

1 Early lock-in of structured and specialised information flows during neural 2 development

3 David P. Shorten,* Viola Priesemann, Michael Wibral, and Joseph T. Lizier†

4 (Dated: September 19, 2021)

The brains of many organisms are capable of complicated distributed computation underpinned by a highly advanced information processing capacity. Although substantial progress has been made towards characterising the information flow component of this capacity in mature brains, there is a distinct lack of work characterising its emergence during neural development. This lack of progress has been largely driven by the lack of effective estimators of information processing operations for the spiking data available for developing neural networks. Here, we leverage recent advances in this estimation task in order to quantify the changes in information flow during development. We do so by studying the changes in the intrinsic dynamics of the spontaneous activity of developing dissociated neural cell cultures. We find that the quantity of information flowing across these networks undergoes a dramatic increase across development. Moreover, the spatial structure of these flows is locked-in during early development, after which there is a substantial temporal correlation in the information flows across recording days. We analyse the flow of information during the crucial periods of population bursts. We find that, during these bursts, nodes undertake specialised computational roles as either transmitters, mediators or receivers of information, with these roles tending to align with their spike ordering — either early, mid or late in the bursts. Further, we find that the specialised computational roles occupied by nodes during bursts tend to be locked-in early. Finally, we briefly compare these results to information flows in a model network developing according to an STDP learning rule from a state of independent firing to synchronous bursting. The phenomena of large increases in information flow, early lock-in of information flow spatial structure and computational roles based on burst position were also observed in this model, hinting at the broader generality of these phenomena.

5 AUTHOR SUMMARY

6 This paper studies the development of computation in biological systems by analysing changes in the flow of
7 information in developing neural cell cultures. Although there have been a number of previous studies of information
8 flows in neural cell cultures, this work represents the first study which compares information flows in the intrinsic
9 dynamics across development time. Moreover, we make use of a recently proposed continuous-time transfer entropy
10 estimator for spike trains, which, in comparison to the discrete-time estimator used previously, is able to capture
11 important effects occurring on both small and large timescales simultaneously. We find that information flows begin
12 to emerge after 5-10 days of activity, and crucially, the spatial structure of information flows remains significantly
13 temporally correlated over the first month of recording. Furthermore, the magnitude of information flows across the
14 culture are strongly related to burst position, and the roles of regions as information flow sources, sinks and mediators
15 are found to remain consistent across development. Finally, we confirm that these early lock-ins also occur in a
16 simple model network developing under an STDP update rule, suggesting a plausible mechanism undergirding this
17 phenomenon.

* david.shorten@sydney.edu.au

† joseph.lizier@sydney.edu.au

18

I. INTRODUCTION

19 Throughout development, how do brains gain the ability to perform advanced computation? Given that the
20 distributed computations carried out by brains require an intrinsic information processing capacity, it is of utmost
21 importance to decipher the nature of the emergence of this capacity during development.

22 For brains to engage in the computations required for specific tasks, they require a general-purpose computational
23 *capacity*. This capacity is often studied within the framework of information dynamics, where it is decomposed into
24 the atomic operations of information storage, transfer and modification [1, 2]. We are particularly interested in the
25 information flow component, which is measured using the Transfer Entropy (TE) [3, 4]. There exists a substantial
26 body of work examining the structure and role of computational capacity in terms of these operations in mature
27 brains. This includes: the complex, dynamic, structure of information transfer revealed by calcium imaging [5], fMRI
28 [6, 7], MEG [8] and EEG [9–12], and the role of information storage in representing visual stimuli [13], among others.

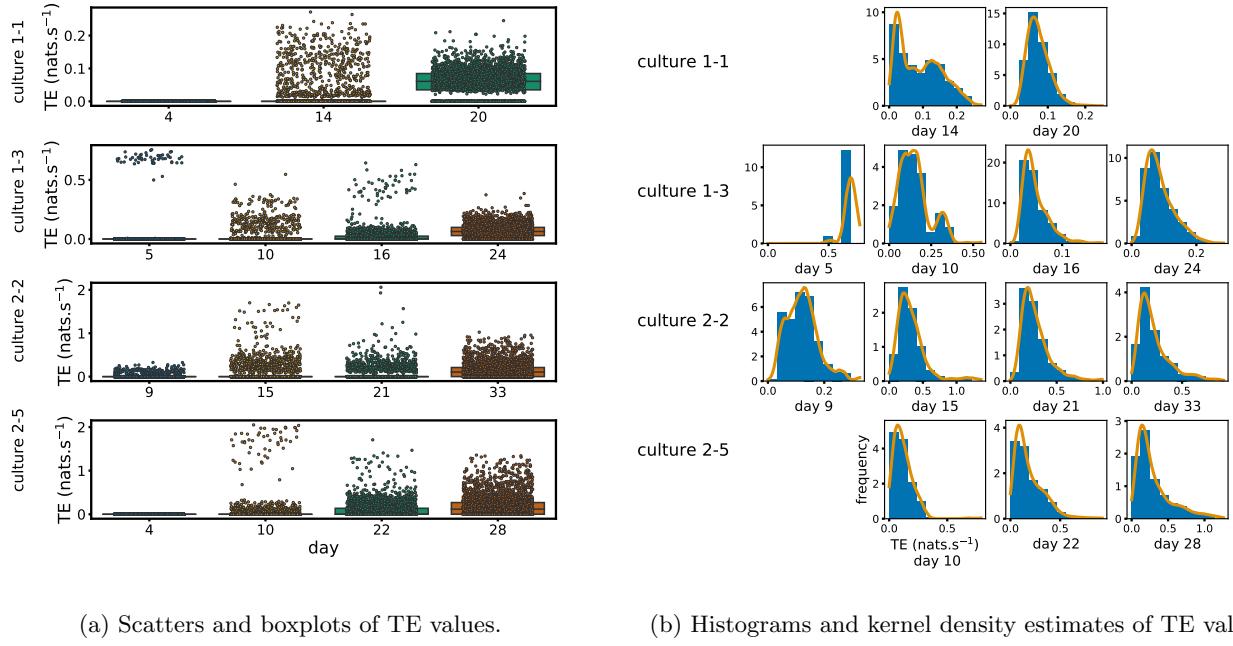
29 Given the established role of information flows in enabling the computations carried out by mature brains, we aim
30 to study how they self-organise during neural development. There are a number of requirements for such a study.
31 Firstly, it needs to be performed at a *fine spatial scale* (close to the order of individual neurons), to capture the details
32 of development. It also needs to be conducted longitudinally in order to track changes over developmental timescales.
33 Finally, the estimation of the information flow as measured by TE needs to be performed with a technique which
34 is both accurate and able to capture the subtleties of computations performed on both fine and large time scales
35 simultaneously.

36 Considering the first requirement of fine spatial scale, cell cultures plated over Multi-Electrode Arrays (MEAs)
37 allow us to record from individual neurons in a single network, providing us with this fine spatial resolution. There
38 have been a number of previous studies examining information flows in neural cell cultures, e.g.: [14–20]. This work
39 has focussed on the functional networks implied by the estimated TE values between pairs of nodes which has revealed
40 interesting features of the information flow structure. See Sec. IV D 1 for a more detailed description of this previous
41 work.

42 However, moving to our second requirement of a longitudinal study, these studies have almost exclusively examined
43 only single points in neural development, since nearly all of them examined recordings from slice cultures of mature
44 networks. By contrast, we aim to study the information flows longitudinally, by estimating them at different stages
45 in development. Using recordings from developing cultures of dissociated neurons [21] makes this possible.

46 In terms of our third requirement of accurate and high-fidelity estimation of TE, we note that all previous studies
47 of information flows in neural cell cultures made use of the traditional discrete-time estimator of TE. As recently
48 demonstrated [22], the use of this estimator is problematic, as it can only capture effects occurring on a single
49 time-scale. In contrast, a novel continuous-time TE estimator [22] captures effects on multiple scales, avoiding time-
50 binning, is data efficient and consistent. See Sec. IV D for a more detailed discussion of the differences between the
51 continuous-time and discrete-time estimators.

52 In this paper, we thus examine the development of neural information flows for the first time, addressing the above
53 requirements by applying the continuous-time TE estimator to recordings of developing dissociated cultures. We find
54 that the amount of information flowing over these cultures undergoes a dramatic increase throughout development and
55 that the patterns of these flows are established early. During bursting periods we find that nodes engage in specialised
56 computational roles as either transmitters, receivers or mediators of information flow. Moreover, these roles correspond
57 with the node's position in the burst propagation, with middle bursters tending to be information mediators. This
58 provides positive evidence for the pre-existing conjecture that nodes in the middle of the burst propagation play the
59 vital computational role of “brokers of neuronal communication” [23]. Intriguingly, the designation of computational
60 roles (transmitter, receiver or mediator) appears to be determined early in development. Finally, in order to investigate
61 the generality of these phenomena, as well as a putative mechanism for their emergence, we study the dynamics of
62 information flow in a model network developing according to an STDP update rule. We find that the above-mentioned
63 phenomena are present in this model system, hinting at the broader generality of such patterns of information flow



(a) Scatters and boxplots of TE values.

(b) Histograms and kernel density estimates of TE values.

FIG. 1: Plots of the distributions of estimated TE values in the recordings analysed in this study. (a) Scatters of the TE values are overlaid on box plots. The box plots show the quartiles and the median (values greater than 10 standard deviations from the mean have been removed from both the box and scatter plots as outliers). (b) Density estimates of the nonzero (statistically significant) TE distribution on top of a histogram. The densities are estimated using a Gaussian kernel. The histogram bin width and kernel histogram are both 10% of the data range.

64 in neural development.

65

II. RESULTS

66 Data from overnight recordings of developing cultures of dissociated cortical rat neurons at various stages of de-
 67 velopment (designated by days in vitro, DIV) was analysed. These recordings are part of an open, freely available,
 68 dataset [21, 24]. See methods (Sec. IV A) for a summary of the setup that produced the recordings. We selected four
 69 cultures from the dataset to study, which we refer to by the same naming convention used in the open dataset: 1-1,
 70 1-3, 2-2 and 2-5. Each culture has overnight recordings at four different time points, apart from 1-1, which was only
 71 recorded thrice. The days on which these recordings took place vary between the 4th and 33rd DIV. By contrasting
 72 the TE values estimated at these different recording days, we are able to obtain snapshots of the emergence of these
 73 culture's computational capacity.

74 The TE between all pairs of electrodes was estimated using a recently introduced continuous-time estimator [22]
 75 (see Sec. IV D). This produces a directed functional network at each recording day, and we aim to analyse how the
 76 connections in this network change over development time. Spike sorting was not performed, because we would not
 77 be able to match the resulting neural units across different recordings, and could not then fulfil our aim of contrasting
 78 the information flow between specific source-target pairs at different recording days. As such, the activity on each
 79 node in the directed functional networks we study is multi-unit activity (MUA) [23] formed of the spikes from all
 80 neurons detected by a given electrode, with connections representing information flows in the MUA. For more detail
 81 on data pre-processing as well as the parameters used with the estimator, see Methods (Sec. IV).

Culture 1-1	day 4	day 14	day 20	
	0	0.018	0.058	
Culture 1-3	day 5	day 10	day 16	day 24
	0.013	0.016	0.020	0.068
Culture 2-2	day 9	day 15	day 21	day 33
	0.0084	0.066	0.049	0.15
Culture 2-5	day 4	day 10	day 22	day 28
	0	0.040	0.10	0.19

TABLE I: Mean TE in nats per second between every source-target pair for each recording studied.

82

A. The dramatic increase in the flow of information during development

83 We first investigate how the amount of information flowing between the nodes changes over the lifespan of the
 84 cultures. Table I shows the mean TE between all source-target pairs. We observe that this mean value increases
 85 monotonically with the number of DIV, with only a single exception (a slight drop in the mean TE between days
 86 15 and 21 of culture 2-2). Otherwise, the magnitude of the increase in the mean TE is substantial. Among the
 87 first recordings for each culture, both recordings on the 4th DIV had a mean estimated TE of 0 nats.s^{-1} (with no
 88 statistically significant transfer entropies measured as per Sec. II B), the single recording on the 5th DIV had a mean
 89 of $0.013 \text{ nats.s}^{-1}$ and the single recording on the 9th DIV had a mean of $0.0084 \text{ nats.s}^{-1}$. By contrast, all recordings
 90 beyond 20 DIV had a mean TE greater than $0.049 \text{ nats.s}^{-1}$ and all recordings beyond 28 DIV had a mean TE greater
 91 than 0.15 nats.s^{-1} .

92 Fig. 1a shows scatter plots of the TE values in each recording laid over box-and-whisker plots. The large increase
 93 over time in the amount of information flowing over the networks is clearly visible in these plots. However, it is
 94 interesting to note that certain source-target pairs do have large information flows between them on early recording
 95 days even whilst the average remains very low.

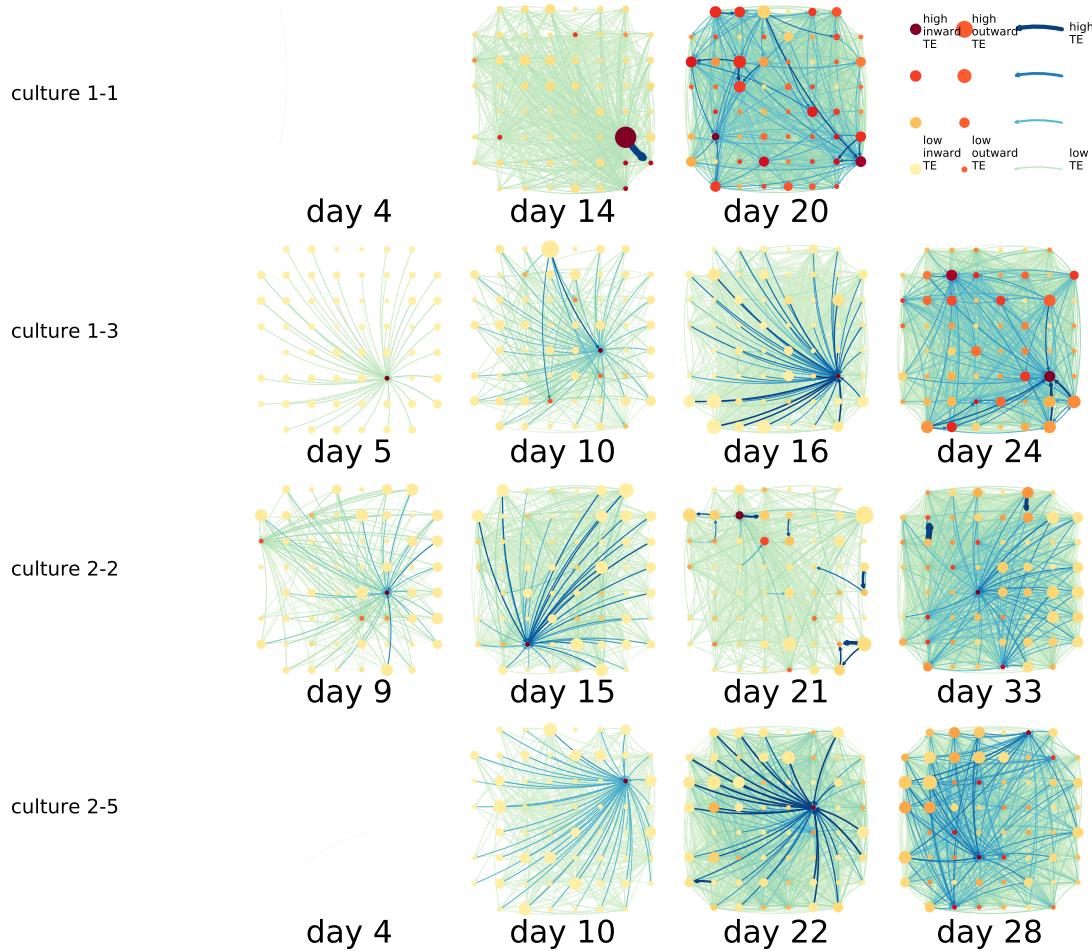
96 Fig. 1b shows histograms of the TE values estimated in each recording along with probability densities estimated
 97 using a Gaussian kernel. The distributions only include the nonzero (statistically significant) estimated TE values.
 98 These distributions do, qualitatively, appear to be log-normal, in particular for later DIV. Moreover, previous studies
 99 have placed an emphasis on the observation of log-normal distributions of TE values in *in vitro* cultures of neurons
 100 [14, 15]. As such, we quantitatively analysed the distribution of the nonzero (statistically significant) estimated TE
 101 values in each individual recording. However, contrary to expectations, we found that these values were not well
 102 described by a log-normal distribution. See Appendix A for further details and discussion.

103

B. The emergence of functional information flow networks

104 By considering each electrode as a node in a network, we can construct functional networks of information flow
 105 by assigning a directed edge between each source-target pair of electrodes with a statistically significant information
 106 flow. This results in weighted networks, the weight being provided by the TE value. Diagrams of these networks are
 107 shown in Fig. 2.

108 We are able to notice a number of interesting spatio-temporal patterns in these diagrams. Firstly, the density
 109 (number of edges) of the networks increases over time. This is quantified in Table II, which shows the number of
 110 source-target pairs of electrodes for which a statistically significant non-zero TE value was estimated. In all cultures



(a) Functional networks

23	25	28	31	34	36		
20	21	24	29	30	35	38	39
18	19	22	27	32	37	40	41
15	16	17	26	33	42	43	44
13	12	3	56	47	46	45	
11	10	7	2	57	52	49	48
9	8	5	0	59	54	51	50
6	4	1	58	55	53		

(b) Node numbering

FIG. 2: (a) The functional networks implied by the estimated TE values. Each node represents an electrode in the original experimental setup. The nodes are spatially laid out according to their position in the recording array. An edge is present between nodes if there is a statistically significant information flow between them. The edge weight and colour is indicative of the amount of information flowing between electrodes (see the legend). The scaling of this weight and colour is done relative to the mean and variance of the information flow in each recording separately. The size and colour of the nodes is assigned relative to the total outgoing and incoming information flow on the node, respectively. As with the edge colour and size, this is done relative to the distribution of these values in each recording separately. (b) The spatial layout of the nodes. The numbering is identical to that used in the documentation of the open dataset studied in this work [21, 24]

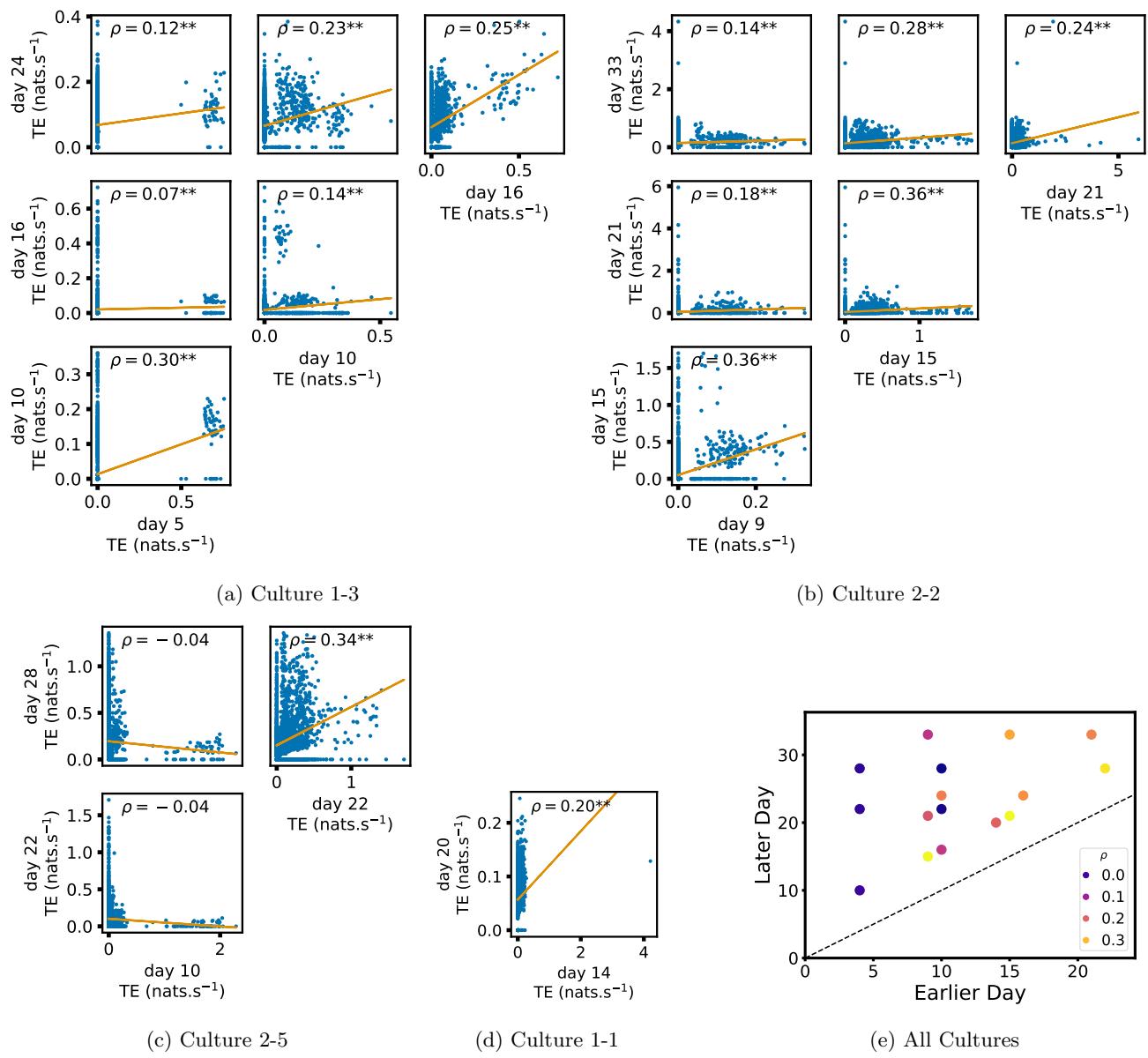


FIG. 3: Plots investigating the relationship between the information flow on a given source-target pair over different days of development. (a) through (d) show scatter plots between all pairs of days for each culture (excluding days with zero significant TE values). Specifically, in each scatter plot, the x value of a given point is the TE on the associated edge on an earlier day and the y value of that same point is the TE on the same edge but on a later day. The days in question are shown on the bottom and sides of the grids of scatter plots. The orange line shows the ordinary least squares regression. The Spearman correlation (ρ) between the TE values on the two days is displayed in each plot. Values of ρ significant at the 0.05 level are designated with an asterisk and those significant at the 0.01 level are designated with a double asterisk. A Bonferroni correction for multiple comparisons was used. (e) shows all recording day pairs for all cultures (where the pairs are always from the same culture) and the associated Spearman correlation between the TE on the edges across this pair of recording days.

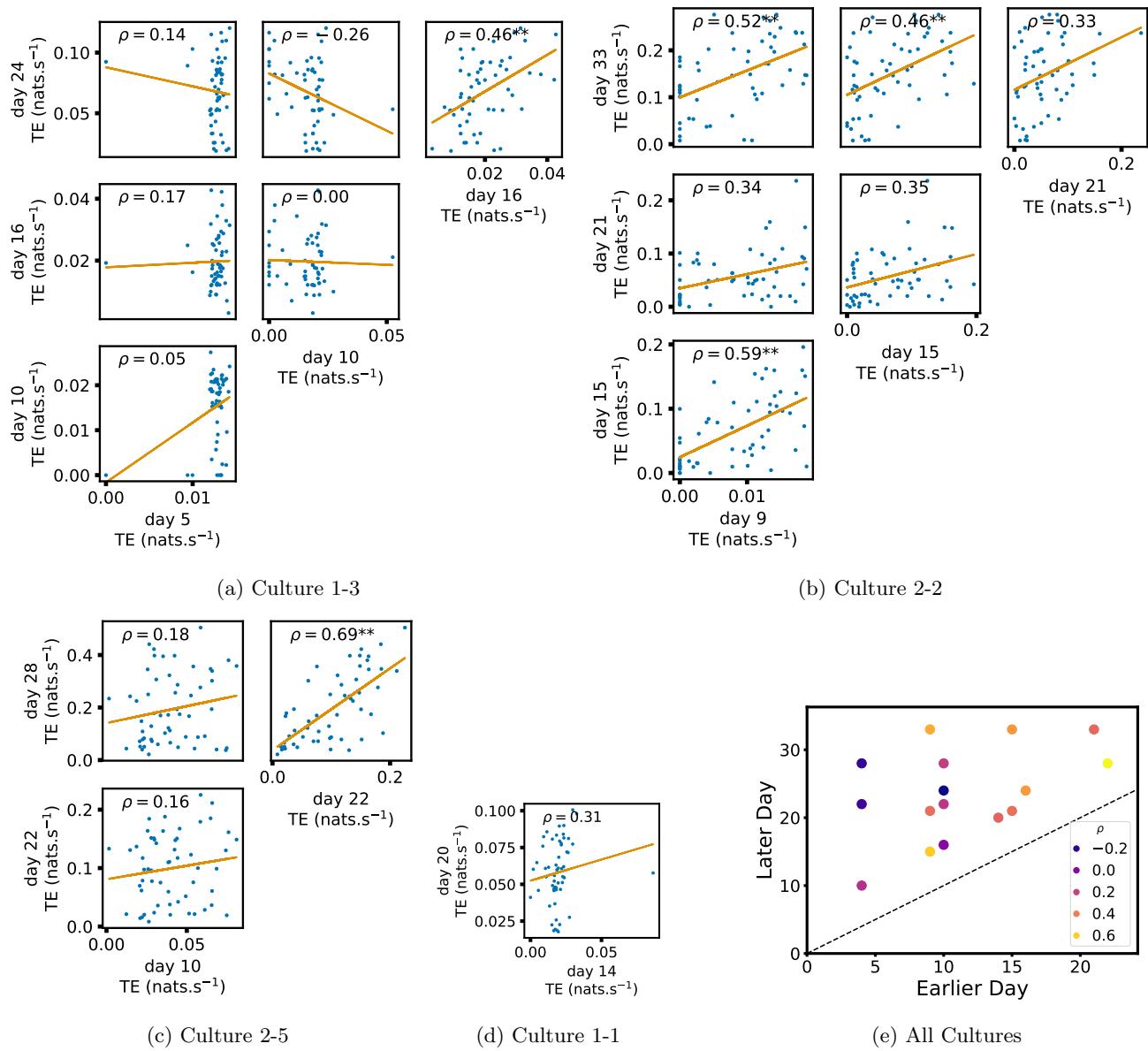


FIG. 4: Plots investigating the relationship between the outward information flow from a given node over different days of development. (a) through (d) show scatter plots between all pairs of days for each culture (excluding days with zero significant TE values). Specifically, in each scatter plot, the x value of a given point is the average outgoing TE from the associated node on an earlier day and the y value of that same point is the total outgoing TE from the same node but on a later day. The days in question are shown on the bottom and sides of the grids of scatter plots. The orange line shows the ordinary least squares regression. The Spearman correlation (ρ) between the outgoing TE values on the two days is displayed in each plot. Values of ρ significant at the 0.05 level are designated with an asterisk and those significant at the 0.01 level are designated with a double asterisk. A Bonferroni correction for multiple comparisons was used. (e) shows all recording day pairs for all cultures (where the pairs are always from the same culture) and the associated Spearman correlation between the outward TE values of nodes across this pair of recording days.

Culture 1-1	day 4	day 14	day 20
	0	614	2392
Culture 1-3	day 5	day 10	day 16
	55	311	823
			2367
Culture 2-2	day 9	day 15	day 21
	211	558	538
			1984
Culture 2-5	day 4	day 10	day 22
	0	351	1481
			1942

TABLE II: The number of source-target pairs of electrodes with a statistically significant TE value between them for each recording studied. This corresponds to the number of possible edges in the functional networks shown in Fig. 2. As the electrode arrays used to record the data had 59 electrodes, the total number of unique ordered pairs of electrodes (and, therefore, the number of possible edges) is 3422.

111 studied in this work, the number of such pairs (and, therefore, the network density), increased by orders of magnitude
 112 over the life of the culture. For instance, in both cultures 1-1 and 2-5, no statistically significant TE values are
 113 estimated on the first recording day. However, around 2000 source-target pairs have significant TE values between
 114 them on the final day of recording for each culture. We are, therefore, observing the networks moving from a state
 115 where no nodes are exchanging information, to one in which information is being transferred between a substantial
 116 proportion of the pairs of nodes ($\approx 58\%$ density of possible directed connections in the network). Put another way, the
 117 functional networks are emerging from an unconnected state to a highly connected state containing the information
 118 flow structure that underpins the computational capacity of the network. This helps to explain the overall increase
 119 in information flow across the network reported in Sec. II A.

120 We observe that the information flow (both incoming and outgoing) is spread somewhat evenly over the networks -
 121 in the sense that in the later, highly-connected, recordings there are very few areas with neither incoming nor outgoing
 122 flow. A number of clear hubs do stand out against this strong background information flow however. The strongest
 123 such hubs (with many high-TE edges) are all information sinks: they have low outgoing information flow, but receive
 124 high flow from a number of other nodes.

125 One can observe many instances in these diagrams where nodes have either very high incoming flow and very low
 126 outgoing flow, or very low incoming flow and very high outgoing flow. That is, they are taking on the roles of source
 127 (information-transmitting) hubs or target (information-receiving) hubs. Notable instances of information-receiving
 128 hubs include: node 49 of day 16 of culture 1-3, Node 42 of day 22 of culture 2-5 and node 5 of day 15 of culture 2-2
 129 (see Fig. 2b for the node numbers used here). Notable examples of information transmitting hubs include node 28
 130 of day 10 culture 1-3 and nodes 18, 19, 22 and 30 of day 22 of culture 2-5. The specialist computational roles that
 131 nodes can take on will be studied in more detail in Sec. II D, with a particular focus on how this relates to the burst
 132 propagation.

133 It is possible to observe some notable instances whereby the information processing properties of a node remain
 134 remarkably similar across recording days. For example, nodes 55, 50 and 39 of culture 2-2 are outgoing hubs (with
 135 almost no incoming TE) on all 4 recording days. This offers us a tantalising hint that the information processing
 136 structure of these networks might be locked in early in development, being reinforced as time progresses. The following
 137 subsection (Sec. II C) performs a quantitative analysis of this hypothesis.

138

C. Early lock-in of information flows

139 In the previous subsection, analysis of the functional networks of information flow suggested that the structure
140 of the information processing capacity of the developing networks might be determined early in development and
141 reinforced during the subsequent neuronal maturation.

142 In order to quantitatively investigate this hypothesis, we examine the relationships in the information flow from
143 a given source to a given target between different recording days. That is, we are probing whether the amount of
144 information flowing between a source and a target on an early day of development will be correlated with the amount
145 flowing on a later day of development. This is equivalent to studying the correlation in the weights of the edges of
146 the functional networks across different recording days. Fig. 3 shows scatter plots between the TE values estimated
147 between each source-target pair on earlier and later days. By observing the pair scatters in Fig. 3a through Fig. 3d
148 we see that, in many pairs of days, there appears to be a substantial correlation between the TE values on the
149 edges across days. This is particularly pronounced for cultures 1-3 and 2-2, though visual assessment of the trend
150 is complicated by the many zero values (where TE is not significant), gaps in the distribution and outliers. As such,
151 Fig. 3a through Fig. 3d also display the Spearman rank-order correlation (ρ) for each early-late pair of days for each
152 culture. This correlation is positive and statistically significant at the $p < 0.01$ level (after Bonferroni correction for
153 multiple comparisons) in 14 out of the 16 early-late pairs of days studied, with the only exceptions being correlations
154 involving the early day 10 for culture 2-5. There are no significant negative correlations. This represents a strong
155 tendency for the relatively strong information flows between a given source and target on later days to be associated
156 with the relatively strong information flow between the same source and target on an earlier day of development.
157 Fig. 3e summarises all Spearman correlations between the early and late TE between source-target pairs. We notice
158 a trend whereby the correlation of the TE values seems to be higher between closer days (sample point being closer
159 to the diagonal) and where those days are later in the development of the cultures (sample points being further to
160 the right).

161 We also investigated the manner in which a node's tendency to be an information source hub might be bound early
162 in development. Fig. 4 shows scatter plots between the outgoing TE of each node (averaged across all targets) on
163 different days of development along with the associated Spearman correlations. By observing the scatter plots, it
164 is easy to see that there is a strong positive relationship between the outgoing information flow from a given node
165 on an earlier day of development and the outgoing flow from that same node on a later day. This is not surprising
166 given the correlation we already established for TE on individual pairs, but does not automatically follow from that.
167 More quantitatively, the Spearman correlation between these variables is positive and statistically significant at the
168 $p < 0.01$ level (after Bonferroni correction for multiple comparisons) in 5 out of the 16 early-late pairs of days studied.
169 There is only a single negative correlation and it is not significant. Some of these correlations are particularly strong,
170 and indeed stronger than that observed on the TEs of individual node pairs. For instance, between days 22 and
171 28 of culture 2-5 we have that $\rho = 0.69$ and between days 9 and 15 of culture 2-2 we have that $\rho = 0.59$. More
172 intriguingly, some of these correlations extend over very large periods of time. Most notably, in culture 2-2, there is
173 a Spearman correlation of $\rho = 0.52$ between the 9th DIV (the first for which there is a recording) and the 33rd DIV.
174 Fig. 4e summarises all Spearman correlations between the early and late total outgoing TE of a given node. As per
175 the TEs for individual node pairs, the correlation is higher between closer days and where those days are later in the
176 development of the cultures.

177 Fig. 10 in Appendix B shows similar plots to Fig. 4, but for the average inward TE on each node. As with the
178 average outward TE, in nearly all cases there is a positive correlation between the inward TE on early DIV and the
179 inward TE on later DIV. However, we do observe fewer statistically significant relationships than with the outward
180 TE.

181 In summary, the data suggests that, in these developing neural cell cultures, the structure of the information flows
182 is to a large degree locked-in early in development. There is a strong tendency for properties of these flows on later
183 days to be correlated with those same properties on earlier days. Specifically, we have looked at the flows between

184 source-target pairs, the average outgoing flow from a source and the average incoming flow to a target. The values of
185 these variables on later DIV were found, in the majority of cases, to be positively correlated with the same values on
186 earlier DIV. Further, there were no cases where a statistically significant negative correlation was found.

187

D. Information flows quantify computational role of burst position

188 Developing cultures of dissociated neurons have a tendency to self-organize so as to produce population bursts or
189 avalanches [21, 25]. Such spike avalanches are not only a feature of cell cultures, being a ubiquitous feature of *in vivo*
190 neural recordings [26–28]. There is a wide body of work discussing the potential computational importance of such
191 periods of neuronal activity [29–35]. It has been observed that cultures often follow an ordered burst propagation
192 [23, 36], whereby some units tend to burst towards the start of the population burst and others tend to burst towards
193 its end. More recent work has proposed that the nodes which burst at different points in this progression play different
194 computational roles [23]. This work has placed special importance on those nodes which burst during the middle of
195 the burst progression, conjecturing that they act as the “brokers of neuronal communication”.

196 The framework of information dynamics is uniquely poised to illuminate the computational dynamics during pop-
197 ulation bursting as well as the different roles that might be played by various nodes during these bursts. This is due
198 to its ability to analyse information processing *locally in time* [2, 37–39], as well as directionally between information
199 sources and targets via the asymmetry of transfer entropy. This allows us to isolate the information processing taking
200 place during population bursting activity. We can then determine the information processing roles undertaken by the
201 different nodes and examine how this relates to their position in the burst propagation.

202 We analyse the information flowing between nodes during population bursts by estimating the *burst-local* TE be-
203 tween nodes in each recording (i.e. averaging the transfer entropy rates only during bursting periods, using probability
204 distribution functions estimated over the whole recordings; see Sec. IV H). We also measure the mean position of each
205 node within bursts (with earlier bursting nodes having a lower numerical position; see Sec. IV G). Fig. 5a and Fig. 5b
206 show plots of the mean burst position plotted against the total inward (Fig. 5a) and outward (Fig. 5b) burst-local TE
207 of each node. Plots are only shown for days where there was a non-zero number of statistically significant burst-local
208 TE values. The Spearman correlation (ρ) between these variables is also displayed on the plots.

209 We see from Fig. 5a that on all days of all cultures (apart from the first recording day of culture 2-5) there is
210 a positive correlation between the mean burst position of the node and the total inward burst-local TE. In other
211 words: later bursting nodes have higher incoming information flows. These correlations are statistically significant
212 at the $p < 0.01$ level (after Bonferroni correction for multiple comparisons) in 6 of the 12 days for which there was
213 a non-zero number of significant burst-local TE values (with 5 of the 12 having $\rho > 0.5$). There are no significant
214 negative correlations. Moreover, the correlations are significant and strong on 3 out of the 4 final days of development,
215 and several are very strong (e.g. the last recording day of culture 1-3 has $\rho = 0.86$). These relationships suggest that
216 there is a tendency for the late bursters to occupy the specialised computational role of information receivers.

217 Conversely, as shown in Fig. 5b, there is a tendency towards a negative correlation between the mean burst position
218 and the outgoing burst-local TE. On all 12 of the recordings for which there is a non-zero number of significant
219 burst-local TE values we observe a negative Spearman correlation. These correlations are statistically significant at
220 the $p < 0.01$ level (after Bonferroni correction for multiple comparisons) in 9 of the 12 days. More importantly, all
221 values of ρ on the final recording day of each culture are significant, with $\rho < -0.5$. These results indicate that the
222 nodes which burst early in the burst propagation tend to occupy the specialised computational role of information
223 transmitters, during the burst period.

224 Fig. 5c plots the total incoming burst-local TE on each node against the total outgoing burst-local TE, with points
225 coloured according to the node’s mean burst position. We see a very clear pattern in these plots, which is remarkably
226 clear on later recording days: nodes at the beginning of the burst progression have high outgoing information flows
227 with lower incoming flows whereas those at the end of the progression have high incoming flows with lower outgoing

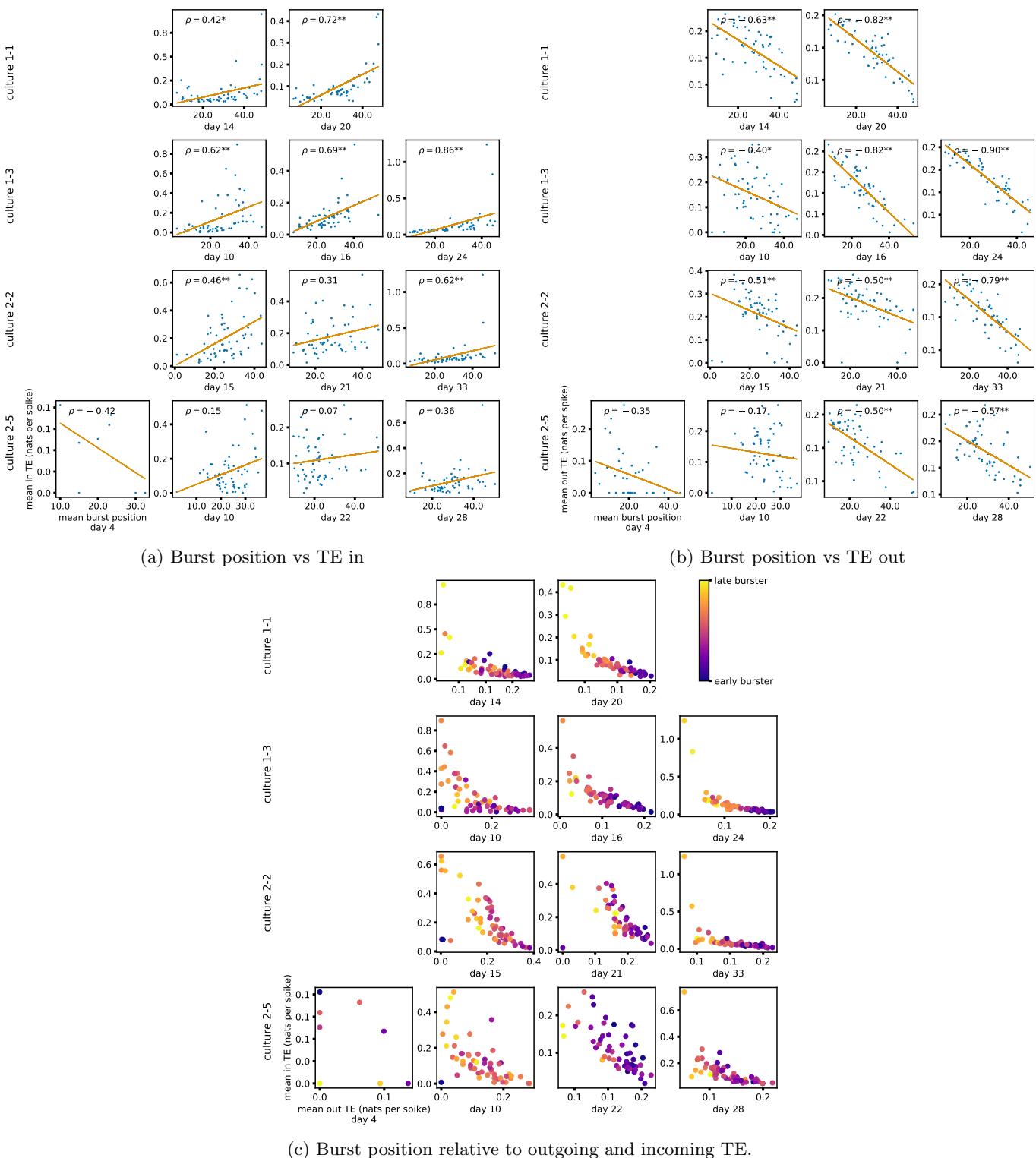


FIG. 5: The relationship between the amount of incoming and outgoing local (in burst) TE on a given node and its average burst position. (a) and (b) show the burst position of each node on the x axis of each plot, plotted against either the total incoming (a) or outgoing (b) TE on the node. The Spearman correlation (ρ) between the mean burst position and the incoming or outgoing TE values is displayed in each plot. Values of ρ significant at the 0.05 level are designated with an asterisk and those significant at the 0.01 level are designated with a double asterisk. A Bonferroni correction for multiple comparisons was used. (c) plots the outgoing TE on the x axis and the incoming TE on the y axis with the points coloured according to the mean burst position of the node: late bursters are coloured yellow and early bursters are purple.

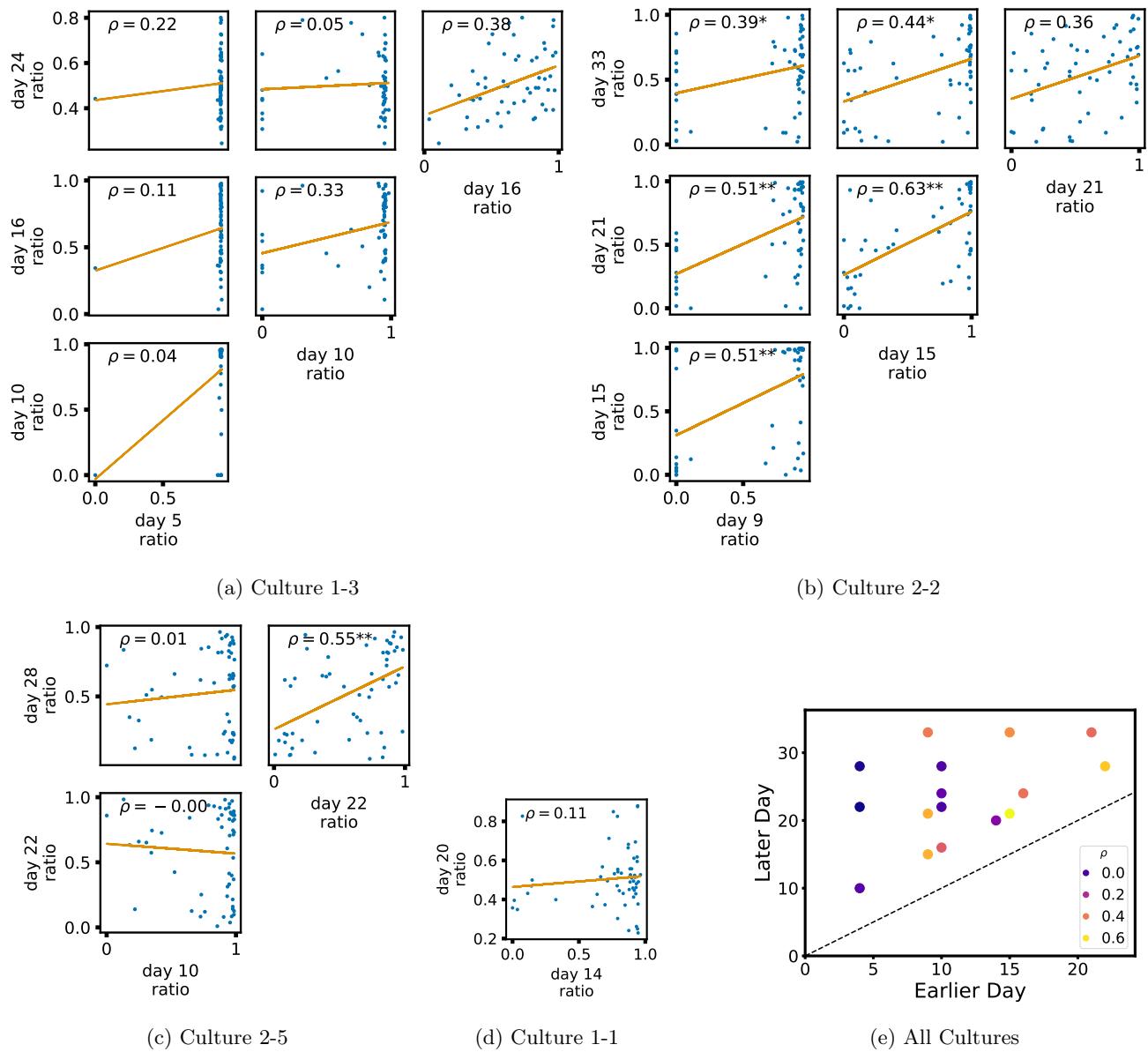


FIG. 6: Plots investigating the relationship between the ratio of outward to total burst-local information flow from a given node over different days of development. (a) through (d) show scatter plots between all pairs of days for each culture (excluding days with zero significant burst-local TE values). Specifically, in each scatter plot, the x value of a given point is the ratio of total outgoing burst-local TE on the associated node to the total burst-local TE on the same node on one day and the y value of that same point is this same ratio on the same node but on a different day.

The days in question are shown on the bottom and sides of the grids of scatter plots. The orange line shows the ordinary least squares regression. The Spearman correlation (ρ) between the TE values on the two days is displayed in each plot. Values of ρ significant at the 0.05 level are designated with an asterisk and those significant at the 0.01 level are designated with a double asterisk. A Bonferroni correction for multiple comparisons was used. (e) shows all recording day pairs for all cultures (where the pairs are always from the same culture) and the associated Spearman correlation between the outward TE of the nodes across this pair of recording days.

228 flows. By contrast, those nodes at the middle of the burst progression have a balance between outgoing and incoming
229 information transfer. These nodes within the middle of the burst propagation are, therefore, occupying the suggested
230 role of mediators of information flow.

231

E. Early lock-in of specialised computational roles

232 Given that we have seen in Sec. IID that nodes tend to occupy specialised computational roles based on their
233 position in the burst propagation and that we have seen in Sec. IIC that information processing properties can lock-
234 in early in development, it is worth asking whether the specialised computational roles that nodes occupy during
235 population bursts lock in during the earlier stages of neuronal development.

236 In order to investigate this question we quantified the computational role occupied by a node by measuring the
237 proportion of its total incoming and outgoing burst-local TE that was made up by its outgoing burst-local TE. These
238 proportions are plotted in Fig. 6 for the different cultures and development days. In order to help us ascertain the
239 relationship over time in these proportions, Fig. 6 shows scatters of these values between earlier and later DIV. It
240 also displays the Spearman rank-order correlations (ρ) between the values on different days. Days on which there
241 were no significant burst-local TE values estimated were excluded. On every single pair of days examined, there
242 was a positive Spearman correlation between the proportion of outgoing burst-local TE on the earlier day and this
243 same proportion on the later day. These positive correlations are statistically significant at the $p < 0.05$ level (after
244 Bonferroni correction for multiple comparisons) in 6 out of the 16 early-late pairs of days studied. Fig. 6e summarises
245 all these Spearman correlations between the early and late day pairs.

246 These results suggest that, if a node is an information transmitter during population bursts early in development,
247 it has a tendency to maintain this specialised role later in development. Similarly, being an information receiver early
248 in development increases the probability that the node will occupy this same role later.

249

F. Information Flows in an STDP Model of Development

250 In order to investigate the generality of the phenomena revealed in this paper, we re-implemented a model network
251 [40] of Izhikevich neurons [41] developing according to an STDP [42] update rule as described in Sec. IV B. For the low
252 value of the synaptic time constant which we used (see Sec. IV B), these networks developed from a state where each
253 neuron underwent independent tonic spiking at a regular firing rate, to one in which the dynamics were dominated by
254 periodic population bursts [43]. Small modifications were made to the original model in order that the development
255 occurred over a greater length of time. The greater length of development allowed us to extract time windows which
256 were short relative to the timescale of development (resulting in the dynamics being approximately stationary in these
257 windows) yet still long enough to sample enough spikes for reliable transfer entropy rate estimation. The windows
258 which we used resulted in a median of 5170 spikes per neuron per window, compared with a median of 17 399 spikes
259 per electrode in the biological data. See Sec. IV B for more details on the modifications made. Three windows were
260 extracted, extending between the simulation time-points of 200 and 250 seconds, 400 and 450 seconds and 500 and
261 550 seconds. These time windows were labelled ‘early’, ‘mid’ and ‘late’, respectively. The early window was chosen
262 such that it had a non-zero number of significant TE values, but such that this number was of the same (order of
263 magnitude in) proportion as observed in the first recording days of the cell cultures (refer to Table II). The mid period
264 was set at the point where population bursting begun to emerge and the late period was set at the point where all
265 neurons were bursting synchronously in a pronounced manner.

266 TE values between all pairs of model neurons were estimated, as described in Sec. IV D. These estimates were then
267 subjected to the same statistical analysis as the cell culture data, the results of which are presented in the preceding
268 subsections of this Results section. The plots of this analysis are displayed in Fig. 7 and Fig. 8.

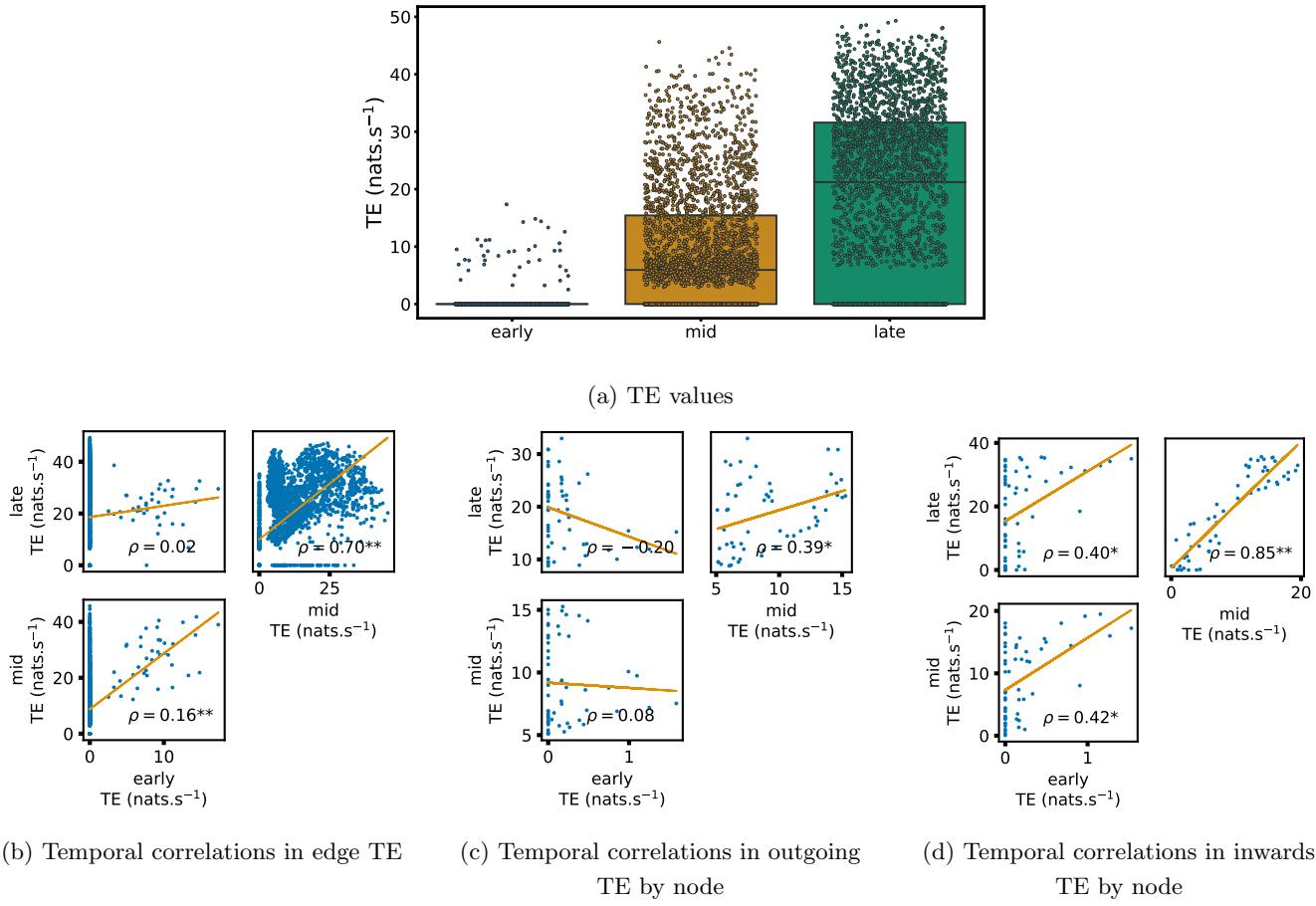


FIG. 7: Equivalent plots to those shown in Figs.1, 3, 4 and 10, but for the simulated spiking network developing under STDP. (a) Shows scatters of the TE values overlaid on box plots. The box plots show the quartiles and the median (values greater than 10 standard deviations from the mean have been removed from both the box and scatter plots as outliers). It corresponds to Fig. 1a. (b) through (d) show scatter plots investigating the relationship between TE values (or derived summary statistics) over different stages of development. Specifically, in each scatter plot, the x value of a given point is a TE value or derived statistic at an earlier simulation stage and the y value of that same point is a TE value (or derived statistic) on the corresponding edge or node, but later in the simulation. The orange line shows the ordinary least squares regression. The Spearman correlation (ρ) between the TE values on the two days is displayed in each plot. Values of ρ significant at the 0.05 level are designated with an asterisk and those significant at the 0.01 level are designated with a double asterisk. A Bonferroni correction for multiple comparisons was used. (b) corresponds to the scatter plots in Fig. 3, (c) corresponds to the scatter plots in Fig. 4 and (d) corresponds to the scatter plots in Fig. 10.

269 Scatters and box plots of the TE values estimated in each developmental window are shown in Fig. 7a. We observe
 270 a large, monotonic, increase in these values over development. This mirrors the finding in cell cultures, as described
 271 in Sec. II A.

272 We also observe the same lock-in phenomenon of information processing as was found in the cell cultures (described
 273 in Sec. II C). Fig. 7b through Fig. 7c show the correlation in information flow between different stages of development.
 274 Specifically, Fig. 7b shows the correlation in TE values between each ordered pair of neurons between early and later
 275 windows. Fig. 7d shows this same correlation, but for the total incoming TE on each neuron and Fig. 7c does this for

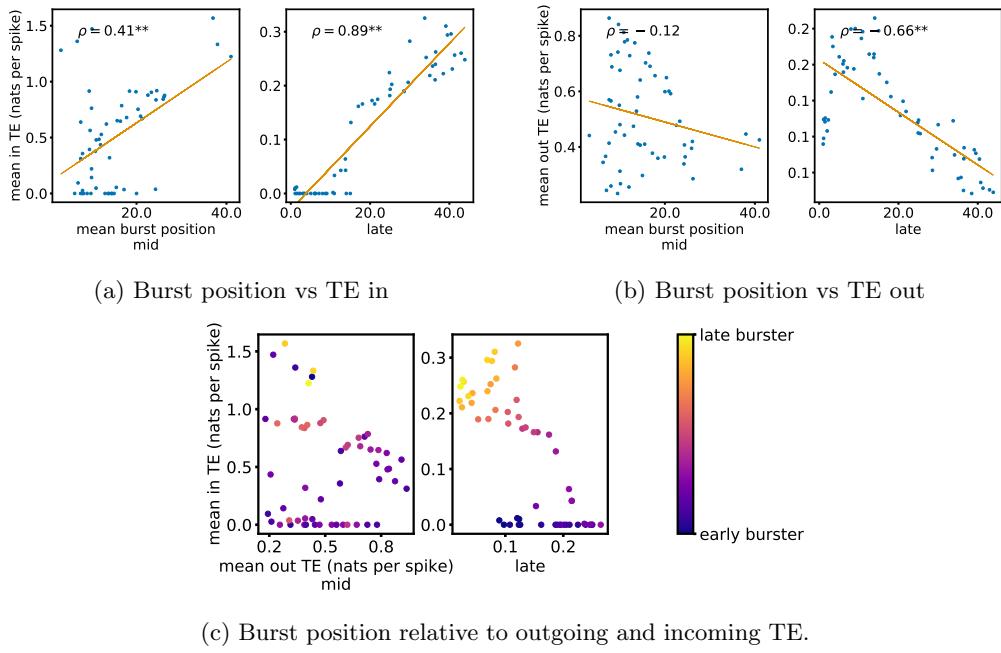


FIG. 8: Equivalent plots to those shown in Fig. 5, but for the simulated spiking network developing under STDP. Plots show the relationship between the amount of incoming and outgoing local (in burst) TE on a given node and its average burst position. (a) and (b) show the burst position of each node on the x axis of each plot, plotted against either (a) the total incoming or (b) outgoing TE on the node. The Spearman correlation (ρ) between the mean burst position and the incoming or outgoing TE values is displayed in each plot. Values of ρ significant at the 0.05 level are designated with an asterisk and those significant at the 0.01 level are designated with a double asterisk. A Bonferroni correction for multiple comparisons was used. (c) Plots the outgoing TE on the x axis and the incoming TE on the y axis with the points coloured according to the mean burst position of the node: late bursters are coloured yellow and early bursters are purple.

276 the total outgoing TE. In six of the nine plotted relationships, we observe a statistically significant positive correlation
 277 between values on earlier and later days (significant at the $p < 0.05$ level, with Bonferroni correction). There are no
 278 significant negative correlations. As with the cell cultures, some of the observed correlations are particularly strong,
 279 such as the Spearman correlation of $\rho = 0.85$ between the total incoming TE on each in the mid window and this
 280 same value in the late window. This implies that the spatial structure of the information flow has a tendency to be
 281 determined in the earlier stages of development, after which they are locked in – in a similar fashion to what was
 282 observed in the biological experiments in earlier sections.

283 We also performed the same analysis on computational roles as presented in Sec. II D. This analysis, the results
 284 of which are presented in Fig. 8, only looked at the mid and late windows. The early window was ignored due to
 285 its lack of bursting activity. In the mid recording window, we observe a somewhat weak relationship between the
 286 mean burst position of the neuron and its computational role. Fig. 8a shows that there is a weakly significant (at
 287 the $p < 0.01$ level) positive correlation between the mean burst position of a neuron and its total incoming burst-
 288 local TE (see Sec. IV H for more details on the burst-local TE). There is also a weak negative correlation between
 289 the mean burst position and the total outgoing burst-local TE, as shown in Fig. 8a. However, this relationship is
 290 not significant. These same figures also display these relationships for the late window. Here, we observe the same
 291 directions of relationships, however, they are much stronger and statistically significant in both cases. This implies
 292 that we are observing the same specialisation into computational roles based on burst position as was observed in the
 293 cell cultures: early bursters display a tendency to be information transmitters, late bursters operate as receivers and

294 middle bursters exhibit a balance of the two.

295 It is worth noting that the estimated TE values in the model are substantially higher than in the biological dataset.

296 The median estimated TE in the late window of the model was around 20 nats.s^{-1} (Fig. 7a). Conversely, it was less
297 than 0.1 nats.s^{-1} for every last recording day of the cell cultures (Fig. 1a). This is due to the much higher spike rate
298 of the model implying that the dynamics are operating on different time-scales. Indeed, if we compare the magnitude
299 of the burst-local TE — which is measured in nats per spike (see Sec. IV H) — between the model and the biological
300 data (Fig. 8 and Fig. 5, respectively), we find values of similar magnitude.

301 In summary, in a network model of Izhikevich neurons developing according to STDP towards a state of population
302 bursts, we observe the same developmental information-processing phenomena as in the cell cultures. Namely, the
303 amount of information flowing across the network increases dramatically, the spatial structure of this flow locks in
304 early and the neurons take on specialised computational roles based on their burst position.

305

III. DISCUSSION

306 Biological neural networks are imbued with an incredible capacity for computation, which is deployed in a flexible
307 manner in order to achieve required tasks. Despite the importance of this capacity to the function of organisms, how
308 it emerges during development has remained largely a mystery. Information dynamics [1, 2, 37, 44, 45] provides a
309 framework for studying such computational capacity, by measuring the degree to which the fundamental information
310 processing operations of information storage, transfer and modification occur within an observed system.

311 Previous work on the information flow component of computational capacity in neural cell cultures [14–20] has
312 focussed on the static structure of information flow networks at single points in time. This has mostly taken the form
313 of elucidating properties of the functional networks implied by the information flows. However, such work leaves open
314 questions concerning how these structures are formed. We address this gap here.

315 An initial goal in addressing how computational capacity emerges was to determine when the information flow
316 component arrived. It is plausible that this capacity could have been present shortly after plating or that it could
317 have arrived suddenly at a later point in maturation. What we see, however, is that the capacity for information
318 transmission is either not present, or only minimally present, in the early DIV. This can be seen by looking at the
319 very low mean TE values in the first column of Table I. However, over the course of development we see that the TE
320 values increase progressively, reaching values orders of magnitude larger. This implies that information transmission
321 is a capacity which is developed enormously during neuronal development and that its gain is spread consistently
322 throughout the observed period.

323 The information processing operations of a system tend to be distributed over it in a heterogeneous fashion. For
324 example, it has been found in models of whole-brain networks [46–48], abstract network models [49–51] and even
325 energy networks [52], that nodes with high indegrees tend to also have high outgoing information flows. Sec. II B
326 examined the emergent information flow networks, formed by connecting nodes with a statistically significant TE
327 value between them. In accordance with this previous work — and indeed the large variation in shared, unique and
328 synergistic information flow components observed on the same data set (albeit with the discrete-time estimator) [20]
329 — these networks exhibited a high degree of heterogeneity. Notably, as shown in Fig. 2a, they have prominent hubs of
330 inward flow (sinks) along with less pronounced hubs of outgoing flow (sources). Moreover, along with heterogeneity
331 within individual networks, large structural differences are easily observed between the different networks shown in
332 Fig. 2a.

333 Keeping with our goal of uncovering how features of mature information flow networks self-organise, we examined
334 how this heterogeneity at both the intra-network and inter-network levels emerged. It was found in Sec. II C that
335 key features of the information flow structure are locked-in early in development. This effect was identified for the
336 outgoing TE from each node for example, where we found strong correlations over the different days of development.

337 It is worth further noting that this lock-in phenomenon occurs remarkably early in development. Specifically, in very

338 many cases, we observe strong correlations between quantities estimated on the first recording days with nonzero
339 TE and the same same quantities estimated on later days. This early lock-in provides us with a mechanism for how
340 the high heterogeneity exhibited in the inflow and outflow hubs emerges. Small differences between networks on
341 early DIV will be magnified on subsequent days. This leads to the high levels of inter-network heterogeneity that
342 we observe. A similar phenomenon has been observed with STDP, which can lead to symmetry breaking in network
343 structure [53, 54], whereby small fluctuations in early development can set the trajectory of the synaptic weights
344 on a specific path with a strong history dependence. In order to confirm a hypothesis that this observed lock-in of
345 information flows could be induced by STDP, in Sec. II F we studied the information dynamics of a model network
346 of Izhikevich neurons developing according to an STDP [42] update rule from a state of independent tonic firing to
347 population bursting. The lock-in of key features of the information flow structure was evident over the period where
348 the network developed from independent firing to synchronous bursting. This indicates a plausible mechanism for our
349 observations, and suggests a broader generality of these phenomena. An interesting difference between the results for
350 the model and the biological data, is that the lock-in was stronger for outward TE in the biological data, whereas
351 it was stronger for inward TE in the model. The reasons for this difference require further investigation, however it
352 might be due to the multi-unit nature of the biological data or the simplicity of the model used.

353 It has been hypothesised that different neural units take on specialised computational roles [23, 55, 56]. In Sec. II D,
354 we investigated the information flows occurring during the critical bursting periods of the cultures' dynamics. Specifi-
355 cally, we studied the burst-local TE in order to measure the information being transferred between nodes during these
356 periods. The plots shown in Fig. 5 show a clear tendency for the nodes to take on specialised computational roles,
357 especially later in development. Moreover, these computational roles were tightly coupled to the node's position in the
358 burst propagation. Nodes initiating the bursts had a tendency to have high outgoing information transfer combined
359 with low incoming information flow, implying their role as information transmitters. The opposite relationship is
360 observed for late bursters, indicating their role as information receivers. By contrast, nodes bursting during the middle
361 of the progression have a balance between outward and inward flows. This indicates that they are the crucial links
362 between the transmitters and receivers of information. It is worth reflecting on the fact that the observed correlations
363 between burst-local information transfer and burst position will not occur in all bursty neuronal populations. For
364 instance, in populations with periodic bursts, each node's behaviour will be well explained by its own history, resulting
365 in very low burst-local TE's, regardless of burst position. Neurons bursting in the middle of the burst progression
366 of dissociated cell cultures have received special attention in past work using undirected measures, where it was
367 conjectured that they act as the "brokers of neuronal communication" [23]. In this work, we have provided novel
368 supporting evidence for this conjecture, by specifically identifying the *directed* information flows into and out of these
369 nodes. Moreover, in Sec. II F, we observed that this same specialisation of neurons into computational roles based on
370 burst position occurred in a model network of Izhikevich neurons which had developed via an STDP learning rule to
371 a state of population bursting. This suggests that this phenomenon might exist more generally than the specific cell
372 cultures studied. It is also worth noting that some of these relationships, notably those shown in Fig. 7b and Fig. 7d
373 are much stronger than what was observed in the cell culture. It is likely that this is due to the fact that in the model
374 we estimated TE between individual model neurons, whereas in the cultures we estimated TE between the multi-unit
375 activity on each electrode.

376 Returning once more to our focus on investigating the emergence of information flows, we have demonstrated, in
377 Sec. II E, that these specialist computational roles have a tendency to lock in early. There we looked at the ratio of
378 outgoing burst-local TE to the total burst-local TE on each node. It was found that there is a strong tendency for
379 this ratio to be correlated between early and late days of development. This suggests that the computational role
380 that a node performs during population bursts is determined to a large degree early in development.

381 Insights into development aside, a fundamental technical difference between the work presented here and previous
382 studies of TE in neural cultures is that here we use a recently-developed continuous-time estimator of TE [22]. This
383 estimator was demonstrated to have far higher accuracy in estimating information flows than the traditional discrete-
384 time estimator. The principle challenge which is faced when using the discrete-time estimator is that the curse of

385 dimensionality limits the number of previous time bins that can be used to estimate the history-dependent spike rates.
386 All applications of this estimator to spiking data from cell cultures of which the authors are aware [14–19] made use
387 of only a single previous bin in the estimation of these rates. This makes it impossible to simultaneously achieve high
388 time-precision and capture the dependence of the spike rate on spikes occurring further back in time. Conversely,
389 by operating on the inter-spike intervals, the continuous-time estimator can capture the dependence of the spike rate
390 on events occurring relatively far back in time, whilst maintaining the time precision of the raw data. Looking at
391 a specific representative example, our target history embeddings made use of the previous four inter-spike intervals
392 (Sec. IV E). For the recording on day 24 of culture 1-3, the mean interspike interval was 0.71 seconds. This implies
393 that the target history embeddings on average extended over a period of 2.84 s. The raw data was collected with a
394 sampling rate of 25 kHz [21]. In order to lose no time precision, the discrete-time estimator would thus have to use
395 bins of 40 μ s, and then in order to extend over 2.84 s, the target history embeddings would therefore need to consist
396 of around 70 000 bins.

397 It is worth noting that, as we were performing a longitudinal analysis where each studied recording was separated
398 by days or weeks, we did not perform spike sorting as we would have been unable to match the different units on an
399 electrode across different recordings. We would then not have been able to compare the TE values on a given unit
400 over the course of development. Instead, we analyzed the spikes on each electrode without sorting. As such, this work
401 studies multi-unit activity [23]. Spike sorting applied to data collected from a near-identical recording setup found an
402 average of four neurons per electrode [57]. This situates this work at a spatial scale slightly larger than spike-sorted
403 neural data, but still orders of magnitude finer than fMRI, EEG or MEG [58].

404 An exciting direction for future work will be to examine the information flow provided by higher-order multivariate
405 TEs [59, 60]. The networks inferred by such higher-order TEs are able to better reflect the networks' underlying
406 structural features [59]. As was the case with bivariate TEs prior to this work, there is an absence of work investigating
407 how the networks of multivariate information flow emerge during neural development. Moreover, moving to higher-
408 order measures will allow us to more fully characterise the multifaceted specialised computational roles undertaken
409 by neurons.

410

IV. METHODS

411

A. Cell culture data

412 The spike train recordings used in this study were collected by Wagenaar et. al. [21] and are freely available online
413 [24]. The details of the methodology used in these recordings can be found in the original publication [21]. A short
414 summary of their methodology follows:

415 Dissociated cultures of rat cortical neurons had their activity recorded. This was achieved by plating 8x8 Multi-
416 Electrode Arrays (MEAs), operating at a sampling frequency of 25 kHz with neurons obtained from the cortices of
417 rat embryos. The spacing between the electrodes was 200 μ m center-to-center. The MEAs did not have electrodes
418 on their corners and one electrode was used as ground, resulting in recordings from 59 electrodes. In all recordings,
419 electrodes with less than 100 spikes were removed from the analysis. This resulted in electrodes 37 and 43 (see Fig. 2b
420 for the position of these electrodes) being removed from every recording as no spikes were recorded on them. The
421 spatial layout of the electrodes is available from the website associated with the dataset [24], allowing us to overlay
422 the functional networks onto this spatial layout as is done in figure Fig. 2a.

423 30 minute recordings were conducted on most days, starting from 3-4 Days *In Vitro* (DIV). The end point of
424 recording varied between 25 and 39 DIV. Longer overnight recordings were also conducted on some cultures at sparser
425 intervals. As the accurate estimation of information-theoretic quantities requires substantial amounts of data [22, 61],
426 in this work we make use of these longer overnight recordings. These recordings were split into multiple files. The
427 specific files used, along with the names of the cultures and days of the recordings are listed in Table III.

428 The original study plated the electrodes with varying densities of cortical cells. However, overnight recordings were
 429 only performed on the ‘dense’ cultures, plated with a density of 2500 cells/ μL .

430 The original study performed threshold-based spike detection by determining that a spike was present in the case
 431 of an upward or downward excursion beyond 4.5 times the estimated RMS noise of the recorded potential on a
 432 given electrode. The analysis presented in this paper makes use of these detected spike times. No spike sorting was
 433 performed and, as such, we are studying multi-unit activity (MUA) [23].

	day 4	day 14	day 20	
Culture 1-1	2	2	2	
Culture 1-3	day 5	day 10	day 16	day 24
	2	2	2	2
Culture 2-2	day 9	day 15	day 21	day 33
	2	2	2	2
Culture 2-2	day 4	day 10	day 22	day 28
	1	1	2	1

TABLE III: File numbers used for each culture on each day. These correspond to the file numbering used in the freely available dataset used in this study, provided by Wagenaar et. al.[21, 24]

434

B. Network of Izhikevich Neurons

435 The model spiking network used to generate the data analysed in Sec. II F is identical to that presented in [40], with
 436 a few minor alterations. This model consists of Izhikevich neurons [41] developing according to an STDP [42] update
 437 rule. At the beginning of the simulation, each neuron performs independent tonic spiking, however, the network
 438 develops towards population bursts.

439 The specific model settings used were based on those used to produce Fig. 5A in [40]. That is, the proportion of
 440 inhibitory neurons (α) and the synapse time delay (τ_{ij}) were both set to 0. The first change made was to use 59
 441 neurons, as opposed to the 500 used in [40], in order to correspond to the number of electrodes used in the cell culture
 442 recordings. The maximum connection strength (g_{max}) was also increased from 0.6 to 10 in order to compensate for
 443 this reduction in the network size.

444 The only remaining change was made in order to slow the rate of development of the population. The reasoning
 445 behind this was to allow for the extraction of windows which were much shorter than the time scale of development,
 446 resulting in the dynamics within these windows being approximately stationary (and including enough samples for
 447 estimation of the transfer entropy rates). Specifically, this change was to greatly reduce the values of the maximum
 448 synaptic potentiation and depression (A_+ and A_-). These values were reduced from 5×10^{-2} to 4×10^{-4} .

449

C. Data pre-processing

450 As the data was sampled at 25 kHz, uniform noise distributed between $-20 \mu\text{s}$ and $20 \mu\text{s}$ was added to each spike
 451 time. This is to prevent the TE estimator from exploiting the fact that, in the raw data, inter-spike intervals are
 452 always an integer multiple of 40 μs .

453

D. Transfer entropy estimation

Parameter	Description	Value
N_X	Number of spikes in the target spike train	varied (see text)
l_X	Number of inter-spike intervals in target history embeddings	4
l_Y	Number of inter-spike intervals in source history embeddings	2
k_{global}	Number of nearest neighbours to find in the initial search	10
k_{perm}	Number of nearest neighbours to consider during surrogate generation	4
N_U	Number of random samples of histories at non-spiking points in time	$10N_X$
$N_{U,\text{surrogates}}$	Number of random samples of histories at non-spiking points in time used for surrogate generation	$10N_X$
$N_{\text{surrogates}}$	Number of surrogates to generate for each node pair	100

TABLE IV: The parameter values used in the continuous-time TE estimator. A complete description of these parameters, along with analysis and discussion of their effects can be found in [22].

454 The (bivariate) Transfer entropy (TE) [3, 4] was estimated between each pair of electrodes in each of the recordings
 455 listed in Table III. TE is the mutual information between the past state of a source process and the present state of
 456 a target process, conditioned on the past state of the target. More specifically (in discrete time), the TE rate is:

$$\begin{aligned} \dot{T}_{Y \rightarrow X} &= \frac{1}{\Delta t} I(X_t; \mathbf{Y}_{<t} | \mathbf{X}_{<t}) \\ &= \frac{1}{\tau} \sum_{t=1}^{N_T} \ln \frac{p(x_t | \mathbf{x}_{<t}, \mathbf{y}_{<t})}{p(x_t | \mathbf{x}_{<t})}. \end{aligned} \quad (1)$$

457 The TE above is being measured from a source Y to a target X , $I(\cdot; \cdot | \cdot)$ is the conditional mutual information [62],
 458 x_t is the current state of the target, $\mathbf{x}_{<t}$ is the history of the target, $\mathbf{y}_{<t}$ is the history of the source, Δt is the bin
 459 width (in time units), τ is the length of the processes and $N_T = \tau / \Delta t$ is the number of time samples (bins). The
 460 histories $\mathbf{x}_{<t}$ and $\mathbf{y}_{<t}$ are usually captured via embedding vectors, e.g. $\mathbf{x}_{<t} = \mathbf{x}_{t-m:t-1} = \{x_{t-m}, x_{t-m+1}, \dots, x_{t-1}\}$.

461

1. Previous application of the discrete-time estimator

462 Previous applications of TE to spiking data from neural cell cultures [14–20] made use of this discrete-time for-
 463 mulation of TE. This work was primarily focussed on the directed functional networks implied by the estimated TE
 464 values between pairs of nodes which has revealed interesting features of the information flow structure. Shimono
 465 and Beggs [15] found that these networks exhibited a highly non-random structure and contained a long-tailed degree
 466 distribution. This work was expanded by Nigam et. al.[14], where it was found that the functional networks contained
 467 a rich-club topology. Conversely, Timme et. al. [17] found that the hubs of these networks were localised to certain

468 time scales. Other work [19, 20] has instead focussed on how the components of information flows in cell cultures can
 469 be decomposed into unique, redundant and synergistic components.

470

2. Continuous-time estimation

471 It has, relatively recently, been shown that, for event-based data such as spike-trains, in the limit of small bin size,
 472 that the TE is given by the following expression [63]:

$$\dot{T}_{Y \rightarrow X} = \lim_{\tau \rightarrow \infty} \frac{1}{\tau} \sum_{i=1}^{N_X} \ln \frac{\lambda_{x|\mathbf{x}_{<t}, \mathbf{y}_{<t}} [\mathbf{x}_{<x_i}, \mathbf{y}_{<x_i}]}{\lambda_{x|\mathbf{x}_{<t}} [\mathbf{x}_{<x_i}]} \quad (2)$$

473 Here, $\lambda_{x|\mathbf{x}_{<t}, \mathbf{y}_{<t}} [\mathbf{x}_{<x_i}, \mathbf{y}_{<x_i}]$ is the instantaneous firing rate of the target conditioned on the histories of the target
 474 $\mathbf{x}_{<x_i}$ and source $\mathbf{y}_{<x_i}$ at the time points x_i of the spike events in the target process. $\lambda_{x|\mathbf{x}_{<t}} [\mathbf{x}_{<x_i}]$ is the instantaneous
 475 firing rate of the target conditioned on its history alone, ignoring the history of the source. It is important to note
 476 that the sum is being taken over the N_X spikes of the target: thereby evaluating log ratios of the expected spike
 477 rates of the target given source and target histories versus target histories alone, *when* the target does spike. As this
 478 expression allows us to ignore the “empty space” between events, it presented clear potential for allowing for more
 479 efficient estimation of TE on spike trains.

480 This potential was recently realised in a new continuous-time estimator of TE presented in [22] (and utilised in
 481 [64]), and all TE estimates in this paper were performed using this new estimator. In [22] it is demonstrated that this
 482 continuous-time estimator is far superior to the traditional discrete-time approach to TE estimation on spike trains.
 483 For a start, unlike the discrete-time estimator, it is consistent. That is, in the limit of infinite data, it will converge to
 484 the true value of the TE. It was also shown to have much preferable bias and convergence properties. Most significantly,
 485 perhaps, this new estimator utilises the inter-spike intervals to efficiently represent the history embeddings $\mathbf{x}_{<x_i}$ and
 486 $\mathbf{y}_{<x_i}$ in estimating the relevant conditional spike rates in (2). This then allows for the application of the highly
 487 effective nearest-neighbour family of information-theoretic estimators [61, 65], which bring estimation efficiency, bias
 488 correction, and together with their application to inter-spike intervals enable capture of long time-scale dependencies.

489 This is in contrast with the traditional discrete-time estimator which uses the presence or absence of spikes in
 490 time bins as its history embeddings (it sometimes also uses the number of spikes occurring in a bin). In order to
 491 avoid the dimensionality of the estimation problem becoming sufficiently large so as to render estimation infeasible,
 492 only a small number of bins can be used in these embeddings. Indeed, to the best of the authors’ knowledge, all
 493 previous applications of the discrete-time TE estimator to spiking data from cell cultures used only a single bin in
 494 their history embeddings. The bin widths used in those studies were 40 μ s [14], 0.3 ms [66], and 1 ms [15, 67]. Some
 495 studies chose to examine the TE values produced by multiple different bin widths, specifically: 0.6 ms and 100 ms
 496 [16], 1.6 ms and 3.5 ms [19] and 10 different widths ranging from 1 ms to 750 ms [17]. And specifically, those studies
 497 demonstrated the unfortunate high sensitivity of the discrete-time TE estimator to the bin width parameter. In
 498 the instances where narrow (< 5 ms) bins were used, only a very narrow slice of history is being considered in the
 499 estimation of the history-conditional spike rate. This is problematic, as it is known that correlations in spike trains
 500 exhibit over distances of (at least) hundreds of milliseconds [68, 69]. Conversely, in the instances where broad (> 5 ms)
 501 bins were used, relationships occurring on fine time scales will be completely missed. This is significant given that it
 502 is established that correlations at the millisecond and sub-millisecond scale play a role in neural function [70–73]. In
 503 other words, previous applications of transfer entropy to electrophysiological data from cell cultures either captured
 504 some correlations occurring with fine temporal precision or they captured relationships occurring over larger intervals,
 505 but never both simultaneously. This can be contrasted with the inter-spike interval history representation used in this
 506 study. To take a concrete example, for the recording on day 24 of culture 1-3, the average interspike interval was 0.71
 507 seconds. This implies that the target history embeddings (composed of 4 inter-spike intervals) on average extended
 508 over a period of 2.84 s and the source history embeddings (composed of 2 inter-spike intervals) on average extended of

l_X	Mean AIS	Std. Dev.	p value
1	7.73	4.71	-
2	8.27	4.97	3.0×10^{-19}
3	8.41	5.08	5.8×10^{-8}
4	8.44	5.11	2.7×10^{-4}
5	8.43	5.12	0.85

TABLE V: Summary statistics for the AIS values estimated at different target embedding lengths l_X across all electrodes of a representative recording (day 23 of culture 1-3). The p values shown in the fourth column are associated with the null hypothesis that the mean AIS at the given l_X is equal to the mean AIS at $l_X - 1$.

l_Y	Mean TE	Std. Dev.	p value
1	0.031	0.043	-
2	0.058	0.056	0.0
3	0.057	0.069	0.84

TABLE VI: Summary statistics for the TE values estimated at different source embedding lengths l_Y between all electrodes of a representative recording (day 23 of culture 1-3). The p values shown in the fourth column are associated with the null hypothesis that the mean TE at the given l_Y is equal to the mean TE at $l_Y - 1$.

509 a period of 1.42 s. This is despite the fact that our history representations retain the precision of the raw data (40 μ s)
510 and the ability to measure relationships on this scale where they are relevant (via the underlying nearest-neighbour
511 estimators).

512 The parameters used with this estimator are shown in Table IV. The values of k_{global} and k_{perm} were chosen because,
513 in previous work [22], similar values were found to facilitate stable performance of the estimator. The high values of
514 N_U and $N_{U,\text{surrogates}}$ were chosen so that histories during bursting periods could be adequately sampled. These two
515 parameters refer to sample points placed randomly in the spike train, at which history embeddings are sampled. As
516 the periods of bursting comprise a relatively small fraction of the total recording time, many samples need to be placed
517 in order to achieve a good sample of histories potentially observed during these periods. The choice of embedding
518 lengths is discussed in the next subsection (Sec. IV E) and the choice of $N_{\text{surrogates}}$ is discussed in Sec. IV F.

519 Instead of selecting a single number of target spikes N_X to include in the analysis, we chose to include all the spikes
520 that occurred within the first hour of recording time. The reason for doing this was that the spike rates varied by
521 orders of magnitude between the electrodes. This meant that fixing the number of target spikes would result in the
522 source spikes being severely undersampled in cases where the target spike rate was much higher than the source spike
523 rate. When using one hour of recording time, the smallest number of spikes per electrode was 481, the maximum was
524 69627 and the median was 17 399.

525

E. Selection of embedding lengths

526 The target embedding lengths were determined by adapting the technique ([60, 74] extending [75]) of maximising
527 the bias-corrected Active Information Storage (AIS) [45] over different target embedding lengths for a given target.
528 Our adaptations sought to select a consensus embedding parameter for all targets on all trials, to avoid different bias
529 properties due to different parameters across targets and trials, in a similar fashion to [76]. As such, our approach
530 determines a target embedding length l_X which maximises the *average* bias-corrected AIS across all electrodes, using
531 one representative recording (selected as day 23 of culture 1-3). To estimate AIS within the continuous-time framework
532 [63] for this purpose, we estimated the difference between the second KL divergence of eq. (10) of [22] and the mean
533 firing rate of the target. These estimates contain inherent bias-correction, as per the TE estimator itself. Moreover,
534 the mean of surrogate values was subtracted to further reduce the bias. The embedding length l_X was continuously
535 increased so long as each subsequent embedding produced a statistically significant (at the $p < 0.05$ level) increase in
536 the average AIS across the electrodes. The resulting mean AIS values (along with standard deviations) and p -values
537 are shown in Table V. We found that every increase in l_X up to 4 produced a statistically significant increase in the
538 mean AIS. The increase from 4 to 5 produced a non-significant decrease in the mean AIS and so l_X was set to 4.

539 With the target embedding length determined, we set about similarly determining a consensus source embedding
540 length l_Y by estimating the TE between all directed electrode pairs on the same representative recording for different
541 values of l_Y . Each estimate also had the mean of the surrogate population subtracted to reduce its bias (see Sec. IV F).

542 The embedding length was continuously increased so long as each subsequent embedding produced a statistically
543 significant (at the $p < 0.05$ level) increase in the average TE across all electrode pairs. The resulting mean TE
544 values (along with standard deviations) and p -values are shown in Table VI. We found that increasing l_Y from 1
545 to 2 produced a statistically significant increase in the mean TE. However, increasing l_Y from 2 to 3 produced a
546 non-significant decrease in the mean TE. As such, we set l_Y to 2

547

F. Significance testing of TE values

548 In constructing the directed functional networks displayed in Fig. 2a, we tested whether the estimated TE between
549 each source-target pair was statistically different from the distribution of TEs under the null hypothesis of conditional
550 independence of the target from the source (i.e. TE consistent with zero). Significance testing for TE in this way
551 is performed by constructing a population of surrogate time-series or history embeddings that conform to the null
552 hypothesis of zero TE [59, 60, 77]. We then estimate the TE on each of these surrogates to generate a null distribution
553 of TE. Specifically, we generate the surrogates and compute their TEs according the method associated with the
554 continuous-time spiking TE estimator [22] and using the parameters shown in Table IV. One small change was made
555 to that surrogate generation method: instead of laying out the $N_{U,\text{surrogates}}$ sample points randomly uniformly, we
556 placed each one at an existing target spike, with the addition of uniform noise on the interval $[-80 \text{ ms}, 80 \text{ ms}]$. This
557 was to ensure that these points adequately sampled the incredibly dense burst regions.

558 With the surrogate TE distribution constructed, the resulting p value for our TE estimate can be computed by
559 counting the proportion of these surrogate TEs that are greater than or equal to the original estimate. Here, we
560 seek to compare significance against a threshold of $\alpha < 0.01$. We chose this lower threshold as false positives are
561 generally considered more damaging than false negatives when applying network inference to neuroscientific data
562 [78]. We also applied a Bonferroni correction [79] to all the significance tests done on a given recording. Given that
563 there are 59 electrodes in the recordings, 3422 tests were performed in each recording. This meant that, once the
564 Bonferroni correction was included, the significance threshold dropped to $p < 2.9 \times 10^{-6}$. Comparing against such a
565 low significance threshold would require an infeasible number of surrogates for the many pairs within each recording,
566 if computing the p value by counting as above. Instead, we assume that the null TE distribution is Gaussian, and
567 compute the p value for our TE estimate using the CDF of the Gaussian distribution fitted from 100 surrogates (as

568 per e.g. [7]). Specifically, the p value reports the probability that a TE estimate on history embeddings conforming to
569 the null hypothesis of zero TE being greater than or equal to our original estimated TE value. If this p value is below
570 the threshold then the null hypothesis is rejected and we conclude that there is a statistically significant information
571 flow between the electrodes.

572

G. Analysis of population bursts

573 A common family of methods for extracting periods of bursting activity from spike-train recordings examines the
574 length of adjacent inter-spike intervals. The period spanned by these intervals is designated a burst if some summary
575 statistic of the intervals (e.g.: their sum or maximum) is below a certain threshold [21, 80–83]. In order to detect
576 single-electrode as well as population-wide bursts, we implement such an approach here.

577 We first determine the start and end points of the bursts of each individual electrode. The locations of the population
578 bursts were subsequently determined using the results of this per-electrode analysis.

579 The method for determining the times during which an individual electrode was bursting proceeded as follows: The
580 spikes were moved through sequentially. If the interval between a given spike and the second most recent historic
581 spike for that electrode was less than α , then, if the electrode was not already in a burst, it was deemed to have a
582 burst starting at the second most recent historic spike. A burst was taken to continue until an inter-spike interval
583 greater than $a * \alpha$ was encountered. If such an interval was encountered, then the end of the burst was designated as
584 the timestamp of the earlier of the two spikes forming the interval.

585 The starts and ends of population bursts were similarly determined by moving through the timeseries in a sequential
586 fashion. If the population was not already designated to be in a burst, but the number of electrodes currently bursting
587 was greater than the threshold β , then a burst start position was set at the point this threshold was crossed. Conversely,
588 if the electrode was already designated to be in a burst and the number of individual electrodes currently bursting
589 dropped below the threshold γ ($\gamma < \beta$), then a burst stop position was set at the point this threshold was crossed.

590 In this paper, we always made use of the parameters $\alpha = 16\text{ ms}$, $a = 3$, $\beta = 15$ and $\gamma = 10$. These parameters were
591 chosen by trial-and-error combined with visual inspection of the resulting inferred burst positions. The results of this
592 scheme showed low sensitivity to the choice of these parameters.

593

H. Estimation of burst-local TE

594 The information dynamics framework provides us with the unique ability to analyse information processing locally
595 in time [2, 37, 38]. We make use of that ability here to allow us to specifically examine the information flows during
596 the important period of population bursts. The TE estimator which we are employing here [22] sums contributions
597 from each spike in the target spike train. It then divides this total by the time length of the target spike train that
598 is being examined. In order to estimate the burst-local TE, we simply sum the contributions from the target spikes
599 where those spikes occurred during a population burst. We then normalise by the number of such spikes, providing
600 us with a burst-local TE estimate in units of nats per spike, instead of nats per second.

601

CONTRIBUTIONS

602 **David P. Shorten** Designed research, Analyzed data, Performed research, Wrote the paper, Edited the paper

603 **Michael Wibral** Designed research, Edited the paper

604 **Viola Priesemann** Designed research, Edited the paper

Joseph T. Lizier Designed research, Wrote the paper, Edited the paper, Supervision, Funding Acquisition

605

606

607

ACKNOWLEDGEMENTS

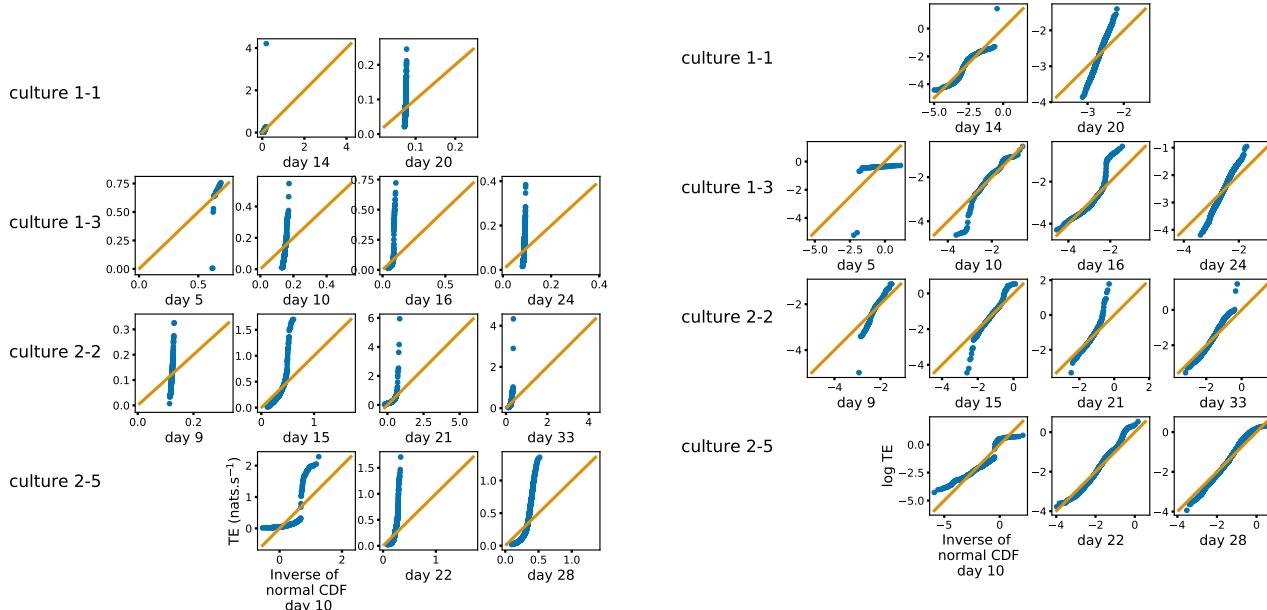
608 Joseph Lizier was supported through the Australian Research Council DECRA grant DE160100630 - www.arc.gov.au/grants/discovery-program/discovery-early-career-researcher-award-decra and The University of Sydney Research Accelerator (SOAR) prize program - sydney.edu.au/research/our-researchers/sydney-researchaccelerator.html. The authors acknowledge the technical assistance provided by the Sydney Informatics Hub, a Core Research Facility of the University of Sydney. In particular, the analysis presented in this work made use of the Artemis HPC cluster.

614

Appendix A: Distribution of information flow values

615 Previous studies have placed an emphasis on the observation of log-normal distributions of TE values in *in vitro* 616 cultures of neurons [14, 15]. As such, we analysed the distribution of the nonzero (statistically significant) estimated 617 TE values in each individual recording.

618 Fig. 1b shows histograms as well as probability density functions estimated by a kernel density estimator (KDE)



(a) QQ plots of TE values against the normal distribution.

(b) QQ plots of log TE values against the normal distribution.

FIG. 9: Quantile-Quantile (QQ) plots [84] of the nonzero estimated TE values against normal and log-normal distributions, respectively. The y axis shows estimated TE values (or their logarithm) whereas the x axis shows the value of the normal distribution at the same quantile. The solid orange line shows the line $y = x$. If the data is drawn from the distribution against which it is being plotted then the blue marks will sit along this line. We observe that the distributions of TE values deviate substantially from both normal and log-normal distributions in all recordings analysed.

	day 4	day 14	day 20
1-1	-	9.8×10^{-45}	4.2×10^{-35}
1-3	day 5	day 10	day 16
	4.4×10^{-13}	4.7×10^{-24}	2.7×10^{-36}
2-2	day 9	day 15	day 21
	7.9×10^{-6}	1.6×10^{-28}	2.6×10^{-35}
2-5	day 4	day 10	day 22
	-	7.5×10^{-10}	2.4×10^{-28}
			3.7×10^{-29}

TABLE VII: p values for the Shapiro-Wilke test [85] of normality for the distribution of TE values estimated in each recording. Only the statistically significant TE values are included in these tests. Recordings for which there were no statistically significant values estimated are left blank. These p values represent the probability that the associated test statistic is more extreme than that calculated on the estimated TE values, under the null hypothesis that these values are normally distributed. For any reasonable choice of p cutoff value, the null hypothesis is rejected in all recordings.

	day 4	day 14	day 20
1-1	-	4.0×10^{-18}	7.2×10^{-11}
1-3	day 5	day 10	day 16
	2.4×10^{-15}	3.3×10^{-6}	2.0×10^{-15}
2-2	day 9	day 15	day 21
	7×10^{-7}	1.2×10^{-6}	1.2×10^{-28}
2-5	day 4	day 10	day 22
	-	4.0×10^{-4}	2.8×10^{-19}
			7.3×10^{-25}

TABLE VIII: p values for the Shapiro-Wilke test [85] of log-normality for the distribution of TE values estimated in each recording. Only the statistically significant TE values are included in these tests. Recordings for which there were no statistically significant values estimated are left blank. These p values represent the probability that the associated test statistic is more extreme than that calculated on the logarithms of the estimated TE values, under the null hypothesis that these values are normally distributed. For any reasonable choice of p cutoff value, the null hypothesis is rejected in all recordings. It is interesting to note that the p values are often smaller on later days, despite the Q-Q plots in Fig. 9b suggesting the distribution is closer to log-normal. This is probably due to there being many more statistically significant TE values on these later days (see Table II).

619 of the nonzero TE values for each recording. From these plots we can see that the distributions of TE values exhibits
 620 a clear right (positive) skew.

621 In order to ascertain how well the estimated TE values were described by a log-normal distribution, we constructed
 622 Quantile-Quantile (QQ) plots [84] for the TE values against the log-normal distribution in figure Fig. 9b. In all
 623 recordings, the plotted points deviate from the line $y = x$, indicating that the data is not well described by a log-
 624 normal distribution. However, this deviation appears only slight for some recordings, most notably days 22 and 28
 625 of culture 2-5. We also perform Shapiro-Wilke tests [85] for log-normality, the resulting p values are displayed in
 626 Table VIII. The p values for every recording are incredibly low, meaning that we reject the null hypothesis of a

627 log-normal distribution in every case.

628 Given that the distributions of the TE values were not well described by a log-normal distribution, we investigated
629 the alternative that they could be described by a normal distribution. Fig. 9a displays Quantile-Quantile (QQ) plots
630 [84] for the TE values against the normal distribution. In all recordings, the plotted points deviate substantially from
631 the line $y = x$, indicating that the data is poorly described by a normal distribution. We also perform Shapiro-Wilke
632 tests [85] for normality, the resulting p values are displayed in Table VII. The p values for every recording are incredibly
633 low, meaning that we reject the null hypothesis of a normal distribution in every case.

634 These results contrast with observation of log-normal distributions of TE values in *in vitro* cultures of neurons
635 [14, 15]. The difference may be due to the use of continuous-time estimator here in contrast to the discrete-time
636 estimator used in previous studies. This estimator is more faithful to capturing the true underlying TE for spike
637 trains (as per [22]), however it may be that the combination of the discrete-time estimator and use of only a single
638 previous time-bin – in specifically *not* representing history dependence well – align more strongly with the component
639 of the statistical relationship that follows a log-normal distribution. It is also possible that log-normal distributions
640 of TE emerge later in development, and are simply not yet present in the early developmental stages observed here
641 (noting that the fit to a log-normal distribution seems to improve for later DIV in Fig. 9b).

642

Appendix B: Plots for Early Lock-in of Incoming TE

643 [1] J. T. Lizier, M. Prokopenko, and A. Y. Zomaya, A framework for the local information dynamics of distributed computation
644 in complex systems, in *Guided self-organization: Inception* (Springer, 2014) pp. 115–158.

645 [2] J. T. Lizier, *The local information dynamics of distributed computation in complex systems*, Springer Theses (Springer,
646 Berlin / Heidelberg, 2013).

647 [3] T. Schreiber, Measuring information transfer, *Physical review letters* **85**, 461 (2000).

648 [4] T. Bossomaier, L. Barnett, M. Harré, and J. T. Lizier, An introduction to transfer entropy, Cham: Springer International
649 Publishing **65** (2016).

650 [5] J. G. Orlandi, O. Stetter, J. Soriano, T. Geisel, and D. Battaglia, Transfer entropy reconstruction and labeling of neuronal
651 connections from simulated calcium imaging, *PloS one* **9**, e98842 (2014).

652 [6] V. Maki-Marttunen, I. Diez, J. M. Cortes, D. R. Chialvo, and M. Villarreal, Disruption of transfer entropy and inter-
653 hemispheric brain functional connectivity in patients with disorder of consciousness, *Frontiers in neuroinformatics* **7**, 24
654 (2013).

655 [7] J. T. Lizier, J. Heinze, A. Horstmann, J.-D. Haynes, and M. Prokopenko, Multivariate information-theoretic measures
656 reveal directed information structure and task relevant changes in fmri connectivity, *Journal of computational neuroscience*
657 **30**, 85 (2011).

658 [8] M. Wibral, B. Rahm, M. Rieder, M. Lindner, R. Vicente, and J. Kaiser, Transfer entropy in magnetoencephalographic
659 data: quantifying information flow in cortical and cerebellar networks, *Progress in biophysics and molecular biology* **105**,
660 80 (2011).

661 [9] M. H. I. Shovon, N. Nandagopal, R. Vijayalakshmi, J. T. Du, and B. Cocks, Directed connectivity analysis of functional
662 brain networks during cognitive activity using transfer entropy, *Neural Processing Letters* **45**, 807 (2017).

663 [10] C.-S. Huang, N. R. Pal, C.-H. Chuang, and C.-T. Lin, Identifying changes in eeg information transfer during drowsy driving
664 by transfer entropy, *Frontiers in human neuroscience* **9**, 570 (2015).

665 [11] S. Stramaglia, G.-R. Wu, M. Pellicoro, and D. Marinazzo, Expanding the transfer entropy to identify information circuits
666 in complex systems, *Physical Review E* **86**, 066211 (2012).

667 [12] D. Marinazzo, O. Gosseries, M. Boly, D. Ledoux, M. Rosanova, M. Massimini, Q. Noirhomme, and S. Laureys, Directed
668 information transfer in scalp electroencephalographic recordings: insights on disorders of consciousness, *Clinical EEG and
669 neuroscience* **45**, 33 (2014).

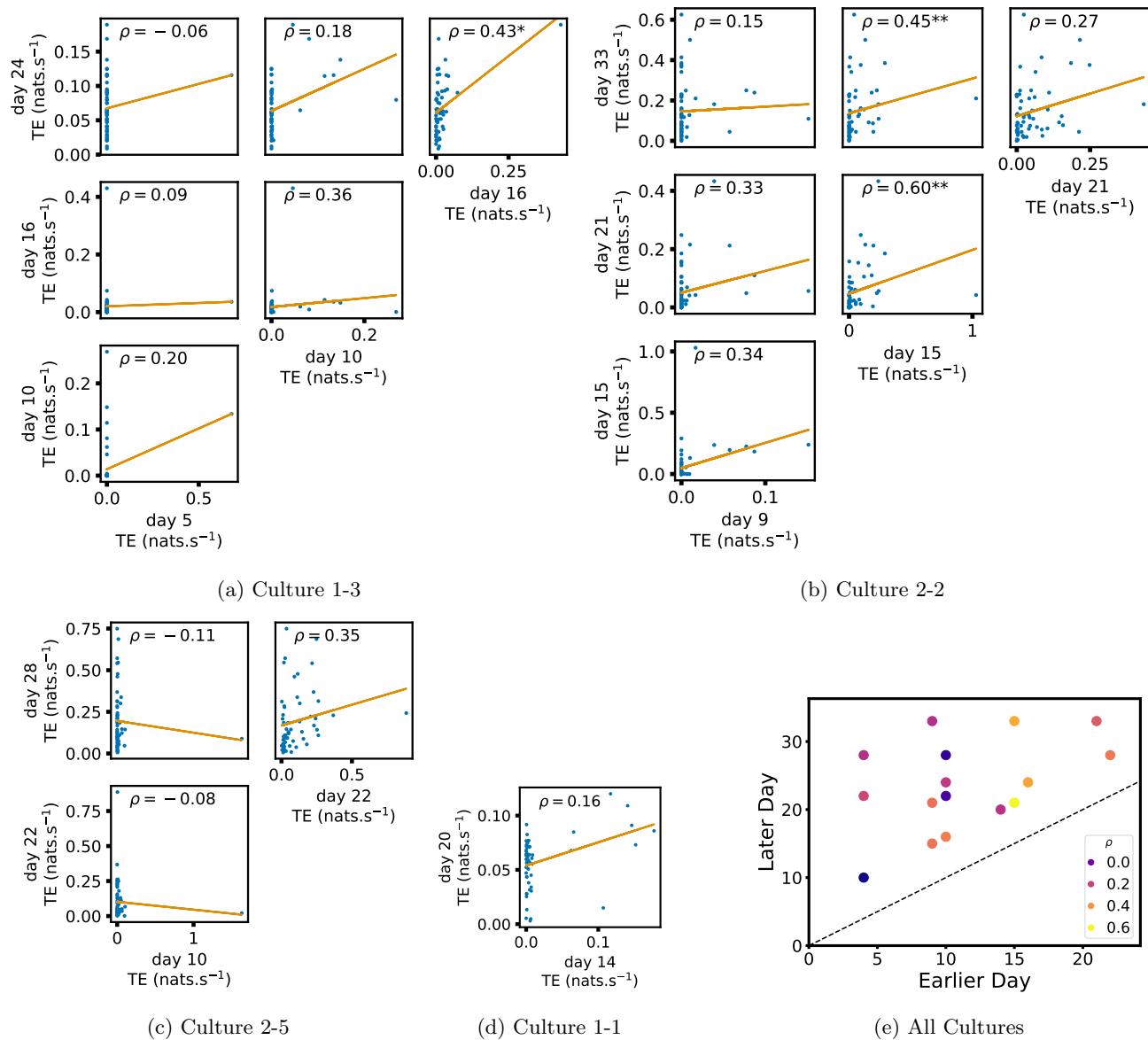


FIG. 10: Plots investigating the relationship between the inward information flow from a given node over different days of development. (a) through (d) show scatter plots between all pairs of days for each culture (excluding days with zero significant TE values). Specifically, in each scatter plot, the x value of a given point is the average inward TE from the associated node on an earlier day and the y value of that same point is the total outgoing TE from the same node but on a later day. The days in question are shown on the bottom and sides of the grids of scatter plots. The orange line shows the ordinary least squares regression. The Spearman correlation (ρ) between the outgoing TE values on the two days is displayed in each plot. Values of ρ significant at the 0.05 level are designated with an asterisk and those significant at the 0.01 level are designated with a double asterisk. A Bonferroni correction for multiple comparisons was used. (e) shows all recording day pairs for all cultures (where the pairs are always from the same culture) and the associated Spearman correlation between the outward TEs of nodes across this pair of recording days.

670 [13] M. Wibral, J. Lizier, S. Vögler, V. Priesemann, and R. Galuske, Local active information storage as a tool to understand
671 distributed neural information processing, *Frontiers in neuroinformatics* **8**, 1 (2014).

672 [14] S. Nigam, M. Shimono, S. Ito, F.-C. Yeh, N. Timme, M. Myroshnychenko, C. C. Lapish, Z. Tosi, P. Hottowy, W. C. Smith,
673 *et al.*, Rich-club organization in effective connectivity among cortical neurons, *Journal of Neuroscience* **36**, 670 (2016).

674 [15] M. Shimono and J. M. Beggs, Functional clusters, hubs, and communities in the cortical microconnectome, *Cerebral Cortex*
675 **25**, 3743 (2015).

676 [16] E. Matsuda, T. Mita, J. Hubert, M. Oka, D. Bakkum, U. Frey, H. Takahashi, and T. Ikegami, Multiple time scales observed
677 in spontaneously evolved neurons on high-density cmos electrode array, in *Artificial Life Conference Proceedings 13* (MIT
678 Press, 2013) pp. 1075–1082.

679 [17] N. Timme, S. Ito, M. Myroshnychenko, F.-C. Yeh, E. Hiolski, P. Hottowy, and J. M. Beggs, Multiplex networks of cortical
680 and hippocampal neurons revealed at different timescales, *PloS One* **9**, e115764 (2014).

681 [18] M. Kajiwara, R. Nomura, F. Goetze, M. Kawabata, Y. Isomura, T. Akutsu, and M. Shimono, Inhibitory neurons exhibit
682 high controlling ability in the cortical microconnectome, *PLOS Computational Biology* **17**, e1008846 (2021).

683 [19] N. M. Timme, S. Ito, M. Myroshnychenko, S. Nigam, M. Shimono, F.-C. Yeh, P. Hottowy, A. M. Litke, and J. M. Beggs,
684 High-degree neurons feed cortical computations, *PLoS Computational Biology* **12**, e1004858 (2016).

685 [20] M. Wibral, C. Finn, P. Wollstadt, J. T. Lizier, and V. Priesemann, Quantifying information modification in developing
686 neural networks via partial information decomposition, *Entropy* **19**, 494 (2017).

687 [21] D. A. Wagenaar, J. Pine, and S. M. Potter, An extremely rich repertoire of bursting patterns during the development of
688 cortical cultures, *BMC Neuroscience* **7**, 1 (2006).

689 [22] D. P. Shorten, R. E. Spinney, and J. T. Lizier, Estimating transfer entropy in continuous time between neural spike trains
690 or other event-based data, *PLOS Computational Biology* **17**, e1008054 (2021).

691 [23] M. S. Schroeter, P. Charlesworth, M. G. Kitzbichler, O. Paulsen, and E. T. Bullmore, Emergence of rich-club topology
692 and coordinated dynamics in development of hippocampal functional networks *in vitro*, *Journal of Neuroscience* **35**, 5459
693 (2015).

694 [24] Network activity of developing cortical cultures *in vitro*, <http://neurodatasharing.bme.gatech.edu/development-data/html/index.html>, accessed: 2021-01-03.

695 [25] V. Pasquale, P. Massobrio, L. Bologna, M. Chiappalone, and S. Martinoia, Self-organization and neuronal avalanches in
696 networks of dissociated cortical neurons, *Neuroscience* **153**, 1354 (2008).

697 [26] V. Priesemann, M. Wibral, M. Valderrama, R. Pröpper, M. Le Van Quyen, T. Geisel, J. Triesch, D. Nikolić, and M. H.
698 Munk, Spike avalanches *in vivo* suggest a driven, slightly subcritical brain state, *Frontiers in systems neuroscience* **8**, 108
700 (2014).

701 [27] V. Priesemann, M. Valderrama, M. Wibral, and M. Le Van Quyen, Neuronal avalanches differ from wakefulness to deep
702 sleep—evidence from intracranial depth recordings in humans, *PLoS Comput Biol* **9**, e1002985 (2013).

703 [28] V. Priesemann, M. H. Munk, and M. Wibral, Subsampling effects in neuronal avalanche distributions recorded *in vivo*,
704 *BMC neuroscience* **10**, 1 (2009).

705 [29] J. E. Lisman, Bursts as a unit of neural information: making unreliable synapses reliable, *Trends in neurosciences* **20**, 38
706 (1997).

707 [30] R. Krahe and F. Gabbiani, Burst firing in sensory systems, *Nature Reviews Neuroscience* **5**, 13 (2004).

708 [31] W. L. Shew, H. Yang, S. Yu, R. Roy, and D. Plenz, Information capacity and transmission are maximized in balanced
709 cortical networks with neuronal avalanches, *Journal of neuroscience* **31**, 55 (2011).

710 [32] O. Kinouchi and M. Copelli, Optimal dynamical range of excitable networks at criticality, *Nature physics* **2**, 348 (2006).

711 [33] C. Haldeman and J. M. Beggs, Critical branching captures activity in living neural networks and maximizes the number
712 of metastable states, *Physical review letters* **94**, 058101 (2005).

713 [34] M. Rubinov, O. Sporns, J.-P. Thivierge, and M. Breakspear, Neurobiologically realistic determinants of self-organized
714 criticality in networks of spiking neurons, *PLoS Comput Biol* **7**, e1002038 (2011).

715 [35] B. Cramer, D. Stöckel, M. Kreft, M. Wibral, J. Schemmel, K. Meier, and V. Priesemann, Control of criticality and
716 computation in spiking neuromorphic networks with plasticity, *Nature communications* **11**, 1 (2020).

717 [36] E. Maeda, H. Robinson, and A. Kawana, The mechanisms of generation and propagation of synchronized bursting in
718 developing networks of cortical neurons, *Journal of Neuroscience* **15**, 6834 (1995).

719 [37] J. T. Lizier, M. Prokopenko, and A. Y. Zomaya, Local information transfer as a spatiotemporal filter for complex systems,
720 *Physical Review E* **77**, 026110 (2008).

721 [38] J. T. Lizier, Measuring the dynamics of information processing on a local scale in time and space, in *Directed Information*
722 *Measures in Neuroscience*, Understanding Complex Systems, edited by M. Wibral, R. Vicente, and J. T. Lizier (Springer,
723 Berlin/Heidelberg, 2014) pp. 161–193.

724 [39] M. Wibral, R. Vicente, and J. T. Lizier, *Directed information measures in neuroscience* (Springer, 2014).

725 [40] M. Khoshkhou and A. Montakhab, Spike-timing-dependent plasticity with axonal delay tunes networks of izhikevich
726 neurons to the edge of synchronization transition with scale-free avalanches, *Frontiers in systems neuroscience* **13**, 73
727 (2019).

728 [41] E. M. Izhikevich, Simple model of spiking neurons, *IEEE Transactions on neural networks* **14**, 1569 (2003).

729 [42] N. Caporale and Y. Dan, Spike timing-dependent plasticity: a hebbian learning rule, *Annu. Rev. Neurosci.* **31**, 25 (2008).

730 [43] R. Zeraati, V. Priesemann, and A. Levina, Self-organization toward criticality by synaptic plasticity, *Frontiers in Physics*
731 **9**, 103 (2021).

732 [44] J. T. Lizier, M. Prokopenko, and A. Y. Zomaya, Information modification and particle collisions in distributed computation,
733 *Chaos: An Interdisciplinary Journal of Nonlinear Science* **20**, 037109 (2010).

734 [45] J. T. Lizier, M. Prokopenko, and A. Y. Zomaya, Local measures of information storage in complex distributed computation,
735 *Information Sciences* **208**, 39 (2012).

736 [46] M. Li, Y. Han, M. J. Aburn, M. Breakspear, R. A. Poldrack, J. M. Shine, and J. T. Lizier, Transitions in information
737 processing dynamics at the whole-brain network level are driven by alterations in neural gain, *PLoS computational biology*
738 **15**, e1006957 (2019).

739 [47] D. Marinazzo, G. Wu, M. Pellicoro, L. Angelini, and S. Stramaglia, Information flow in networks and the law of diminishing
740 marginal returns: evidence from modeling and human electroencephalographic recordings, *PLoS one* **7**, e45026 (2012).

741 [48] D. Marinazzo, M. Pellicoro, G. Wu, L. Angelini, J. M. Cortés, and S. Stramaglia, Information transfer and criticality in
742 the ising model on the human connectome, *PloS one* **9**, e93616 (2014).

743 [49] R. V. Ceguerra, J. T. Lizier, and A. Y. Zomaya, Information storage and transfer in the synchronization process in
744 locally-connected networks, in *2011 IEEE Symposium on Artificial Life (ALIFE)* (IEEE, 2011) pp. 54–61.

745 [50] L. Novelli, F. M. Atay, J. Jost, and J. T. Lizier, Deriving pairwise transfer entropy from network structure and motifs,
746 *Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences* **476**, 20190779 (2020).

747 [51] R. H. Goodman and M. Porfiri, Topological features determining the error in the inference of networks using transfer
748 entropy, *Mathematics in Engineering* **2**, 34 (2019).

749 [52] J. T. Lizier, M. Prokopenko, and D. J. Cornforth, The information dynamics of cascading failures in energy networks, in
750 *Proceedings of the European Conference on Complex Systems (ECCS), Warwick, UK* (Citeseer, 2009) p. 54.

751 [53] M. Gilson, A. N. Burkitt, D. B. Grayden, D. A. Thomas, and J. L. van Hemmen, Emergence of network structure due
752 to spike-timing-dependent plasticity in recurrent neuronal networks. ii. input selectivitysymmetry breaking, *Biological
753 Cybernetics* **101**, 103 (2009).

754 [54] S. Kunkel, M. Diesmann, and A. Morrison, Limits to the development of feed-forward structures in large recurrent neuronal
755 networks, *Frontiers in computational neuroscience* **4**, 160 (2011).

756 [55] M. A. Frost and R. Goebel, Measuring structural-functional correspondence: spatial variability of specialised brain regions
757 after macro-anatomical alignment, *Neuroimage* **59**, 1369 (2012).

758 [56] J. R. Cohen and M. D'Esposito, The segregation and integration of distinct brain networks and their relationship to
759 cognition, *Journal of Neuroscience* **36**, 12083 (2016).

760 [57] D. A. Wagenaar, Z. Nadasdy, and S. M. Potter, Persistent dynamic attractors in activity patterns of cultured neuronal
761 networks, *Physical Review E* **73**, 051907 (2006).

762 [58] D. S. Bassett and O. Sporns, Network neuroscience, *Nature neuroscience* **20**, 353 (2017).

763 [59] L. Novelli and J. T. Lizier, Inferring network properties from time series using transfer entropy and mutual information:
764 Validation of multivariate versus bivariate approaches, *Network Neuroscience* **5**, 373 (2021).

765 [60] L. Novelli, P. Wollstadt, P. Mediano, M. Wibral, and J. T. Lizier, Large-scale directed network inference with multivariate
766 transfer entropy and hierarchical statistical testing, *Network Neuroscience* **3**, 827 (2019).

767 [61] A. Kraskov, H. Stögbauer, and P. Grassberger, Estimating mutual information, *Physical review E* **69**, 066138 (2004).

768 [62] D. J. MacKay and D. J. Mac Kay, *Information theory, inference and learning algorithms* (Cambridge university press,
769 2003).

770 [63] R. E. Spinney and J. T. Lizier, Characterizing information-theoretic storage and transfer in continuous time processes,
771 *Physical Review E* **98**, 012314 (2018).

772 [64] G. Mijatovic, Y. Antonacci, T. L. Turukalo, L. Minati, and L. Faes, An information-theoretic framework to measure the
773 dynamic interaction between neural spike trains, *IEEE Transactions on Biomedical Engineering* (2021).

774 [65] L. Kozachenko and N. N. Leonenko, Sample estimate of the entropy of a random vector, *Problemy Peredachi Informatsii*
775 **23**, 9 (1987).

776 [66] M. Garofalo, T. Nieus, P. Massobrio, and S. Martinoia, Evaluation of the performance of information theory-based methods
777 and cross-correlation to estimate the functional connectivity in cortical networks, *PloS One* **4**, e6482 (2009).

778 [67] M. Kajiwara, R. Nomura, F. Goetze, T. Akutsu, and M. Shimono, Inhibitory neurons are a central controlling regulator
779 in the effective cortical microconnectome., *bioRxiv* (2020).

780 [68] J. W. Aldridge and S. Gilman, The temporal structure of spike trains in the primate basal ganglia: afferent regulation of
781 bursting demonstrated with precentral cerebral cortical ablation, *Brain Research* **543**, 123 (1991).

782 [69] L. Rudelt, D. G. Marx, M. Wibral, and V. Priesemann, Embedding optimization reveals long-lasting history dependence
783 in neural spiking activity, *PLOS Computational Biology* **17**, e1008927 (2021).

784 [70] I. Nemenman, G. D. Lewen, W. Bialek, and R. R. D. R. Van Steveninck, Neural coding of natural stimuli: information at
785 sub-millisecond resolution, *PLoS Computational Biology* **4**, e1000025 (2008).

786 [71] C. Kayser, N. K. Logothetis, and S. Panzeri, Millisecond encoding precision of auditory cortex neurons, *Proceedings of the
787 National Academy of Sciences* **107**, 16976 (2010).

788 [72] S. J. Sober, S. Sponberg, I. Nemenman, and L. H. Ting, Millisecond spike timing codes for motor control, *Trends in
789 Neurosciences* **41**, 644 (2018).

790 [73] J. A. Garcia-Lazaro, L. A. Belliveau, and N. A. Lesica, Independent population coding of speech with sub-millisecond
791 precision, *Journal of Neuroscience* **33**, 19362 (2013).

792 [74] E. Y. Erten, J. T. Lizier, M. Piraveenan, and M. Prokopenko, Criticality and information dynamics in epidemiological
793 models, *Entropy* **19**, 194 (2017).

794 [75] J. Garland, R. G. James, and E. Bradley, Leveraging information storage to select forecast-optimal parameters for delay-
795 coordinate reconstructions, *Physical Review E* **93**, 022221 (2016).

796 [76] M. Hansen, A. Burns, C. Monk, C. Schutz, J. Lizier, I. Ramnarine, A. Ward, and J. Krause, The effect of predation risk
797 on group behaviour and information flow during repeated collective decisions, *Animal Behaviour* **173**, 215 (2021).

798 [77] P. Wollstadt, J. T. Lizier, R. Vicente, C. Finn, M. Martinez-Zarzuela, P. Mediano, L. Novelli, and M. Wibral, Idtxl:
799 The information dynamics toolkit xl: a python package for the efficient analysis of multivariate information dynamics in
800 networks, *arXiv preprint arXiv:1807.10459* (2018).

801 [78] A. Zalesky, A. Fornito, L. Cocchi, L. L. Gollo, M. P. van den Heuvel, and M. Breakspear, Connectome sensitivity or
802 specificity: which is more important?, *Neuroimage* **142**, 407 (2016).

803 [79] G. Rupert Jr *et al.*, *Simultaneous statistical inference* (Springer Science & Business Media, 2012).

804 [80] Y. Kaneoke and J. Vitek, Burst and oscillation as disparate neuronal properties, *Journal of neuroscience methods* **68**, 211
805 (1996).

806 [81] D. Wagenaar, T. B. DeMarse, and S. M. Potter, Meabench: A toolset for multi-electrode data acquisition and on-line
807 analysis, in *Conference Proceedings. 2nd International IEEE EMBS Conference on Neural Engineering, 2005.* (IEEE,
808 2005) pp. 518–521.

809 [82] J. V. Selinger, N. V. Kulagina, T. J. O'Shaughnessy, W. Ma, and J. J. Pancrazio, Methods for characterizing interspike
810 intervals and identifying bursts in neuronal activity, *Journal of neuroscience methods* **162**, 64 (2007).

811 [83] D. J. Bakkum, M. Radivojevic, U. Frey, F. Franke, A. Hierlemann, and H. Takahashi, Parameters for burst detection,
812 *Frontiers in computational neuroscience* **7**, 193 (2014).

813 [84] J. D. Gibbons and S. Chakraborti, *Nonparametric statistical inference* (CRC press, 2020).

814 [85] S. S. Shapiro and M. B. Wilk, An analysis of variance test for normality (complete samples), *Biometrika* **52**, 591 (1965).