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The brains of many organisms are capable of complicated distributed computation underpinned

by a highly advanced information processing capacity. Although substantial progress has been made

towards characterising the information flow component of this capacity in mature brains, there is a

distinct lack of work characterising its emergence during neural development. This lack of progress

has been largely driven by the lack of effective estimators of information processing operations for

the spiking data available for developing neural networks. Here, we leverage recent advances in

this estimation task in order to quantify the changes in information flow during development. We

do so by studying the changes in the intrinsic dynamics of the spontaneous activity of developing

dissociated neural cell cultures. We find that the quantity of information flowing across these

networks undergoes a dramatic increase across development. Moreover, the spatial structure of these

flows is locked-in during early development, after which there is a substantial temporal correlation

in the information flows across recording days. We analyse the flow of information during the

crucial periods of population bursts. We find that, during these bursts, nodes undertake specialised

computational roles as either transmitters, mediators or receivers of information, with these roles

tending to align with their spike ordering — either early, mid or late in the bursts. Further, we

find that the specialised computational roles occupied by nodes during bursts tend to be locked-in

early. Finally, we briefly compare these results to information flows in a model network developing

according to an STDP learning rule from a state of independent firing to synchronous bursting. The

phenomena of large increases in information flow, early lock-in of information flow spatial structure

and computational roles based on burst position were also observed in this model, hinting at the

broader generality of these phenomena.
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This paper studies the development of computation in biological systems by analysing changes in the flow of6

information in developing neural cell cultures. Although there have been a number of previous studies of information7

flows in neural cell cultures, this work represents the first study which compares information flows in the intrinsic8

dynamics across development time. Moreover, we make use of a recently proposed continuous-time transfer entropy9

estimator for spike trains, which, in comparison to the discrete-time estimator used previously, is able to capture10

important effects occurring on both small and large timescales simultaneously. We find that information flows begin11

to emerge after 5-10 days of activity, and crucially, the spatial structure of information flows remains significantly12

temporally correlated over the first month of recording. Furthermore, the magnitude of information flows across the13

culture are strongly related to burst position, and the roles of regions as information flow sources, sinks and mediators14

are found to remain consistent across development. Finally, we confirm that these early lock-ins also occur in a15

simple model network developing under an STDP update rule, suggesting a plausible mechanism undergirding this16

phenomenon.17
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I. INTRODUCTION18

Throughout development, how do brains gain the ability to perform advanced computation? Given that the19

distributed computations carried out by brains require an intrinsic information processing capacity, it is of utmost20

importance to decipher the nature of the emergence of this capacity during development.21

For brains to engage in the computations required for specific tasks, they require a general-purpose computational22

capacity. This capacity is often studied within the framework of information dynamics, where it is decomposed into23

the atomic operations of information storage, transfer and modification [1, 2]. We are particularly interested in the24

information flow component, which is measured using the Transfer Entropy (TE) [3, 4]. There exists a substantial25

body of work examining the structure and role of computational capacity in terms of these operations in mature26

brains. This includes: the complex, dynamic, structure of information transfer revealed by calcium imaging [5], fMRI27

[6, 7], MEG [8] and EEG [9–12], and the role of information storage in representing visual stimuli [13], among others.28

Given the established role of information flows in enabling the computations carried out by mature brains, we aim29

to study how they self-organise during neural development. There are a number of requirements for such a study.30

Firstly, it needs to be performed at a fine spatial scale (close to the order of individual neurons), to capture the details31

of development. It also needs to be conducted longitudinally in order to track changes over developmental timescales.32

Finally, the estimation of the information flow as measured by TE needs to be performed with a technique which33

is both accurate and able to capture the subtleties of computations performed on both fine and large time scales34

simultaneously.35

Considering the first requirement of fine spatial scale, cell cultures plated over Multi-Electrode Arrays (MEAs)36

allow us to record from individual neurons in a single network, providing us with this fine spatial resolution. There37

have been a number of previous studies examining information flows in neural cell cultures, e.g.: [14–20]. This work38

has focussed on the functional networks implied by the estimated TE values between pairs of nodes which has revealed39

interesting features of the information flow structure. See Sec. IV D 1 for a more detailed description of this previous40

work.41

However, moving to our second requirement of a longitudinal study, these studies have almost exclusively examined42

only single points in neural development, since nearly all of them examined recordings from slice cultures of mature43

networks. By contrast, we aim to study the information flows longitudinally, by estimating them at different stages44

in development. Using recordings from developing cultures of dissociated neurons [21] makes this possible.45

In terms of our third requirement of accurate and high-fidelity estimation of TE, we note that all previous studies46

of information flows in neural cell cultures made use of the traditional discrete-time estimator of TE. As recently47

demonstrated [22], the use of this estimator is problematic, as it can only capture effects occurring on a single48

time-scale. In contrast, a novel continuous-time TE estimator [22] captures effects on multiple scales, avoiding time-49

binning, is data efficient and consistent. See Sec. IV D for a more detailed discussion of the differences between the50

continuous-time and discrete-time estimators.51

In this paper, we thus examine the development of neural information flows for the first time, addressing the above52

requirements by applying the continuous-time TE estimator to recordings of developing dissociated cultures. We find53

that the amount of information flowing over these cultures undergoes a dramatic increase throughout development and54

that the patterns of these flows are established early. During bursting periods we find that nodes engage in specialised55

computational roles as either transmitters, receivers or mediators of information flow. Moreover, these roles correspond56

with the node’s position in the burst propagation, with middle bursters tending to be information mediators. This57

provides positive evidence for the pre-existing conjecture that nodes in the middle of the burst propagation play the58

vital computational role of “brokers of neuronal communication” [23]. Intriguingly, the designation of computational59

roles (transmitter, receiver or mediator) appears to be determined early in development. Finally, in order to investigate60

the generality of these phenomena, as well as a putative mechanism for their emergence, we study the dynamics of61

information flow in a model network developing according to an STDP update rule. We find that the above-mentioned62

phenomena are present in this model system, hinting at the broader generality of such patterns of information flow63
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(a) Scatters and boxplots of TE values.
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(b) Histograms and kernel density estimates of TE values.

FIG. 1: Plots of the distributions of estimated TE values in the recordings analysed in this study. (a) Scatters of the

TE values are overlaid on box plots. The box plots show the quartiles and the median (values greater than 10

standard deviations from the mean have been removed from both the box and scatter plots as outliers). (b) Density

estimates of the nonzero (statistically significant) TE distribution on top of a histogram. The densities are

estimated using a Gaussian kernel. The histogram bin width and kernel histogram are both 10% of the data range.

in neural development.64

II. RESULTS65

Data from overnight recordings of developing cultures of dissociated cortical rat neurons at various stages of de-66

velopment (designated by days in vitro, DIV) was analysed. These recordings are part of an open, freely available,67

dataset [21, 24]. See methods (Sec. IV A) for a summary of the setup that produced the recordings. We selected four68

cultures from the dataset to study, which we refer to by the same naming convention used in the open dataset: 1-1,69

1-3, 2-2 and 2-5. Each culture has overnight recordings at four different time points, apart from 1-1, which was only70

recorded thrice. The days on which these recordings took place vary between the 4th and 33rd DIV. By contrasting71

the TE values estimated at these different recording days, we are able to obtain snapshots of the emergence of these72

culture’s computational capacity.73

The TE between all pairs of electrodes was estimated using a recently introduced continuous-time estimator [22]74

(see Sec. IV D). This produces a directed functional network at each recording day, and we aim to analyse how the75

connections in this network change over development time. Spike sorting was not performed, because we would not76

be able to match the resulting neural units across different recordings, and could not then fulfil our aim of contrasting77

the information flow between specific source-target pairs at different recording days. As such, the activity on each78

node in the directed functional networks we study is multi-unit activity (MUA) [23] formed of the spikes from all79

neurons detected by a given electrode, with connections representing information flows in the MUA. For more detail80

on data pre-processing as well as the parameters used with the estimator, see Methods (Sec. IV).81
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4

Culture 1-1 day 4 day 14 day 20

0 0.018 0.058

Culture 1-3 day 5 day 10 day 16 day 24

0.013 0.016 0.020 0.068

Culture 2-2 day 9 day 15 day 21 day 33

0.0084 0.066 0.049 0.15

Culture 2-5 day 4 day 10 day 22 day 28

0 0.040 0.10 0.19

TABLE I: Mean TE in nats per second between every source-target pair for each recording studied.

A. The dramatic increase in the flow of information during development82

We first investigate how the amount of information flowing between the nodes changes over the lifespan of the83

cultures. Table I shows the mean TE between all source-target pairs. We observe that this mean value increases84

monotonically with the number of DIV, with only a single exception (a slight drop in the mean TE between days85

15 and 21 of culture 2-2). Otherwise, the magnitude of the increase in the mean TE is substantial. Among the86

first recordings for each culture, both recordings on the 4th DIV had a mean estimated TE of 0 nats.s−1 (with no87

statistically significant transfer entropies measured as per Sec. II B), the single recording on the 5th DIV had a mean88

of 0.013 nats.s−1 and the single recording on the 9th DIV had a mean of 0.0084 nats.s−1. By contrast, all recordings89

beyond 20 DIV had a mean TE greater than 0.049 nats.s−1 and all recordings beyond 28 DIV had a mean TE greater90

than 0.15 nats.s−1.91

Fig. 1a shows scatter plots of the TE values in each recording laid over box-and-whisker plots. The large increase92

over time in the amount of information flowing over the networks is clearly visible in these plots. However, it is93

interesting to note that certain source-target pairs do have large information flows between them on early recording94

days even whilst the average remains very low.95

Fig. 1b shows histograms of the TE values estimated in each recording along with probability densities estimated96

using a Gaussian kernel. The distributions only include the nonzero (statistically significant) estimated TE values.97

These distributions do, qualitatively, appear to be log-normal, in particular for later DIV. Moreover, previous studies98

have placed an emphasis on the observation of log-normal distributions of TE values in in vitro cultures of neurons99

[14, 15]. As such, we qantitatively analysed the distribution of the nonzero (statistically significant) estimated TE100

values in each individual recording. However, contrary to expectations, we found that these values were not well101

described by a log-normal distribution. See Appendix A for further details and discussion.102

B. The emergence of functional information flow networks103

By considering each electrode as a node in a network, we can construct functional networks of information flow104

by assigning a directed edge between each source-target pair of electrodes with a statistically significant information105

flow. This results in weighted networks, the weight being provided by the TE value. Diagrams of these networks are106

show in Fig. 2.107

We are able to notice a number of interesting spatio-temporal patterns in these diagrams. Firstly, the density108

(number of edges) of the networks increases over time. This is quantified in Table II, which shows the number of109

source-target pairs of electrodes for which a statistically significant non-zero TE value was estimated. In all cultures110
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FIG. 2: (a) The functional networks implied by the estimated TE values. Each node represents an electrode in the

original experimental setup. The nodes are spatially laid out according to their position in the recording array. An

edge is present between nodes if there is a statistically significant information flow between them. The edge weight

and colour is indicative of the amount of information flowing between electrodes (see the legend). The scaling of this

weight and colour is done relative to the mean and variance of the information flow in each recording separately.

The size and colour of the nodes is assigned relative to the total outgoing and incoming information flow on the

node, respectively. As with the edge colour and size, this is done relative to the distribution of these values in each

recording separately. (b) The spatial layout of the nodes. The numbering is identical to that used in the

documentation of the open dataset studied in this work [21, 24]
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FIG. 3: Plots investigating the relationship between the information flow on a given source-target pair over different

days of development. (a) through (d) show scatter plots between all pairs of days for each culture (excluding days

with zero significant TE values). Specifically, in each scatter plot, the x value of a given point is the TE on the

associated edge on an earlier day and the y value of that same point is the TE on the same edge but on a later day.

The days in question are shown on the bottom and sides of the grids of scatter plots. The orange line shows the

ordinary least squares regression. The Spearman correlation (ρ) between the TE values on the two days is displayed

in each plot. Values of ρ significant at the 0.05 level are designated with an asterix and those significant at the 0.01

level are designated with a double asterix. A Bonferroni correction for multiple comparisons was used. (e) shows all

recording day pairs for all cultures (where the pairs are always from the same culture) and the associated Spearman

correlation between the TE on the edges across this pair of recording days.
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FIG. 4: Plots investigating the relationship between the outward information flow from a given node over different

days of development. (a) through (d) show scatter plots between all pairs of days for each culture (excluding days

with zero significant TE values). Specifically, in each scatter plot, the x value of a given point is the average

outgoing TE from the associated node on an earlier day and the y value of that same point is the total outgoing TE

from the same node but on a later day. The days in question are shown on the bottom and sides of the grids of

scatter plots. The orange line shows the ordinary least squares regression. The Spearman correlation (ρ) between

the outgoing TE values on the two days is displayed in each plot. Values of ρ significant at the 0.05 level are

designated with an asterix and those significant at the 0.01 level are designated with a double asterix. A Bonferroni

correction for multiple comparisons was used. (e) shows all recording day pairs for all cultures (where the pairs are

always from the same culture) and the associated Spearman correlation between the outward TEs of nodes across

this pair of recording days.
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Culture 1-1 day 4 day 14 day 20

0 614 2392

Culture 1-3 day 5 day 10 day 16 day 24

55 311 823 2367

Culture 2-2 day 9 day 15 day 21 day 33

211 558 538 1984

Culture 2-5 day 4 day 10 day 22 day 28

0 351 1481 1942

TABLE II: The number of source-target pairs of electrodes with a statistically significant TE value between them

for each recording studied. This corresponds to the number of possible edges in the functional networks shown in

Fig. 2. As the electrode arrays used to record the data had 59 electrodes, the total number of unique ordered pairs

of electrodes (and, therefore, the number of possible edges) is 3422.

studied in this work, the number of such pairs (and, therefore, the network density), increased by orders of magnitude111

over the life of the culture. For instance, in both cultures 1-1 and 2-5, no statistically significant TE values are112

estimated on the first recording day. However, around 2000 source-target pairs have significant TE values between113

them on the final day of recording for each culture. We are, therefore, observing the networks moving from a state114

where no nodes are exchanging information, to one in which information is being transferred between a substantial115

proportion of the pairs of nodes (≈ 58% density of possible directed connections in the network). Put another way, the116

functional networks are emerging from an unconnected state to a highly connected state containing the information117

flow structure that underpins the computational capacity of the network. This helps to explain the overall increase118

in information flow across the network reported in Sec. II A.119

We observe that the information flow (both incoming and outgoing) is spread somewhat evenly over the networks -120

in the sense that in the later, highly-connected, recordings there are very few areas with neither incoming nor outgoing121

flow. A number of clear hubs do stand out against this strong background information flow however. The strongest122

such hubs (with many high-TE edges) are all information sinks: they have low outgoing information flow, but receive123

high flow from a number of other nodes.124

One can observe many instances in these diagrams where nodes have either very high incoming flow and very low125

outgoing flow, or very low incoming flow and very high outgoing flow. That is, they are taking on the roles of source126

(information-transmitting) hubs or target (information-receiving) hubs. Notable instances of information-receiving127

hubs include: node 49 of day 16 of culture 1-3, Node 42 of day 22 of culture 2-5 and node 5 of day 15 of culture 2-2128

(see Fig. 2b for the node numbers used here). Notable examples of information transmitting hubs include node 28129

of day 10 culture 1-3 and nodes 18, 19, 22 and 30 of day 22 of culture 2-5. The specialist computational roles that130

nodes can take on will be studied in more detail in Sec. II D, with a particular focus on how this relates to the burst131

propagation.132

It is possible to observe some notable instances whereby the information processing properties of a node remain133

remarkably similar across recording days. For example, nodes 55, 50 and 39 of culture 2-2 are outgoing hubs (with134

almost no incoming TE) on all 4 recording days. This offers us a tantalising hint that the information processing135

structure of these networks might be locked in early in development, being reinforced as time progresses. The following136

subsection (Sec. II C) performs a quantitative analysis of this hypothesis.137
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C. Early lock-in of information flows138

In the previous subsection, analysis of the functional networks of information flow suggested that the structure139

of the information processing capacity of the developing networks might be determined early in development and140

reinforced during the subsequent neuronal maturation.141

In order to quantitatively investigate this hypothesis, we examine the relationships in the information flow from142

a given source to a given target between different recording days. That is, we are probing whether the amount of143

information flowing between a source and a target on an early day of development will be correlated with the amount144

flowing on a later day of development. This is equivalent to studying the correlation in the weights of the edges of145

the functional networks across different recording days. Fig. 3 shows scatter plots between the TE values estimated146

between each source-target pair on earlier and later days. By observing the pair scatters in Fig. 3a through Fig. 3d147

we see that, in many pairs of days, there appears to be a substantial correlation between the TE values on the148

edges across days. This is particularly pronounced for cultures 1-3 and 2-2, though visual assessment of the trend149

is complicated by the many zero values (where TE is not signficant), gaps in the distribution and outliers. As such,150

Fig. 3a through Fig. 3d also display the Spearman rank-order correlation (ρ) for each early-late pair of days for each151

culture. This correlation is positive and statistically significant at the p < 0.01 level (after Bonferroni correction for152

multiple comparisons) in 14 out of the 16 early-late pairs of days studied, with the only exceptions being correlations153

involving the early day 10 for culture 2-5. There are no significant negative correlations. This represents a strong154

tendency for the relatively strong information flows between a given source and target on later days to be associated155

with the relatively strong information flow between the same source and target on an earlier day of development.156

Fig. 3e summarises all Spearman correlations between the early and late TE between source-target pairs. We notice157

a trend whereby the correlation of the TE values seems to be higher between closer days (sample point being closer158

to the diagonal) and where those days are later in the development of the cultures (sample points being further to159

the right).160

We also investigated the manner in which a node’s tendency to be an information source hub might be bound early161

in development. Fig. 4 shows scatter plots between the outgoing TE of each node (averaged across all targets) on162

different days of development along with the associated Spearman correlations. By observing the scatter plots, it163

is easy to see that there is a strong positive relationship between the outgoing information flow from a given node164

on an earlier day of development and the outgoing flow from that same node on a later day. This is not surprising165

given the correlation we already established for TE on individual pairs, but does not automatically follow from that.166

More quantitatively, the Spearman correlation between these variables is positive and statistically significant at the167

p < 0.01 level (after Bonferroni correction for multiple comparisons) in 5 out of the 16 early-late pairs of days studied.168

There is only a single negative correlation and it is not significant. Some of these correlations are particularly strong,169

and indeed stronger than that observed on the TEs of individual node pairs. For instance, between days 22 and170

28 of culture 2-5 we have that ρ = 0.69 and between days 9 and 15 of culture 2-2 we have that ρ = 0.59. More171

intriguingly, some of these correlations extend over very large periods of time. Most notably, in culture 2-2, there is172

a Spearman correlation of ρ = 0.52 between the 9th DIV (the first for which there is a recording) and the 33rd DIV.173

Fig. 4e summarises all Spearman correlations between the early and late total outgoing TE of a given node. As per174

the TEs for individual node pairs, the correlation is higher between closer days and where those days are later in the175

development of the cultures.176

Fig. 10 in Appendix B shows similar plots to Fig. 4, but for the average inward TE on each node. As with the177

average outward TE, in nearly all cases there is a positive correlation between the inward TE on early DIV and the178

inward TE on later DIV. However, we do observe fewer statistically significant relationships than with the outward179

TE.180

In summary, the data suggests that, in these developing neural cell cultures, the structure of the information flows181

is to a large degree locked-in early in development. There is a strong tendency for properties of these flows on later182

days to be correlated with those same properties on earlier days. Specifically, we have looked at the flows between183
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source-target pairs, the average outgoing flow from a source and the average incoming flow to a target. The values of184

these variables on later DIV were found, in the majority of cases, to be positively correlated with the same values on185

earlier DIV. Further, there were no cases where a statistically significant negative correlation was found.186

D. Information flows quantify computational role of burst position187

Developing cultures of dissociated neurons have a tendency to self-organize so as to produce population bursts or188

avalanches [21, 25]. Such spike avalanches are not only a feature of cell cultures, being a ubiquitous feature of in vivo189

neural recordings [26–28]. There is a wide body of work discussing the potential computational importance of such190

periods of neuronal activity [29–35]. It has been observed that cultures often follow an ordered burst propagation191

[23, 36], whereby some units tend to burst towards the start of the population burst and others tend to burst towards192

its end. More recent work has proposed that the nodes which burst at different points in this progression play different193

computational roles [23]. This work has placed special importance on those nodes which burst during the middle of194

the burst progression, conjecturing that they act as the “brokers of neuronal communication”.195

The framework of information dynamics is uniquely poised to illuminate the computational dynamics during pop-196

ulation bursting as well as the different roles that might be played by various nodes during these bursts. This is due197

to its ability to analyse information processing locally in time [2, 37–39], as well as directionally between information198

sources and targets via the asymmetry of transfer entropy. This allows us to isolate the information processing taking199

place during population bursting activity. We can then determine the information processing roles undertaken by the200

different nodes and examine how this relates to their position in the burst propagation.201

We analyse the information flowing between nodes during population bursts by estimating the burst-local TE be-202

tween nodes in each recording (i.e. averaging the transfer entropy rates only during bursting periods, using probability203

distribution functions estimated over the whole recordings; see Sec. IV H). We also measure the mean position of each204

node within bursts (with earlier bursting nodes having a lower numerical position; see Sec. IV G). Fig. 5a and Fig. 5b205

show plots of the mean burst position plotted against the total inward (Fig. 5a) and outward (Fig. 5b) burst-local TE206

of each node. Plots are only shown for days where there was a non-zero number of statistically significant burst-local207

TE values. The Spearman correlation (ρ) between these variables is also displayed on the plots.208

We see from Fig. 5a that on all days of all cultures (apart from the first recording day of culture 2-5) there is209

a positive correlation between the mean burst position of the node and the total inward burst-local TE. In other210

words: later bursting nodes have higher incoming information flows. These correlations are statistically significant211

at the p < 0.01 level (after Bonferroni correction for multiple comparisons) in 6 of the 12 days for which there was212

a non-zero number of significant burst-local TE values (with 5 of the 12 having ρ > 0.5). There are no significant213

negative correlations. Moreover, the correlations are significant and strong on 3 out of the 4 final days of development,214

and several are very strong (e.g. the last recording day of culture 1-3 has ρ = 0.86). These relationships suggest that215

there is a tendency for the late bursters to occupy the specialised computational role of information receivers.216

Conversely, as shown in Fig. 5b, there is a tendency towards a negative correlation between the mean burst position217

and the outgoing burst-local TE. On all 12 of the recordings for which there is a non-zero number of significant218

burst-local TE values we observe a negative Spearman correlation. These correlations are statistically significant at219

the p < 0.01 level (after Bonferroni correction for multiple comparisons) in 9 of the 12 days. More importantly, all220

values of ρ on the final recording day of each culture are significant, with ρ < −0.5. These results indicate that the221

nodes which burst early in the burst propagation tend to occupy the specialised computational role of information222

transmitters, during the burst period.223

Fig. 5c plots the total incoming burst-local TE on each node against the total outgoing burst-local TE, with points224

coloured according to the node’s mean burst position. We see a very clear pattern in these plots, which is remarkably225

clear on later recording days: nodes at the beginning of the burst progression have high outgoing information flows226

with lower incoming flows whereas those at the end of the progression have high incoming flows with lower outgoing227
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(c) Burst position relative to outgoing and incoming TE.

FIG. 5: The relationship between the amount of incoming and outgoing local (in burst) TE on a given node and its

average burst position. (a) and (b) show the burst position of each node on the x axis of each plot, plotted against

either the total incoming (a) or outgoing (b) TE on the node. The Spearman correlation (ρ) between the mean

burst position and the incoming or outgoing TE values is displayed in each plot. Values of ρ significant at the 0.05

level are designated with an asterix and those significant at the 0.01 level are designated with a double asterix. A

Bonferroni correction for multiple comparisons was used. (c) plots the outgoing TE on the x axis and the incoming

TE on the y axis with the points coloured according to the mean burst position of the node: late bursters are

coloured yellow and early bursters are purple.
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FIG. 6: Plots investigating the relationship between the ratio of outward to total burst-local information flow from a

given node over different days of development. (a) through (d) show scatter plots between all pairs of days for each

culture (excluding days with zero significant burst-local TE values). Specifically, in each scatter plot, the x value of

a given point is the ratio of total outgoing burst-local TE on the associated node to the total burst-local TE on the

same node on one day and the y value of that same point is this same ratio on the same node but on a different day.

The days in question are shown on the bottom and sides of the grids of scatter plots. The orange line shows the

ordinary least squares regression. The Spearman correlation (ρ) between the TE values on the two days is displayed

in each plot. Values of ρ significant at the 0.05 level are designated with an asterix and those significant at the 0.01

level are designated with a double asterix. A Bonferroni correction for multiple comparisons was used. (e) shows all

recording day pairs for all cultures (where the pairs are always from the same culture) and the associated Spearman

correlation between the outward TE of the nodes across this pair of recording days.
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flows. By contrast, those nodes at the middle of the burst progression have a balance between outgoing and incoming228

information transfer. These nodes within the middle of the burst propagation are, therefore, occupying the suggested229

role of mediators of information flow.230

E. Early lock-in of specialised computational roles231

Given that we have seen in Sec. II D that nodes tend to occupy specialised computational roles based on their232

position in the burst propagation and that we have seen in Sec. II C that information processing properties can lock-233

in early in development, it is worth asking whether the specialised computational roles that nodes occupy during234

population bursts lock in during the earlier stages of neuronal development.235

In order to investigate this question we quantified the computational role occupied by a node by measuring the236

proportion of its total incoming and outgoing burst-local TE that was made up by its outgoing burst-local TE. These237

proportions are plotted in Fig. 6 for the different cultures and development days. In order to help us ascertain the238

relationship over time in these proportions, Fig. 6 shows scatters of these values between earlier and later DIV. It239

also displays the Spearman rank-order correlations (ρ) between the values on different days. Days on which there240

were no significant burst-local TE values estimated were excluded. On every single pair of days examined, there241

was a positive Spearman correlation between the proportion of outgoing burst-local TE on the earlier day and this242

same proportion on the later day. These positive correlations are statistically significant at the p < 0.05 level (after243

Bonferroni correction for multiple comparisons) in 6 out of the 16 early-late pairs of days studied. Fig. 6e summarises244

all these Spearman correlations between the early and late day pairs.245

These results suggest that, if a node is an information transmitter during population bursts early in development,246

it has a tendency to maintain this specialised role later in development. Similarly, being an information receiver early247

in development increases the probability that the node will occupy this same role later.248

F. Information Flows in an STDP Model of Development249

In order to investigate the generality of the phenomena revealed in this paper, we re-implemented a model network250

[40] of Izhikevich neurons [41] developing according to an STDP [42] update rule as described in Sec. IV B. For the low251

value of the synaptic time constant which we used (see Sec. IV B), these networks developed from a state where each252

neuron underwent independent tonic spiking at a regular firing rate, to one in which the dynamics were dominated by253

periodic population bursts [43]. Small modifications were made to the original model in order that the development254

occurred over a greater length of time. The greater length of development allowed us to extract time windows which255

were short relative to the timescale of development (resulting in the dynamics being approximately stationary in these256

windows) yet still long enough to sample enough spikes for reliable transfer entropy rate estimation. The windows257

which we used resulted in a median of 5170 spikes per neuron per window, compared with a median of 17 399 spikes258

per electrode in the biological data. See Sec. IV B for more details on the modifications made. Three windows were259

extracted, extending between the simulation time-points of 200 and 250 seconds, 400 and 450 seconds and 500 and260

550 seconds. These time windows were labelled ‘early’, ‘mid’ and ‘late’, respectively. The early window was chosen261

such that it had a non-zero number of significant TE values, but such that this number was of the same (order of262

magnitude in) proportion as observed in the first recording days of the cell cultures (refer to Table II). The mid period263

was set at the point where population bursting begun to emerge and the late period was set at the point where all264

neurons were bursting synchronously in a pronounced manner.265

TE values between all pairs of model neurons were estimated, as described in Sec. IV D. These estimates were then266

subjected to the same statistical analysis as the cell culture data, the results of which are presented in the preceding267

subsections of this Results section. The plots of this analysis are displayed in Fig. 7 and Fig. 8.268
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FIG. 7: Equivalent plots to those shown in Figs.1, 3, 4 and 10, but for the simulated spiking network developing

under STDP. (a) Shows scatters of the TE values overlaid on box plots. The box plots show the quartiles and the

median (values greater than 10 standard deviations from the mean have been removed from both the box and

scatter plots as outliers). It corresponds to Fig. 1a. (b) through (d) show scatter plots investigating the relationship

between TE values (or derived summary statistics) over different stages of development. Specifically, in each scatter

plot, the x value of a given point is a TE value or derived statistic at an earlier simulation stage and the y value of

that same point is a TE value (or derived statistic) on the corresponding edge or node, but later in the simulation.

The orange line shows the ordinary least squares regression. The Spearman correlation (ρ) between the TE values

on the two days is displayed in each plot. Values of ρ significant at the 0.05 level are designated with an asterix and

those significant at the 0.01 level are designated with a double asterix. A Bonferroni correction for multiple

comparisons was used. (b) corresponds to the scatter plots in Fig. 3, (c) correponds to the scatter plots in Fig. 4

and (d) correponds to the scatter plots in Fig. 10.

Scatters and box plots of the TE values estimated in each developmental window are shown in Fig. 7a. We observe269

a large, monotonic, increase in these values over development. This mirrors the finding in cell cultures, as described270

in Sec. II A.271

We also observe the same lock-in phenomenon of information processing as was found in the cell cultures (described272

in Sec. II C). Fig. 7b through Fig. 7c show the correlation in information flow between different stages of development.273

Specifically, Fig. 7b shows the correlation in TE values between each ordered pair of neurons between early and later274

windows. Fig. 7d shows this same correlation, but for the total incoming TE on each neuron and Fig. 7c does this for275
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FIG. 8: Equivalent plots to those shown in Fig. 5, but for the simulated spiking network developing under STDP.

Plots show the relationship between the amount of incoming and outgoing local (in burst) TE on a given node and

its average burst position. (a) and (b) show the burst position of each node on the x axis of each plot, plotted

against either (a) the total incoming or (b) outgoing TE on the node. The Spearman correlation (ρ) between the

mean burst position and the incoming or outgoing TE values is displayed in each plot. Values of ρ significant at the

0.05 level are designated with an asterix and those significant at the 0.01 level are designated with a double asterix.

A Bonferroni correction for multiple comparisons was used. (c) Plots the outgoing TE on the x axis and the

incoming TE on the y axis with the points coloured according to the mean burst position of the node: late bursters

are coloured yellow and early bursters are purple.

the total outgoing TE. In six of the nine plotted relationships, we observe a statistically significant positive correlation276

between values on earlier and later days (significant at the p < 0.05 level, with Bonferroni correction). There are no277

significant negative correlations. As with the cell cultures, some of the observed correlations are particularly strong,278

such as the Spearman correlation of ρ = 0.85 between the total incoming TE on each in the mid window and this279

same value in the late window. This implies that the spatial structure of the information flow has a tendency to be280

determined in the earlier stages of development, after which they are locked in – in a similar fashion to what was281

observed in the biological experiments in earlier sections.282

We also performed the same analysis on computational roles as presented in Sec. II D. This analysis, the results283

of which are presented in Fig. 8, only looked at the mid and late windows. The early window was ignored due to284

its lack of bursting activity. In the mid recording window, we observe a somewhat weak relationship between the285

mean burst position of the neuron and its computational role. Fig. 8a shows that there is a weakly significant (at286

the p < 0.01 level) positive correlation between the mean burst position of a neuron and its total incoming burst-287

local TE (see Sec. IV H for more details on the burst-local TE). There is also a weak negative correlation between288

the mean burst position and the total outgoing burst-local TE, as shown in Fig. 8a. However, this relationship is289

not significant. These same figures also display these relationships for the late window. Here, we observe the same290

directions of relationships, however, they are much stronger and statistically significant in both cases. This implies291

that we are observing the same specialisation into computational roles based on burst position as was observed in the292

cell cultures: early bursters display a tendency to be information transmitters, late bursters operate as receivers and293
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middle bursters exhibit a balance of the two.294

It is worth noting that the estimated TE values in the model are substantially higher than in the biological dataset.295

The median estimated TE in the late window of the model was around 20 nats.s−1 (Fig. 7a). Conversely, it was less296

than 0.1 nats.s−1 for every last recording day of the cell cultures (Fig. 1a). This is due to the much higher spike rate297

of the model implying that the dynamics are operating on different time-scales. Indeed, if we compare the magnitude298

of the burst-local TE — which is measured in nats per spike (see Sec. IV H) — between the model and the biological299

data (Fig. 8 and Fig. 5, respectively), we find values of similar magnitude.300

In summary, in a network model of Izhikevich neurons developing according to STDP towards a state of population301

bursts, we observe the same developmental information-processing phenomena as in the cell cultures. Namely, the302

amount of information flowing across the network increases dramatically, the spatial structure of this flow locks in303

early and the neurons take on specialised computational roles based on their burst position.304

III. DISCUSSION305

Biological neural networks are imbued with an incredible capacity for computation, which is deployed in a flexible306

manner in order to achieve required tasks. Despite the importance of this capacity to the function of organisms, how307

it emerges during development has remained largely a mystery. Information dynamics [1, 2, 37, 44, 45] provides a308

framework for studying such computational capacity, by measuring the degree to which the fundamental information309

processing operations of information storage, transfer and modification occur within an observed system.310

Previous work on the information flow component of computational capacity in neural cell cultures [14–20] has311

focussed on the static structure of information flow networks at single points in time. This has mostly taken the form312

of elucidating properties of the functional networks implied by the information flows. However, such work leaves open313

questions concerning how these structures are formed. We address this gap here.314

An initial goal in addressing how computational capacity emerges was to determine when the information flow315

component arrived. It is plausible that this capacity could have been present shortly after plating or that it could316

have arrived suddenly at a later point in maturation. What we see, however, is that the capacity for information317

transmission is either not present, or only minimally present, in the early DIV. This can be seen by looking at the318

very low mean TE values in the first column of Table I. However, over the course of development we see that the TE319

values increase progressively, reaching values orders of magnitude larger. This implies that information transmission320

is a capacity which is developed enormously during neuronal development and that its gain is spread consistently321

throughout the observed period.322

The information processing operations of a system tend to be distributed over it in a heterogeneous fashion. For323

example, it has been found in models of whole-brain networks [46–48], abstract network models [49–51] and even324

energy networks [52], that nodes with high indegrees tend to also have high outgoing information flows. Sec. II B325

examined the emergent information flow networks, formed by connecting nodes with a statistically significant TE326

value between them. In accordance with this previous work – and indeed the large variation in shared, unique and327

synergistic information flow components observed on the same data set (albeit with the discrete-time estimator) [20]328

– these networks exhibited a high degree of heterogeneity. Notably, as shown in Fig. 2a, they have prominent hubs of329

inward flow (sinks) along with less pronounced hubs of outgoing flow (sources). Moreover, along with heterogeneity330

within individual networks, large structural differences are easily observed between the different networks shown in331

Fig. 2a.332

Keeping with our goal of uncovering how features of mature information flow networks self-organise, we examined333

how this heterogeneity at both the intra-network and inter-network levels emerged. It was found in Sec. II C that334

key features of the information flow structure are locked-in early in development. This effect was identified for the335

outgoing TE from each node for example, where we found strong correlations over the different days of development.336

It is worth further noting that this lock-in phenomenon occurs remarkably early in development. Specifically, in very337
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many cases, we observe strong correlations between quantities estimated on the first recording days with nonzero338

TE and the same same quantities estimated on later days. This early lock-in provides us with a mechanism for how339

the high heterogeneity exhibited in the inflow and outflow hubs emerges. Small differences between networks on340

early DIV will be magnified on subsequent days. This leads to the high levels of inter-network heterogeneity that341

we observe. A similar phenomenon has been observed with STDP, which can lead to symmetry breaking in network342

structure [53, 54], whereby small fluctuations in early development can set the trajectory of the synaptic weights343

on a specific path with a strong history dependence. In order to confirm a hypothesis that this observed lock-in of344

information flows could be induced by STDP, in Sec. II F we studied the information dynamics of a model network345

of Izhikevich neurons developing according to an STDP [42] update rule from a state of independent tonic firing to346

population bursting. The lock-in of key features of the information flow structure was evident over the period where347

the network developed from independent firing to synchronous bursting. This indicates a plausible mechanism for our348

observations, and suggests a broader generality of these phenomena. An interesting difference between the results for349

the model and the biological data, is that the lock-in was stronger for outward TE in the biological data, whereas350

it was stronger for inward TE in the model. The reasons for this difference require further investigation, however it351

might be due to the multi-unit nature of the biological data or the simplicity of the model used.352

It has been hypothesised that different neural units take on specialised computational roles [23, 55, 56]. In Sec. II D,353

we investigated the information flows occurring during the critical bursting periods of the cultures’ dynamics. Specifi-354

cally, we studied the burst-local TE in order to measure the information being transferred between nodes during these355

periods. The plots shown in Fig. 5 show a clear tendency for the nodes to take on specialised computational roles,356

especially later in development. Moreover, these computational roles were tightly coupled to the node’s position in the357

burst propagation. Nodes initiating the bursts had a tendency to have high outgoing information transfer combined358

with low incoming information flow, implying their role as information transmitters. The opposite relationship is359

oberved for late bursters, indicating their role as information receivers. By contrast, nodes bursting during the middle360

of the progression have a balance between outward and inward flows. This indicates that they are the crucial links361

between the transmitters and receivers of information. It is worth reflecting on the fact that the observed correlations362

between burst-local information transfer and burst position will not occur in all bursty neuronal populations. For363

instance, in populations with periodic bursts, each node’s behaviour will be well explained by its own history, resulting364

in very low burst-local TE’s, regardless of burst position. Neurons bursting in the middle of the burst progression365

of dissociated cell cultures have received special attention in past work using undirected measures, where it was366

conjectured that they act as the “brokers of neuronal communication” [23]. In this work, we have provided novel367

supporting evidence for this conjecture, by specifically identifying the directed information flows into and out of these368

nodes. Moreover, in Sec. II F, we observed that this same specialisation of neurons into computational roles based on369

burst position occurred in a model network of Izhikevich neurons which had developed via an STDP learning rule to370

a state of population bursting. This suggests that this phenomenon might exist more generally than the specific cell371

cultures studied. It is also worth noting that some of these relationships, notably those shown in Fig. 7b and Fig. 7d372

are much stronger than what was observed in the cell culture. It is likely that this is due to the fact that in the model373

we estimated TE between individual model neurons, whereas in the cultures we estimated TE between the multi-unit374

activity on each electrode.375

Returning once more to our focus on investigating the emergence of information flows, we have demonstrated, in376

Sec. II E, that these specialist computational roles have a tendency to lock in early. There we looked at the ratio of377

outgoing burst-local TE to the total burst-local TE on each node. It was found that there is a strong tendency for378

this ratio to be correlated between early and late days of development. This suggests that the computational role379

that a node performs during population bursts is determined to a large degree early in development.380

Insights into development aside, a fundamental technical difference between the work presented here and previous381

studies of TE in neural cultures is that here we use a recently-developed continuous-time estimator of TE [22]. This382

estimator was demonstrated to have far higher accuracy in estimating information flows than the traditional discrete-383

time estimator. The principle challenge which is faced when using the discrete-time estimator is that the curse of384
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dimensionality limits the number of previous time bins that can be used to estimate the history-dependent spike rates.385

All applications of this estimator to spiking data from cell cultures of which the authors are aware [14–19] made use386

of only a single previous bin in the estimation of these rates. This makes it impossible to simultaneously achieve high387

time-precision and capture the dependence of the spike rate on spikes occurring further back in time. Conversely,388

by operating on the inter-spike intervals, the continuous-time estimator can capture the dependence of the spike rate389

on events occurring relatively far back in time, whilst maintaining the time precision of the raw data. Looking at390

a specific representative example, our target history embeddings made use of the previous four inter-spike intervals391

(Sec. IV E). For the recording on day 24 of culture 1-3, the mean interspike interval was 0.71 seconds. This implies392

that the target history embeddings on average extended over a period of 2.84 s. The raw data was collected with a393

sampling rate of 25 kHz [21]. In order to lose no time precision, the discrete-time estimator would thus have to use394

bins of 40 µs, and then in order to extend over 2.84 s, the target history embeddings would therefore need to consist395

of around 70 000 bins.396

It is worth noting that, as we were performing a longitudinal analysis where each studied recording was separated397

by days or weeks, we did not perform spike sorting as we would have been unable to match the different units on an398

electrode across different recordings. We would then not have been able to compare the TE values on a given unit399

over the course of development. Instead, we analyzed the spikes on each electrode without sorting. As such, this work400

studies multi-unit activity [23]. Spike sorting applied to data collected from a near-identical recording setup found an401

average of four neurons per electrode [57]. This situates this work at a spatial scale slightly larger than spike-sorted402

neural data, but still orders of magnitude finer than fMRI, EEG or MEG [58].403

An exciting direction for future work will be to examine the information flow provided by higher-order multivariate404

TEs [59, 60]. The networks inferred by such higher-order TEs are able to better reflect the networks’ underlying405

structural features [59]. As was the case with bivariate TEs prior to this work, there is an absence of work investigating406

how the networks of multivariate information flow emerge during neural development. Moreover, moving to higher-407

order measures will allow us to more fully characterise the multifaceted specialised computational roles undertaken408

by neurons.409

IV. METHODS410

A. Cell culture data411

The spike train recordings used in this study were collected by Wagenaar et. al. [21] and are freely available online412

[24]. The details of the methodology used in these recordings can be found in the original publication [21]. A short413

summary of their methodology follows:414

Dissociated cultures of rat cortical neurons had their activity recorded. This was achieved by plating 8x8 Multi-415

Electrode Arrays (MEAs), operating at a sampling frequency of 25 kHz with neurons obtained from the cortices of416

rat embryos. The spacing between the electrodes was 200 µm center-to-center. The MEAs did not have electrodes417

on their corners and one electrode was used as ground, resulting in recordings from 59 electrodes. In all recordings,418

electrodes with less than 100 spikes were removed from the analysis. This resulted in electrodes 37 and 43 (see Fig. 2b419

for the position of these electrodes) being removed from every recording as no spikes were recorded on them. The420

spatial layout of the electrodes is available from the website associated with the dataset [24], allowing us to overlay421

the functional networks onto this spatial layout as is done in figure Fig. 2a.422

30 minute recordings were conducted on most days, starting from 3-4 Days In Vitro (DIV). The end point of423

recording varied between 25 and 39 DIV. Longer overnight recordings were also conducted on some cultures at sparser424

intervals. As the accurate estimation of information-theoretic quantities requires substantial amounts of data [22, 61],425

in this work we make use of these longer overnight recordings. These recordings were split into multiple files. The426

specific files used, along with the names of the cultures and days of the recordings are listed in Table III.427
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The original study plated the electrodes with varying densities of cortical cells. However, overnight recordings were428

only performed on the ‘dense’ cultures, plated with a density of 2500 cells/µL.429

The original study performed threshold-based spike detection by determining that a spike was present in the case430

of an upward or downward excursion beyond 4.5 times the estimated RMS noise of the recorded potential on a431

given electrode. The analysis presented in this paper makes use of these detected spike times. No spike sorting was432

performed and, as such, we are studying multi-unit activity (MUA) [23].433

Culture 1-1 day 4 day 14 day 20

2 2 2

Culture 1-3 day 5 day 10 day 16 day 24

2 2 2 2

Culture 2-2 day 9 day 15 day 21 day 33

2 2 2 2

Culture 2-2 day 4 day 10 day 22 day 28

1 1 2 1

TABLE III: File numbers used for each culture on each day. These correspond to the file numbering used in the

freely available dataset used in this study, provided by Wagenaar et. al.[21, 24]

B. Network of Izhikevich Neurons434

The model spiking network used to generate the data analysed in Sec. II F is identical to that presented in [40], with435

a few minor alterations. This model consists of Izhikevich neurons [41] developing according to an STDP [42] update436

rule. At the beginning of the simulation, each neuron performs independent tonic spiking, however, the network437

develops towards population bursts.438

The specific model settings used were based on those used to produce Fig. 5A in [40]. That is, the proportion of439

inhibitory neurons (α) and the synapse time delay (τij) were both set to 0. The first change made was to use 59440

neurons, as opposed to the 500 used in [40], in order to correspond to the number of electrodes used in the cell culture441

recordings. The maximum connection strength (gmax) was also increased from 0.6 to 10 in order to compensate for442

this reduction in the network size.443

The only remaining change was made in order to slow the rate of development of the population. The reasoning444

behind this was to allow for the extraction of windows which were much shorter than the time scale of development,445

resulting in the dynamics within these windows being approximately stationary (and including enough samples for446

estimation of the transfer entropy rates). Specifically, this change was to greatly reduce the values of the maximum447

synaptic potentiation and depression (A+ and A−). These values were reduced from 5×10−2 to 4×10−4.448

C. Data pre-processing449

As the data was sampled at 25 kHz, uniform noise distributed between −20 µs and 20 µs was added to each spike450

time. This is to prevent the TE estimator from exploiting the fact that, in the raw data, inter-spike intervals are451

always an integer multiple of 40 µs.452
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D. Transfer entropy estimation453

Parameter Description Value

NX Number of spikes in the target spike train varied (see text)

lX Number of inter-spike intervals in target

history embeddings

4

lY Number of inter-spike intervals in source

history embeddings

2

kglobal Number of nearest neighbours to find in

the initial search

10

kperm Number of nearest neighbours to consider

during surrogate generation

4

NU Number of random samples of histories at

non-spiking points in time

10NX

NU,surrogates Number of random samples of histories at

non-spiking points in time used for surro-

gate generation

10NX

Nsurrogates Number of surrogates to generate for each

node pair

100

TABLE IV: The parameter values used in the continuous-time TE estimator. A complete description of these

parameters, along with analysis and discussion of their effects can be found in [22].

The (bivariate) Transfer entropy (TE) [3, 4] was estimated between each pair of electrodes in each of the recordings454

listed in Table III. TE is the mutual information between the past state of a source process and the present state of455

a target process, conditioned on the past state of the target. More specifically (in discrete time), the TE rate is:456

ṪY→X =
1

∆t
I (Xt ; Y<t |X<t)

=
1

τ

NT∑
t=1

ln
p (xt |x<t,y<t)
p (xt |x<t)

.
(1)

The TE above is being measured from a source Y to a target X, I( · ; · | · ) is the conditional mutual information [62],457

xt is the current state of the target, x<t is the history of the target, y<t is the history of the source, ∆t is the bin458

width (in time units), τ is the length of the processes and NT = τ/∆t is the number of time samples (bins). The459

histories x<t and y<t are usually captured via embedding vectors, e.g. x<t = xt−m:t−1 = {xt−m, xt−m+1, . . . , xt−1}.460

1. Previous application of the discrete-time estimator461

Previous applications of TE to spiking data from neural cell cultures [14–20] made use of this discrete-time for-462

mulation of TE. This work was primarily focussed on the directed functional networks implied by the estimated TE463

values between pairs of nodes which has revealed interesting features of the information flow structure. Shimono464

and Beggs [15] found that these networks exhibited a highly non-random structure and contained a long-tailed degree465

distribution. This work was expanded by Nigam et. al.[14], where it was found that the functional networks contained466

a rich-club topology. Conversely, Timme et. al. [17] found that the hubs of these networks were localised to certain467
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time scales. Other work [19, 20] has instead focussed on how the components of information flows in cell cultures can468

be decomposed into unique, redundant and synergystic components.469

2. Continuous-time estimation470

It has, relatively recently, been shown that, for event-based data such as spike-trains, in the limit of small bin size,471

that the TE is given by the following expression [63]:472

ṪY→X = lim
τ→∞

1

τ

NX∑
i=1

ln
λx|x<t,y<t

[x<xi
,y<xi

]

λx|x<t
[x<xi ]

. (2)

Here, λx|x<t,y<t
[x<xi

,y<xi
] is the instantaneous firing rate of the target conditioned on the histories of the target473

x<xi
and source y<xi

at the time points xi of the spike events in the target process. λx|x<t
[x<xi

] is the instantaneous474

firing rate of the target conditioned on its history alone, ignoring the history of the source. It is important to note475

that the sum is being taken over the NX spikes of the target: thereby evaluating log ratios of the expected spike476

rates of the target given source and target histories versus target histories alone, when the target does spike. As this477

expression allows us to ignore the “empty space” between events, it presented clear potential for allowing for more478

efficient estimation of TE on spike trains.479

This potential was recently realised in a new continuous-time estimator of TE presented in [22] (and utilised in480

[64]), and all TE estimates in this paper were performed using this new estimator. In [22] it is demonstrated that this481

continuous-time estimator is far superior to the traditional discrete-time approach to TE estimation on spike trains.482

For a start, unlike the discrete-time estimator, it is consistent. That is, in the limit of infinite data, it will converge to483

the true value of the TE. It was also shown to have much preferable bias and convergence properties. Most significantly,484

perhaps, this new estimator utilises the inter-spike intervals to efficiently represent the history embeddings x<xi
and485

y<xi
in estimating the relevant conditional spike rates in (2). This then allows for the application of the highly486

effective nearest-neighbour family of information-theoretic estimators [61, 65], which bring estimation efficiency, bias487

correction, and together with their application to inter-spike intervals enable capture of long time-scale dependencies.488

This is in contrast with the traditional discrete-time estimator which uses the presence or absence of spikes in489

time bins as its history embeddings (it sometimes also uses the number of spikes occurring in a bin). In order to490

avoid the dimensionality of the estimation problem becoming sufficiently large so as to render estimation infeasible,491

only a small number of bins can be used in these embeddings. Indeed, to the best of the authors’ knowledge, all492

previous applications of the discrete-time TE estimator to spiking data from cell cultures used only a single bin in493

their history embeddings. The bin widths used in those studies were 40 µs [14], 0.3 ms [66], and 1 ms [15, 67]. Some494

studies chose to examine the TE values produced by multiple different bin widths, specifically: 0.6 ms and 100 ms495

[16], 1.6 ms and 3.5 ms [19] and 10 different widths ranging from 1 ms to 750 ms [17]. And specifically, those studies496

demonstrated the unfortunate high sensitivity of the discrete-time TE estimator to the bin width parameter. In497

the instances where narrow (< 5 ms) bins were used, only a very narrow slice of history is being considered in the498

estimation of the history-conditional spike rate. This is problematic, as it is known that correlations in spike trains499

exhist over distances of (at least) hundreds of milliseconds [68, 69]. Conversely, in the instances where broad (> 5 ms)500

bins were used, relationships occurring on fine time scales will be completely missed. This is significant given that it501

is established that correlations at the millisecond and sub-millisecond scale play a role in neural function [70–73]. In502

other words, previous applications of transfer entropy to electrophysiological data from cell cultures either captured503

some correlations occurring with fine temporal precision or they captured relationships occurring over larger intervals,504

but never both simultaneously. This can be contrasted with the inter-spike interval history representation used in this505

study. To take a concrete example, for the recording on day 24 of culture 1-3, the average interspike interval was 0.71506

seconds. This implies that the target history embeddings (composed of 4 inter-spike intervals) on average extended507

over a period of 2.84 s and the source history embeddings (composed of 2 inter-spike intervals) on average extended of508
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lX Mean

AIS

Std.

Dev.

p value

1 7.73 4.71 -

2 8.27 4.97 3.0×10−19

3 8.41 5.08 5.8×10−8

4 8.44 5.11 2.7×10−4

5 8.43 5.12 0.85

TABLE V: Summary statistics for the AIS values estimated at different target embedding lengths lX across all

electrodes of a representative recording (day 23 of culture 1-3). The p values shown in the fourth column are

associated with the null hypothesis that the mean AIS at the given lX is equal to the mean AIS at lX − 1.

lY Mean

TE

Std.

Dev.

p value

1 0.031 0.043 -

2 0.058 0.056 0.0

3 0.057 0.069 0.84

TABLE VI: Summary statistics for the TE values estimated at different source embedding lengths lY between all

electrodes of a representative recording (day 23 of culture 1-3). The p values shown in the fourth column are

associated with the null hypothesis that the mean TE at the given lY is equal to the mean TE at lY − 1.

a period of 1.42 s. This is despite the fact that our history representations retain the precision of the raw data (40 µs)509

and the ability to measure relationships on this scale where they are relevant (via the underlying nearest-neighbour510

estimators).511

The parameters used with this estimator are shown in Table IV. The values of kglobal and kperm were chosen because,512

in previous work [22], similar values were found to facilitate stable performance of the estimator. The high values of513

NU and NU,surrogates were chosen so that histories during bursting periods could be adequately sampled. These two514

parameters refer to sample points placed randomly in the spike train, at which history embeddings are sampled. As515

the periods of bursting comprise a relatively small fraction of the total recording time, many samples need to be placed516

in order to achieve a good sample of histories potentially observed during these periods. The choice of embedding517

lengths is discussed in the next subsection (Sec. IV E) and the choice of Nsurrogates is discussed in Sec. IV F.518

Instead of selecting a single number of target spikes NX to include in the analysis, we chose to include all the spikes519

that occurred within the first hour of recording time. The reason for doing this was that the spike rates varied by520

orders of magnitude between the electrodes. This meant that fixing the number of target spikes would result in the521

source spikes being severely undersampled in cases where the target spike rate was much higher than the source spike522

rate. When using one hour of recording time, the smallest number of spikes per electrode was 481, the maximum was523

69627 and the median was 17 399.524
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E. Selection of embedding lengths525

The target embedding lengths were determined by adapting the technique ([60, 74] extending [75]) of maximising526

the bias-corrected Active Information Storage (AIS) [45] over different target embedding lengths for a given target.527

Our adaptations sought to select a consensus embedding parameter for all targets on all trials, to avoid different bias528

properties due to different parameters across targets and trials, in a similar fashion to [76]. As such, our approach529

determines a target embedding length lX which maximises the average bias-corrected AIS across all electrodes, using530

one representative recording (selected as day 23 of culture 1-3). To estimate AIS within the continuous-time framework531

[63] for this purpose, we estimated the difference between the second KL divergence of eq. (10) of [22] and the mean532

firing rate of the target. These estimates contain inherent bias-correction, as per the TE estimator itself. Moreover,533

the mean of surrogate values was subtracted to further reduce the bias. The embedding length lX was continuously534

increased so long as each subsequent embedding produced a statistically significant (at the p < 0.05 level) increase in535

the average AIS across the electrodes. The resulting mean AIS values (along with standard deviations) and p-values536

are shown in Table V. We found that every increase in lX up to 4 produced a statistically significant increase in the537

mean AIS. The increase from 4 to 5 produced a non-significant decrease in the mean AIS and so lX was set to 4.538

With the target embedding length determined, we set about similarly determining a consensus source embedding539

length lY by estimating the TE between all directed electrode pairs on the same representative recording for different540

values of lY . Each estimate also had the mean of the surrogate population subtracted to reduce its bias (see Sec. IV F).541

The embedding length was continuously increased so long as each subsequent embedding produced a statistically542

significant (at the p < 0.05 level) increase in the average TE across all electrode pairs. The resulting mean TE543

values (along with standard deviations) and p-values are shown in Table VI. We found that increasing lY from 1544

to 2 produced a statistically significant increase in the mean TE. However, increasing lY from 2 to 3 produced a545

non-significant decrease in the mean TE. As such, we set lY to 2546

F. Significance testing of TE values547

In constructing the directed functional networks displayed in Fig. 2a, we tested whether the estimated TE between548

each source-target pair was statistically different from the distribution of TEs under the null hypothesis of conditional549

independence of the target from the source (i.e. TE consistent with zero). Significance testing for TE in this way550

is performed by constructing a population of surrogate time-series or history embeddings that conform to the null551

hypothesis of zero TE [59, 60, 77]. We then estimate the TE on each of these surrogates to generate a null distribution552

of TE. Specifically, we generate the surrogates and compute their TEs according the method associated with the553

continuous-time spiking TE estimator [22] and using the parameters shown in Table IV. One small change was made554

to that surrogate generation method: instead of laying out the NU,surrogates sample points randomly uniformly, we555

placed each one at an existing target spike, with the addition of uniform noise on the interval [−80 ms, 80 ms]. This556

was to ensure that these points adequately sampled the incredibly dense burst regions.557

With the surrogate TE distribution constructed, the resulting p value for our TE estimate can be computed by558

counting the proportion of these surrogate TEs that are greater than or equal to the original estimate. Here, we559

seek to compare significance against a threshold of α < 0.01. We chose this lower threshold as false positives are560

generally considered more damaging than false negatives when applying network inference to neuroscientific data561

[78]. We also applied a Bonferroni correction [79] to all the significance tests done on a given recording. Given that562

there are 59 electrodes in the recordings, 3422 tests were performed in each recording. This meant that, once the563

Bonferroni correction was included, the significance threshold dropped to p < 2.9×10−6. Comparing against such a564

low significance threshold would require an infeasible number of surrogates for the many pairs within each recording,565

if computing the p value by counting as above. Instead, we assume that the null TE distribution is Gaussian, and566

compute the p value for our TE estimate using the CDF of the Gaussian distribution fitted from 100 surrogates (as567
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per e.g. [7]). Specifically, the p value reports the probability that a TE estimate on history embeddings conforming to568

the null hypothesis of zero TE being greater than or equal to our original estimated TE value. If this p value is below569

the threshold then the null hypothesis is rejected and we conclude that there is a statistically significant information570

flow between the electrodes.571

G. Analysis of population bursts572

A common family of methods for extracting periods of bursting activity from spike-train recordings examines the573

length of adjacent inter-spike intervals. The period spanned by these intervals is designated a burst if some summary574

statistic of the intervals (e.g.: their sum or maximum) is below a certain threshold [21, 80–83]. In order to detect575

single-electrode as well as population-wide bursts, we implement such an approach here.576

We first determine the start and end points of the bursts of each individual electrode. The locations of the population577

bursts were subsequently determined using the results of this per-electrode analysis.578

The method for determining the times during which an individual electrode was bursting proceded as follows: The579

spikes were moved through sequentially. If the interval between a given spike and the second most recent historic580

spike for that electrode was less than α, then, if the electrode was not already in a burst, it was deemed to have a581

burst starting at the second most recent historic spike. A burst was taken to continue until an inter-spike interval582

greater than a ∗ α was encountered. If such an interval was encountered, then the end of the burst was designated as583

the timestamp of the earlier of the two spikes forming the interval.584

The starts and ends of population bursts were similarly determined by moving through the timeseries in a sequential585

fashion. If the population was not already designated to be in a burst, but the number of electrodes currently bursting586

was greater than the threshold β, then a burst start position was set at the point this threshold was crossed. Conversely,587

if the electrode was already designated to be in a burst and the number of individual electrodes currently bursting588

dropped below the threshold γ (γ < β), then a burst stop position was set at the point this threshold was crossed.589

In this paper, we always made use of the parameters α = 16 ms, a = 3, β = 15 and γ = 10. These parameters were590

chosen by trial-and-error combined with visual inspection of the resulting inferred burst positions. The results of this591

scheme showed low sensitivity to the choice of these parameters.592

H. Estimation of burst-local TE593

The information dynamics framework provides us with the unique ability to analyse information processing locally594

in time [2, 37, 38]. We make use of that ability here to allow us to specifically examine the information flows during595

the important period of population bursts. The TE estimator which we are employing here [22] sums contributions596

from each spike in the target spike train. It then divides this total by the time length of the target spike train that597

is being examined. In order to estimate the burst-local TE, we simply sum the contributions from the target spikes598

where those spikes occurred during a population burst. We then normalise by the number of such spikes, providing599

us with a burst-local TE estimate in units of nats per spike, instead of nats per second.600
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Appendix A: Distribution of information flow values614

Previous studies have placed an emphasis on the observation of log-normal distributions of TE values in in vitro615

cultures of neurons [14, 15]. As such, we analysed the distribution of the nonzero (statistically significant) estimated616

TE values in each individual recording.617

Fig. 1b shows histograms as well as probability density functions estimated by a kernel density estimator (KDE)618
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FIG. 9: Quantile-Quantile (QQ) plots [84] of the nonzero estimated TE values against normal and log-normal

distributions, respectively. The y axis shows estimated TE values (or their logarithm) whereas the x axis shows the

value of the normal distribution at the same quantile. The solid orange line shows the line y = x. If the data is

drawn from the distribution against which it is being plotted then the blue marks will sit along this line. We observe

that the distributions of TE values deviate substantially from both normal and log-normal distributions in all

recordings analysed.
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1-1 day 4 day 14 day 20

- 9.8×10−45 4.2×10−35

1-3 day 5 day 10 day 16 day 24

4.4×10−13 4.7×10−24 2.7×10−36 1.0×10−36

2-2 day 9 day 15 day 21 day 33

7.9×10−6 1.6×10−28 2.6×10−35 9.5×10−38

2-5 day 4 day 10 day 22 day 28

- 7.5×10−10 2.4×10−28 3.7×10−29

TABLE VII: p values for the Shapiro-Wilke test [85] of normality for the distribution of TE values estimated in each

recording. Only the statistically significant TE values are included in these tests. Recordings for which there were

no statistically significant values estimated are left blank. These p values represent the probability that the

associated test statistic is more extreme than that calculated on the estimated TE values, under the null hypothesis

that these values are normally distributed. For any reasonable choice of p cutoff value, the null hypothesis is rejected

in all recordings.

1-1 day 4 day 14 day 20

- 4.0×10−18 7.2×10−11

1-3 day 5 day 10 day 16 day 24

2.4×10−15 3.3×10−6 2.0×10−15 1.5×10−28

2-2 day 9 day 15 day 21 day 33

7×10−7 1.2×10−6 1.2×10−28 6.4×10−19

2-5 day 4 day 10 day 22 day 28

- 4.0×10−4 2.8×10−19 7.3×10−25

TABLE VIII: p values for the Shapiro-Wilke test [85] of log-normality for the distribution of TE values estimated in

each recording. Only the statistically significant TE values are included in these tests. Recordings for which there

were no statistically significant values estimated are left blank. These p values represent the probability that the

associated test statistic is more extreme than that calculated on the logarithms of the estimated TE values, under

the null hypothesis that these values are normally distributed. For any reasonable choice of p cutoff value, the null

hypothesis is rejected in all recordings. It is interesting to note that the p values are often smaller on later days,

despite the Q-Q plots in Fig. 9b suggesting the distribution is closer to log-normal. This is probably due to there

being many more statistically significant TE values on these later days (see Table II).

of the nonzero TE values for each recording. From these plots we can see that the distributions of TE values exhibits619

a clear right (positive) skew.620

In order to ascertain how well the estimated TE values were described by a log-normal distribution, we constructed621

Quantile-Quantile (QQ) plots [84] for the TE values against the log-normal distribution in figure Fig. 9b. In all622

recordings, the plotted points deviate from the line y = x, indicating that the data is not well described by a log-623

normal distribution. However, this deviation appears only slight for some recordings, most notably days 22 and 28624

of culture 2-5. We also perform Shapiro-Wilke tests [85] for log-normality, the resulting p values are displayed in625

Table VIII. The p values for every recording are incredibly low, meaning that we reject the null hypothesis of a626
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log-normal distribution in every case.627

Given that the distributions of the TE values were not well described by a log-normal distribution, we investigated628

the alternative that they could be described by a normal distribution. Fig. 9a displays Quantile-Quantile (QQ) plots629

[84] for the TE values against the normal distribution. In all recordings, the plotted points deviate substantially from630

the line y = x, indicating that the data is poorly described by a normal distribution. We also perform Shapiro-Wilke631

tests [85] for normality, the resulting p values are displayed in Table VII. The p values for every recording are incredibly632

low, meaning that we reject the null hypothesis of a normal distribution in every case.633

These results contrast with observation of log-normal distributions of TE values in in vitro cultures of neurons634

[14, 15]. The difference may be due to the use of continuous-time estimator here in contrast to the discrete-time635

estimator used in previous studies. This estimator is more faithful to capturing the true underlying TE for spike636

trains (as per [22]), however it may be that the combination of the discrete-time estimator and use of only a single637

previous time-bin – in specifically not representing history dependence well – align more strongly with the component638

of the statistical relationship that follows a log-normal distribution. It is also possible that log-normal distributions639

of TE emerge later in development, and are simply not yet present in the early developmental stages observed here640

(noting that the fit to a log-normal distribution seems to improve for later DIV in Fig. 9b).641

Appendix B: Plots for Early Lock-in of Incoming TE642
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FIG. 10: Plots investigating the relationship between the inward information flow from a given node over different

days of development. (a) through (d) show scatter plots between all pairs of days for each culture (excluding days

with zero significant TE values). Specifically, in each scatter plot, the x value of a given point is the average inward

TE from the associated node on an earlier day and the y value of that same point is the total outgoing TE from the

same node but on a later day. The days in question are shown on the bottom and sides of the grids of scatter plots.

The orange line shows the ordinary least squares regression. The Spearman correlation (ρ) between the outgoing TE

values on the two days is displayed in each plot. Values of ρ significant at the 0.05 level are designated with an

asterix and those significant at the 0.01 level are designated with a double asterix. A Bonferroni correction for

multiple comparisons was used. (e) shows all recording day pairs for all cultures (where the pairs are always from

the same culture) and the associated Spearman correlation between the outward TEs of nodes across this pair of

recording days.
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[61] A. Kraskov, H. Stögbauer, and P. Grassberger, Estimating mutual information, Physical review E 69, 066138 (2004).767

[62] D. J. MacKay and D. J. Mac Kay, Information theory, inference and learning algorithms (Cambridge university press,768

2003).769

[63] R. E. Spinney and J. T. Lizier, Characterizing information-theoretic storage and transfer in continuous time processes,770

Physical Review E 98, 012314 (2018).771

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 24, 2021. ; https://doi.org/10.1101/2021.06.29.450432doi: bioRxiv preprint 

https://doi.org/10.1007/978-3-642-54474-3_7
https://doi.org/10.1007/978-3-642-54474-3_7
https://doi.org/10.1007/978-3-642-54474-3_7
https://doi.org/10.3389/fphy.2021.619661
https://doi.org/10.3389/fphy.2021.619661
https://doi.org/10.3389/fphy.2021.619661
https://doi.org/10.1098/rspa.2019.0779
https://doi.org/10.3934/mine.2020003
https://doi.org/10.1101/2021.06.29.450432
http://creativecommons.org/licenses/by-nc-nd/4.0/


31

[64] G. Mijatovic, Y. Antonacci, T. L. Turukalo, L. Minati, and L. Faes, An information-theoretic framework to measure the772

dynamic interaction between neural spike trains, IEEE Transactions on Biomedical Engineering (2021).773

[65] L. Kozachenko and N. N. Leonenko, Sample estimate of the entropy of a random vector, Problemy Peredachi Informatsii774

23, 9 (1987).775

[66] M. Garofalo, T. Nieus, P. Massobrio, and S. Martinoia, Evaluation of the performance of information theory-based methods776

and cross-correlation to estimate the functional connectivity in cortical networks, PloS One 4, e6482 (2009).777

[67] M. Kajiwara, R. Nomura, F. Goetze, T. Akutsu, and M. Shimono, Inhibitory neurons are a central controlling regulator778

in the effective cortical microconnectome., bioRxiv (2020).779

[68] J. W. Aldridge and S. Gilman, The temporal structure of spike trains in the primate basal ganglia: afferent regulation of780

bursting demonstrated with precentral cerebral cortical ablation, Brain Research 543, 123 (1991).781

[69] L. Rudelt, D. G. Marx, M. Wibral, and V. Priesemann, Embedding optimization reveals long-lasting history dependence782

in neural spiking activity, PLOS Computational Biology 17, e1008927 (2021).783

[70] I. Nemenman, G. D. Lewen, W. Bialek, and R. R. D. R. Van Steveninck, Neural coding of natural stimuli: information at784

sub-millisecond resolution, PLoS Computational Biology 4, e1000025 (2008).785

[71] C. Kayser, N. K. Logothetis, and S. Panzeri, Millisecond encoding precision of auditory cortex neurons, Proceedings of the786

National Academy of Sciences 107, 16976 (2010).787

[72] S. J. Sober, S. Sponberg, I. Nemenman, and L. H. Ting, Millisecond spike timing codes for motor control, Trends in788

Neurosciences 41, 644 (2018).789

[73] J. A. Garcia-Lazaro, L. A. Belliveau, and N. A. Lesica, Independent population coding of speech with sub-millisecond790

precision, Journal of Neuroscience 33, 19362 (2013).791

[74] E. Y. Erten, J. T. Lizier, M. Piraveenan, and M. Prokopenko, Criticality and information dynamics in epidemiological792

models, Entropy 19, 194 (2017).793

[75] J. Garland, R. G. James, and E. Bradley, Leveraging information storage to select forecast-optimal parameters for delay-794

coordinate reconstructions, Physical Review E 93, 022221 (2016).795

[76] M. Hansen, A. Burns, C. Monk, C. Schutz, J. Lizier, I. Ramnarine, A. Ward, and J. Krause, The effect of predation risk796

on group behaviour and information flow during repeated collective decisions, Animal Behaviour 173, 215 (2021).797

[77] P. Wollstadt, J. T. Lizier, R. Vicente, C. Finn, M. Martinez-Zarzuela, P. Mediano, L. Novelli, and M. Wibral, Idtxl:798

The information dynamics toolkit xl: a python package for the efficient analysis of multivariate information dynamics in799

networks, arXiv preprint arXiv:1807.10459 (2018).800

[78] A. Zalesky, A. Fornito, L. Cocchi, L. L. Gollo, M. P. van den Heuvel, and M. Breakspear, Connectome sensitivity or801

specificity: which is more important?, Neuroimage 142, 407 (2016).802

[79] G. Rupert Jr et al., Simultaneous statistical inference (Springer Science & Business Media, 2012).803

[80] Y. Kaneoke and J. Vitek, Burst and oscillation as disparate neuronal properties, Journal of neuroscience methods 68, 211804

(1996).805

[81] D. Wagenaar, T. B. DeMarse, and S. M. Potter, Meabench: A toolset for multi-electrode data acquisition and on-line806

analysis, in Conference Proceedings. 2nd International IEEE EMBS Conference on Neural Engineering, 2005. (IEEE,807

2005) pp. 518–521.808

[82] J. V. Selinger, N. V. Kulagina, T. J. O’Shaughnessy, W. Ma, and J. J. Pancrazio, Methods for characterizing interspike809

intervals and identifying bursts in neuronal activity, Journal of neuroscience methods 162, 64 (2007).810

[83] D. J. Bakkum, M. Radivojevic, U. Frey, F. Franke, A. Hierlemann, and H. Takahashi, Parameters for burst detection,811

Frontiers in computational neuroscience 7, 193 (2014).812

[84] J. D. Gibbons and S. Chakraborti, Nonparametric statistical inference (CRC press, 2020).813

[85] S. S. Shapiro and M. B. Wilk, An analysis of variance test for normality (complete samples), Biometrika 52, 591 (1965).814

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 24, 2021. ; https://doi.org/10.1101/2021.06.29.450432doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.29.450432
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Early lock-in of structured and specialised information flows during neural development
	Abstract
	Author Summary
	Introduction
	Results
	The dramatic increase in the flow of information during development
	The emergence of functional information flow networks
	Early lock-in of information flows
	Information flows quantify computational role of burst position
	Early lock-in of specialised computational roles
	Information Flows in an STDP Model of Development

	Discussion
	Methods
	Cell culture data
	Network of Izhikevich Neurons
	Data pre-processing
	Transfer entropy estimation
	Previous application of the discrete-time estimator
	Continuous-time estimation

	Selection of embedding lengths
	Significance testing of TE values
	Analysis of population bursts
	Estimation of burst-local TE

	Contributions
	Acknowledgements
	Distribution of information flow values
	Plots for Early Lock-in of Incoming TE
	References


