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8

Abstract Macaque area MT is well known for its visual motion selectivity and relevance to9

motion perception, but the possibility of it also reflecting non-sensory functions has largely been10

ignored. Manipulating subjects’ temporal evidence weighting revealed multiple components of11

MT responses that were, surprisingly, not interpretable as behaviorally-relevant modulations of12

motion encoding, nor as consequences of readout of motion direction. MT’s time-varying13

motion-driven responses were starkly changed by our strategic manipulation, but with14

timecourses opposite the subjects’ temporal weighting strategies. Furthermore, large15

choice-correlated signals were represented in population activity distinctly from motion16

responses (even after the stimulus) with multiple phases that both lagged psychophysical17

readout and preceded motor responses. These results reveal multiple cognitive contributions to18

MT responses that are task-related but not functionally relevant to encoding or decoding of19

motion for psychophysical direction discrimination, calling into question its nature as a simple20

sensory area.21

22

Introduction23

Primate area MT plays a critical role in the perception of visual motion. A long line of study has24

established that MT’s encoding ofmotion direction is quantitatively consistent with perceptual sen-25

sitivity, that noise in its responses is correlated with behavioral variability, and that causal pertur-26

bations of its activity affect motion perception in lawful and substantial ways (Newsome and Pare,27

1988; Britten et al., 1992, 1996; Salzman et al., 1992). Owing to this powerfully integrated set of28

findings, many models and experiments can safely assume that MT is the key place that the brain29

looks to for information about visual motion. However, these successes do not logically imply that30

MT only carries sensory information, leaving our understanding of MT at risk of overlooking ad-31

ditional signals and computations that are not aligned with representing motion for the sake of32

motion perception. In this work, we show that a manipulation of temporal strategy during motion33

discrimination reveals large signals in MT that are precisely related to components of performing34

the task, but which neither directly impact psychophysical performance nor reflect straightforward35

links between perceptual decisions and the sensory responses which informed them.36

In addition to the large, classic body of work describing the form and fidelity of MT’s repre-37

sentation of visual motion (Born and Bradley, 2005; Cormack et al., 2017), some prior work has38

identified cognitive modulations of MT’s sensory-driven activity. Such modulations are still inter-39

pretable with respect to MT’s representation of visual motion direction, however. Most notably,40

attention can modify the sensory-driven responses of MT neurons, typically boosting the gain of41

responses (Treue and Maunsell, 1996; Seidemann and Newsome, 1999; Cook andMaunsell, 2004).42
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Thesemodulations of stimulus-driven activity modify MT’s representation of motion, and thus play43

out in behavior as if the visual motion itself had beenmodified. In contrast, recent work has shown44

thatMT’s choice-correlated activity is distinguishable at the population level from its sensory-driven45

responses, and follows a different time course than the read-out of motion, as inferred from the46

psychophysical behavior (Zhao et al., 2020). While this intriguing initial observation suggests the47

existence of task-related signals not directly related to motion encoding, interpretation of this48

choice-related activity is constrained by the lack of any direct experimental manipulation of the49

decision-making process.50

To directly test for and characterize non-sensory signals in MT, wemanipulated the time course51

of psychophysical weighting while monkeys performed a direction-discrimination task, coupled52

with ensemble recordings of multiple neurons in MT analyzed via population-coding techniques.53

We explicitly manipulated whether early or late parts of the stimulus had stronger or weaker mo-54

tion evidence on average, which affected the time course of how the visual motion stimulus was55

weighted for task performance, as assessed via psychophysical reverse correlation. This manipu-56

lation of temporal weighting strategy provided critical interpretive leverage for distinguishing the57

time courses of decision formation and choice-correlated activity, and also caused a surprising58

and strong modulation of the sensory responses themselves that was also not directly related to59

forming decisions about motion.60

When perceptual weighting was unconstrained, direction-discrimination behavior was based61

primarily on early portions of the stimulus, the sensory representation showed a standard and62

modest falloff over the course of stimulus presentation, and a distinct and substantial choice-63

correlated response emerged during late portions of stimulus viewing. When we shifted the tem-64

poral readout strategy to favor late portions of the stimulus, behavior relied preferentially on later65

portions of the stimulus, but later portions of the sensory response were decreased, as opposed to66

increased. Choice-correlated activity was significantly muted during the late-weighting condition.67

However, choice-correlated activity was present after the stimulus, leading up to the response (a68

novel phenomenon evident across all strategic conditions, in fact). When subjects’ temporal weight-69

ing strategy was then manipulated to preferentially rely on earlier portions of the stimulus, later70

portions of the sensory response were increased, and choice-correlated activity was again evident71

during the late portions of the stimulus. This last condition’s effects were most striking, as a steep72

falloff in perceptual weighting over time was accompanied by an increase in late sensory-driven73

activity that led to a non-monotonic time course of motion-driven response.74

The opposite effects of our experimental manipulations on temporal weighting strategy and75

the timecourse of sensory gain run counter to any standard encoding model of MT simply repre-76

senting behaviorally-relevant motion: In that framework, motion responses ought to mirror the77

psychophysical weighting. Choice-correlated activity during the stimulus was also controlled by78

changes in the psychophysical weighting, and across these psychophysical time courses, was al-79

ways lagged relative to the periods when the subjects were "reading out" MT activity. But this80

decision-lagged choice-related signal was not simple feedback linking a sensory response and a81

subsequent, corresponding decision, not just because the choice signals affected MT population82

activity differently than visual motion did; we also observed a distinct choice-related signal after83

stimulus offset that was linked to impending response, and which was distinct from simple premo-84

tor activity.85

Together, these multiple components of the MT response, revealed while manipulating the86

temporal weighting strategy, could be seen as lawful functions of the time course of decision for-87

mation and the anticipation of the response. However, these response components could not be88

interpreted as either modulations of the encoding that played out in perceptual reports, nor to the89

effects of read outmechanisms that would either correlationally (via feed-forwardmechanisms) or90

causally (via straightforward feedback mechanisms) align with the sensory response. Thus, there91

appear to be multiple, large components of MT activity that affect both its stimulus-driven activity92

andwhich are separable from it– even during awell-studied direction-discrimination task with tight93
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control over motion readout strategy– that are inconsistent with its conventional designation as a94

simple, low-dimensional, sensory encoding area.95

Results96

We measured the timecourse of sensory and choice-correlated responses from simultaneously97

recorded groups of MT neurons using linear and nonlinear decoding approaches while rhesus98

monkeys performed a motion direction discrimination task. We manipulated the time course of99

stimulus evidence, and the subjects shifted their temporal weighting strategy to rely preferentially100

on the stronger periods of stimulus motion. We began recordings in each subject with a baseline101

“flat” stimulus phase for several experimental sessions, in which stimuli had a constant average102

motion strength over time within a trial, as is the case in most related experiments (Gold and103

Shadlen, 2007). We then shifted to several sessions in a “late” regime, in which the stronger motion104

was present in the second half of the stimulus. Finally, we performed several sessions in an “early”105

regime, in which the stronger motion was present in the first half.106

Observers change temporal weighting strategies according to stimulus statistics107

Two trained rhesus macaques (one male, one female) viewed sequences of seven motion pulses108

and indicated perceived net motion with a saccade to one of two response targets (Figure 1A).109

We measured traditional psychometric performance (i.e., accuracy as a function of net motion110

strength on each trial), and the time course of weighting within each trial (i.e., using logistic regres-111

sion between motion strength at each pulse and the binary choices, see Methods). We refer to the112

resulting set of regression coefficients, or weights, as the temporal weighting strategy.113

The motion discrimination task was performed in three contexts (Figure 1B-D). First, in the114

flat-stimulus condition (Figure 1B), average motion over time was equal within a trial. Many tra-115

ditional sensory decision-making studies use stimuli with uniform information over time, and thus116

the flat-stimulus condition served as a baseline in our experiments. Subjects’ temporal weighting117

strategies were biased to have higher weight on early stimulus periods, despite uniform motion118

expectation over time (Figure 1E). This default early weighting strategy is consistent with many119

other findings (Huk and Shadlen, 2005; Kiani et al., 2008; Nienborg and Cumming, 2009; Yates120

et al., 2017; Levi et al., 2018; Kawaguchi et al., 2018) and likely reflects a combination (Levi and121

Huk, 2020; Okazawa et al., 2018) of improved sensory encoding at stimulus onset (Osborne et al.,122

2004; Churchland et al., 2010), and the consequences of early termination of the decision process,123

due to mechanisms like bounded accumulation (Kiani et al., 2008).124

Next, we performed a series of experimental sessions in which the stimulus statistics were125

manipulated such that the averagemotion strengthwas high for the last three pulses, while the first126

three were near zero. We refer to this as the late-stimulus condition (Figure 1C). Although the first127

3 pulses had motion strength near zero on average (regardless of full-trial, net motion strength),128

on individual trials there was still variable nonzero motion possible for any pulse. Subjects were129

rewarded based on the actual net motion direction presented on that particular trial, as opposed130

to the average or expected value based on the condition from which the trial was generated. This131

produced robust behavioral changes that tracked motion expectation in the stimulus design, such132

thatweight on the first three pulses decreased substantially, and the highest psychophysical weight133

was placed on the later pulses (Figure 1F).134

Finally, we performed a series of sessions in which the stimulus statistics were changed such135

that the average motion strength was now high in the early half of the stimulus, and was near zero136

for the last half of the stimulus; we refer to this as the early-stimulus condition (Figure 1D). This137

successfully changed temporal weighting behavior back to pronounced early weighting, in which138

the first pulses received drastically higher weight than the remainder of the stimulus (Figure 1G), in139

amanner overall similar to the default strategy during the flat-stimulus (flat: –0.091 [–0.113, 0.069],140

late: 0.083 [0.015, 0.151], early: –0.091 [–0.136, –0.081]; slope of linear fit to the psychophysical ker-141

nel [95% CIs]). In summary, the temporal weighting strategy shifted in concert with the time course142
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Figure 1. Sequence of trial events, temporal stimulus statistics, and successful manipulation of

behavioral weighting strategy. A, Subjects fixated on a central point through the appearance of targets and

motion stimulus until the disappearance of the fixation point (“go”). Choices were made with saccades to the

target corresponding to the perceived net direction of motion. Initial fixation time, target-on duration, and

time until fixation point disappearance were randomly varied. B-D, Average stimulus strength per pulse (bold

lines) and individual trial examples (semi-transparent lines) for trials of different strength and direction

(denoted by sign). In the flat-stimulus (B), motion strength is constant over time on average. In the

late-stimulus (C)motion strength is reduced on average in the first three pulses such that the highest motion

expectation is late. In the early-stimulus (D)motion strength is reduced in the last three pulses such that the

highest motion expectation is early. Motion pulse values in individual trials (semitransparent traces) vary

considerably (see Methods for detail). E-G, Temporal weighting behavior across conditions. E. Subjects

preferentially weight the early pulses despite uniform motion expectation over time. F. Temporal weighting

shifts during the late-stimulus condition to preferentially weight late pulses. G. Behavior reverts back to

early-weighting when the stimulus statistics are biased towards high motion strength early.
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of expected motion strength, placing higher weight on portions of the stimulus when higher mo-143

tion strength was expected based on the experimental phase. This confirms that ourmanipulation144

of stimulus statistics affected the time course of psychophysical readout, allowing us to better in-145

terpret the time scale of neural responses relative to the timing of when the subject was "reading146

out" MT for the purpose of forming a decision about motion direction.147

Choice-correlated activity in MT is large but does not align with stimulus encoding148

or behavioral readout149

We recorded ensembles of single and multi-unit activity from area MT while monkeys performed150

the directiondiscrimination task, across themanipulation of temporalweighting strategy described151

in the previous section. We used both linear and nonlinear ensemble decoding frameworks to ex-152

tract information about direction and choice from groups of simultaneously recorded MT neurons153

(Figure 2A). As a simple starting point, we used logistic regression (logReg) between the raw trial154

spike count vectors and either the stimulus direction (the “direction” axis) or the psychophysical155

choice (the “choice” axis) to find a reweighted population response that bestmapped neural activity156

to the binary stimulus or choice (Figure 2A, left). Such linear models are likely easy for the brain to157

implement, but are limited in how they can capture relations between neurons and between neu-158

ral activity and experimental factors. We therefore also used a more advanced nonlinear dimen-159

sionality reduction technique (variational latent Gaussian process model, vLGP) to extract smooth160

low-dimensional latent factors that explain correlations within the population spike trains (Zhao161

and Park, 2017; Zhao et al., 2020) (Figure 2A, right). It functions in a conceptually analogous man-162

ner to the simpler logistic regression approach (i.e., mapping ensemble activity to the stimulus or163

the choice), but has the ability to more effectively capture the complex joint statistics of the neural164

population while also providing access to a more concise representation of the relations between165

neural activity, stimulus direction, and psychophysical choices (by virtue of an intervening dimen-166

sionality reduction step to identify latent factors making up the ensemble activity).167

Both analytic approaches revealed the presence of substantial choice-correlated activity in the168

MT population response, achieving large peak magnitudes (> 0.6 as measured by choice proba-169

bility, CP; although we use this conventional metric in this paper, we emphasize that by calculat-170

ing it on various dimensions of the ensemble response, we have generalized it beyond the classi-171

cal approach of only looking at choice-correlated activity defined along the stimulus axis) (Britten172

et al., 1996). The largest choice-correlated activity was present in the population activity in a man-173

ner distinct from how the stimulus drove the ensemble of MT neurons. Via logReg, this was evi-174

dent in significantly larger CP along the choice axis over the direction axis (Figure 2B-D), stemming175

from a weak correspondence between a neuron’s weight in one model compared to the other (r176

= 0.146). The vLGP analysis showed that stimulus encoding was well described by a single dimen-177

sion (termed the stimulus axis), but the stimulus axis had relatively small choice information when178

compared to the combined choice information in the top four latent factors altogether (Zhao et al.,179

2020) (Figure 2B-D).180

Importantly, both analysismethods revealed that across pronounced changes in temporalweight-181

ing strategy, the time course of choice-correlated activities never mirrored the time course of psy-182

chophysical readout (Figure 2B-D, 1E-G). Instead, choice-correlated activity was consistently high-183

est after the stimulus periods that were weighted the highest in the behavior. In the flat condition,184

both analysis approaches demonstrated increased choice probability during the last half of the185

stimulus, despite early weighting in the behavior. In the late condition, when behavior exhibited186

the strongest dependence on later portions of the stimulus, the strongest choice-correlated activ-187

ity was still distinct from the stimulus-driven activity, and exhibited a more muted and flatter time188

course, though still characterized by an even later peak relative to the flat-stimulus condition. Fi-189

nally, when subjects returned to an early weighting strategy in the early stimulus condition, the190

time course of choice probability returned to a similar rising profile, as originally measured dur-191

ing the flat condition. These observations are inconsistent both with classical interpretations that192
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Figure 2. Both linear and nonlinear ensemble analysis approaches reveal strong choice-correlated

activity in MT distinct frommotion encoding or psychophysical readout of motion signals. A.We used

linear and nonlinear decoding approaches to define choice probability along different dimensions of the

population response. From the simultaneously recorded spike trains, a linear projection that can best predict

the stimulus direction (w⃗stim) or the choice (w⃗choice) is used to project the frozen-noise trials and in turn derive

CP (left). To enhance the signal to noise ratio, we extracted low-dimensional latent factors that explain the

correlations in the population spike trains using smoothing factor analysis (right). We similarly estimated two

CP signals from the latent factors. The first projection is found by the singular dimension explaining the

stimulus drive for all trials (w⃗stim). The second is the choice information extracted from the top four latent

factors altogether (w⃗choice). Projection of the frozen-noise trials are still multi-dimensional, and require further

logistic regression to best predict the choice, defining the projection w⃗stim and corresponding choice

probability CPchoice. B-D. Time course of population choice probability during flat B, late C, and D early

conditions. Solid vs. dashed line denote stimulus vs. choice dimensions, respectively. Darker traces in the

foreground denote latent factors, while semi-transparent traces denote logistic regression traces in the

background.
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choice probabilities reflect the feedforward consequences of sensory noise being read out as infor-193

mation about the stimulus (because the bulk of the choice-correlated activity arose after the psy-194

chophysical readout ofMTwas likely happening), as well asmore recent interpretations that choice195

probabilities reflect feedback, because differential MT responses correlated with choice were not196

strongly aligned with the motion responses that gave rise to those decisions.197

Changes in sensory encoding run opposite changes in temporal weighting strategy198

Most surprisingly, we observed large changes to MT’s time-varying sensory response that were in-199

commensurate with perceptual readout. Here, we relied on the vLGP analysis to describe the tem-200

poral dependence of the population response on the motion pulses by looking at the directional201

response along the stimulus axis. We calculated a pulse-triggered average (PTA) to summarize the202

regression coefficients that predict the change in latent states (Yates et al., 2017). Each "bump"203

in Figure 3 represents the modulation of the stimulus-axis latent factor by a pulse of unit motion204

strength (i.e, a single Gabor drifting in one direction) for each pulse in the stimulus presentation205

(Figure 1). As temporal weighting strategy shifted across conditions, one might expect nothing206

to change in MT, consistent with a constant (and thus largely veridical) representation of visual207

information despite changes in readout/weighting strategy. An alternative hypothesis based on208

temporal attention would predict gain modulation congruent with behaviorally up-weighted and209

down-weighted stimulus epochs (Ghose andMaunsell, 2002). Instead, to our surprise, we observed210

changes to sensory encoding with an unintuitive, if almost paradoxical, link to psychophysical di-211

rection discrimination.212

In the flat stimulus condition there was a modest decrease in the sensory response over time213

(i.e., PTA magnitude fell across the 7 pulse epochs; Figure 3A). Such a gradually-declining time214

course is consistent with known adaptation phenomena in many visual brain areas, and has been215

observed in MT during viewing of this same stimulus (Yates et al., 2017). However, during the216

late-stimulus condition, the sensory response decreased for the late pulses relative to the flat217

condition time course (Figure 3B). The behavioral profile shows precisely the opposite: relative218

down-weighting of early pulses and up-weighting of later pulses. And most strikingly, when sub-219

jects switched to the early-stimulus condition, the sensory response showed a stark up-weighting220

of later pulses, resulting in a dramatically non-monotonic, U-shaped profile (Figure 3C). Once again,221

this is directly at odds with the temporal weighting of behavior, which sharply favors the first 2-3222

pulses over the rest. This modulation is counterintuitive from standard perspectives, which would223

predict that if any changes in sensory response are evident, they would be reflected by increases224

in response to stimulus portions that were weighted more strongly for decision making.225

Instead of gain changes that reflect behavioral readout strategy, the sensory response modu-226

lations we observed make more sense viewed as compensating for “missing” signal relative to a227

time-stationary motion expectation. In our experiments, both animals were trained extensively on228

the flat condition before undergoing temporal manipulation. The change in gain thus manifested229

as a function of the mismatch between this apparently “default” temporally-uniform expectation230

of motion and the statistics of the currently-encountered condition. In more detail, during the231

late condition motion strength was decreased in the early portions of the stimulus, but the PTA232

revealed decreased gain on later pulses instead (Figure 3B). During the early condition, the motion233

strength on later pulses was decreased, but the PTA revealed a striking gain increase on these por-234

tions of the stimulus for which the expected motion was quite weak (Figure 3C). Thus, while the235

temporal weighting evident in behavior changed across conditions in a way that tracked changes236

in stimulus statistics (i.e., weighting the stronger periods of motion more, and weaker periods of237

motion less), MT’s response to motion was changed inversely to those patterns.238

Large choice-correlated activity also exists in the absence of the motion stimulus239

We also observed another choice-related signal in MT of substantial magnitude. The vLGP analysis240

revealed significant choice-correlated activity after the offset of themotion stimulus, in anticipation241
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Δ 

a b c

Figure 3. Time course of motion-driven MT response changes opposite that of changes in temporal

weighting strategy. A-C. The pulse-triggered average (PTA) describes the modulation of the stimulus-axis

latent factor by a pulse of unit motion strength for each of the seven pulses in the visual motion stimulus. A.

The PTA for the flat-stimulus condition reflects the expected transient-to-sustained response, where a pulse

at the beginning of the stimulus affects the MT response more than a pulse closer to the end of the stimulus.

B. In the late-stimulus condition, the relative drop from early pulses to later ones is even more exaggerated

than in the flat, despite highest motion strength occurring late in the trial. C. The PTA during the

early-stimulus condition exhibits substantial increase on later pulses, despite a lack of high motion signal in

the stimulus during those pulses.

of an upcoming saccade. There was a minimum 500 ms window between the stimulus offset and242

the disappearance of the fixation point which signaled the monkey could move their eyes to make243

their choice, and during this window we saw choice probabilities up to > 0.7 (Figure 4A).244

The magnitude of post-stimulus choice probability is comparable to, and often greater than,245

what we observed from our decoders during the stimulus period, and is quite high compared to246

traditional measures of choice probability based on single neuron measurements. Most impor-247

tantly, the finding of large amounts of choice-correlated activity without the presence of a visual248

stimulus in MT strengthens the case for such signals being non-sensory in origin. The choice signal249

measured during the delay period is present when there is no sensory drive whatsoever, further250

ruling out interpretations of choice probabilities as a product of noise in sensory representations.251

Instead, its full magnitude (revealed by "looking" off the stimulus axis), late time course, and pres-252

ence up to the response aremore similar to choice-related activity seen in amultitude of areas that253

are often considered much more cognitive or associative in nature, such as LIP and PFC (Roitman254

and Shadlen, 2002;Mante et al., 2013).255

Interestingly, the onset of CP during the delay period varies with reaction time (RT) in a way256

that suggests the choice signal is not simple premotor activity. If this were the case, we would257

expect that CP would increase later on trials with longer RTs compared to trials with shorter RTs.258

Instead, when reaction times were longer than the median RT, the saccade-aligned CP increased259

noticeably earlier than on trials with reaction times in the shorter half of the RT distribution (Fig-260

ure 4B). This was true of all three temporal stimulus conditions. The result is striking, especially261

given the fixed-stimulus experimental design and the coarse division of “short” and “long” RTs by262

median. Temporally divorced from stimulus processing and not tightly linked to motor behavior263

timing, this delay-period choice signal appears to have a more cognitive origin reflecting the main-264

tenance of choice information between stimulus and response.265

Time-varying readout of populationactivity confirms thedynamics of choice-related266

signals267

In all analyses leading up to this point, the weights used to decode the stimulus or the choice were268

calculated using the neural responses and/or the derived latent factors from the entire stimulus269
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Figure 4. Presence of large choice-related signals in MT during post-stimulus delay period. A. CP along

the choice (dashed lines) and direction (solid lines) axes, aligned to the time of the saccade. In all three

conditions, there is high CP in the choice axis for the entire 500ms preceding the saccade, without any

stimulus drive. CP increased over the last 200ms leading up to the saccade. There was realtively little CP

along the stimulus axis. B. Saccade-aligned CP along the choice axis only, separated by median reaction time

(RT). CP for longer RT trials (dashed lines) increased earlier than that of shorter RT trials (dotted lines). This

was true in all three conditions.
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period. Even with this fixed temporal readout scheme, we saw nuanced temporal dynamics in270

both sensory- and choice-related activity that differed from the time course of temporal weighting271

evident in the psychophysical behavior. Although, from a decoding perspective, using temporal272

fixed weights makes for a readout process that the brain might find easier to implement, we know273

very little about how sophisticated the brain’s decoding machinery might be (and indeed, our abil-274

ity to manipulate the timecourse of motion weighting suggests that temporally-static decoding is275

not a hard limit). Furthermore, from a purely statistical perspective, we were also motivated to276

consider decoding with a temporally dynamic readout scheme to confirm that the rich dynam-277

ics we observed were neither constrained nor distorted by the assumption of constant read-out278

weights. We therefore performed further latent factor analyses in which weights were fitted and279

applied based on the activity within individual 100 ms bins for both the delay and motion periods280

(Figure 5).281

The timecourse of choice-correlated activity was quite similar from fixed to dynamic readout282

models. With temporally varied readout weights, the same pattern persisted: high CP late in the283

stimulus period regardless of temporal stimulus condition. This is strong support for CP as a top-284

down signal that arrives inMTmostly after decisions have beenmade. That is, after the pulses with285

the highest weight in the psychophysical kernel. In this interpretation, during the late condition we286

have in essence delayed the decision and thus further delayed the decision-correlated activity that287

follows. The time-varying readout schemes also confirmed the dynamics in the post-stimulus, de-288

lay period. In all three conditions, CP was high throughout the delay period, but increased over the289

last 200ms. Along the stimulus axis, CP was flatter and closer to chance. Altogether, the similar-290

ity in CP timecourse between fixed and dynamic readout models suggests that a fixed weighting291

scheme is sufficient to describe the temporal patterns of choice information in MT during motion292

information both during and after the stimulus.293

Discussion294

By manipulating the temporal weighting strategy of subjects while they performed a direction295

discrimination task, aided by ensemble recordings and population-level decoding analyses, we296

discovered multiple signals in MT that are distinct from its representation of motion direction,297

solidly established to be used by later decision stages for perceptual reports and behavior. Striking298

changes in sensory response were associated with the mismatch between the current strength of299

sensory evidence and prior, learned time courses of sensory evidence. Although these largemodu-300

lations affected the sensory encoding, they appear not to have affected the psychophysical behav-301

ior. Choice-correlated activity was also surprisingly strong, but was delayed relative to temporal302

weighting behavior, even when the latter was under direct experimenter control. Furthermore, the303

choice-correlated activity was evident at the population level in a manner that was distinct from304

stimulus-driven responses in MT, and was "readout-irrelevant" as well, in that it was largest when305

the subjects were not primarily reading out the stimulus, or even viewing a stimulus at all.306

The changes we observed in sensory responses may seem paradoxical at first, as the gain was307

increased for periods of the stimulus during which the subjects applied the smallest amount of308

weight in forming decisions. This is opposite the notion of attention affecting gain for parts of a309

stimulus that are more relevant for decisions (Treue and Maunsell, 1996; Seidemann and New-310

some, 1999). But, these modulations appear more sensible when viewed as resulting from a mis-311

match between trained statistics and the current ones. The hypo-responsivity to late pulses in the312

late condition, and the hyper-responsivity to those same late pulses during the early condition,313

could both reflect a compensatory response to motion in the current condition compared to the314

expectation of the temporally uniform stimulus onwhich animals were trained. Indeed, potentially-315

releated homeostatic mechanisms have been observed in sensory cortex (Benucci et al., 2013).316

Through this lens, the temporal changes in the PTA reflect a recalibration of incoming informa-317

tion to meet the expectation of a temporally-flat stimulus. Thus, even MT’s sensory responses are318
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Figure 5. Time course of choice-related activity in MT is similar when time-varying decoding weights

are used. Choice probabilities calculated with time-varying readout weights aligned to motion (left), and the

saccade (right) for the flat (A), late (B), and early (C) conditions. CP along the choice axis is represented by

dashed lines, while CP along the stimulus axis is represented by solid lines. Choice-axis CP was significantly

higher in both the motion- and saccade-aligned time frames. During motion (left), we confirmed that CP was

highest during later stimulus epochs, after those with highest psychophysical weight (Figure 1E-G.) During the

post-stimulus period (right), we confirmed that CP increased primarily over the last 200ms preceding the

saccade to levels even higher than motion-aligned CP.
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strongly affected by cognitive factors in ways that are dissociable from its well-established, but no319

longer sole role of representing retinal motion for the sake of perception and/or behavior.320

Our findings regarding choice-related activity also add to the case for MT carrying substantial321

non-sensory signals. Having previously used ensemble recordings and population decoding to322

show that stimulus- and choice-related activity in MT are distinguishable (Zhao et al., 2020), our323

findings in this study add several important facets. First, we exerted explicit control over the time324

course of psychophysical weighting, which allowed us to experimentally dissociate the psychophys-325

ical weighting from the time course of choice-correlated activity. By shifting the temporal weight-326

ing strategy, we effectively changed the average time of the decision, allowing us to confirm that327

choice signals followed primary decision formation when under explicit experimenter control. Sec-328

ond, we saw choice activity of substantial magnitude during the post-stimulus delay period. This329

result rejects virtually any stimulus-based interpretation, as the choice signal was present when the330

sensory stimulus was not. These results also rule out straightforward forms of feedback creating331

choice-related activity, as those explanations require the decision-related feedback to be aligned332

with the sensory responses that gave rise to the corresponding choice. Furthermore, the delay333

period choice signal was not entirely explainable as premotor. Given all these distinctions, the334

oddly-parsimonious interpretation is that choice-related activity in MT is a distinct cognitive signal335

(or set of signals) that are best understood outside of MT’s encoding of visual motion. Although the336

presence of large choice-related signals in macaque MT may be surprising at first, recent work in337

other species (but also using ensemble recordings and analyses) has revealed widespread repre-338

sentations of choice and other task-related signals (Musall et al., 2019; Stringer et al., 2018; Grün-339

demann et al., 2018).340

These findings provide new connections betweenMT function and well-established conceptual341

and empirical frameworks. The sensory modulations associated with mismatches between ex-342

pected and observed timecourses of motion aligns with both predictive coding and reinforcement343

learningmodels, both of which are abstractly based on errors between expected and encountered344

elements within a task (Rescorla and Wagner, 1972; Engel et al., 2015). Although our findings run345

opposite known effects of temporal attention (Ghose and Maunsell, 2002) or attention-related gat-346

ing of sensory responses (Seidemann et al., 1998), some recent work has decoupled attentional347

modulations inMT andMST from task performance (Recanzone andWurtz, 2000). Our dissociation348

betweenMTmodulations and task performancemay be related, although in our case, their depen-349

dence on the strategic history of the subjects revealed signals that are not wholly irrelevant to350

the task, but are just not related to the formation of decisions on a trial-by-trial basis. This opens351

up the possibility that some attention-like phenomena may arise from expectations of stimulus352

statistics, instead of being modulations of sensory data per se. The post-stimulus choice signals353

we observed in MT may be related to prior observations of small-amplitude, but tuned, persistent354

activity in MT (Bisley et al., 2004); our findings suggest that those initial observations of relatively355

small changes in spike rate may have simply caught a glimpse of larger non-sensory signals pre-356

ceding the saccadic decisions mostly missed by single unit recordings that cannot see alternate357

effects on population activity across diversely-tuned neurons. Finally, related work using a motion358

categorization task has revealed strong non-sensory, category-related activity in area MST, but not359

area MT (Freedman and Assad, 2006; Zhou et al., 2020). Such category-related activity can also be360

thought of as "choice-correlated", as distinct from purely sensory-driven. Although the tasks, train-361

ing histories, and analytic approaches differ between that work ours, our findings suggest that the362

apparent distinction between MT and MST regarding the presence of such category/choice activity363

might be less strict than previously observed. Again, the potential for ensemble recordings and364

corresponding ensemble analyses may have been critical for not just observing these non-sensory365

signals in MT, but for appreciating their substantial magnitude.366

To conclude, our manipulation of temporal weighting strategy revealed a dissociation of sen-367

sory response gain from decision formation. Likewise, our approach of using ensemble recordings368

and population decoding allowed us to see large choice-related signals that were not just tempo-369
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rally dissociated from psychophysical weighting (or even stimulus viewing), but that were large in370

magnitude and distributed across the population in a manner distinct from how visual motion di-371

rection is represented. Together, these signals and modulations call for consideration of MT well372

beyond its role in encoding of retinal motion. Understanding the population coding structure and373

functional roles of such task-related but non-sensory computations are new open questions.374

Methods and Materials375

Stimulus presentation and design376

Stimuli were presented using the Psychophysics Toolbox with Matlab (Math-works) using a Dat-377

apixx I/O box (Vpixx) for precise temporal registration (Eastman and Huk, 2012). Sample stim-378

ulus presentation code is available on request. Eye position was tracked using an Eyelink eye379

tracker (SR Research), sampled at 1 kHz. M1 was seated 57 cm away from a 150 cm × 86 cm380

rear-projection screen (IRUS; Draper Inc.) covering the central 106◦ x 73◦ of visual angle. Images381

were projected onto the screen by a PROPixx projector (VPixx Technologies Inc.) driven at a reso-382

lution of 1920 × 1080 pixels at 120 Hz. M2 viewed stimuli on a 55-inch LCD (LG) display (resolution383

= 1920 × 1080p, refresh rate = 60 Hz, background luminance = 26.49 cd/m2) that was corrected384

to have a linear gamma function. M2 viewed the stimulus from a distance of 118 cm (such that385

the screen width subtended 54◦ of visual angle, and each pixel subtended 0.0282◦ of visual angle).386

Auditory feedback was played at the end of every trial, and fluid reward was delivered through a387

computer-controlled solenoid.388

Subjects were required to discriminate the net direction of amotion stimulus and communicate389

their decisionwith an eyemovement to one of two targets, placed on either side of themotion stim-390

ulus. The sequence of task events is presented in Figure 1A. A trial began with the appearance of a391

fixation point. Once the subject acquired fixation and held for 750–1300 ms (uniform distribution),392

two targets appeared and remained visible until the end of the trial. 500–1000 ms after target on-393

set, the motion stimulus was presented at a range of eccentricities from 4◦ to 12◦ for a duration394

of 1050 ms. The fixation point was extinguished 500–1000 ms after motion offset, and the subject395

was then required to shift their gaze toward one of the two targets within 600 ms (saccade end396

points within 3◦ of the target location were accepted). The timing of each event was randomly and397

independently jittered from trial to trial.398

The reverse-correlation motion stimulus contained motion toward one direction or the oppo-399

site, with varyingmotion strength. Spatially, the stimulus consisted of a hexagonal grid of 19 Gabor400

elements, where individual Gabor elements were set to approximate the receptive field (RF) size401

of a V1 neuron, and the entire motion stimulus approximated the RF size of an MT neuron, which402

scaled based on eccentricity fromfixation (Van Essen et al., 1981). Motionwas presented by varying403

the phase of the sine-wave carrier of theGabors. EachGabor underwent a sinusoidal contrastmod-404

ulation over time with independent random phase. Gabor spatial frequency (0.8 cycles/◦ sigma =405

0.1 x eccentricity) and temporal frequency 5–6 Hz, yielding velocities of 5.55–6.66◦/s, respectively)406

were selected to match the approximate sensitivity of MT neurons (Bair and Movhshon, 2004).407

Each motion stimulus presentation consisted of seven consecutive motion pulses lasting 150408

ms each (9 frames on the 60 Hz display, 18 on the 120 Hz display), producing a motion sequence409

of 1050 ms in duration in total. On any given pulse, a number of Gabor elements would have their410

carrier sine waves drift in unison to produce motion (“signal elements”), and the remaining would411

counter-phase flicker (“noise elements”). Within any given pulse, signal elements were spatially412

assigned at random within the grid, and all signal element drifted in the same direction.413

Motion strength on pulse i was defined as the proportion of signal elements out of the total414

number of elements, the value of which was drawn from a Gaussian distribution, Xi N(�k, s) and415

rounded to the nearest integer, where k is the distribution index for the five trial types (strong left,416

weak left, zero-mean, weak right, strong right). Thus, while each pulse within a sequence could take417

on any value (and either sign/direction) from distribution N(�k, s), the expectation of a sequence418
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would be �k (Figure 1B-D). The subjects were rewarded for selecting the target consistent with the419

sign of the motion pulse sequence sum (i.e., the net direction), independent of the distribution �k420

from which the pulses were drawn.421

Subjects performed the motion-discrimination task with three variations of temporal stimulus422

statistics (Levi et al., 2018). First was the flat-stimulus, in which expected motion strength was423

uniform over time within a trial. In other words, the mean of the motion strength distribution424

N(�k, s) would be held constant throughout a stimulus presentation. In other words, the mean of425

the distribution from which Xi was drawn was fixed at (�k), for pulses 1–7 (Figure 1B).426

Next, subjects encountered the late-stimulus, wheremotion strengthwas reduced substantially427

in early pulses, but not late. In this condition, �k is set to 0 for the first pulse (i = 1), and reaches428

its expected value (�k) by pulse 7. Finally, the opposite is done for the “early-stimulus” condition429

(Figure 1D), in which the first pulses maintain mean motion strength equal to �k and later pulses430

have a mean near zero. In the late- and early-stimulus conditions, the transition from �k at pulse431

1 to �k at pulse 7 is governed by a logistic function with parameters chosen to result in a smooth432

transition between the first 3 and last 3 pulses (midpoint = 4, slope = 0.3).433

All subjects began the experimentswith the flat-stimulus condition (Monkey L: 13; MonkeyN: 10434

sessions). Aftermultiple sessions of stable psychophysical performance, the stimulus was changed435

to the late-stimulus conditions (Monkey L: 11; Monkey N: 11 sessions). Finally, after multiple ses-436

sions of stable psychophysical performance the stimulus was changed to the early-stimulus condi-437

tion (Monkey L: 11 sessions; Monkey N: 15 sessions). Subjects were exposed to only one stimulus438

condition per session and were not cued as to which stimulus condition they were viewing before439

or during any given session (other than the stimulus statistics themselves).440

Throughout all conditions, there existed a subset of “zero-mean” trials in which �k = 0 for all 7441

pulses, regardless of whether the stimulus condition is flat, late, or early. Sessions also contained442

5-10% frozen seed trials, whichwere identical stimulus displays. The “frozen noise” stimulus always443

summed to zero, had the same temporal structure across sessions, and was completely identical444

within sessions. Subjects were rewarded at random on frozen noise trials.445

Behavioral analysis446

Subject choices in the direction-discrimination task were analyzed with a maximum likelihood fit447

of a three-parameter logistic function (Wichmann and Hill, 2001) assuming a Bernoulli distribution448

of binary choices, in which the probability of a rightward choice is p and leftward choice is 1 − p,449

where p is given by450

p = 
 + (1 − 2
)
1

1 + e−�(x−�)
(1)

where x is the net motion strength value (z-scored over all sessions for each subject separately),451

a is the bias parameter (reflecting the midpoint of the function in units of motion strength), b is452

the slope (i.e., sensitivity, in units of log-odds per motion strength), and g captures the lapse rate453

as the offset from the 0 and 1 bounds. Error estimates on the parameters were obtained from454

the square root of the diagonal of the inverse Hessian (2nd derivative matrix) of the negative log-455

likelihood. The temporal weighting kernel (which we also refer to as “temporal weighting strategy”456

or “temporal weighting profile”) was computed using ridge regression viamaximum likelihood. The457

log posterior of the psychophysical weights is given by458

L(w) =

N∑

i=1

[Yiw
TXi − log(1 + exp(wTXi))] + �‖w‖2 (2)

where Y ∈ {0, 1} is a vector of choice on every trial and X is a matrix of the seven pulses on each459

trial, augmented by a column of ones (to capture bias). � was estimated using evidence optimiza-460

tion (Sahani and Linden, 2003). Psychophysical weights are normalized by the Euclidean norm of461

the vector of weights. The seven temporal weights assigned to the seven motion pulses, w, were462
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computed by using all trials within a session. These include trials where �k was set to zero (i.e.463

“zero-mean trials”, where motion on a given pulse is temporally independent of all other pulses464

in the sequence) and trials where �k was set to a non-zero value (“signal trials”, where motion is465

correlated over pulses)466

Electrophysiology467

A custom titanium chamber was fabricated and placed over the superior temporal sulcus and in-468

traparietal sulcus to allow for a dorsal approach to access area MT. Chamber placement was as469

guided by structural MRI and cranial landmarks. Extracellular recordings were performed using470

linear electrode arrays from Plexon (U-Probe, V-Probe, or S-Probe; 24 or 32 channels; 50-100 mi-471

crometer spacing).472

MT was identified using electrode depths and paths (i.e., sulcal anatomy), and functional map-473

ping. Functionally, MT was identified via size and location of RFs, and preponderance of direction474

selective neurons. MT units were hand-mapped using a field of moving dots with experimenter475

control of stimulus location, aperture size, dot speed, dot size, and dot density. Upon choosing476

the stimulus location that maximally drove the highest number of neurons, direction tuning was477

measured by 500ms presentations of a randomly drawn direction of motion from one of 12 di-478

rections from 0 to 330 degrees. A total of 71 recording sessions were performed; 23 during the479

flat-stimulus condition (Monkey L: 13; Monkey N: 10), 22 during the late-stimulus condition (Mon-480

key L: 11; Monkey N: 11) and 26 during the early-stimulus condition (Monkey L: 11; Monkey N:481

15).482

Spike sortingwas performedusing KiloSort (Pachitariu et al., 2016) followedbymanualmerging483

and splitting of clusters as necessary. A total of 583 units were identified; 161 during the flat-484

stimulus condition, 219 during the late-stimulus, and 203 during the early stimulus.485

Logistic regression neural decoder486

To interrogate the roles and relationship of direction and decision-related signals, we used various487

decoding methods to approximate how information may be gleaned from groups of MT neurons.488

The firstmethodwe employedwas logistic regression directly between spike counts and the binary489

direction or choice on each trial (Kiani et al., 2014; Yates et al., 2020). The regression is done for490

each session such that each neuron is a feature in themodel, where each neuron received aweight491

according to howwell it predicts the binary outcomeof interest. The result is a linear readoutmodel492

that allows for maximal prediction of the stimulus direction or the animal’s choice.493

Specifically, the decoding weights are calculated as coefficients in a logistic regression between494

trial spike counts (summed over a window starting at stimulus onset and ending 150ms after stim-495

ulus onset) and one of two binary variables (the stimulus direction, or the observer’s choice) using496

MATLAB’s glmfit. The choice decoder weights were calculated using only the zero-sum, frozen497

noise trials, while the direction decoder used all other trials.498

The probability of a trial’s stimulus direction or choice given each neuron’s firing rate is given499

by:500

p(X|Y , �) = exp(Y b)

1 + exp(Y b)
(3)

Where b = �0 +
∑N

i=1
�iXi for N neurons present during a session. X is a vector of spike counts per501

neuron, and the choice or direction is Y ∈ 0, 1. The weights are then applied to their respective502

neuron’s temporally binned trial spike rates. Spikes were counted in 10ms bins and smoothed503

with a 50ms boxcar. This was expressed in terms of rates by dividing by the bin size. The result is a504

population response that best represented stimulus or choice information present in a recording505

session.506

The resulting decoder output was then used to calculate population-level choice probability (CP)507

for each session. We measured CP over the course of stimulus presentation as a metric of trial-by-508
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trial correlation betweenfiring rate and choice, given a fixed stimulus. CPwas calculated as the area509

under the ROC curve generated from choice-conditioned distributions of the reweighted activity in510

each temporal bin. CP time course traces were smoothed with a 100ms boxcar for visualization.511

Latent factor analysis512

To understand how stimulus and perceptual choice are encoded across the population, we em-513

ployed the variational latent Gaussian process (vLGP) method (Zhao and Park, 2017) to extract514

single-trial low-dimensional latent factors from population recordings in area MT. We used the515

recording between target onset and reward. The spike counts were binned at 10ms. Let xk denote516

the k-th dimension of the latent factors. We assumed that the spatial dimensions of latent factors517

are independent and imposed a Gaussian Process (GP) prior to the temporal correlation of each518

dimension,519

xk ∼  (0,K). (4)

To obtain smoothness, we used the squared exponential covariance function and respective520

covariance matrix K in the case of discrete time. Let ytn denote the occurrence of a spike of the nth521

neuron at time t, ytn = 1 if there was a spike at time t and ytn = 0 otherwise at this time resolution.522

Then yt is the vector of length N , total number of neurons in a session, that concatenates all neu-523

rons at time t. The spikes yt are assumed to be a point-process generated by the latent state xt at524

that time via a linear-nonlinear model,525

yt ∼ Poisson(exp(Axt + b)). (5)

To infer the latent factors (xt for each trial) and the model parameters (A and b), we used vari-526

ational inference technique, as the pair of prior and likelihood do not have an tractable posterior.527

We assumed parametric variational posterior distribution of the latent factors,528

q(xk) =  (�k,�k). (6)

We analyzed the mean {�k} as the latent factors in this study. The dimensionality of the latent529

factors was determined to be 4 by leave-one-neuron-out cross-validation on the session with the530

largest population. All the sessions with at least 4 simultaneously recorded units were included in531

this analysis (Monkey N: 13 sessions, Monkey L: 28 sessions).532

Pulse-triggered average533

To measure the relationship between the time-varying pulse strength and the inferred latent fac-534

tors, we measured the contribution of pulses to the latent factors. The pulse-triggered average535

(PTA) measures the change in latent factors resulting from an additional pulse at a particular time536

of unit strength. To calculate the PTA, we used the pulse stimulus and latent response at 1 ms537

resolution. For each session, let si denote the value of the i-th motion stimulus, and let xtk denote538

the k-th dimension of the latent factors at time t. All trials were concatenated such that the latent539

factors X is a matrix of length T × 4, where T is the total time. For the i-th pulse, si is the number540

of Gabors pulsing, with si > 0 for pulses in one direction and si < 0 for pulses in the other direction.541

To calculate the temporal lags of the PTA, we built design matrices, D = [D1,D2,… ,D7]. For the542

i-th pulse, the design matrix Di is a T × 28 matrix that consists of 4 cosine basis functions at the543

4i + 1, 4i + 2,… , 4i + 4-th columns and 0 elsewhere. These basis functions starts at 0 ms, 50 ms,544

100 ms and 150 ms after the onset, lasts 100 ms each and spans the rows of Di. The magnitude of545

the bases is equal to the corresponding pulse value si. We calculated a separate Di for each of the546

seven pulses and concatenated them to obtain a design matrix for all seven pulses and estimated547
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the weights with l2-regularization,548

X =DW + E

W =argmin
W

‖X − DW‖2
2
+ 
‖W‖2

2

(7)

whereW is the weight matrix to estimate and E is the Gaussian noisematrix and the regularization549

hyperparameter 
 was chosen by the generalized cross-validation (GCV) (Golub et al., 1979). The550

PTA was calculated with the design matrices of unit-strength pulse and the estimated weights W.551

We smoothed the PTA with a temporal Gaussian kernel (40 ms kernel width).552

Subject to arbitrary rotations, a latent trajectory forms an equivalence class of which the mem-553

bers have the same explanatory power in the vLGP model. We seek a particular rotation for each554

session that makes the encoded task signal concentrate in the first few dimensions. By singular555

value decomposition,W⊤ = USV⊤, we rotate the factors x to U⊤x.556

Choice decoder557

Since there were some recording sessions with less than ideal number of frozen trials (identical558

visual motion trials) for the calculation of choice probability, we instead analyzed the “weak” trials559

of which the monkeys’ correct rate was below a threshold (65%). We started at the trials of zero560

pulse coherence and gradually increased the magnitude of coherence (absolute value) until the561

correct rate reached the threshold. One of the sessions containing less than 100 weak trials was562

excluded in this analysis.563

We removed the stimulus information that is encoded in the latent factors of weak trials by564

regressing out the pulses and analyzed the residuals. The latent factors were re-binned at 100 ms565

resolution where the value of each bin is the sum of latent state xt or spike counts yt over the bin566

for t = 1, 2,… , T . For each t, we assumed a linear model567

xt =

7∑

i=1

wtisi + e, (8)

where si denote the strength of the i-th pulse, wti is the weight vector corresponding to the bin and568

pulse, and e is the homogeneous Gaussian noise across all bins. We estimated the weight vector569

by least-squares with l2-regularization to prevent over-fitting,570

wti = argmin
wti

‖xt −
7∑

i=1

wtisi‖22 + 
‖wti‖22. (9)

Again, the hyperparameter of regularization was chosen by GCV. We then analyzed the contribu-571

tion of behavioral choice on the residuals572

rt = xt −

7∑

i=1

wtisi. (10)

For the whole trial we used the sum residual of the windows r =
∑

t
rt. The range of t depends on573

the period of interest.574

We trained logistic models, to which we refer to as choice decoders, to predict the choice on575

each trial using latent factors. The weights � and bias �0 were estimated by maximum likelihood576

with l2-regularization,577

�, �0 = argmax
�,�0

logL(choice ∣ r; �, �0) − 
‖�, �0‖22. (11)

The hyperparameter of regularization was chosen via 5-fold (balanced classes in test set) cross-578

validation for every session individually.579
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Choice mapping580

The conventional choice probability only applies to univariate variables. However, the latent factors581

and population activity are multivariate. We transformed the multivariate variables mentioned582

above onto a one-dimensional subspace that has the same direction as the choice through the583

choice decoders,584

c =
1

1 + e−�
⊤r−�0

(12)

We refer to the transform as the choice mapping. The quantity c is a normalized value within585

[0, 1] thatmaps the residual onto the choice direction (Lueckmann et al., 2018), and enables pooling586

across sessions.587

In order to prevent potential inflation of choice probability due to multidimensionality (3D), we588

regularized the choice decoder and used only the choice mapping on the test set (pooled samples589

held-out by cross-validation). This approach guarantees that choice probability will not be overes-590

timated.591

We pooled these mappings across all sessions. Using different subsets of latent factors as r592

in the mapping, we obtained the choice-mapping of the stimulus-dimension and non-stimulus-593

dimensions of latent factors. Then we calculated the choice probability of the corresponding di-594

mensions based on the values. To investigate the time course of choice probabilities, we used595

choice decoders to perform choice-mapping on the whole dataset with non-overlapping moving596

windows. For fixed readout, we estimated the weights using mean value of 0-1.2s for the stimu-597

lus period and −0.5-0s for the delay period. We use the weights to obtain readout and CP values598

with 10ms moving window, and smooth the CP values with a 100ms boxcar. Finally; for dynamic599

readout, we estimated the weights and calculated the CP values within 100ms moving windows600

individually.601
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