

1 Sensory and choice responses in MT 2 distinct from motion encoding

3 Aaron J Levi^{1†}, Yuan Zhao^{2†}, II Memming Park², Alexander C Huk^{1*}

*For correspondence:
huk@utexas.edu (FM)

†These authors contributed
equally to this work

4 ¹Center for Perceptual Systems, Departments of Neuroscience & Psychology, The
5 University of Texas at Austin, Austin, Texas, United States of America; ²Department of
6 Neurobiology and Behavior, Stony Brook University, Stony Brook, New York, United
7 States of America

8
9 **Abstract** Macaque area MT is well known for its visual motion selectivity and relevance to
10 motion perception, but the possibility of it also reflecting non-sensory functions has largely been
11 ignored. Manipulating subjects' temporal evidence weighting revealed multiple components of
12 MT responses that were, surprisingly, not interpretable as behaviorally-relevant modulations of
13 motion encoding, nor as consequences of readout of motion direction. MT's time-varying
14 motion-driven responses were starkly changed by our strategic manipulation, but with
15 timecourses opposite the subjects' temporal weighting strategies. Furthermore, large
16 choice-correlated signals were represented in population activity distinctly from motion
17 responses (even after the stimulus) with multiple phases that both lagged psychophysical
18 readout and preceded motor responses. These results reveal multiple cognitive contributions to
19 MT responses that are task-related but not functionally relevant to encoding or decoding of
20 motion for psychophysical direction discrimination, calling into question its nature as a simple
21 sensory area.

22 **Introduction**

23 Primate area MT plays a critical role in the perception of visual motion. A long line of study has
24 established that MT's encoding of motion direction is quantitatively consistent with perceptual sensitivity,
25 that noise in its responses is correlated with behavioral variability, and that causal pertur-
26 bations of its activity affect motion perception in lawful and substantial ways (*Newsome and Pare, 1988; Britten et al., 1992, 1996; Salzman et al., 1992*

27>). Owing to this powerfully integrated set of findings, many models and experiments can safely assume that MT is the key place that the brain
28 looks to for information about visual motion. However, these successes do not logically imply that
29 MT only carries sensory information, leaving our understanding of MT at risk of overlooking ad-
30 ditional signals and computations that are not aligned with representing motion for the sake of
31 motion perception. In this work, we show that a manipulation of temporal strategy during motion
32 discrimination reveals large signals in MT that are precisely related to components of performing
33 the task, but which neither directly impact psychophysical performance nor reflect straightforward
34 links between perceptual decisions and the sensory responses which informed them.

35 In addition to the large, classic body of work describing the form and fidelity of MT's repre-
36 sentation of visual motion (*Born and Bradley, 2005; Cormack et al., 2017*), some prior work has
37 identified cognitive modulations of MT's sensory-driven activity. Such modulations are still inter-
38 pretable with respect to MT's representation of visual motion direction, however. Most notably,
39 attention can modify the sensory-driven responses of MT neurons, typically boosting the gain of
40 responses (*Treue and Maunsell, 1996; Seidemann and Newsome, 1999; Cook and Maunsell, 2004*).

43 These modulations of stimulus-driven activity modify MT's representation of motion, and thus play
44 out in behavior as if the visual motion itself had been modified. In contrast, recent work has shown
45 that MT's choice-correlated activity is distinguishable at the population level from its sensory-driven
46 responses, and follows a different time course than the read-out of motion, as inferred from the
47 psychophysical behavior (Zhao *et al.*, 2020). While this intriguing initial observation suggests the
48 existence of task-related signals not directly related to motion encoding, interpretation of this
49 choice-related activity is constrained by the lack of any direct experimental manipulation of the
50 decision-making process.

51 To directly test for and characterize non-sensory signals in MT, we manipulated the time course
52 of psychophysical weighting while monkeys performed a direction-discrimination task, coupled
53 with ensemble recordings of multiple neurons in MT analyzed via population-coding techniques.
54 We explicitly manipulated whether early or late parts of the stimulus had stronger or weaker motion
55 evidence on average, which affected the time course of how the visual motion stimulus was
56 weighted for task performance, as assessed via psychophysical reverse correlation. This manipu-
57 lation of temporal weighting strategy provided critical interpretive leverage for distinguishing the
58 time courses of decision formation and choice-correlated activity, and also caused a surprising
59 and strong modulation of the sensory responses themselves that was also not directly related to
60 forming decisions about motion.

61 When perceptual weighting was unconstrained, direction-discrimination behavior was based
62 primarily on early portions of the stimulus, the sensory representation showed a standard and
63 modest falloff over the course of stimulus presentation, and a distinct and substantial choice-
64 correlated response emerged during late portions of stimulus viewing. When we shifted the tem-
65 poral readout strategy to favor late portions of the stimulus, behavior relied preferentially on later
66 portions of the stimulus, but *later* portions of the sensory response were *decreased*, as opposed to
67 increased. Choice-correlated activity was significantly muted during the late-weighting condition.
68 However, choice-correlated activity was present after the stimulus, leading up to the response (a
69 novel phenomenon evident across all strategic conditions, in fact). When subjects' temporal weight-
70 ing strategy was then manipulated to preferentially rely on earlier portions of the stimulus, later
71 portions of the sensory response were increased, and choice-correlated activity was again evident
72 during the late portions of the stimulus. This last condition's effects were most striking, as a steep
73 falloff in perceptual weighting over time was accompanied by an increase in late sensory-driven
74 activity that led to a non-monotonic time course of motion-driven response.

75 The opposite effects of our experimental manipulations on temporal weighting strategy and
76 the timecourse of sensory gain run counter to any standard encoding model of MT simply repre-
77 senting behaviorally-relevant motion: In that framework, motion responses ought to mirror the
78 psychophysical weighting. Choice-correlated activity during the stimulus was also controlled by
79 changes in the psychophysical weighting, and across these psychophysical time courses, was al-
80 ways lagged relative to the periods when the subjects were "reading out" MT activity. But this
81 decision-lagged choice-related signal was not simple feedback linking a sensory response and a
82 subsequent, corresponding decision, not just because the choice signals affected MT population
83 activity differently than visual motion did; we also observed a distinct choice-related signal after
84 stimulus offset that was linked to impending response, and which was distinct from simple premo-
85 tor activity.

86 Together, these multiple components of the MT response, revealed while manipulating the
87 temporal weighting strategy, could be seen as lawful functions of the time course of decision for-
88 mation and the anticipation of the response. However, these response components could not be
89 interpreted as either modulations of the encoding that played out in perceptual reports, nor to the
90 effects of read out mechanisms that would either correlationally (via feed-forward mechanisms) or
91 causally (via straightforward feedback mechanisms) align with the sensory response. Thus, there
92 appear to be multiple, large components of MT activity that affect both its stimulus-driven activity
93 and which are separable from it- even during a well-studied direction-discrimination task with tight

94 control over motion readout strategy- that are inconsistent with its conventional designation as a
95 simple, low-dimensional, sensory encoding area.

96 **Results**

97 We measured the timecourse of sensory and choice-correlated responses from simultaneously
98 recorded groups of MT neurons using linear and nonlinear decoding approaches while rhesus
99 monkeys performed a motion direction discrimination task. We manipulated the time course of
100 stimulus evidence, and the subjects shifted their temporal weighting strategy to rely preferentially
101 on the stronger periods of stimulus motion. We began recordings in each subject with a baseline
102 “flat” stimulus phase for several experimental sessions, in which stimuli had a constant average
103 motion strength over time within a trial, as is the case in most related experiments (*Gold and*
104 *Shadlen, 2007*). We then shifted to several sessions in a “late” regime, in which the stronger motion
105 was present in the second half of the stimulus. Finally, we performed several sessions in an “early”
106 regime, in which the stronger motion was present in the first half.

107 **Observers change temporal weighting strategies according to stimulus statistics**

108 Two trained rhesus macaques (one male, one female) viewed sequences of seven motion pulses
109 and indicated perceived net motion with a saccade to one of two response targets (Figure 1A).
110 We measured traditional psychometric performance (i.e., accuracy as a function of net motion
111 strength on each trial), and the time course of weighting within each trial (i.e., using logistic regres-
112 sion between motion strength at each pulse and the binary choices, see Methods). We refer to the
113 resulting set of regression coefficients, or weights, as the temporal weighting strategy.

114 The motion discrimination task was performed in three contexts (Figure 1B-D). First, in the
115 flat-stimulus condition (Figure 1B), average motion over time was equal within a trial. Many tra-
116 ditional sensory decision-making studies use stimuli with uniform information over time, and thus
117 the flat-stimulus condition served as a baseline in our experiments. Subjects’ temporal weighting
118 strategies were biased to have higher weight on early stimulus periods, despite uniform motion
119 expectation over time (Figure 1E). This default early weighting strategy is consistent with many
120 other findings (*Huk and Shadlen, 2005; Kiani et al., 2008; Nienborg and Cumming, 2009; Yates*
121 *et al., 2017; Levi et al., 2018; Kawaguchi et al., 2018*) and likely reflects a combination (*Levi and*
122 *Huk, 2020; Okazawa et al., 2018*) of improved sensory encoding at stimulus onset (*Osborne et al.,*
123 *2004; Churchland et al., 2010*), and the consequences of early termination of the decision process,
124 due to mechanisms like bounded accumulation (*Kiani et al., 2008*).

125 Next, we performed a series of experimental sessions in which the stimulus statistics were
126 manipulated such that the average motion strength was high for the last three pulses, while the first
127 three were near zero. We refer to this as the late-stimulus condition (Figure 1C). Although the first
128 3 pulses had motion strength near zero on average (regardless of full-trial, net motion strength),
129 on individual trials there was still variable nonzero motion possible for any pulse. Subjects were
130 rewarded based on the actual net motion direction presented on that particular trial, as opposed
131 to the average or expected value based on the condition from which the trial was generated. This
132 produced robust behavioral changes that tracked motion expectation in the stimulus design, such
133 that weight on the first three pulses decreased substantially, and the highest psychophysical weight
134 was placed on the later pulses (Figure 1F).

135 Finally, we performed a series of sessions in which the stimulus statistics were changed such
136 that the average motion strength was now high in the early half of the stimulus, and was near zero
137 for the last half of the stimulus; we refer to this as the early-stimulus condition (Figure 1D). This
138 successfully changed temporal weighting behavior back to pronounced early weighting, in which
139 the first pulses received drastically higher weight than the remainder of the stimulus (Figure 1G), in
140 a manner overall similar to the default strategy during the flat-stimulus (flat: -0.091 [-0.113, 0.069],
141 late: 0.083 [0.015, 0.151], early: -0.091 [-0.136, -0.081]; slope of linear fit to the psychophysical ker-
142 nel [95% CIs]). In summary, the temporal weighting strategy shifted in concert with the time course

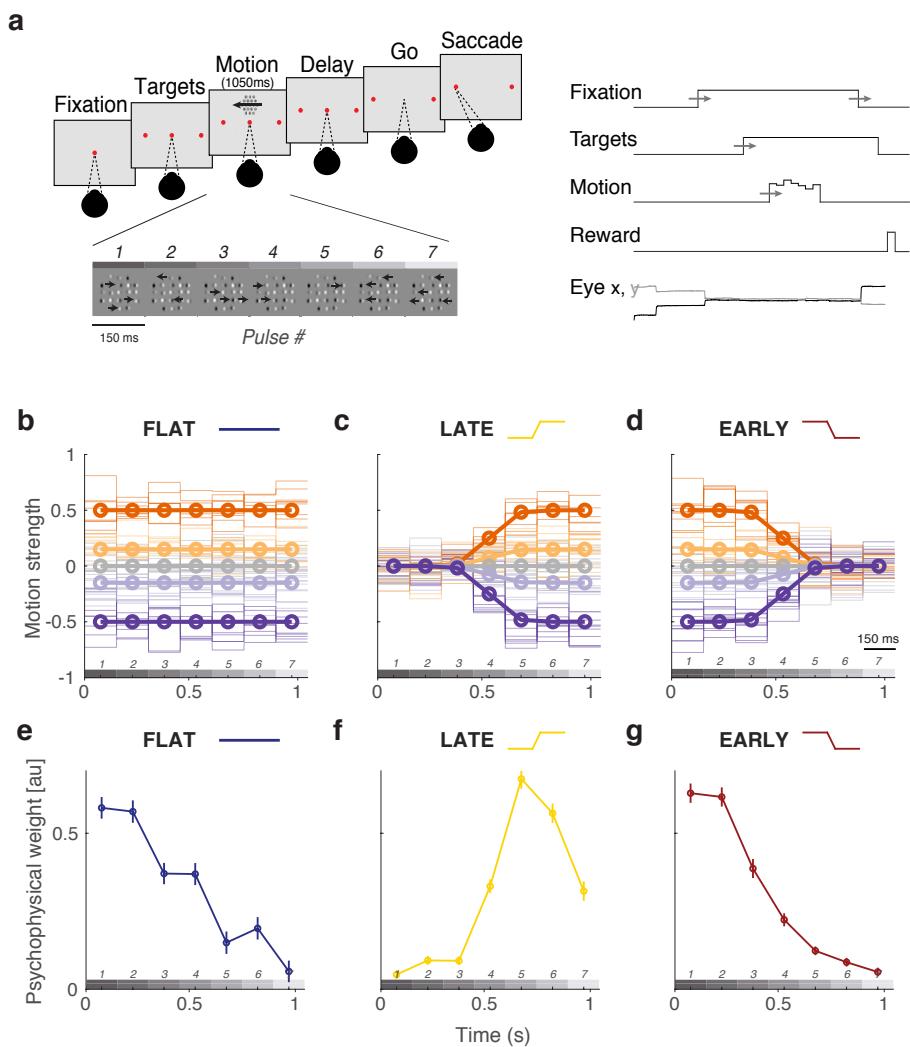


Figure 1. Sequence of trial events, temporal stimulus statistics, and successful manipulation of behavioral weighting strategy. **A**, Subjects fixated on a central point through the appearance of targets and motion stimulus until the disappearance of the fixation point (“go”). Choices were made with saccades to the target corresponding to the perceived net direction of motion. Initial fixation time, target-on duration, and time until fixation point disappearance were randomly varied. **B-D**, Average stimulus strength per pulse (bold lines) and individual trial examples (semi-transparent lines) for trials of different strength and direction (denoted by sign). In the flat-stimulus (**B**), motion strength is constant over time on average. In the late-stimulus (**C**) motion strength is reduced on average in the first three pulses such that the highest motion expectation is late. In the early-stimulus (**D**) motion strength is reduced in the last three pulses such that the highest motion expectation is early. Motion pulse values in individual trials (semitransparent traces) vary considerably (see Methods for detail). **E-G**, Temporal weighting behavior across conditions. **E**, Subjects preferentially weight the early pulses despite uniform motion expectation over time. **F**, Temporal weighting shifts during the late-stimulus condition to preferentially weight late pulses. **G**, Behavior reverts back to early-weighting when the stimulus statistics are biased towards high motion strength early.

143 of expected motion strength, placing higher weight on portions of the stimulus when higher mo-
144 tion strength was expected based on the experimental phase. This confirms that our manipulation
145 of stimulus statistics affected the time course of psychophysical readout, allowing us to better in-
146 terpret the time scale of neural responses relative to the timing of when the subject was "reading
147 out" MT for the purpose of forming a decision about motion direction.

148 **Choice-correlated activity in MT is large but does not align with stimulus encoding
149 or behavioral readout**

150 We recorded ensembles of single and multi-unit activity from area MT while monkeys performed
151 the direction discrimination task, across the manipulation of temporal weighting strategy described
152 in the previous section. We used both linear and nonlinear ensemble decoding frameworks to ex-
153 tract information about direction and choice from groups of simultaneously recorded MT neurons
154 (Figure 2A). As a simple starting point, we used logistic regression (logReg) between the raw trial
155 spike count vectors and either the stimulus direction (the "direction" axis) or the psychophysical
156 choice (the "choice" axis) to find a reweighted population response that best mapped neural activity
157 to the binary stimulus or choice (Figure 2A, left). Such linear models are likely easy for the brain to
158 implement, but are limited in how they can capture relations between neurons and between neu-
159 ral activity and experimental factors. We therefore also used a more advanced nonlinear dimen-
160 sionality reduction technique (variational latent Gaussian process model, vLGP) to extract smooth
161 low-dimensional latent factors that explain correlations within the population spike trains (**Zhao**
162 **and Park, 2017; Zhao et al., 2020**) (Figure 2A, right). It functions in a conceptually analogous man-
163 ner to the simpler logistic regression approach (i.e., mapping ensemble activity to the stimulus or
164 the choice), but has the ability to more effectively capture the complex joint statistics of the neural
165 population while also providing access to a more concise representation of the relations between
166 neural activity, stimulus direction, and psychophysical choices (by virtue of an intervening dimen-
167 sionality reduction step to identify latent factors making up the ensemble activity).

168 Both analytic approaches revealed the presence of substantial choice-correlated activity in the
169 MT population response, achieving large peak magnitudes (> 0.6 as measured by choice proba-
170 bility, CP; although we use this conventional metric in this paper, we emphasize that by calculat-
171 ing it on various dimensions of the ensemble response, we have generalized it beyond the classi-
172 cal approach of only looking at choice-correlated activity defined along the stimulus axis) (**Britten**
173 **et al., 1996**). The largest choice-correlated activity was present in the population activity in a man-
174 ner distinct from how the stimulus drove the ensemble of MT neurons. Via logReg, this was evi-
175 dent in significantly larger CP along the choice axis over the direction axis (Figure 2B-D), stemming
176 from a weak correspondence between a neuron's weight in one model compared to the other (r
177 $= 0.146$). The vLGP analysis showed that stimulus encoding was well described by a single dimen-
178 sion (termed the stimulus axis), but the stimulus axis had relatively small choice information when
179 compared to the combined choice information in the top four latent factors altogether (**Zhao et al.,**
180 **2020**) (Figure 2B-D).

181 Importantly, both analysis methods revealed that across pronounced changes in temporal weight-
182 ing strategy, the time course of choice-correlated activities never mirrored the time course of psy-
183 chophysical readout (Figure 2B-D, 1E-G). Instead, choice-correlated activity was consistently high-
184 est after the stimulus periods that were weighted the highest in the behavior. In the flat condition,
185 both analysis approaches demonstrated increased choice probability during the last half of the
186 stimulus, despite early weighting in the behavior. In the late condition, when behavior exhibited
187 the strongest dependence on later portions of the stimulus, the strongest choice-correlated activ-
188 ity was still distinct from the stimulus-driven activity, and exhibited a more muted and flatter time
189 course, though still characterized by an even later peak relative to the flat-stimulus condition. Fi-
190 nally, when subjects returned to an early weighting strategy in the early stimulus condition, the
191 time course of choice probability returned to a similar rising profile, as originally measured dur-
192 ing the flat condition. These observations are inconsistent both with classical interpretations that

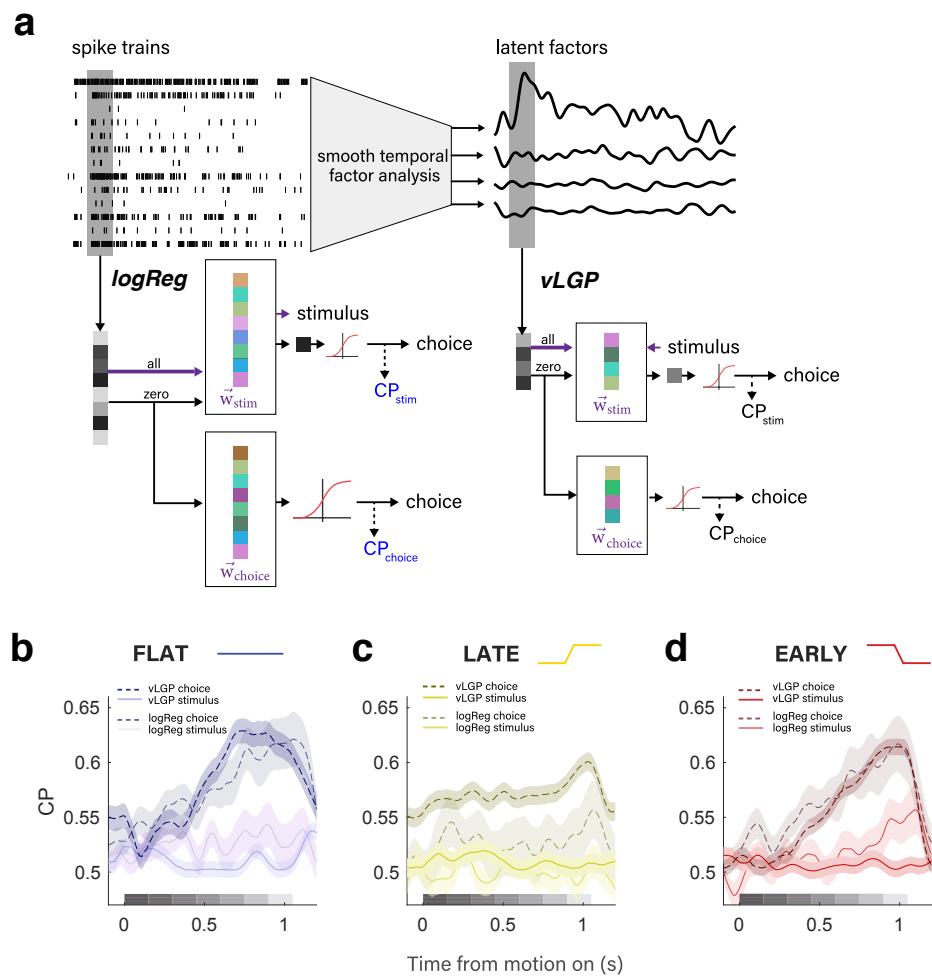


Figure 2. Both linear and nonlinear ensemble analysis approaches reveal strong choice-correlated activity in MT distinct from motion encoding or psychophysical readout of motion signals. A. We used linear and nonlinear decoding approaches to define choice probability along different dimensions of the population response. From the simultaneously recorded spike trains, a linear projection that can best predict the stimulus direction (\vec{w}_{stim}) or the choice (\vec{w}_{choice}) is used to project the frozen-noise trials and in turn derive CP (left). To enhance the signal to noise ratio, we extracted low-dimensional latent factors that explain the correlations in the population spike trains using smoothing factor analysis (right). We similarly estimated two CP signals from the latent factors. The first projection is found by the singular dimension explaining the stimulus drive for all trials (\vec{w}_{stim}). The second is the choice information extracted from the top four latent factors altogether (\vec{w}_{choice}). Projection of the frozen-noise trials are still multi-dimensional, and require further logistic regression to best predict the choice, defining the projection \vec{w}_{stim} and corresponding choice probability $\text{CP}_{\text{choice}}$. **B-D.** Time course of population choice probability during flat **B**, late **C**, and **D** early conditions. Solid vs. dashed line denote stimulus vs. choice dimensions, respectively. Darker traces in the foreground denote latent factors, while semi-transparent traces denote logistic regression traces in the background.

193 choice probabilities reflect the feedforward consequences of sensory noise being read out as infor-
194 mation about the stimulus (because the bulk of the choice-correlated activity arose after the psy-
195 chophysical readout of MT was likely happening), as well as more recent interpretations that choice
196 probabilities reflect feedback, because differential MT responses correlated with choice were not
197 strongly aligned with the motion responses that gave rise to those decisions.

198 **Changes in sensory encoding run opposite changes in temporal weighting strategy**

199 Most surprisingly, we observed large changes to MT's time-varying sensory response that were in-
200 commensurate with perceptual readout. Here, we relied on the vLGP analysis to describe the tem-
201 poral dependence of the population response on the motion pulses by looking at the directional
202 response along the stimulus axis. We calculated a pulse-triggered average (PTA) to summarize the
203 regression coefficients that predict the change in latent states (Yates et al., 2017). Each "bump"
204 in Figure 3 represents the modulation of the stimulus-axis latent factor by a pulse of unit motion
205 strength (i.e., a single Gabor drifting in one direction) for each pulse in the stimulus presentation
206 (Figure 1). As temporal weighting strategy shifted across conditions, one might expect nothing
207 to change in MT, consistent with a constant (and thus largely veridical) representation of visual
208 information despite changes in readout/weighting strategy. An alternative hypothesis based on
209 temporal attention would predict gain modulation congruent with behaviorally up-weighted and
210 down-weighted stimulus epochs (Ghose and Maunsell, 2002). Instead, to our surprise, we observed
211 changes to sensory encoding with an unintuitive, if almost paradoxical, link to psychophysical di-
212 rection discrimination.

213 In the flat stimulus condition there was a modest decrease in the sensory response over time
214 (i.e., PTA magnitude fell across the 7 pulse epochs; Figure 3A). Such a gradually-declining time
215 course is consistent with known adaptation phenomena in many visual brain areas, and has been
216 observed in MT during viewing of this same stimulus (Yates et al., 2017). However, during the
217 late-stimulus condition, the sensory response decreased for the late pulses relative to the flat
218 condition time course (Figure 3B). The behavioral profile shows precisely the opposite: relative
219 down-weighting of early pulses and up-weighting of later pulses. And most strikingly, when sub-
220 jects switched to the early-stimulus condition, the sensory response showed a stark up-weighting
221 of later pulses, resulting in a dramatically non-monotonic, U-shaped profile (Figure 3C). Once again,
222 this is directly at odds with the temporal weighting of behavior, which sharply favors the first 2-3
223 pulses over the rest. This modulation is counterintuitive from standard perspectives, which would
224 predict that if any changes in sensory response are evident, they would be reflected by increases
225 in response to stimulus portions that were weighted more strongly for decision making.

226 Instead of gain changes that reflect behavioral readout strategy, the sensory response modula-
227 tions we observed make more sense viewed as compensating for "missing" signal relative to a
228 time-stationary motion expectation. In our experiments, both animals were trained extensively on
229 the flat condition before undergoing temporal manipulation. The change in gain thus manifested
230 as a function of the mismatch between this apparently "default" temporally-uniform expectation
231 of motion and the statistics of the currently-encountered condition. In more detail, during the
232 late condition motion strength was decreased in the early portions of the stimulus, but the PTA
233 revealed decreased gain on later pulses instead (Figure 3B). During the early condition, the motion
234 strength on later pulses was decreased, but the PTA revealed a striking gain increase on these por-
235 tions of the stimulus for which the expected motion was quite weak (Figure 3C). Thus, while the
236 temporal weighting evident in behavior changed across conditions in a way that tracked changes
237 in stimulus statistics (i.e., weighting the stronger periods of motion more, and weaker periods of
238 motion less), MT's response to motion was changed inversely to those patterns.

239 **Large choice-correlated activity also exists in the absence of the motion stimulus**

240 We also observed another choice-related signal in MT of substantial magnitude. The vLGP analysis
241 revealed significant choice-correlated activity after the offset of the motion stimulus, in anticipation

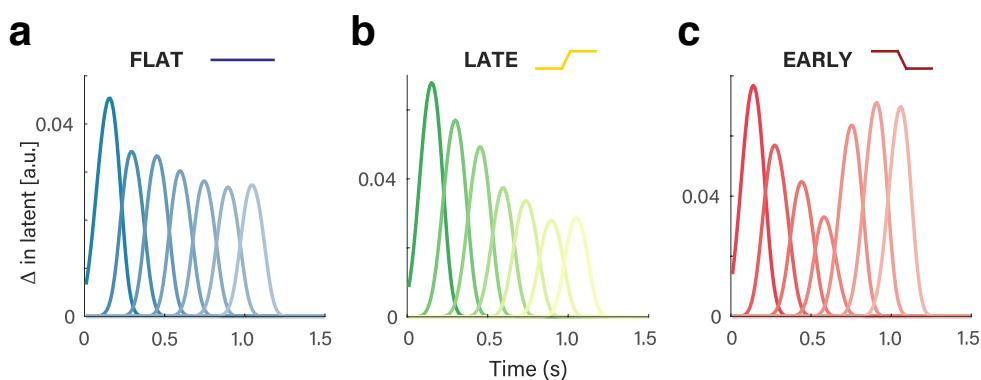


Figure 3. Time course of motion-driven MT response changes opposite that of changes in temporal weighting strategy. **A-C.** The pulse-triggered average (PTA) describes the modulation of the stimulus-axis latent factor by a pulse of unit motion strength for each of the seven pulses in the visual motion stimulus. **A.** The PTA for the flat-stimulus condition reflects the expected transient-to-sustained response, where a pulse at the beginning of the stimulus affects the MT response more than a pulse closer to the end of the stimulus. **B.** In the late-stimulus condition, the relative drop from early pulses to later ones is even more exaggerated than in the flat, despite highest motion strength occurring late in the trial. **C.** The PTA during the early-stimulus condition exhibits substantial increase on later pulses, despite a lack of high motion signal in the stimulus during those pulses.

242 of an upcoming saccade. There was a minimum 500 ms window between the stimulus offset and
243 the disappearance of the fixation point which signaled the monkey could move their eyes to make
244 their choice, and during this window we saw choice probabilities up to > 0.7 (Figure 4A).

245 The magnitude of post-stimulus choice probability is comparable to, and often greater than,
246 what we observed from our decoders during the stimulus period, and is quite high compared to
247 traditional measures of choice probability based on single neuron measurements. Most impor-
248 tantly, the finding of large amounts of choice-correlated activity without the presence of a visual
249 stimulus in MT strengthens the case for such signals being non-sensory in origin. The choice signal
250 measured during the delay period is present when there is no sensory drive whatsoever, further
251 ruling out interpretations of choice probabilities as a product of noise in sensory representations.
252 Instead, its full magnitude (revealed by "looking" off the stimulus axis), late time course, and pres-
253 ence up to the response are more similar to choice-related activity seen in a multitude of areas that
254 are often considered much more cognitive or associative in nature, such as LIP and PFC (Roitman
255 and Shadlen, 2002; Mante et al., 2013).

256 Interestingly, the onset of CP during the delay period varies with reaction time (RT) in a way
257 that suggests the choice signal is not simple premotor activity. If this were the case, we would
258 expect that CP would increase later on trials with longer RTs compared to trials with shorter RTs.
259 Instead, when reaction times were longer than the median RT, the saccade-aligned CP increased
260 noticeably earlier than on trials with reaction times in the shorter half of the RT distribution (Fig-
261 ure 4B). This was true of all three temporal stimulus conditions. The result is striking, especially
262 given the fixed-stimulus experimental design and the coarse division of "short" and "long" RTs by
263 median. Temporally divorced from stimulus processing and not tightly linked to motor behavior
264 timing, this delay-period choice signal appears to have a more cognitive origin reflecting the main-
265 tenance of choice information between stimulus and response.

266 **Time-varying readout of population activity confirms the dynamics of choice-related 267 signals**

268 In all analyses leading up to this point, the weights used to decode the stimulus or the choice were
269 calculated using the neural responses and/or the derived latent factors from the entire stimulus

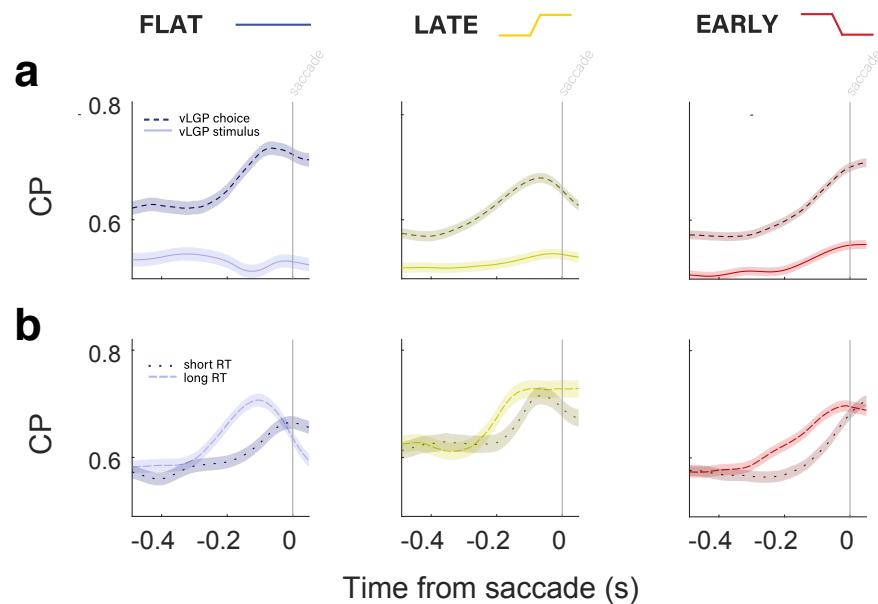


Figure 4. Presence of large choice-related signals in MT during post-stimulus delay period. A. CP along the choice (dashed lines) and direction (solid lines) axes, aligned to the time of the saccade. In all three conditions, there is high CP in the choice axis for the entire 500ms preceding the saccade, without any stimulus drive. CP increased over the last 200ms leading up to the saccade. There was relatively little CP along the stimulus axis. **B.** Saccade-aligned CP along the choice axis only, separated by median reaction time (RT). CP for longer RT trials (dashed lines) increased earlier than that of shorter RT trials (dotted lines). This was true in all three conditions.

270 period. Even with this fixed temporal readout scheme, we saw nuanced temporal dynamics in
271 both sensory- and choice-related activity that differed from the time course of temporal weighting
272 evident in the psychophysical behavior. Although, from a decoding perspective, using temporal
273 fixed weights makes for a readout process that the brain might find easier to implement, we know
274 very little about how sophisticated the brain's decoding machinery might be (and indeed, our abil-
275 ity to manipulate the timecourse of motion weighting suggests that temporally-static decoding is
276 not a hard limit). Furthermore, from a purely statistical perspective, we were also motivated to
277 consider decoding with a temporally dynamic readout scheme to confirm that the rich dynam-
278 ics we observed were neither constrained nor distorted by the assumption of constant read-out
279 weights. We therefore performed further latent factor analyses in which weights were fitted and
280 applied based on the activity within individual 100 ms bins for both the delay and motion periods
281 (Figure 5).

282 The timecourse of choice-correlated activity was quite similar from fixed to dynamic readout
283 models. With temporally varied readout weights, the same pattern persisted: high CP late in the
284 stimulus period regardless of temporal stimulus condition. This is strong support for CP as a top-
285 down signal that arrives in MT mostly after decisions have been made. That is, after the pulses with
286 the highest weight in the psychophysical kernel. In this interpretation, during the late condition we
287 have in essence delayed the decision and thus further delayed the decision-correlated activity that
288 follows. The time-varying readout schemes also confirmed the dynamics in the post-stimulus, de-
289 lay period. In all three conditions, CP was high throughout the delay period, but increased over the
290 last 200ms. Along the stimulus axis, CP was flatter and closer to chance. Altogether, the similar-
291 ity in CP timecourse between fixed and dynamic readout models suggests that a fixed weighting
292 scheme is sufficient to describe the temporal patterns of choice information in MT during motion
293 information both during and after the stimulus.

294 Discussion

295 By manipulating the temporal weighting strategy of subjects while they performed a direction
296 discrimination task, aided by ensemble recordings and population-level decoding analyses, we
297 discovered multiple signals in MT that are distinct from its representation of motion direction,
298 solidly established to be used by later decision stages for perceptual reports and behavior. Striking
299 changes in sensory response were associated with the mismatch between the current strength of
300 sensory evidence and prior, learned time courses of sensory evidence. Although these large modu-
301 lations affected the sensory encoding, they appear not to have affected the psychophysical behav-
302 ior. Choice-correlated activity was also surprisingly strong, but was delayed relative to temporal
303 weighting behavior, even when the latter was under direct experimenter control. Furthermore, the
304 choice-correlated activity was evident at the population level in a manner that was distinct from
305 stimulus-driven responses in MT, and was "readout-irrelevant" as well, in that it was largest when
306 the subjects were not primarily reading out the stimulus, or even viewing a stimulus at all.

307 The changes we observed in sensory responses may seem paradoxical at first, as the gain was
308 increased for periods of the stimulus during which the subjects applied the smallest amount of
309 weight in forming decisions. This is opposite the notion of attention affecting gain for parts of a
310 stimulus that are more relevant for decisions (*Treue and Maunsell, 1996; Seidemann and New-
311 some, 1999*). But, these modulations appear more sensible when viewed as resulting from a mis-
312 match between trained statistics and the current ones. The hypo-responsivity to late pulses in the
313 late condition, and the hyper-responsivity to those same late pulses during the early condition,
314 could both reflect a compensatory response to motion in the current condition compared to the
315 expectation of the temporally uniform stimulus on which animals were trained. Indeed, potentially-
316 released homeostatic mechanisms have been observed in sensory cortex (*Benucci et al., 2013*).
317 Through this lens, the temporal changes in the PTA reflect a recalibration of incoming informa-
318 tion to meet the expectation of a temporally-flat stimulus. Thus, even MT's sensory responses are

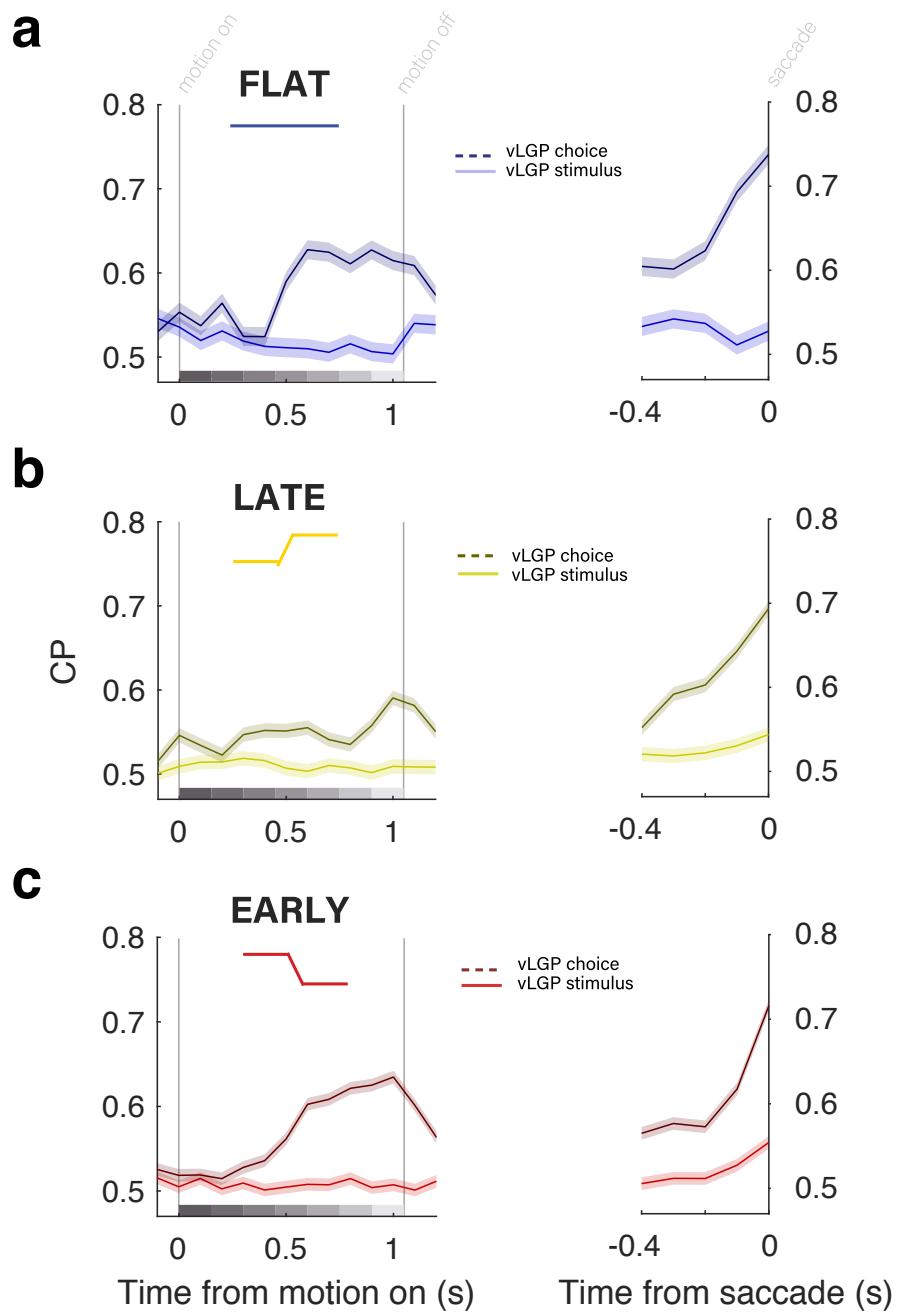


Figure 5. Time course of choice-related activity in MT is similar when time-varying decoding weights are used. Choice probabilities calculated with time-varying readout weights aligned to motion (left), and the saccade (right) for the flat (A), late (B), and early (C) conditions. CP along the choice axis is represented by dashed lines, while CP along the stimulus axis is represented by solid lines. Choice-axis CP was significantly higher in both the motion- and saccade-aligned time frames. During motion (left), we confirmed that CP was highest during later stimulus epochs, after those with highest psychophysical weight (Figure 1E-G.) During the post-stimulus period (right), we confirmed that CP increased primarily over the last 200ms preceding the saccade to levels even higher than motion-aligned CP.

319 strongly affected by cognitive factors in ways that are dissociable from its well-established, but no
320 longer sole role of representing retinal motion for the sake of perception and/or behavior.

321 Our findings regarding choice-related activity also add to the case for MT carrying substantial
322 non-sensory signals. Having previously used ensemble recordings and population decoding to
323 show that stimulus- and choice-related activity in MT are distinguishable (*Zhao et al., 2020*), our
324 findings in this study add several important facets. First, we exerted explicit control over the time
325 course of psychophysical weighting, which allowed us to experimentally dissociate the psychophys-
326 ical weighting from the time course of choice-correlated activity. By shifting the temporal weight-
327 ing strategy, we effectively changed the average time of the decision, allowing us to confirm that
328 choice signals followed primary decision formation when under explicit experimenter control. Sec-
329 ond, we saw choice activity of substantial magnitude during the post-stimulus delay period. This
330 result rejects virtually any stimulus-based interpretation, as the choice signal was present when the
331 sensory stimulus was not. These results also rule out straightforward forms of feedback creating
332 choice-related activity, as those explanations require the decision-related feedback to be aligned
333 with the sensory responses that gave rise to the corresponding choice. Furthermore, the delay
334 period choice signal was not entirely explainable as premotor. Given all these distinctions, the
335 oddly-parsimonious interpretation is that choice-related activity in MT is a distinct cognitive signal
336 (or set of signals) that are best understood outside of MT's encoding of visual motion. Although the
337 presence of large choice-related signals in macaque MT may be surprising at first, recent work in
338 other species (but also using ensemble recordings and analyses) has revealed widespread repre-
339 sentations of choice and other task-related signals (*Musall et al., 2019; Stringer et al., 2018; Grün-
340 demann et al., 2018*).

341 These findings provide new connections between MT function and well-established conceptual
342 and empirical frameworks. The sensory modulations associated with mismatches between ex-
343 pected and observed timecourses of motion aligns with both predictive coding and reinforcement
344 learning models, both of which are abstractly based on errors between expected and encountered
345 elements within a task (*Rescorla and Wagner, 1972; Engel et al., 2015*). Although our findings run
346 opposite known effects of temporal attention (*Ghose and Maunsell, 2002*) or attention-related gat-
347 ging of sensory responses (*Seidemann et al., 1998*), some recent work has decoupled attentional
348 modulations in MT and MST from task performance (*Recanzone and Wurtz, 2000*). Our dissociation
349 between MT modulations and task performance may be related, although in our case, their depen-
350 dence on the strategic history of the subjects revealed signals that are not wholly irrelevant to
351 the task, but are just not related to the formation of decisions on a trial-by-trial basis. This opens
352 up the possibility that some attention-like phenomena may arise from expectations of stimulus
353 statistics, instead of being modulations of sensory data per se. The post-stimulus choice signals
354 we observed in MT may be related to prior observations of small-amplitude, but tuned, persistent
355 activity in MT (*Bisley et al., 2004*); our findings suggest that those initial observations of relatively
356 small changes in spike rate may have simply caught a glimpse of larger non-sensory signals pre-
357 ceding the saccadic decisions mostly missed by single unit recordings that cannot see alternate
358 effects on population activity across diversely-tuned neurons. Finally, related work using a motion
359 categorization task has revealed strong non-sensory, category-related activity in area MST, but not
360 area MT (*Freedman and Assad, 2006; Zhou et al., 2020*). Such category-related activity can also be
361 thought of as "choice-correlated", as distinct from purely sensory-driven. Although the tasks, train-
362 ing histories, and analytic approaches differ between that work ours, our findings suggest that the
363 apparent distinction between MT and MST regarding the presence of such category/choice activity
364 might be less strict than previously observed. Again, the potential for ensemble recordings and
365 corresponding ensemble analyses may have been critical for not just observing these non-sensory
366 signals in MT, but for appreciating their substantial magnitude.

367 To conclude, our manipulation of temporal weighting strategy revealed a dissociation of sen-
368 sory response gain from decision formation. Likewise, our approach of using ensemble recordings
369 and population decoding allowed us to see large choice-related signals that were not just tempo-

370 rally dissociated from psychophysical weighting (or even stimulus viewing), but that were large in
371 magnitude and distributed across the population in a manner distinct from how visual motion di-
372 rection is represented. Together, these signals and modulations call for consideration of MT well
373 beyond its role in encoding of retinal motion. Understanding the population coding structure and
374 functional roles of such task-related but non-sensory computations are new open questions.

375 **Methods and Materials**

376 **Stimulus presentation and design**

377 Stimuli were presented using the Psychophysics Toolbox with Matlab (Math-works) using a Dat-
378 apixx I/O box (Vpixx) for precise temporal registration (*Eastman and Huk, 2012*). Sample stim-
379 ulus presentation code is available on request. Eye position was tracked using an Eyelink eye
380 tracker (SR Research), sampled at 1 kHz. M1 was seated 57 cm away from a 150 cm x 86 cm
381 rear-projection screen (IRUS; Draper Inc.) covering the central 106° x 73° of visual angle. Images
382 were projected onto the screen by a PROPIxx projector (VPixx Technologies Inc.) driven at a reso-
383 lution of 1920 x 1080 pixels at 120 Hz. M2 viewed stimuli on a 55-inch LCD (LG) display (resolution
384 = 1920 x 1080p, refresh rate = 60 Hz, background luminance = 26.49 cd/m²) that was corrected
385 to have a linear gamma function. M2 viewed the stimulus from a distance of 118 cm (such that
386 the screen width subtended 54° of visual angle, and each pixel subtended 0.0282° of visual angle).
387 Auditory feedback was played at the end of every trial, and fluid reward was delivered through a
388 computer-controlled solenoid.

389 Subjects were required to discriminate the net direction of a motion stimulus and communicate
390 their decision with an eye movement to one of two targets, placed on either side of the motion stim-
391 ulus. The sequence of task events is presented in Figure 1A. A trial began with the appearance of a
392 fixation point. Once the subject acquired fixation and held for 750–1300 ms (uniform distribution),
393 two targets appeared and remained visible until the end of the trial. 500–1000 ms after target on-
394 set, the motion stimulus was presented at a range of eccentricities from 4° to 12° for a duration
395 of 1050 ms. The fixation point was extinguished 500–1000 ms after motion offset, and the subject
396 was then required to shift their gaze toward one of the two targets within 600 ms (saccade end
397 points within 3° of the target location were accepted). The timing of each event was randomly and
398 independently jittered from trial to trial.

399 The reverse-correlation motion stimulus contained motion toward one direction or the oppo-
400 site, with varying motion strength. Spatially, the stimulus consisted of a hexagonal grid of 19 Gabor
401 elements, where individual Gabor elements were set to approximate the receptive field (RF) size
402 of a V1 neuron, and the entire motion stimulus approximated the RF size of an MT neuron, which
403 scaled based on eccentricity from fixation (*Van Essen et al., 1981*). Motion was presented by varying
404 the phase of the sine-wave carrier of the Gabors. Each Gabor underwent a sinusoidal contrast mod-
405 ulation over time with independent random phase. Gabor spatial frequency (0.8 cycles/° sigma =
406 0.1 x eccentricity) and temporal frequency 5–6 Hz, yielding velocities of 5.55–6.66°/s, respectively)
407 were selected to match the approximate sensitivity of MT neurons (*Bair and Movshon, 2004*).

408 Each motion stimulus presentation consisted of seven consecutive motion pulses lasting 150
409 ms each (9 frames on the 60 Hz display, 18 on the 120 Hz display), producing a motion sequence
410 of 1050 ms in duration in total. On any given pulse, a number of Gabor elements would have their
411 carrier sine waves drift in unison to produce motion (“signal elements”), and the remaining would
412 counter-phase flicker (“noise elements”). Within any given pulse, signal elements were spatially
413 assigned at random within the grid, and all signal element drifted in the same direction.

414 Motion strength on pulse i was defined as the proportion of signal elements out of the total
415 number of elements, the value of which was drawn from a Gaussian distribution, $X_i \sim N(\mu_k, s)$ and
416 rounded to the nearest integer, where k is the distribution index for the five trial types (strong left,
417 weak left, zero-mean, weak right, strong right). Thus, while each pulse within a sequence could take
418 on any value (and either sign/direction) from distribution $N(\mu_k, s)$, the expectation of a sequence

419 would be μ_k (Figure 1B-D). The subjects were rewarded for selecting the target consistent with the
420 sign of the motion pulse sequence sum (i.e., the net direction), independent of the distribution μ_k
421 from which the pulses were drawn.

422 Subjects performed the motion-discrimination task with three variations of temporal stimulus
423 statistics (*Levi et al., 2018*). First was the flat-stimulus, in which expected motion strength was
424 uniform over time within a trial. In other words, the mean of the motion strength distribution
425 $N(\mu_k, s)$ would be held constant throughout a stimulus presentation. In other words, the mean of
426 the distribution from which X_i was drawn was fixed at (μ_k) , for pulses 1–7 (Figure 1B).

427 Next, subjects encountered the late-stimulus, where motion strength was reduced substantially
428 in early pulses, but not late. In this condition, μ_k is set to 0 for the first pulse ($i = 1$), and reaches
429 its expected value (μ_k) by pulse 7. Finally, the opposite is done for the “early-stimulus” condition
430 (Figure 1D), in which the first pulses maintain mean motion strength equal to μ_k and later pulses
431 have a mean near zero. In the late- and early-stimulus conditions, the transition from μ_k at pulse
432 1 to μ_k at pulse 7 is governed by a logistic function with parameters chosen to result in a smooth
433 transition between the first 3 and last 3 pulses (midpoint = 4, slope = 0.3).

434 All subjects began the experiments with the flat-stimulus condition (Monkey L: 13; Monkey N: 10
435 sessions). After multiple sessions of stable psychophysical performance, the stimulus was changed
436 to the late-stimulus conditions (Monkey L: 11; Monkey N: 11 sessions). Finally, after multiple ses-
437 sions of stable psychophysical performance the stimulus was changed to the early-stimulus condi-
438 tion (Monkey L: 11 sessions; Monkey N: 15 sessions). Subjects were exposed to only one stimulus
439 condition per session and were not cued as to which stimulus condition they were viewing before
440 or during any given session (other than the stimulus statistics themselves).

441 Throughout all conditions, there existed a subset of “zero-mean” trials in which $\mu_k = 0$ for all 7
442 pulses, regardless of whether the stimulus condition is flat, late, or early. Sessions also contained
443 5–10% frozen seed trials, which were identical stimulus displays. The “frozen noise” stimulus always
444 summed to zero, had the same temporal structure across sessions, and was completely identical
445 within sessions. Subjects were rewarded at random on frozen noise trials.

446 Behavioral analysis

447 Subject choices in the direction-discrimination task were analyzed with a maximum likelihood fit
448 of a three-parameter logistic function (*Wichmann and Hill, 2001*) assuming a Bernoulli distribution
449 of binary choices, in which the probability of a rightward choice is p and leftward choice is $1 - p$,
450 where p is given by

$$p = \gamma + (1 - 2\gamma) \frac{1}{1 + e^{-\beta(x-\alpha)}} \quad (1)$$

451 where x is the net motion strength value (z-scored over all sessions for each subject separately),
452 α is the bias parameter (reflecting the midpoint of the function in units of motion strength), β is
453 the slope (i.e., sensitivity, in units of log-odds per motion strength), and γ captures the lapse rate
454 as the offset from the 0 and 1 bounds. Error estimates on the parameters were obtained from
455 the square root of the diagonal of the inverse Hessian (2nd derivative matrix) of the negative log-
456 likelihood. The temporal weighting kernel (which we also refer to as “temporal weighting strategy”
457 or “temporal weighting profile”) was computed using ridge regression via maximum likelihood. The
458 log posterior of the psychophysical weights is given by

$$L(w) = \sum_{i=1}^N [Y_i w^T X_i - \log(1 + \exp(w^T X_i))] + \lambda \|w\|^2 \quad (2)$$

459 where $Y \in \{0, 1\}$ is a vector of choice on every trial and X is a matrix of the seven pulses on each
460 trial, augmented by a column of ones (to capture bias). λ was estimated using evidence optimiza-
461 tion (*Sahani and Linden, 2003*). Psychophysical weights are normalized by the Euclidean norm of
462 the vector of weights. The seven temporal weights assigned to the seven motion pulses, w , were

463 computed by using all trials within a session. These include trials where μ_k was set to zero (i.e.
464 "zero-mean trials", where motion on a given pulse is temporally independent of all other pulses
465 in the sequence) and trials where μ_k was set to a non-zero value ("signal trials", where motion is
466 correlated over pulses)

467 **Electrophysiology**

468 A custom titanium chamber was fabricated and placed over the superior temporal sulcus and in-
469 trapirostral sulcus to allow for a dorsal approach to access area MT. Chamber placement was as
470 guided by structural MRI and cranial landmarks. Extracellular recordings were performed using
471 linear electrode arrays from Plexon (U-Probe, V-Probe, or S-Probe; 24 or 32 channels; 50-100 mi-
472 crometer spacing).

473 MT was identified using electrode depths and paths (i.e., sulcal anatomy), and functional map-
474 ping. Functionally, MT was identified via size and location of RFs, and preponderance of direction
475 selective neurons. MT units were hand-mapped using a field of moving dots with experimenter
476 control of stimulus location, aperture size, dot speed, dot size, and dot density. Upon choosing
477 the stimulus location that maximally drove the highest number of neurons, direction tuning was
478 measured by 500ms presentations of a randomly drawn direction of motion from one of 12 di-
479 rections from 0 to 330 degrees. A total of 71 recording sessions were performed; 23 during the
480 flat-stimulus condition (Monkey L: 13; Monkey N: 10), 22 during the late-stimulus condition (Mon-
481 key L: 11; Monkey N: 11) and 26 during the early-stimulus condition (Monkey L: 11; Monkey N:
482 15).

483 Spike sorting was performed using KiloSort (*Pachitariu et al., 2016*) followed by manual merging
484 and splitting of clusters as necessary. A total of 583 units were identified; 161 during the flat-
485 stimulus condition, 219 during the late-stimulus, and 203 during the early stimulus.

486 **Logistic regression neural decoder**

487 To interrogate the roles and relationship of direction and decision-related signals, we used various
488 decoding methods to approximate how information may be gleaned from groups of MT neurons.
489 The first method we employed was logistic regression directly between spike counts and the binary
490 direction or choice on each trial (*Kiani et al., 2014; Yates et al., 2020*). The regression is done for
491 each session such that each neuron is a feature in the model, where each neuron received a weight
492 according to how well it predicts the binary outcome of interest. The result is a linear readout model
493 that allows for maximal prediction of the stimulus direction or the animal's choice.

494 Specifically, the decoding weights are calculated as coefficients in a logistic regression between
495 trial spike counts (summed over a window starting at stimulus onset and ending 150ms after stim-
496 ulus onset) and one of two binary variables (the stimulus direction, or the observer's choice) using
497 MATLAB's *glmfit*. The choice decoder weights were calculated using only the zero-sum, frozen
498 noise trials, while the direction decoder used all other trials.

499 The probability of a trial's stimulus direction or choice given each neuron's firing rate is given
500 by:

$$p(X|Y, \beta) = \frac{\exp(Yb)}{1 + \exp(Yb)} \quad (3)$$

501 Where $b = \beta_0 + \sum_{i=1}^N \beta_i X_i$ for N neurons present during a session. X is a vector of spike counts per
502 neuron, and the choice or direction is $Y \in 0, 1$. The weights are then applied to their respective
503 neuron's temporally binned trial spike rates. Spikes were counted in 10ms bins and smoothed
504 with a 50ms boxcar. This was expressed in terms of rates by dividing by the bin size. The result is a
505 population response that best represented stimulus or choice information present in a recording
506 session.

507 The resulting decoder output was then used to calculate population-level choice probability (CP)
508 for each session. We measured CP over the course of stimulus presentation as a metric of trial-by-

509 trial correlation between firing rate and choice, given a fixed stimulus. CP was calculated as the area
510 under the ROC curve generated from choice-conditioned distributions of the reweighted activity in
511 each temporal bin. CP time course traces were smoothed with a 100ms boxcar for visualization.

512 Latent factor analysis

513 To understand how stimulus and perceptual choice are encoded across the population, we em-
514 ployed the variational latent Gaussian process (vLGP) method (*Zhao and Park, 2017*) to extract
515 single-trial low-dimensional latent factors from population recordings in area MT. We used the
516 recording between target onset and reward. The spike counts were binned at 10 ms. Let \mathbf{x}_k denote
517 the k -th dimension of the latent factors. We assumed that the spatial dimensions of latent factors
518 are independent and imposed a Gaussian Process (GP) prior to the temporal correlation of each
519 dimension,

$$\mathbf{x}_k \sim \mathcal{N}(0, \mathbf{K}). \quad (4)$$

520 To obtain smoothness, we used the squared exponential covariance function and respective
521 covariance matrix \mathbf{K} in the case of discrete time. Let y_{tn} denote the occurrence of a spike of the n th
522 neuron at time t , $y_{tn} = 1$ if there was a spike at time t and $y_{tn} = 0$ otherwise at this time resolution.
523 Then \mathbf{y}_t is the vector of length N , total number of neurons in a session, that concatenates all neu-
524 rons at time t . The spikes \mathbf{y}_t are assumed to be a point-process generated by the latent state \mathbf{x}_t at
525 that time via a linear-nonlinear model,

$$\mathbf{y}_t \sim \text{Poisson}(\exp(\mathbf{A}\mathbf{x}_t + \mathbf{b})). \quad (5)$$

526 To infer the latent factors (\mathbf{x}_t for each trial) and the model parameters (\mathbf{A} and \mathbf{b}), we used vari-
527 ational inference technique, as the pair of prior and likelihood do not have an tractable posterior.
528 We assumed parametric variational posterior distribution of the latent factors,

$$q(\mathbf{x}_k) = \mathcal{N}(\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k). \quad (6)$$

529 We analyzed the mean $\{\boldsymbol{\mu}_k\}$ as the latent factors in this study. The dimensionality of the latent
530 factors was determined to be 4 by leave-one-neuron-out cross-validation on the session with the
531 largest population. All the sessions with at least 4 simultaneously recorded units were included in
532 this analysis (Monkey N: 13 sessions, Monkey L: 28 sessions).

533 Pulse-triggered average

534 To measure the relationship between the time-varying pulse strength and the inferred latent fac-
535 tors, we measured the contribution of pulses to the latent factors. The pulse-triggered average
536 (PTA) measures the change in latent factors resulting from an additional pulse at a particular time
537 of unit strength. To calculate the PTA, we used the pulse stimulus and latent response at 1 ms
538 resolution. For each session, let s_i denote the value of the i -th motion stimulus, and let x_{ik} denote
539 the k -th dimension of the latent factors at time t . All trials were concatenated such that the latent
540 factors \mathbf{X} is a matrix of length $T \times 4$, where T is the total time. For the i -th pulse, s_i is the number
541 of Gabors pulsing, with $s_i > 0$ for pulses in one direction and $s_i < 0$ for pulses in the other direction.
542 To calculate the temporal lags of the PTA, we built design matrices, $\mathbf{D} = [\mathbf{D}_1, \mathbf{D}_2, \dots, \mathbf{D}_7]$. For the
543 i -th pulse, the design matrix \mathbf{D}_i is a $T \times 28$ matrix that consists of 4 cosine basis functions at the
544 $4i + 1, 4i + 2, \dots, 4i + 4$ -th columns and 0 elsewhere. These basis functions starts at 0 ms, 50 ms,
545 100 ms and 150 ms after the onset, lasts 100 ms each and spans the rows of \mathbf{D}_i . The magnitude of
546 the bases is equal to the corresponding pulse value s_i . We calculated a separate \mathbf{D}_i for each of the
547 seven pulses and concatenated them to obtain a design matrix for all seven pulses and estimated

548 the weights with ℓ_2 -regularization,

$$\mathbf{X} = \mathbf{DW} + \mathbf{E} \quad (7)$$

$$\mathbf{W} = \arg \min_{\mathbf{W}} \|\mathbf{X} - \mathbf{DW}\|_2^2 + \gamma \|\mathbf{W}\|_2^2$$

549 where \mathbf{W} is the weight matrix to estimate and \mathbf{E} is the Gaussian noise matrix and the regularization
 550 hyperparameter γ was chosen by the generalized cross-validation (GCV) (Golub et al., 1979). The
 551 PTA was calculated with the design matrices of unit-strength pulse and the estimated weights \mathbf{W} .
 552 We smoothed the PTA with a temporal Gaussian kernel (40 ms kernel width).

553 Subject to arbitrary rotations, a latent trajectory forms an equivalence class of which the mem-
 554 bers have the same explanatory power in the vLGP model. We seek a particular rotation for each
 555 session that makes the encoded task signal concentrate in the first few dimensions. By singular
 556 value decomposition, $\mathbf{W}^\top = \mathbf{USV}^\top$, we rotate the factors \mathbf{x} to $\mathbf{U}^\top \mathbf{x}$.

557 **Choice decoder**

558 Since there were some recording sessions with less than ideal number of frozen trials (identical
 559 visual motion trials) for the calculation of choice probability, we instead analyzed the “weak” trials
 560 of which the monkeys’ correct rate was below a threshold (65%). We started at the trials of zero
 561 pulse coherence and gradually increased the magnitude of coherence (absolute value) until the
 562 correct rate reached the threshold. One of the sessions containing less than 100 weak trials was
 563 excluded in this analysis.

564 We removed the stimulus information that is encoded in the latent factors of weak trials by
 565 regressing out the pulses and analyzed the residuals. The latent factors were re-binned at 100 ms
 566 resolution where the value of each bin is the sum of latent state \mathbf{x}_t or spike counts \mathbf{y}_t over the bin
 567 for $t = 1, 2, \dots, T$. For each t , we assumed a linear model

$$\mathbf{x}_t = \sum_{i=1}^7 \mathbf{w}_{ti} s_i + \mathbf{e}, \quad (8)$$

568 where s_i denote the strength of the i -th pulse, \mathbf{w}_{ti} is the weight vector corresponding to the bin and
 569 pulse, and \mathbf{e} is the homogeneous Gaussian noise across all bins. We estimated the weight vector
 570 by least-squares with ℓ_2 -regularization to prevent over-fitting,

$$\mathbf{w}_{ti} = \arg \min_{\mathbf{w}_{ti}} \|\mathbf{x}_t - \sum_{i=1}^7 \mathbf{w}_{ti} s_i\|_2^2 + \gamma \|\mathbf{w}_{ti}\|_2^2. \quad (9)$$

571 Again, the hyperparameter of regularization was chosen by GCV. We then analyzed the contribu-
 572 tion of behavioral choice on the residuals

$$\mathbf{r}_t = \mathbf{x}_t - \sum_{i=1}^7 \mathbf{w}_{ti} s_i. \quad (10)$$

573 For the whole trial we used the sum residual of the windows $\mathbf{r} = \sum_t \mathbf{r}_t$. The range of t depends on
 574 the period of interest.

575 We trained logistic models, to which we refer to as *choice decoders*, to predict the choice on
 576 each trial using latent factors. The weights β and bias β_0 were estimated by maximum likelihood
 577 with ℓ_2 -regularization,

$$\beta, \beta_0 = \arg \max_{\beta, \beta_0} \log L(\text{choice} | \mathbf{r}; \beta, \beta_0) - \gamma \|\beta, \beta_0\|_2^2. \quad (11)$$

578 The hyperparameter of regularization was chosen via 5-fold (balanced classes in test set) cross-
 579 validation for every session individually.

580 Choice mapping

581 The conventional choice probability only applies to univariate variables. However, the latent factors
582 and population activity are multivariate. We transformed the multivariate variables mentioned
583 above onto a one-dimensional subspace that has the same direction as the choice through the
584 choice decoders,

$$c = \frac{1}{1 + e^{-\beta^T r - \beta_0}} \quad (12)$$

585 We refer to the transform as the *choice mapping*. The quantity c is a normalized value within
586 $[0, 1]$ that maps the residual onto the choice direction (Lueckmann et al., 2018), and enables pooling
587 across sessions.

588 In order to prevent potential inflation of choice probability due to multidimensionality (3D), we
589 regularized the choice decoder and used only the choice mapping on the test set (pooled samples
590 held-out by cross-validation). This approach guarantees that choice probability will not be overes-
591 timated.

592 We pooled these mappings across all sessions. Using different subsets of latent factors as r
593 in the mapping, we obtained the choice-mapping of the stimulus-dimension and non-stimulus-
594 dimensions of latent factors. Then we calculated the choice probability of the corresponding di-
595 mensions based on the values. To investigate the time course of choice probabilities, we used
596 choice decoders to perform choice-mapping on the whole dataset with non-overlapping moving
597 windows. For fixed readout, we estimated the weights using mean value of 0-1.2s for the stimu-
598 lus period and -0.5-0s for the delay period. We use the weights to obtain readout and CP values
599 with 10ms moving window, and smooth the CP values with a 100ms boxcar. Finally; for dynamic
600 readout, we estimated the weights and calculated the CP values within 100ms moving windows
601 individually.

602 Acknowledgments

603 Thanks to A Laudano, K Mitchell, and C Carter for animal support and C Badillo for technical support.
604 I.M.P and A.C.H were supported by NSF IIS-1734910. A.J.L was supported by NIH/NEI R01-EY017366.

605 References

606 Bair W, Movshon JA. Adaptive Temporal Integration of Motion in Direction-Selective Neurons in Macaque
607 Visual Cortex. *Journal of Neuroscience*. 2004; 24(33):7305-7323. doi: [10.1523/jneurosci.0554-04.2004](https://doi.org/10.1523/jneurosci.0554-04.2004).

608 Benucci A, Saleem AB, Carandini M. Adaptation maintains population homeostasis in primary visual cortex.
609 *Nature Neuroscience*. 2013; 16(6):724-729. doi: [10.1038/nn.3382](https://doi.org/10.1038/nn.3382).

610 Bisley JW, Zaksas D, Droll JA, Pasternak T. Activity of Neurons in Cortical Area MT During a Memory for Motion
611 Task. *Journal of Neurophysiology*. 2004; 91(1):286-300. doi: [10.1152/jn.00870.2003](https://doi.org/10.1152/jn.00870.2003).

612 Born RT, Bradley DC. Structure And Function Of Visual Area MT. *Annual Review of Neuroscience*. 2005;
613 28(1):157-189. doi: [10.1146/annurev.neuro.26.041002.131052](https://doi.org/10.1146/annurev.neuro.26.041002.131052).

614 Britten KH, Newsome WT, Shadlen MN, Celebrini S, Movshon JA. A relationship between behavioral choice
615 and the visual responses of neurons in macaque MT. *Visual Neuroscience*. 1996; 13(1):87-100. doi:
616 [10.1017/s095252380000715x](https://doi.org/10.1017/s095252380000715x).

617 Britten KH, Shadlen MN, Newsome WT, Movshon JA. The analysis of visual motion: a comparison of neu-
618 ronal and psychophysical performance. *The Journal of neuroscience: the official journal of the Society for*
619 *Neuroscience*. 1992 Dec; 12(12):4745-4765. <https://www.ncbi.nlm.nih.gov/pubmed/1464765>.

620 Churchland MM, Yu BM, Cunningham JP, Sugrue LP, Cohen MR, Corrado GS, Newsome WT, Clark AM, Hosseini
621 P, Scott BB, et al. Stimulus onset quenches neural variability: a widespread cortical phenomenon. *Nature*
622 *Neuroscience*. 2010; 13(3):369-378. doi: [10.1038/nn.2501](https://doi.org/10.1038/nn.2501).

623 Cook EP, Maunsell JH. Attentional Modulation of Motion Integration of Individual Neurons in the Middle Tem-
624 poral Visual Area. *Journal of Neuroscience*. 2004; 24(36):7964-7977. doi: [10.1523/jneurosci.5102-03.2004](https://doi.org/10.1523/jneurosci.5102-03.2004).

625 Cormack LK, Czuba TB, Knöll J, Huk AC. Binocular Mechanisms of 3D Motion Processing. *Annual Review of*
626 *Vision Science*. 2017; 3(1):297–318. doi: 10.1146/annurev-vision-102016-061259.

627 Eastman KM, Huk AC. PLDAPS: A Hardware Architecture and Software Toolbox for Neurophysiology Requiring
628 Complex Visual Stimuli and Online Behavioral Control. *Frontiers in Neuroinformatics*. 2012; 6. doi:
629 [10.3389/fninf.2012.00001](https://doi.org/10.3389/fninf.2012.00001).

630 Engel TA, Chaisangmongkon W, Freedman DJ, Wang XJ. Choice-correlated activity fluctuations underlie learning
631 of neuronal category representation. *Nature Communications*. 2015; 6(1). doi: 10.1038/ncomms7454.

632 Freedman DJ, Assad JA. Experience-dependent representation of visual categories in parietal cortex. *Nature*.
633 2006; 443(7107):85–88. doi: 10.1038/nature05078.

634 Ghose GM, Maunsell JHR. Attentional modulation in visual cortex depends on task timing. *Nature*. 2002;
635 419(6907):616–620. doi: 10.1038/nature01057.

636 Gold JI, Shadlen MN. The Neural Basis of Decision Making. *Annual Review of Neuroscience*. 2007; 30(1):535–574.
637 doi: [10.1146/annurev.neuro.29.051605.113038](https://doi.org/10.1146/annurev.neuro.29.051605.113038).

638 Golub GH, Heath M, Wahba G. Generalized Cross-Validation as a Method for Choosing a Good Ridge
639 Parameter. *Technometrics: a journal of statistics for the physical, chemical, and engineering sciences*.
640 1979 May; 21(2):215–223. <https://amstat.tandfonline.com/doi/abs/10.1080/00401706.1979.10489751>, doi:
641 [10.1080/00401706.1979.10489751](https://doi.org/10.1080/00401706.1979.10489751).

642 Gründemann J, Bittermann Y, Lu T, Krabbe S, Grewe BF, Schnitzer MJ, Lüthi A. Amygdala neuronal ensembles
643 dynamically encode behavioral states. *Science*. 2018; doi: 10.1101/425736.

644 Huk AC, Shadlen MN. Neural Activity in Macaque Parietal Cortex Reflects Temporal Integration of Visual Mo-
645 tion Signals during Perceptual Decision Making. *Journal of Neuroscience*. 2005; 25(45):10420–10436. doi:
646 [10.1523/jneurosci.4684-04.2005](https://doi.org/10.1523/jneurosci.4684-04.2005).

647 Kawaguchi K, Clery S, Pourriaie P, Seillier L, Haefner RM, Nienborg H. Differentiating between Models of
648 Perceptual Decision Making Using Pupil Size Inferred Confidence. *The Journal of Neuroscience*. 2018;
649 38(41):8874–8888. doi: [10.1523/jneurosci.0735-18.2018](https://doi.org/10.1523/jneurosci.0735-18.2018).

650 Kiani R, Cueva CJ, Reppas JB, Newsome WT. Dynamics of Neural Population Responses in Prefrontal
651 Cortex Indicate Changes of Mind on Single Trials. *Current Biology*. 2014; 24(13):1542–1547. doi:
652 [10.1016/j.cub.2014.05.049](https://doi.org/10.1016/j.cub.2014.05.049).

653 Kiani R, Hanks TD, Shadlen MN. Bounded integration in parietal cortex underlies decisions even when viewing
654 duration is dictated by the environment. *The Journal of neuroscience: the official journal of the Society
655 for Neuroscience*. 2008 Mar; 28(12):3017–3029. <http://dx.doi.org/10.1523/JNEUROSCI.4761-07.2008>, doi:
656 [10.1523/JNEUROSCI.4761-07.2008](https://doi.org/10.1523/JNEUROSCI.4761-07.2008).

657 Levi AJ, Huk AC. Interpreting temporal dynamics during sensory decision-making. *Current opinion in physiol-
658 ogy*. 2020 Aug; 16:27–32. <http://dx.doi.org/10.1016/j.cophys.2020.04.006>, doi: [10.1016/j.cophys.2020.04.006](https://doi.org/10.1016/j.cophys.2020.04.006).

659 Levi AJ, Yates JL, Huk AC, Katz LN. Strategic and Dynamic Temporal Weighting for Perceptual Decisions in
660 Humans and Macaques. *eneuro*. 2018; 5(5). doi: [10.1523/eneuro.0169-18.2018](https://doi.org/10.1523/eneuro.0169-18.2018).

661 Lueckmann JM, Macke JH, Nienborg H. Can Serial Dependencies in Choices and Neural Activity Explain
662 Choice Probabilities? *The Journal of neuroscience: the official journal of the Society for Neuroscience*. 2018
663 Apr; 38(14):3495–3506. <http://dx.doi.org/10.1523/JNEUROSCI.2225-17.2018>, doi: [10.1523/JNEUROSCI.2225-17.2018](https://doi.org/10.1523/JNEUROSCI.2225-17.2018).

665 Mante V, Sussillo D, Shenoy KV, Newsome WT. Context-dependent computation by recurrent dynamics in
666 prefrontal cortex. *Nature*. 2013; 503(7474):78–84. doi: 10.1038/nature12742.

667 Musall S, Kaufman MT, Juavinett AL, Gluf S, Churchland AK. Single-trial neural dynamics are dominated by
668 richly varied movements. *Nature neuroscience*. 2019; doi: [10.1038/s41593-019-0488-1](https://doi.org/10.1038/s41593-019-0488-1).

669 Newsome WT, Pare EB. A selective impairment of motion perception following lesions of the middle tem-
670 poral visual area (MT). *The Journal of Neuroscience*. 1988; 8(6):2201–2211. doi: [10.1523/jneurosci.08-06-02201.1988](https://doi.org/10.1523/jneurosci.08-06-02201.1988).

672 Nienborg H, Cumming BG. Decision-related activity in sensory neurons reflects more than a neuron's causal
673 effect. *Nature*. 2009; 459(7243):89–92. doi: 10.1038/nature07821.

674 Okazawa G, Sha L, Purcell BA, Kiani R. Psychophysical reverse correlation reflects both sensory and
675 decision-making processes. *Nature communications*. 2018 Aug; 9(1):3479. <http://dx.doi.org/10.1038/s41467-018-05797-y>, doi: 10.1038/s41467-018-05797-y.

677 Osborne LC, Bialek W, Lisberger SG. Time course of information about motion direction in visual area MT of
678 macaque monkeys. *The Journal of neuroscience: the official journal of the Society for Neuroscience*. 2004
679 Mar; 24(13):3210–3222. <http://dx.doi.org/10.1523/JNEUROSCI.5305-03.2004>, doi: 10.1523/JNEUROSCI.5305-03.2004.

681 Pachitariu M, Steinmetz N, Kadir S, Carandini M, D HK. Kilosort: realtime spike-sorting for extracellular elec-
682 trophysiology with hundreds of channels. *bioRxiv*. 2016; doi: 10.1101/061481.

683 Recanzone GH, Wurtz RH. Effects of Attention on MT and MST Neuronal Activity During Pursuit Initiation.
684 *Journal of Neurophysiology*. 2000; 83(2):777–790. doi: 10.1152/jn.2000.83.2.777.

685 Rescorla RA, Wagner AR. A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement
686 and nonreinforcement. *Classical Conditioning II*. 1972; .

687 Roitman JD, Shadlen MN. Response of Neurons in the Lateral Intraparietal Area during a Combined Vi-
688 sual Discrimination Reaction Time Task. *The Journal of Neuroscience*. 2002; 22(21):9475–9489. doi:
689 [10.1523/jneurosci.22-21-09475.2002](http://dx.doi.org/10.1523/jneurosci.22-21-09475.2002).

690 Sahani M, Linden JF. Evidence optimization techniques for estimating stimulus-response functions. In: *Ad-
691 vances in Neural Information Processing Systems* MIT Press; 2003.p. 301–308. <http://citesear.ist.psu.edu/70307.html>.

693 Salzman CD, Murasugi CM, Britten KH, Newsome WT. Microstimulation in visual area MT: effects on direction
694 discrimination performance. *The Journal of Neuroscience*. 1992; 12(6):2331–2355. doi: 10.1523/jneurosci.12-06-02331.1992.

696 Seidemann E, Newsome WT. Effect of Spatial Attention on the Responses of Area MT Neurons. *Journal of
697 Neurophysiology*. 1999; 81(4):1783–1794. doi: 10.1152/jn.1999.81.4.1783.

698 Seidemann E, Zohary E, Newsome WT. Temporal gating of neural signals during performance of a visual
699 discrimination task. *Nature*. 1998; 394(6688):72–75. doi: 10.1038/27906.

700 Stringer C, Pachitariu M, Steinmetz N, Reddy CB, Carandini M, Harris KD. Spontaneous behaviors drive multi-
701 dimensional, brain-wide activity. *Science*. 2018; doi: 10.1101/306019.

702 Treue S, Maunsell JH. Attentional modulation of visual motion processing in cortical areas MT and MST. *Nature*.
703 1996 Aug; 382(6591):539–541. <http://dx.doi.org/10.1038/382539a0>, doi: 10.1038/382539a0.

704 Van Essen DC, Maunsell JHR, Bixby JL. The middle temporal visual area in the macaque: Myeloarchitecture,
705 connections, functional properties and topographic organization. *The Journal of Comparative Neurology*.
706 1981; 199(3):293–326. doi: 10.1002/cne.901990302.

707 Wichmann FA, Hill NJ. The psychometric function: I. Fitting, sampling, and goodness of fit. *Perception &
708 Psychophysics*. 2001; 63(8):1293–1313. doi: 10.3758/bf03194544.

709 Yates JL, Katz LN, Levi AJ, Pillow JW, Huk AC. A simple linear readout of MT supports motion direction-
710 discrimination performance. *Journal of Neurophysiology*. 2020; 123(2):682–694. doi: 10.1152/jn.00117.2019.

711 Yates JL, Park IM, Katz LN, Pillow JW, Huk AC. Functional dissection of signal and noise in MT and LIP during
712 decision-making. *Nature Neuroscience*. 2017 Jul; 20:1285–1292. doi: 10.1038/nn.4611.

713 Zhao Y, Park IM. Variational Latent Gaussian Process for Recovering Single-Trial Dynamics from Population
714 Spike Trains. *Neural Computation*. 2017 May; 29(5). doi: 10.1162/NECO_a_00953.

715 Zhao Y, Yates JL, Levi A, Huk A, Park IM. Stimulus-choice (mis)alignment in primate area MT. *PLOS Compu-
716 tational Biology*. 2020 May; <https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007614>, doi:
717 [10.1371/journal.pcbi.1007614](https://doi.org/10.1371/journal.pcbi.1007614).

718 Zhou Y, Mohan K, Freedman DJ. Distributed Visual Category Processing Across Medial Superior Temporal and
719 Lateral Intraparietal Cortices. *bioRxiv*. 2020; doi: 10.1101/2020.08.25.266791.