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Abstract 1 

Tissue microarrays (TMAs) have been used in thousands of cancer biomarker studies. To what extent batch effects, 2 

measurement error in biomarker levels between slides, affects TMA-based studies has not been assessed 3 

systematically. We evaluated 20 protein biomarkers on 14 TMAs with prospectively collected tumor tissue from 4 

1,448 primary prostate cancers. In half of the biomarkers, more than 10% of biomarker variance was attributable to 5 

between-TMA differences (range, 1–48%). We implemented different methods to mitigate batch effects (R package 6 

batchtma), tested in plasmode simulation. Biomarker levels were more similar between mitigation approaches 7 

compared to uncorrected values. For some biomarkers, associations with clinical features changed substantially after 8 

addressing batch effects. Batch effects and resulting bias are not an error of an individual study but an inherent feature 9 

of TMA-based protein biomarker studies. They always need to be considered during study design and addressed 10 

analytically in studies using more than one TMA.  11 
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Introduction 12 

Tissue microarrays (TMAs) were first developed in the 1990s as an efficient way to examine tissue-based 13 

biomarkers (1). Since then, TMAs have been used in thousands of studies to evaluate histologic and molecular 14 

biomarkers, mostly in cancer tissue. Individual TMAs consist of cylindrical cores from hundreds of tissue samples 15 

embedded in one recipient block (1, 2). Studies often include more than one TMA. Even when biomarker assays are 16 

well standardized and run conditions are diligently kept fixed, some TMA slides (batches) may have measurements 17 

systematically too low or too high, and some batches may have wider spread around the true values of the biomarker 18 

than others. In general, such batch effects can have a profound impact on the validity of biomarker studies, such those 19 

using RNA microarrays (3, 4). Contrary to popular belief, whether such measurement error induces upward or 20 

downward bias in results is not guaranteed to follow simple heuristics (5).  21 

Whether and to what extent TMAs are affected by batch effects has not been empirically assessed. TMAs 22 

pose unique challenges. For example, when tumor tissue is collected prospectively for inclusion on TMAs, tumor 23 

characteristics may differ between batches due to nonrandom assignment of cases, as well as temporal trends in tumor 24 

risk factors, screening, and diagnosis. Differences in tissue processing or storage across tissue specimens may have 25 

differential impact on biomarkers. Including calibration samples for quality control is also more challenging for 26 

TMAs than, for example, assaying of blood samples, because repeat sections from a tumor may differ due to 27 

intratumoral heterogeneity rather than only batch effects. 28 

In this study, we assess batch effects in a large set of centrally constructed TMAs from prostate cancer tissue 29 

from 1,448 men in two nationwide cohort studies. We quantify the extent to which protein biomarker variation could 30 

be explained by batch effects. We probe different methods for mitigating batch effects while maintaining true, 31 

“biological,” between-TMA variation, including in a plasmode simulation. Finally, we demonstrate the impact of 32 

handling batch effects on commonly performed biomarker analyses. 33 

 34 

Results 35 

Extent and type of batch effects. To evaluate the presence of batch effects in studies using TMAs, we studied tumor 36 

tissue from 1,448 men with primary prostate cancer on 14 TMAs (labeled “A” through “N”), each including multiple 37 

tumor cores from 47 to 158 patients per TMA (Figure 1). Multiple cores from the same tumor (usually 3) were always 38 

located on the same TMA. 39 

TMAs were used to quantify 20 protein biomarkers (Figure 2). Biomarker values showed noticeable between-40 

TMA variation, despite immunohistochemical staining having been conducted at the same time for all 14 TMAs. We 41 

estimated that across the 20 biomarkers, between-TMA variation explained between 1% and 48% of overall variation 42 

in biomarker levels (intraclass correlation coefficient, ICC), with half of the biomarkers having ICCs greater than 10% 43 

(Figure 2).  44 

In an example biomarker, estrogen receptor alpha in nuclei of stromal cells (Figure 3), the means of the most 45 

extreme TMAs differed by 2.2 standard deviations in intensity of expression and variances differed up to 9.3-fold. 46 

Other biomarkers showed similar between-TMA variation by magnitude and by which TMAs had the most extreme 47 

values (Figure 4A). Likewise, we observed that not only means, but also variances of biomarker levels differed 48 

between TMAs, although patterns of heteroskedasticity appeared weaker than for means (Suppl. Figure 1). In contrast, 49 

we found little evidence for more complex patterns of batch effects, such that tumors with specific grade, stage, or 50 

year of diagnosis would have been particularly affected by between-TMA differences (Suppl. Table 1). Nevertheless, 51 

observations from the same TMAs tended to be clustered together when projected onto the first two principal 52 

components, capturing 27% of variance in all biomarkers (Figure 4B).  53 

Some biomarkers were stained using automated staining systems, other stains were done manually (Figure 2). 54 

Moreover, the method of scoring, including human (eye) scoring and computer-assisted quantification, differed 55 

between biomarkers, as did the main quantitative score, typically a measure of staining intensity, a proportion of cells 56 

above an intensity threshold, or a combination of both (Figure 2). Notably, between-TMA differences were present 57 

with any of these approaches. For example, batch effects were not only present when considering intensities of 58 

biomarker staining, as for the estrogen receptor alpha and beta example. Even when setting cut-offs for staining 59 
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visible by eye and quantifying the number of stain-positive cells, 8% (95% CI, 2 to 15) of variance in estrogen 60 

receptor alpha positivity and 27% (95% CI, 11 to 42) of estrogen receptor beta positivity were attributable to between-61 

TMA variation (Suppl. Figure 2). Our data do not allow distinguishing which of these approaches, if any, were less 62 

prone to batch effects. 63 

In summary, we observed a large and concerning degree of between-TMA variation for several biomarkers 64 

that were quantified using different approaches, suggesting that addressing batch effects could significantly impact 65 

scientific inference. 66 

 67 

Source of batch effects. The noticeable proportion of variance attributable to TMAs could have two possibly co-68 

existing explanations. First, that between-TMA differences in biomarkers reflect different patient and tumor 69 

characteristics that need to be retained. Second, that between-TMA differences are artifacts due to systematic 70 

measurement error that need to be removed (batch effects).  71 

In support of the first hypothesis, there were noticeable differences in patient and tumor characteristics 72 

between TMAs that are likely associated with biomarker levels (Figure 1). Along with a 14-year range between the 73 

per-TMA medians of cancer diagnosis year, there were differences in the proportion of tumors with a Gleason score 74 

of 8 or higher (between 11% and 33%) and rates of lethal disease (between 2 and 16 events per 1000 person-years of 75 

follow-up). 76 

In support of the second hypothesis, we observed that certain TMAs had consistently higher or lower 77 

biomarker values for the majority of tested biomarkers (Figure 4A). For example, the same batches that showed 78 

higher-than-average biomarker values for stathmin also had higher-than-average values for PTEN. This example is 79 

noteworthy because both markers were assayed together on the same section of each TMA using multiplex 80 

immunofluorescence, and stathmin would be expected to be expressed in more aggressive tumors with activation of 81 

the PI3K signaling pathway while PTEN expression would be expected to be low in the same tumors (6). 82 

Further supporting the second hypothesis, we did not observe any meaningful reduction in ICCs when we 83 

considered tumors that had the same clinical features in terms of Gleason score and stage (Suppl. Figure 3). Moreover, 84 

the association between Gleason score and biomarker levels (Figure 2D) was considerably lower than between TMAs 85 

and biomarker levels, as underscored by less pronounced visual separation of principal components by Gleason score 86 

(Figure 4C) than by TMA (Figure 4B). Gleason score differences explained no more than 13% of variance in 87 

biomarker levels (for prostate-specific membrane antigen, PSMA; 95% CI for ICC, 0.02 to 0.29), and 13 of the 20 88 

biomarkers had ICCs by Gleason score of 1% or less (Suppl. Figure 4). 89 

To directly disentangle both hypotheses, we further examined data on 10 tumors with a total of 53 tumor 90 

cores for which some cores were included on different TMAs (Figure 4D). These were not included in the previous 91 

analyses and had estrogen receptor scoring data. This design allowed us to estimate biomarker differences directly 92 

attributable to between-TMA variability within the same tumors while controlling for the between-core variability 93 

expected due to intratumoral heterogeneity. Of the total variance in estrogen receptor alpha levels, 30% (95% CI, 0 to 94 

67) was explained by between-TMA variation; for estrogen receptor beta, 24% (95% CI, 0 to 60) was explained by 95 

between-TMA variation. For comparison, between-tumor variation explained 37% (95% CI, 4 to 68) of the variance 96 

of estrogen receptor alpha levels and 26% (95% CI, 0 to 57) of the variance of estrogen receptor beta levels.  97 

Collectively, while these observations highlighted moderate differences in clinical and pathological 98 

characteristics between TMAs, they suggested that between-TMA differences were largely due to batch effects. 99 

 100 

Mitigation of batch effects. We implemented six different approaches for batch effects mitigation and compared 101 

these to the uncorrected biomarker levels (Figure 3, Suppl. Figure 5). Two mitigation approaches, batch means 102 

(approach 2) and quantile normalization (approach 6), assumed no true difference between TMAs is arising from 103 

patient and tumor characteristics, while all other approaches attempted to retain such differences between TMAs. It is 104 

possible that the choice of mitigation approaches may be optimized using knowledge of the source of the batch effect. 105 

This would be the case if each method “specialized” in mitigating effect from specific sources. We have not 106 

investigated this possibility here. Overall, correlations between values adjusted by different approaches were higher 107 
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(mean Pearson r, 0.97 to 1.00) than between uncorrected values and corrected values (r, 0.90 to 0.95), regardless of 108 

mitigation approach (Figure 4E). 109 

Approaches 2–7 reduced visible separation by batch on plots of the first two principal components (Suppl. 110 

Figure 6). Variance attributable to between-TMA differences decreased to ICCs of <1% for all markers (Suppl. 111 

Table 2). An exception was the quantile regression-based approach 5; the ICCs after this approach remained up to 112 

10%. This method does not explicitly address differences in means between batches but allows associations between 113 

clinical and pathological factors and biomarker levels to differ at high and low quantiles (Suppl. Figure 7).  114 

The differences between uncorrected values and batch effect-corrected values were remarkably similar 115 

between the mean-based approaches using approaches 2 (simple means), 3 (standardized batch means), and 4 (inverse 116 

probability-weighted batch means; Suppl. Figure 8). Consequently, batch effect-corrected values by approaches 2–4 117 

were highly correlated (Figure 4E). All mean-only batch effect mitigations also gave the same results when fitting 118 

outcome models stratified by batch (Suppl. Figure 9). However, batch-specific results differed for approaches that 119 

targeted between-batch differences in the variance of biomarkers. 120 

 121 

Validating batch effect mitigation in plasmode simulation. To compare the performance of the different batch 122 

mitigation approaches in a time-to-event analysis, we applied plasmode simulation (7) to fix the expected strength of 123 

the biomarker exposure–outcome relationship a priori before artificially introducing batch effects. The correlation 124 

structure between biomarker and confounders and between confounders and batches from the actual data (Suppl. 125 

Figure 10A, C) was preserved in the plasmode-simulated data. Likewise, across a range of hazard ratios for the 126 

biomarker–outcome association, confounder–outcome associations remained unchanged (Suppl. Figure 10B, D). 127 

We first evaluated a setting in which we did not introduce batch effects (Figure 5A). Here, the observed 128 

hazard ratios without batch effect mitigation equaled the expected. When performing (unnecessary) batch effect 129 

mitigation, observed hazard ratios were still comparable with the expected hazard ratios (Figure 5D; see Suppl. 130 

Table 3 for confidence intervals).  131 

We then introduced batch effects by adding batch-specific mean differences to the observed biomarker levels, 132 

yet without introducing differences in variance by batch (Figure 5B). Without batch effect mitigation, for a true 133 

hazard ratio of 3.0, the observed hazard ratio, averaged over simulations, was 2.17 (95% CI, 1.86 to 2.53), an 134 

underestimate by 28% (Figure 5E; Suppl. Table 3). In contrast, all mitigation approaches produced CIs that covered 135 

the expected hazard ratio (e.g., approach 6 quantile normalization: hazard ratio, 3.03; 95% CI, 2.48 to 3.69).  136 

When we introduced batch-specific differences in both means and in variances (Figure 5C), the observed 137 

hazard ratio without batch effect mitigation decreased to 1.90 (95% CI, 1.66 to 2.16) compared to the expected hazard 138 

ratio of 3.0 (Figure 5F; Suppl. Table 3). Batch effect mitigation methods that only focus on means (approaches 2–4) 139 

reduced but did not fully eliminate bias, with hazard ratios ranging between 2.67 and 2.70. Methods that address 140 

differences in both mean and variance resulted in less bias, with an observed hazard ratio of 3.11 (95% CI, 2.54 to 141 

3.81) for approach 6 (quantile normalization).  142 

We also included two stratification-based approaches. Fitting survival models separately by batch, followed 143 

by inverse-variance pooling (approach 8) resulted in approximately unbiased estimates but was less efficient than 144 

other approaches, comes with a risk of sparse-data bias, and resulted in considerably wider confidence intervals in our 145 

simulation. Including batch as a stratification variable in a single Cox model (approach 9) was unbiased and efficient. 146 

A drawback of both stratification-based approaches is that they do not explicitly estimate batch effect-adjusted 147 

biomarker values that could be visualized directly. 148 

Scenarios evaluated thus far were based on the actual, modest imbalance of confounders between batches and 149 

at most weak associations between the biomarker and confounders, resulting in weak confounding overall. We 150 

additionally introduced both modest and strong associations between biomarker and confounders and created more 151 

severe imbalance between batches (Suppl. Figure 11). In all scenarios, the ranking of mitigation methods was 152 

preserved (Suppl. Figure 12, Suppl. Tables 3 and 4), with the least bias obtained through quantile normalization 153 

(approach 6). Bias occurred when using uncorrected biomarker levels in the presence of any batch effects, except if 154 

there was no association between biomarker and outcome (i.e., a hazard ratio of 1), and with mean-only approaches 2–155 

4 if variance was also affected by batch effects. In no situation, except possibly with the quantile regression-based 156 
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approach 5, were estimates after batch effect mitigation farther from the expected values than results based on 157 

uncorrected biomarker levels. 158 

 159 

Impact of batch effects. To illustrate how batch effect mitigations alter the results of commonly conducted tumor 160 

biomarker analyses, we estimated how uncorrected and corrected biomarker levels were associated with Gleason 161 

score and with rates of lethal disease. For markers with little between-TMA variability (low ICCs) such as beta-162 

catenin, there were no noticeable differences in associations between using unadjusted and adjusted biomarker levels 163 

irrespective of adjustment model, as expected from plasmode simulation. However, for markers with higher between-164 

TMA variability (higher ICC) and stronger associations with the outcome, adjustment approaches led to noticeable 165 

differences (Figure 6). For example, uncorrected stathmin expression levels were not associated Gleason score 166 

(difference, 0.00 standard deviations per 1 grade-group increase; 95% CI, –0.05 to 0.05), while the difference in levels 167 

corrected according to approach 6 was 0.04 (95% CI, 0.00 to 0.07), suggesting a potentially qualitatively different 168 

interpretation (Figure 6A; Suppl. Table 5). In models for lethal disease (Figure 6B), the otherwise unadjusted hazard 169 

ratio for the highest quartile of the vitamin D receptor, compared to the lowest quartile, was 0.44 (95% CI, 0.23 to 170 

0.86); after mitigation using approach 6, the hazard ratio was 0.19 (95% CI, 0.09 to 0.40), suggesting that unadjusted 171 

biomarker levels could underestimate the prognostic association by 2.3-fold (Suppl. Table 6 and 7). 172 

 173 

Discussion 174 

The key strength of using TMAs is their utility in parallelizing the assessment of biomarkers on a large number of 175 

tissue specimens (1). Similar to other high-throughput platforms, batch effects have to be considered in every TMA 176 

biomarker study. As we demonstrated, for some of the biomarkers, batch effects can be of substantial magnitude. We 177 

show that batch effect mitigation is possible and can enhance study findings. 178 

In our study of prostate tumor specimens, between-TMA differences explained 10% or more of the variance 179 

in biomarker levels for half of the included biomarkers, considerably more than one of the strongest pathological 180 

features in prostate cancer, Gleason grade. All analytical mitigation approaches to reduce batch effects, whether they 181 

attempted to retain real differences between tumors from different TMAs or not, led to corrected biomarker levels that 182 

were more similar to each other than they were, in general, to the uncorrected biomarker levels. In drawing from a 183 

large set of protein tumors biomarkers in prostate cancer, we show how appropriately mitigating batch effects 184 

strengthens results and their validity for biomarkers affected by batch effects. 185 

Ideally, batch effects between TMAs are minimized when designing a study. Standardizing how tumor 186 

samples are obtained, stored, processed, and assayed is critical, as are stratified or random allocation of tumor samples 187 

to different TMAs (3) when possible. However, the batch effects that we observed occurred despite all feasible 188 

standardization efforts. Moreover, samples will be collected sequentially, and TMAs may be constructed sequentially 189 

in large-scale prospective studies over time. There were modest differences in the clinical and pathological 190 

characteristics between our TMAs, an issue that may be inevitable in larger-scale biobank studies. Allocation schemes 191 

of tumors to TMAs that appear ideal retrospectively, for example by matching “cases” of lethal tumors with 192 

“controls” of non-lethal tumors, may not be feasible prospectively. Likewise, in few of the thousands of studies using 193 

TMAs will it be possible to reallocate tumors to different TMAs and repeat all pathology work merely to reduce 194 

implications of batch effects.  195 

An additional challenge in the design phase is that tissue samples are inherently heterogeneous and cannot 196 

simply be diluted, like blood samples. “Quality control” tumor samples that could serve as a quantitative calibration 197 

series suitable for all future biomarkers do not exist. One potential strategy is to include cell lines that have been 198 

formalin-fixed and paraffin-embedded on each TMA. While cell lines address issues of heterogeneity, the cell lines 199 

are often genomically unique and as such may not be relevant for all biomarkers. Another potential approach is to 200 

include samples from the same tumor case across TMAs, which would allow for direct estimation of batch effects. For 201 

these reasons, a principled approach that anticipates batch effects and addresses them analytically is critical. 202 

Beyond efforts to prevent batch effects during the study design phase, we suggest the following best practices 203 

when undertaking TMA-based tissue biomarker studies (Figure 7). First, the extent of potential batch effects should 204 
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be explored and reported in any study of cancer tissue using TMAs. Inspecting TMA slides and plots (Figure 3) (8) is 205 

important. Between-TMA variation should be quantified, for example by calculating ICCs, i.e., to contrast variation of 206 

biomarker levels between TMAs compared to that between or within tumors (9). In our study, for half of the 207 

biomarkers, ICCs for between-TMA variation were low, at less than 10%, although the proportion of tolerable batch 208 

variation should be chosen based on the context. Whether TMAs differ in terms of average biomarker levels, low 209 

levels (possibly reflective of background), or variability between tumors will also inform what impact of between-210 

TMA differences to expect. 211 

Second, the source of between-TMA differences should be elucidated. Ideally, including multiple cores from 212 

the same tumors in more than one TMA will help estimating, again using ICCs, how biomarker levels vary between 213 

TMAs, between tumors, and within tumors. Alternatively, ICCs between TMAs can be estimated by restricting to or 214 

adjusting for tumor features associated with differences in the biomarker, if known. In our study, both approaches 215 

indicated that the largest share of between-TMA differences was likely due to batch effects rather than due to true 216 

differences between tumors on different TMAs. However, one should not simply assume this to be the case in other 217 

settings, and also explore between-tumor differences as one source of between-TMA differences.  218 

In multidisciplinary team discussions (10), it may be possible to directly pinpoint the source of batch effects 219 

and eliminate its cause. All study steps, including the pre-analytic, analytic, and post-analytic phases, should be 220 

considered. If sources of batch effects can be identified, it is preferable that they be addressed directly during the pre-221 

analytical or analytical phase, rather than applying the post-analytical methods that we have described here and that 222 

may not adequately incorporate knowledge on the source of batch effects. For example, if immunohistochemical 223 

staining was performed separately for each TMA, then immunohistochemistry and quantification should be repeated 224 

using new sections from all TMAs at once. Imaging of pathology slides can also be a source of batch effects (11), as 225 

could be image analysis. In other cases, particularly if such obvious reasons for batch effects were avoided through 226 

standardized processing, as in our examples, it may remain elusive whether batch effects were induced through subtle 227 

differences in how tumors were cored and embedded during TMA construction, how long they had been stored, how 228 

they were sectioned, how well the staining process was standardized, or how successfully background signal was 229 

eliminated during software-based quantification. Yet even biomarkers scored by manual quantification were not free 230 

from batch effects. 231 

Third, if a biomarker is affected by batch effects and no “physical” remediation is possible, then analytical 232 

approaches should be used to reduce bias in results (3, 4). We demonstrate that in all plausible or exaggerated real-233 

world scenarios, estimates after applying batch effect mitigations were consistently closer to the true underlying 234 

values than they were without. If batches do not only differ in terms of mean values, but also in terms of their 235 

variances, then methods that focus solely on means may be insufficient. A simple quantile-normalization-based 236 

approach was successful in reducing bias in real-world scenarios and could be preferred for its simplicity. It is 237 

important to note that any method tested in this study is preferable over not addressing batch effects, and thus the 238 

choice between methods should be secondary to the choice to address batch effects altogether. Only results for 239 

biomarkers that are affected by batch effects and that are associated with the outcome of interest will show large 240 

changes in estimates, as the vitamin D receptor in our example. In contrast, for the majority of our example 241 

biomarkers, results did not change appreciably because batch effects were low, associations with the outcome were 242 

close to null, or both (Figure 6). 243 

We recommend that researchers openly address batch effects in their TMA-based studies: they are not an 244 

error of an individual study, but an inherent feature of TMA-based studies. Batch effects have long been recognized in 245 

studies of the transcriptome using microarrays and next-generation sequencing, where batch effect mitigations are a 246 

component of standard workflows (4, 12). Our data strongly suggest that protein biomarker studies using multiple 247 

TMAs are at risk of batch effects just like any other biomarker study. The extent of batch effects is difficult to predict, 248 

and empirical evaluation is necessary each time. Future studies should quantify between-TMA differences and, if they 249 

deem batch effect mitigations to be unnecessary, provide evidence for absence of batch effects, rather than merely 250 

assuming their absence. The methods that we provide facilitate appropriate migration of batch effects between TMAs 251 

and help strengthen scientific inference. It may be prudent to extend this approach to in-situ tissue biomarkers other 252 

than proteins, such as RNA in-situ hybridization, even if our study only demonstrated batch effects for proteins. 253 
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Having mitigated batch effects will allow researchers to focus on increasing study validity by addressing other sources 254 

of measurement error (5), selection bias (for example, from tumor biospecimen availability) (13), and confounding. 255 

 256 

Methods 257 

TMAs and biomarkers. Tumor tissue in this study was from men who were diagnosed with primary prostate cancer 258 

during prospective follow-up of two nationwide cohort studies. The Health Professionals Follow-up Study is an 259 

ongoing cohort study that enrolled 51,529 male health professionals across the United States in 1986. The Physicians’ 260 

Health Study 1 and 2 were randomized-controlled trials of aspirin and dietary supplements, starting in 1982 with 261 

22,071 male physicians. Participants were diagnosed with and treated for prostate cancer at local health care providers 262 

across the United States. The study team collected formalin-fixed paraffin-embedded tissue specimens from radical 263 

prostatectomy and transurethral resection of the prostate (TURP), and study genitourinary pathologists performed 264 

central re-review, including standardized Gleason grading of full hematoxylin–eosin-stained slides from the tumor 265 

blocks (14). The study protocol was approved by the institutional review boards of the Brigham and Women’s 266 

Hospital and Harvard T.H. Chan School of Public Health, and those of participating registries as required. 267 

TMAs were constructed using 0.6-mm tissue cores of the primary nodule or the nodule with the highest 268 

Gleason score (15), including three or more cores of tumor tissue per participant (tumor). For a subset of tumors, 269 

additional cores of tumor-adjacent, histologically normal-appearing prostate tissue were included. TMAs were 270 

constructed at the same laboratory across a 10-year period, as tissue from cohort participants became available, 271 

without matching on patient or tumor characteristics and without randomization. Cores from the same participant 272 

were generally included on the same TMA, with exceptions noted below, and summarized as the mean. We include 273 

information from 14 prostate tumor tissue microarrays.  274 

Immunostaining was generally performed separately for individual biomarkers yet always for all TMAs at the 275 

same time. Detailed immunohistochemistry staining and quantification procedures for each marker have been 276 

published (6, 16-26) or are in preparation for estrogen receptor alpha (antibody SP1; Thermo Scientific, Waltham, 277 

MA) and an antibody (PPG5/10; Bio-Rad Laboratories, Hercules, CA) widely used to measure estrogen receptor beta. 278 

If batch effect mitigation approaches had been applied in the original studies, the uncorrected levels were retrieved. 279 

Right-skewed biomarker scores (Ki-67, pS6, TUNEL) were loge transformed. All biomarkers were scaled to mean 0 280 

and standard deviation 1 solely to facilitate comparisons of batch effects across markers; batch effect mitigation does 281 

not necessitate scaling and preserves absolute biomarker values. 282 

 283 

Extent and type of batch effects. To visualize the extent of biomarker variation between TMAs, we plotted 284 

uncorrected biomarker values by tumor, biomarker, and TMA. We summarized biomarker variation using the first two 285 

principal components (27). We calculated between-TMA mean differences and ratios of variances versus the first 286 

TMA. We tested if tumors with different clinical/pathological characteristics had higher biomarker levels in TMAs 287 

with higher means (i.e., multiplicative effect modification). For each biomarker and each clinical/pathological feature 288 

(ordinal Gleason score, ordinal stage, or calendar year of diagnosis), let Zij be the within-TMA z-score (mean 0, 289 

standard deviation 1) for tumor i from TMA j; Ai, the clinical/pathological feature of tumor i; Bj, the TMA-specific 290 

biomarker mean, rj, the TMA-specific random effect, and eij, residual error. In the regression model  291 

��� �  �� � ���� � ���� � ������ � �� � 	��, we evaluated the β3 term to assess for multiplicative effect measure 292 

modification. 293 

We calculated the proportion of variation in biomarker levels attributable to TMA using intra-class 294 

correlations (ICCs, also “repeatability” (9)) based on one-way random effects linear mixed models with an 295 

independent variance–covariance structure (9, 28) for Yij, the biomarker level per tumor i and TMA j; where β0 is the 296 

biomarker mean; rj, the random effect for TMA j; and eij, the residual error: 
�� �  �� � �� � 	��. The ICC was defined 297 

as the proportion of between-TMA variance in the total variance: ��� �  
��	
��

��	
��
��	
��
. 95% CIs for ICCs were 298 

obtained using parametric bootstrapping using 500 repeats (29). 299 

 300 
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Source of batch effects. To directly distinguish between-TMA variation caused by batch effects from variation 301 

caused by differences in patient and tumor characteristics, we compared ICCs per biomarker overall to ICCs per 302 

biomarker when restricting analyses to a subset of tumors with the same clinical features. We also leveraged a small 303 

subset of tumors that had cores included on more than one TMA. Here, we used two-way random effects linear mixed 304 

models with independent variance-covariance structure (30) to separate between-TMA variation from between-core 305 

variation (i.e., intratumoral heterogeneity) and residual modeling error: 
��� �  �� � �� � 
� � 	���. Compared to the 306 

model described earlier, this model additionally includes tumor-specific random effects si, and thus  307 

��� �  
��	
��

��	
��
��	
��
��	
��
. 308 

 309 

Mitigation of batch effects. In addition to (1) using uncorrected values, we implemented eight different approaches 310 

to handle between-TMA batch effects: 311 

 (2) Simple means. This approach assumes that all TMAs, if not affected by batch effects, would have the 312 

same mean biomarker value. Differences in mean biomarker values per batch are corrected by estimating batch-313 

specific mean effects (differences from the overall mean level) using a linear regression model with uncorrected 314 

biomarker values as the outcome and batch indicators as predictors. Corrected biomarker values are then obtained by 315 

subtracting batch-specific effects from the uncorrected biomarker values. Mean differences can either indicate the 316 

difference of each batch mean to the overall mean, as implemented here, or be defined by comparison to a reference 317 

batch. 318 

(3) Standardized means. This approach estimates marginal means per batch using model-based 319 

standardization (in the epidemiologic sense). It assumes that batches with similar characteristics have the same means 320 

if not affected by batch effects. A linear regression model for a specific biomarker is fit, adjusting for tumor variables 321 

that differ in distribution between TMAs, similar to an approach described in the epidemiology literature by 322 

Rosner (31). Let Yij indicate the biomarker value for tumor i on TMA j; Bj, TMA j; C1 to Cm, the m covariates to be 323 

retained; and eij, the residuals. Then 
�� � �� � ³��� � ´��� �  … � ´��� � e��. Batch effect-corrected biomarker 324 

values can be obtained by subtracting batch-specific effects ³� predicted from the model above from uncorrected 325 

biomarker values.  326 

We included the following clinical and pathologic variables as plausible sources of real between-TMA 327 

differences that should be retained in this approach, as well approaches 4–7: calendar year of diagnosis (linear), 328 

Gleason score (categorical: 5–6; 3+4; 4+3; 8; 9–10), and pathologic tumor stage (categorical: pT1/T2, pT3/T3a, 329 

pT3b/T4/N1, missing/tissue from transurethral resection of the prostate). 330 

(4) Inverse-probability weighted batch means. Like the preceding approach, this approach assumes that 331 

batches with similar characteristics have the same means if not affected by batch effects. While the preceding 332 

approach assumes a constant association between covariates and biomarker levels across batches, this approach allows 333 

for associations to differ between batches. We first used inverse probability weighting for marginal standardization of 334 

the distribution of clinical and pathological features per batch to the distribution in the entire study population. 335 

Stabilized weights (32), truncated at the 2.5th and 97.5th percentile, were obtained through multinomial regression 336 

models, modeling the probability of assignment to a specific batch based on same clinical and pathological variables 337 

as in (3). In the weighted pseudopopulation, we then used a marginal linear model to estimate batch-specific mean 338 

differences, which were further used as in approaches 2 and 3. 339 

(5) Quantile regression. This approach assumes that batches with similar characteristics have the same values 340 

for a selected set of batch-specific quantiles, in this application the upper and lower quartile. The lower quartile may 341 

be particularly affected by background noise, while the upper quartile may more likely reflect differences in batches 342 

due to covariates. A corollary of separately modeling the two differently is that clinical and pathological variables are 343 

allowed to have different effects on these quartiles (33). These assumptions contrast with approaches 2–4 that focus 344 

on mean levels only. We used quantile regression with the Frisch-Newton approach (34) separately for the first and 345 

third quartile of biomarker values with batch indicators to predict adjusted batch-specific quantile values with the 346 

same confounders as above. We then used the batch-specific 25th percentiles (����.��) as the offset and the 347 
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interquartile range between the 25th and 75th percentiles (����.��) as the scaling factor when batch-correcting 348 

biomarker levels. Let ���
	  indicate the batch effect-corrected biomarker level for tumor i on TMA j; ���, the 349 

uncorrected biomarker level for tumor i on TMA j; ���
��
, xth quantile of y for batch j (predicted value for yj from 350 

unadjusted quantile regression); ���
��
,	 is ���

��
 with adjustment for confounders (predicted value for yj from adjusted 351 

quantile regression); and ����
, the xth quantile of y overall. Then the corrected biomarker level is 352 

���
	 �

���� � ���
���.��� 	�����.�� � �����.��


	��
�

���.��,	 � ��
�

���.��,	

� �����.��– ���

���.��,	 � ���
���.�� 

(6) Quantile normalization. This approach assumes that samples on all batches, if not affected by batch 353 

effects, would not only have the same mean and variance but also the same distribution of individual biomarker 354 

values. Uncorrected biomarker values are ranked within each batch and then ranks are replaced by the mean of values 355 

with the same rank across batches. We implemented quantile normalization using limma (35, 36).  356 

A conceptually related approach, for example employed in molecular epidemiology (3, 10), would be to use 357 

within-batch ranks as the batch-corrected biomarker, often grouped into data-driven categories such as batch-specific 358 

quartiles. We did not further consider these derivatives because they do not retain absolute biomarker levels and can 359 

distort rank distances. 360 

 (7) ComBat. For comparison, we additionally included the ComBat algorithm, which like approach 4 361 

attempts to retain differences in batch means due to covariate differences; it is frequently applied together with 362 

approach 6. ComBat and its derivatives (12, 37, 38) were initially designed for microarray studies of gene expression, 363 

which include considerably more than one biomarker per sample. This property would typically limit their use for a 364 

protein biomarker quantified on a TMA unless a large number of biomarkers is available, as in our study. Mitigation 365 

depends on values of other biomarkers on the same batches. Even if multiple protein biomarkers were available, the 366 

non-randomly selected set of concomitantly available biomarkers may influence how batch effects are corrected. 367 

ComBat scales means and (optionally) variances while (optionally) retaining adjustment variables. ComBat is 368 

implemented using an empirical Bayes approach to achieve more favorable properties for small batches. The 369 

underlying model is similar to the regression above and has been emulated by a two-way analysis of variance (39). In 370 

using ComBat, we scaled both means and variances, adjusting for the same clinical and pathological variables as 371 

before. Because ComBat cannot handle biomarkers if they are missing on entire batches, we ran ComBat separately 372 

for groups of biomarkers measured on 8, 9, 10, or 14 TMAs. 373 

(8) Stratification with inverse-variance pooling. An alternative approach to treating batch effects is to 374 

estimate outcome regression models separately by batch. This approach can be applied for a variety of regression 375 

models but does not result in corrected values. We pooled estimates with inverse variance-weighting to obtain 376 

summary estimates. 377 

(9) Stratification in Cox proportional hazards regression. In a special case of stratification for time-to-event 378 

outcomes, Cox proportional hazards models allow for nonparametric batch effect mitigation by including batch as a 379 

stratification factor in the model specification. Comparisons are performed within batches. Unlike approach 8, only 380 

batch-specific baseline hazard functions but no batch-specific effects are estimated. 381 

For approaches 1–7, we calculated Pearson correlation coefficients between uncorrected and corrected 382 

biomarker levels. Additionally, we repeated ICC and principal components analyses with corrected levels, and we 383 

estimated associations between Gleason score and biomarker levels after batch effect mitigation, stratifying by batch 384 

using approach 8. 385 

Approaches 2–6, which result in batch effect-adjusted biomarker levels, are implemented in the R package 386 

batchtma, available at https://stopsack.github.io/batchtma. 387 

 388 

Plasmode simulation. We evaluated the impact of batch effect mitigation approaches on known, investigator-389 

determined biomarker–outcome associations using plasmode simulation, an approach used, for example, for 390 

evaluating confounding control for binary exposures in pharmacoepidemiology (7). We used observed data from all 391 

tumors included on the 14 TMAs to determine covariates (Gleason grade, pathological stage) and outcome (lethal 392 

disease), preserving the observed correlation structure (e.g., joint distribution of clinical characteristics across TMAs). 393 
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The only simulated elements were the biomarker levels and the strengths of biomarker–outcome associations (hazard 394 

ratios ranging from 1 3�  to 3) that we fixed by simulating event times with flexible parametric survival models (40). 395 

Models used a baseline hazard function consisting of cubic splines with three knots (41). Group differences were 396 

based on proportional hazards for the observed confounder–outcome coefficients in the real data and the fixed 397 

biomarker (exposure)–outcome hazard ratios.  398 

First, we used plasmode simulation to generate the fixed associations of the biomarker levels with the 399 

outcome, which are unknowable outside simulation studies, generating 200 plasmode datasets for each association. 400 

Second, we introduced batch effects. Batch effects were either only for the mean or for both mean and variance, using 401 

the actual standardized between-TMA differences in means and variances for the estrogen receptor-alpha protein, a 402 

biomarker with high ICCs. We also added batch effects for mean and variance with effect modification, making mean 403 

and variance changes due to batch effects strongly correlated with Gleason scores. Third, we calculated batch effect- 404 

adjusted biomarker levels using approaches 2–6. Lastly, we compared the expected hazard ratios for the biomarker–405 

outcome association, fixed during simulations, with the estimated hazard ratios from Cox regression (with normality-406 

based 95% CIs) before and after batch effect mitigation approaches 2–6 and using the two stratification-based 407 

approaches 8 and 9. 408 

In sensitivity analyses, we simulated “moderate” associations between the biomarker and confounders 409 

(0.2 standard deviations difference in biomarker levels per Gleason grade group, 0.1 per stage category), “strong” 410 

associations (differences of 0.4 and 0.2 standard deviations, respectively; stronger than observed for any biomarker in 411 

our study), as well as “strong” associations and additional imbalance in Gleason grade and stage between TMAs (by 412 

excluding tumors with low grades from TMAs with higher-than-average means and excluding tumors with high stage 413 

from TMAs with low-than-average means), all before the four steps described above. 414 

 415 

Impact of batch effects. To quantify the impact of different approaches to batch-effect handling on scientific 416 

inference, we focused on two commonly employed types of analyses in biomarker research in prostate cancer: first, a 417 

cross-sectional analysis of Gleason score and biomarker levels, using linear regression models; second, a time-to-418 

event analysis of biomarker levels and rates of lethal disease, using Cox proportional hazards regression. For 419 

graphing, exposures were modeled in five categories (Gleason scores) or using restricted cubic splines with three 420 

knots (all biomarkers in models for lethal disease). For numeric comparisons, Gleason scores were modeled as ordinal 421 

variables and biomarkers as linear variables to obtain one single estimate per model. We also categorized biomarkers 422 

into four quartiles and compared hazard ratios for lethal disease of the extreme quartiles. Models were designed only 423 

for investigating issues of batch effects and not for subject matter inference on specific biomarkers. 424 

 425 

Data availability. The batchtma R package is available at https://stopsack.github.io/batchtma. Code used to produce 426 

results this manuscript is at https://github.com/stopsack/batchtma_manuscript. Data are available for analysis on the 427 

Harvard FAS computing cluster through a project proposal for the Health Professionals Follow-up Study 428 

(https://sites.sph.harvard.edu/hpfs/for-collaborators). 429 
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Figures 533 

 534 

Figure 1. Characteristics of men with prostate cancer with tissue included on the 14 tumor tissue microarrays. 535 

A, Calendar years of cancer diagnosis, with thick lines indicating median, boxes interquartile ranges, and whiskers 1.5 536 

times the interquartile range. B, Counts of tumors by Gleason score. C, Counts of tumors by pathological TNM stage 537 

(RP: radical prostatectomy). D, Rates of lethal disease (metastases or prostate cancer-specific death over long-term 538 

follow-up), with bars indicating 95% confidence intervals. As throughout, multiple cores are summarized per tumor. 539 

540 

  541 
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Figure 2. Biomarkers stained, staining and scoring methods, and intraclass correlation coefficients (ICCs). A, 542 

Tissue microarrays assessed for each marker (dark blue, yes). B, Approach to staining biomarkers: automated staining 543 

system vs. manual staining (gray, yes); quantification of biomarkers: software-based scoring vs. eye scoring (blue, 544 

yes); biomarker quality assessed: staining intensity, proportion of cells positive for the biomarker, area of tissue 545 

positive for the biomarker (yellow, yes). C, Counts of tumors assessed for each biomarker. D, Between-tissue 546 

microarray ICCs (i.e., proportion of variance explained by between-tissue microarray differences) for each biomarker, 547 

with 95% confidence intervals. Empty symbols indicate the 97.5th percentile of the null distribution of the ICC 548 

obtained by permuting tumor assignments to TMAs; asterisks indicate between-Gleason grade group ICCs. 549 

Biomarkers are arranged by descending between-tissue microarray ICC.  550 

551 
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Figure 3. Effect of batch effect mitigation on a biomarker with strong between-tissue microarray variation. A, 553 

The protein biomarker estrogen receptor-alpha was quantified as staining intensity in nuclei of epithelial cells, 554 

averaged over all cores of each tumor. Each panel shows processed data for a specific approach to correcting batch 555 

effects. Notes in the upper right corner indicate which properties of batch effects were potentially addressed. Each 556 

data point represents one tumor. y-axes are standard deviations of the combined data for the specific method. Thick 557 

lines indicate medians, boxes interquartile ranges, and whisker length is 1.5 times the interquartile range. B, Example 558 

photographs of tissue microarrays; brown color indicates positive staining. 559 

 560 
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Figure 4. Patterns, source, and remediation of batch effects. A, Biomarker mean levels by tissue microarray, in 561 

biomarker-specific standard deviations (y-axis). Each point is one tissue microarray. B, First two principal 562 

components of biomarkers levels on all 14 tissue microarrays, with color/shape denoting tissue microarray. Each point 563 

is one tumor. C, The same first two principal components, with color/shape denoting Gleason score. D, Per-core 564 

biomarker levels for tumors with multiple cores included on two separate tissue microarrays, for estrogen receptor 565 

(ER) alpha and beta, both in standard deviations. Each point is one tumor core. E, Pearson correlation coefficients r 566 

between uncorrected and corrected biomarker levels. Entries are averages across all markers. 567 

568 
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Figure 5. Plasmode simulation results. A–C, Biomarker levels by tissue microarray in three simulation scenarios; 570 

D–F, true versus observed hazard ratios for the biomarker–outcome association after alternative approaches to batch 571 

effect correction, with correction methods being numbered as in the Methods section. The solid blue line indicates no 572 

correction for batch effects. A and D, no batch effects; B and E, means-only batch effects; C and F, means and 573 

variance batch effects. 574 

575 
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Figure 6. Consequences of batch effect mitigation on scientific inference. A, Gleason score and biomarker levels 577 

(in standard deviations, per Gleason grade group). B, Biomarker levels and progression to lethal disease, with hazard 578 

ratios per one standard deviation increase in biomarker levels from univariable Cox regression models. In both panels, 579 

blue dots indicate estimates using uncorrected biomarker levels, yellow dots indicate batch effect-corrected levels, 580 

applying approach (5), quantile regression. Lines are 95% confidence intervals. Biomarkers are ordered by decreasing 581 

between-tissue microarray intraclass correlation coefficient (ICC). 582 

583 
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Figure 7. Recommended workflow for anticipating and handling batch effects between tissue microarrays. 585 

Following prevention approaches at the design phase of a project, all tissue microarray-based studies should explore 586 

the potential for batch effects once a biomarker has been measured. Addressing batch effects should only be skipped 587 

there is no indication for their presence. Batch effect-corrected biomarker levels can easily be generated by the 588 

batchtma R package.  589 
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Legends for Supplementary Tables and Figures  591 

See separate markdown document, also available at 592 

https://stopsack.github.io/batchtma_manuscript/batchtma_manuscript_211203.html 593 

 594 

Supplementary Table 1. Interaction terms to test for multiplicative effect modification, i.e. whether batch effects 595 

more strongly affect tumors with more extreme clinical/pathological characteristics. The table shows point estimates 596 

(differences in biomarker levels), 95% confidence interval bounds, p-values, and false-discovery rates (FDR, in 597 

ascending order) for interaction terms between the within-batch normalized biomarker level and the potential effect 598 

modifier in linear models that have absolute biomarker levels in standard deviation units per biomarker as the 599 

outcome and also include main effects for the biomarker and the effect modifier (terms not shown).  600 

Supplementary Table 2. Intraclass correlation coefficient (ICC) for between-batch variance for uncorrected 601 

biomarker levels (“1 Raw”) and biomarker levels after applying different correction methods. 602 

Supplementary Table 3. Results from plasmode simulation according to type of induced batch effect, using the data 603 

correlation structure “moderate confounding.” For three fixed (“true”) hazard ratios for the biomarker–outcome 604 

association (1 3� , 1, and 3), the observed hazard ratios after batch correction (with 95% confidence intervals) are shown. 605 

Supplementary Table 4. Results from plasmode simulation according to data correlation structure, using the batch 606 

effect “mean and variance.” For three fixed (“true”) hazard ratios for the biomarker–outcome association (1 3� , 1, and 607 

3), the observed hazard ratios after batch correction (with 95% confidence intervals) are shown. 608 

Supplementary Table 5. Gleason grade—biomarker associations according to batch effect correction method. Point 609 

estimates from unadjusted linear regression models for biomarker values with Gleason score categories per 1 “grade 610 

group” increase as the predictor are shown (with 95% confidence intervals). For loge-transformed markers like Ki-67, 611 

estimates are differences on the loge scale. 612 

Supplementary Table 6. Biomarker levels and lethal disease according to batch effect correction method. Hazard 613 

ratios (with 95% confidence intervals) per 1 standard deviation increase in the biomarker (linear) from unadjusted Cox 614 

regression models are shown. 615 

Supplementary Table 7. Biomarker levels and lethal disease according to batch effect correction method. Unlike in 616 

the preceding table, the hazard ratios (with 95% confidence intervals) are contrasts comparing extreme quartiles 617 

(fourth compared to first quartile) from unadjusted Cox regression models. 618 

 619 

Supplementary Figure 1. Ratios of variance per tissue microarray to the mean variance for each marker. 620 

Supplementary Figure 2. Tissue microarrays and differences in % positivity, at the example of estrogen receptor 621 

alpha and beta, and variance in biomarker levels explained by between-tissue microarray differences (ICC). 622 

Supplementary Figure 3. Intraclass correlation coefficients (ICCs), quantifying the proportion of variance in 623 

biomarker levels attributable to between-tissue microarray differences, across all tumors and after restriction to those 624 

378 tumors across tissue microarrays that have the same clinical/pathological characteristics in terms of Gleason score 625 

3+4 and prostatectomy stage pT1/T2. 626 

Supplementary Figure 4. Intraclass correlation coefficients (ICCs), quantifying the proportion of variance in 627 

biomarker levels attributable to between-Gleason grade differences, by increasing ICC. 628 

Supplementary Figure 5. Uncorrected compared with batch effect-corrected biomarker levels, for estrogen receptor 629 

alpha. Symbols and color indicate the tissue microarray. 630 

Supplementary Figure 6. Principal components 1 and 2 after batch effect correction using (5) quantile regression for 631 

biomarkers available on all tissue microarrays. Symbol color and shape indicate the tissue microarray. 632 
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Supplementary Figure 7. Quantile-specific associations of confounders (clinical/pathological differences) with 633 

(uncorrected) biomarker levels of estrogen receptor alpha. Shown are regression coefficients for the 10th, 50th, and 90th 634 

percentiles as the outcomes of quantile regression models. 635 

Supplementary Figure 8. Batch corrections per tissue microarray and method. The plot shows the difference 636 

between uncorrected and corrected values per batch, averaged across all biomarkers. IGF1-R was excluded because of 637 

missing values for some correction approaches. For batch correction approaches that only address the mean (i.e., that 638 

subtract the same correction value from all biomarker values within each batch), only that difference is visible; for 639 

correction methods that address individual values within batches differently, batch-specific medians and interquartile 640 

ranges of differences between uncorrected and corrected values are visible. 641 

Supplementary Figure 9. Biomarker differences, after batch effect correction methods, for a one-unit increment in 642 

Gleason score, stratified by tissue microarray. “Pooled” indicates estimates pooled over batches (TMAs) using 643 

inverse-variance weighting. “No stratification” indicates estimates without stratification. Note that for batch effect 644 

correction approaches that only address between-batch differences in means (approaches 2–4), estimates stratified by 645 

batch (and pooled estimates thereof) are the same. 646 

Supplementary Figure 10. Data structures in the actual data and in 200 plasmode simulation datasets. A, Gleason 647 

scores and lethal prostate cancer (metastasis-free survival) in the actual data. B, Gleason scores and lethal prostate 648 

cancer in an example simulated dataset. Shaded areas indicate 95% confidence intervals. C, Pearson correlation 649 

coefficients between biomarker levels and confounders, and between confounders, across all simulated datasets. 650 

Correlation coefficients observed in the actual data are noted in the legend. D, Hazard ratios for the biomarker and the 651 

confounders in relation to lethal prostate cancer, pooling all simulated data sets. Confounder–outcome associations 652 

were simulated to correspond to their observed values in the actual data; exposure–outcome associations were 653 

simulated to a range of hazard ratios (x axis). Lines indicate medians across simulations with the same exposure–654 

outcome hazard ratio, shaded areas range from the 2.5th to 97.5th percentile. 655 

Supplementary Figure 11. The data correlation structure “confounding and imbalance.” Tumors with more extreme 656 

Gleason scores were set to be more extremely influenced by batch effects in terms of mean and variances. 657 

Supplementary Figure 12. Plasmode simulation results for all scenarios. Observed hazard ratios after different 658 

approaches to batch effect correction (y axis) are compared to true (fixed) hazard ratios for the biomarker–outcome 659 

association (x axis; solid blue line: no correction for batch effects). Columns are different batch effects that were 660 

added; rows are different data correlation structures. 661 
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