades S, V, L, G, GH, GR, GV, GRY and O), and 1255 different PANGO
lineages. Each IFD was counted if it was presented in more than 5 genomes in the given group
(the cutoff of five was used to reduce the amount of noise due to deletions with very low counts).
We used Circos R package to draw the heatmap of recurrence/co-occurrence of top IFDs in
PANGO lineage arranges in the order that approximately reflects the evolutionary history of
SARS-CoV-2 lineages.
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