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Abstract Macaque area MT is well known for its visual motion selectivity and relevance to
motion perception, but the possibility of it also reflecting non-sensory functions has largely been
ignored. Manipulating subjects’ temporal evidence weighting revealed multiple components of
MT responses that were, surprisingly, not interpretable as behaviorally-relevant modulations of
motion encoding, nor as consequences of readout of motion direction. MT's time-varying
motion-driven responses were starkly changed by our strategic manipulation, but with
timecourses opposite the subjects’ temporal weighting strategies. Furthermore, large
choice-correlated signals were represented in population activity distinctly from motion
responses (even after the stimulus) with multiple phases that both lagged psychophysical
readout and preceded motor responses. These results reveal multiple cognitive contributions to
MT responses that are task-related but not functionally relevant to encoding or decoding of
motion for psychophysical direction discrimination, calling into question its nature as a simple
sensory area.

Introduction

Primate area MT plays a critical role in the perception of visual motion. A long line of study has
established that MT's encoding of motion direction is quantitatively consistent with perceptual sen-
sitivity, that noise in its responses is correlated with behavioral variability, and that causal pertur-
bations of its activity affect motion perception in lawful and substantial ways (Newsome and Pare,
1988; Britten et al., 1992, 1996; Salzman et al., 1992). Owing to this powerfully integrated set of
findings, many models and experiments can safely assume that MT is the key place that the brain
looks to for information about visual motion. However, these successes do not logically imply that
MT only carries sensory information, leaving our understanding of MT at risk of overlooking ad-
ditional signals and computations that are not aligned with representing motion for the sake of
motion perception. In this work, we show that a manipulation of temporal strategy during motion
discrimination reveals large signals in MT that are precisely related to components of performing
the task, but which neither directly impact psychophysical performance nor reflect straightforward
links between perceptual decisions and the sensory responses which informed them.

In addition to the large, classic body of work describing the form and fidelity of MT's repre-
sentation of visual motion (Born and Bradley, 2005; Cormack et al., 2017), some prior work has
identified cognitive modulations of MT's sensory-driven activity. Such modulations are still inter-
pretable with respect to MT's representation of visual motion direction, however. Most notably,
attention can modify the sensory-driven responses of MT neurons, typically boosting the gain of
responses (Treue and Maunsell, 1996, Seidemann and Newsome, 1999; Cook and Maunsell, 2004).
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These modulations of stimulus-driven activity modify MT's representation of motion, and thus play
out in behavior as if the visual motion itself had been modified. In contrast, recent work has shown
that MT's choice-correlated activity is distinguishable at the population level from its sensory-driven
responses, and follows a different time course than the read-out of motion, as inferred from the
psychophysical behavior (Zhao et al., 2020). While this intriguing initial observation suggests the
existence of task-related signals not directly related to motion encoding, interpretation of this
choice-related activity is constrained by the lack of any direct experimental manipulation of the
decision-making process.

To directly test for and characterize non-sensory signals in MT, we manipulated the time course
of psychophysical weighting while monkeys performed a direction-discrimination task, coupled
with ensemble recordings of multiple neurons in MT analyzed via population-coding techniques.
We explicitly manipulated whether early or late parts of the stimulus had stronger or weaker mo-
tion evidence on average, which affected the time course of how the visual motion stimulus was
weighted for task performance, as assessed via psychophysical reverse correlation. This manipu-
lation of temporal weighting strategy provided critical interpretive leverage for distinguishing the
time courses of decision formation and choice-correlated activity, and also caused a surprising
and strong modulation of the sensory responses themselves that was also not directly related to
forming decisions about motion.

When perceptual weighting was unconstrained, direction-discrimination behavior was based
primarily on early portions of the stimulus, the sensory representation showed a standard and
modest falloff over the course of stimulus presentation, and a distinct and substantial choice-
correlated response emerged during late portions of stimulus viewing. When we shifted the tem-
poral readout strategy to favor late portions of the stimulus, behavior relied preferentially on later
portions of the stimulus, but /ater portions of the sensory response were decreased, as opposed to
increased. Choice-correlated activity was significantly muted during the late-weighting condition.
However, choice-correlated activity was present after the stimulus, leading up to the response (a
novel phenomenon evident across all strategic conditions, in fact). When subjects’ temporal weight-
ing strategy was then manipulated to preferentially rely on earlier portions of the stimulus, later
portions of the sensory response were increased, and choice-correlated activity was again evident
during the late portions of the stimulus. This last condition’s effects were most striking, as a steep
falloff in perceptual weighting over time was accompanied by an increase in late sensory-driven
activity that led to a non-monotonic time course of motion-driven response.

The opposite effects of our experimental manipulations on temporal weighting strategy and
the timecourse of sensory gain run counter to any standard encoding model of MT simply repre-
senting behaviorally-relevant motion: In that framework, motion responses ought to mirror the
psychophysical weighting. Choice-correlated activity during the stimulus was also controlled by
changes in the psychophysical weighting, and across these psychophysical time courses, was al-
ways lagged relative to the periods when the subjects were "reading out" MT activity. But this
decision-lagged choice-related signal was not simple feedback linking a sensory response and a
subsequent, corresponding decision, not just because the choice signals affected MT population
activity differently than visual motion did; we also observed a distinct choice-related signal after
stimulus offset that was linked to impending response, and which was distinct from simple premo-
tor activity.

Together, these multiple components of the MT response, revealed while manipulating the
temporal weighting strategy, could be seen as lawful functions of the time course of decision for-
mation and the anticipation of the response. However, these response components could not be
interpreted as either modulations of the encoding that played out in perceptual reports, nor to the
effects of read out mechanisms that would either correlationally (via feed-forward mechanisms) or
causally (via straightforward feedback mechanisms) align with the sensory response. Thus, there
appear to be multiple, large components of MT activity that affect both its stimulus-driven activity
and which are separable from it- even during a well-studied direction-discrimination task with tight

2 of 20


https://doi.org/10.1101/2021.06.24.449836
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.24.449836; this version posted June 25, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

94

95

926

97

98

929

100

103

104

105

available under aCC-BY-NC-ND 4.0 International license.

control over motion readout strategy- that are inconsistent with its conventional designation as a
simple, low-dimensional, sensory encoding area.

Results

We measured the timecourse of sensory and choice-correlated responses from simultaneously
recorded groups of MT neurons using linear and nonlinear decoding approaches while rhesus
monkeys performed a motion direction discrimination task. We manipulated the time course of
stimulus evidence, and the subjects shifted their temporal weighting strategy to rely preferentially
on the stronger periods of stimulus motion. We began recordings in each subject with a baseline
“flat” stimulus phase for several experimental sessions, in which stimuli had a constant average
motion strength over time within a trial, as is the case in most related experiments (Gold and
Shadlen, 2007). We then shifted to several sessions in a “late” regime, in which the stronger motion
was present in the second half of the stimulus. Finally, we performed several sessions in an “early”
regime, in which the stronger motion was present in the first half.

Observers change temporal weighting strategies according to stimulus statistics
Two trained rhesus macaques (one male, one female) viewed sequences of seven motion pulses
and indicated perceived net motion with a saccade to one of two response targets (Figure 1A).
We measured traditional psychometric performance (i.e., accuracy as a function of net motion
strength on each trial), and the time course of weighting within each trial (i.e., using logistic regres-
sion between motion strength at each pulse and the binary choices, see Methods). We refer to the
resulting set of regression coefficients, or weights, as the temporal weighting strategy.

The motion discrimination task was performed in three contexts (Figure 1B-D). First, in the
flat-stimulus condition (Figure 1B), average motion over time was equal within a trial. Many tra-
ditional sensory decision-making studies use stimuli with uniform information over time, and thus
the flat-stimulus condition served as a baseline in our experiments. Subjects’ temporal weighting
strategies were biased to have higher weight on early stimulus periods, despite uniform motion
expectation over time (Figure 1E). This default early weighting strategy is consistent with many
other findings (Huk and Shadlen, 2005; Kiani et al., 2008; Nienborg and Cumming, 2009; Yates
et al., 2017; Levi et al., 2018; Kawaguchi et al., 2018) and likely reflects a combination (Levi and
Huk, 2020; Okazawa et al., 2018) of improved sensory encoding at stimulus onset (Osborne et al.,
2004; Churchland et al., 2010), and the consequences of early termination of the decision process,
due to mechanisms like bounded accumulation (Kiani et al., 2008).

Next, we performed a series of experimental sessions in which the stimulus statistics were
manipulated such that the average motion strength was high for the last three pulses, while the first
three were near zero. We refer to this as the late-stimulus condition (Figure 1C). Although the first
3 pulses had motion strength near zero on average (regardless of full-trial, net motion strength),
on individual trials there was still variable nonzero motion possible for any pulse. Subjects were
rewarded based on the actual net motion direction presented on that particular trial, as opposed
to the average or expected value based on the condition from which the trial was generated. This
produced robust behavioral changes that tracked motion expectation in the stimulus design, such
that weight on the first three pulses decreased substantially, and the highest psychophysical weight
was placed on the later pulses (Figure 1F).

Finally, we performed a series of sessions in which the stimulus statistics were changed such
that the average motion strength was now high in the early half of the stimulus, and was near zero
for the last half of the stimulus; we refer to this as the early-stimulus condition (Figure 1D). This
successfully changed temporal weighting behavior back to pronounced early weighting, in which
the first pulses received drastically higher weight than the remainder of the stimulus (Figure 1G), in
amanner overall similar to the default strategy during the flat-stimulus (flat: -0.091 [-0.113, 0.069],
late: 0.083[0.015, 0.151], early: -0.091 [-0.136, -0.081]; slope of linear fit to the psychophysical ker-
nel [95% Cls]). In summary, the temporal weighting strategy shifted in concert with the time course
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Figure 1. Sequence of trial events, temporal stimulus statistics, and successful manipulation of
behavioral weighting strategy. A, Subjects fixated on a central point through the appearance of targets and
motion stimulus until the disappearance of the fixation point (“go”). Choices were made with saccades to the
target corresponding to the perceived net direction of motion. Initial fixation time, target-on duration, and
time until fixation point disappearance were randomly varied. B-D, Average stimulus strength per pulse (bold
lines) and individual trial examples (semi-transparent lines) for trials of different strength and direction
(denoted by sign). In the flat-stimulus (B), motion strength is constant over time on average. In the
late-stimulus (C) motion strength is reduced on average in the first three pulses such that the highest motion
expectation is late. In the early-stimulus (D) motion strength is reduced in the last three pulses such that the
highest motion expectation is early. Motion pulse values in individual trials (semitransparent traces) vary
considerably (see Methods for detail). E-G, Temporal weighting behavior across conditions. E. Subjects
preferentially weight the early pulses despite uniform motion expectation over time. F. Temporal weighting
shifts during the late-stimulus condition to preferentially weight late pulses. G. Behavior reverts back to
early-weighting when the stimulus statistics are biased towards high motion strength early.
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13 Of expected motion strength, placing higher weight on portions of the stimulus when higher mo-
s tion strength was expected based on the experimental phase. This confirms that our manipulation
s Of stimulus statistics affected the time course of psychophysical readout, allowing us to better in-
us terpret the time scale of neural responses relative to the timing of when the subject was "reading
1z out" MT for the purpose of forming a decision about motion direction.

s Choice-correlated activity in MT is large but does not align with stimulus encoding
120 OF behavioral readout

150 We recorded ensembles of single and multi-unit activity from area MT while monkeys performed
151 thedirection discrimination task, across the manipulation of temporal weighting strategy described
12 in the previous section. We used both linear and nonlinear ensemble decoding frameworks to ex-
153 tractinformation about direction and choice from groups of simultaneously recorded MT neurons
1sa (Figure 2A). As a simple starting point, we used logistic regression (logReg) between the raw trial
155 spike count vectors and either the stimulus direction (the “direction” axis) or the psychophysical
156 Choice (the “choice” axis) to find a reweighted population response that best mapped neural activity
157 to the binary stimulus or choice (Figure 2A, left). Such linear models are likely easy for the brain to
1ss  implement, but are limited in how they can capture relations between neurons and between neu-
150 ral activity and experimental factors. We therefore also used a more advanced nonlinear dimen-
160 sionality reduction technique (variational latent Gaussian process model, vVLGP) to extract smooth
16 low-dimensional latent factors that explain correlations within the population spike trains (Zhao
12 and Park, 2017; Zhao et al., 2020) (Figure 2A, right). It functions in a conceptually analogous man-
163 ner to the simpler logistic regression approach (i.e., mapping ensemble activity to the stimulus or
164 the choice), but has the ability to more effectively capture the complex joint statistics of the neural
1es  population while also providing access to a more concise representation of the relations between
166 Neural activity, stimulus direction, and psychophysical choices (by virtue of an intervening dimen-
167 Sionality reduction step to identify latent factors making up the ensemble activity).

168 Both analytic approaches revealed the presence of substantial choice-correlated activity in the
160 MT population response, achieving large peak magnitudes (> 0.6 as measured by choice proba-
170 bility, CP; although we use this conventional metric in this paper, we emphasize that by calculat-
171 ing it on various dimensions of the ensemble response, we have generalized it beyond the classi-
172 cal approach of only looking at choice-correlated activity defined along the stimulus axis) (Britten
173 et al.,, 1996). The largest choice-correlated activity was present in the population activity in a man-
17a  ner distinct from how the stimulus drove the ensemble of MT neurons. Via logReg, this was evi-
175 dentin significantly larger CP along the choice axis over the direction axis (Figure 2B-D), stemming
17ze from a weak correspondence between a neuron’s weight in one model compared to the other (r
17z = 0.146). The VLGP analysis showed that stimulus encoding was well described by a single dimen-
17s  sion (termed the stimulus axis), but the stimulus axis had relatively small choice information when
17e  compared to the combined choice information in the top four latent factors altogether (Zhao et al.,
10 2020) (Figure 2B-D).

181 Importantly, both analysis methods revealed that across pronounced changes in temporal weight-
182 INg strategy, the time course of choice-correlated activities never mirrored the time course of psy-
13 chophysical readout (Figure 2B-D, 1E-G). Instead, choice-correlated activity was consistently high-
184 est after the stimulus periods that were weighted the highest in the behavior. In the flat condition,
1ss  both analysis approaches demonstrated increased choice probability during the last half of the
18 stimulus, despite early weighting in the behavior. In the late condition, when behavior exhibited
1z the strongest dependence on later portions of the stimulus, the strongest choice-correlated activ-
18s ity was still distinct from the stimulus-driven activity, and exhibited a more muted and flatter time
180 course, though still characterized by an even later peak relative to the flat-stimulus condition. Fi-
100 nally, when subjects returned to an early weighting strategy in the early stimulus condition, the
101 time course of choice probability returned to a similar rising profile, as originally measured dur-
102 ing the flat condition. These observations are inconsistent both with classical interpretations that
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Figure 2. Both linear and nonlinear ensemble analysis approaches reveal strong choice-correlated
activity in MT distinct from motion encoding or psychophysical readout of motion signals. A. We used
linear and nonlinear decoding approaches to define choice probability along different dimensions of the
population response. From the simultaneously recorded spike trains, a linear projection that can best predict
the stimulus direction (t0gi,) or the choice (Wnoice) IS Used to project the frozen-noise trials and in turn derive
CP (left). To enhance the signal to noise ratio, we extracted low-dimensional latent factors that explain the
correlations in the population spike trains using smoothing factor analysis (right). We similarly estimated two
CP signals from the latent factors. The first projection is found by the singular dimension explaining the
stimulus drive for all trials (i0g;m). The second is the choice information extracted from the top four latent
factors altogether (0 noice)- Projection of the frozen-noise trials are still multi-dimensional, and require further
logistic regression to best predict the choice, defining the projection iy, and corresponding choice
probability CP peice- B-D. Time course of population choice probability during flat B, late C, and D early
conditions. Solid vs. dashed line denote stimulus vs. choice dimensions, respectively. Darker traces in the
foreground denote latent factors, while semi-transparent traces denote logistic regression traces in the

background.
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choice probabilities reflect the feedforward consequences of sensory noise being read out as infor-
mation about the stimulus (because the bulk of the choice-correlated activity arose after the psy-
chophysical readout of MT was likely happening), as well as more recent interpretations that choice
probabilities reflect feedback, because differential MT responses correlated with choice were not
strongly aligned with the motion responses that gave rise to those decisions.

Changes in sensory encoding run opposite changes in temporal weighting strategy
Most surprisingly, we observed large changes to MT's time-varying sensory response that were in-
commensurate with perceptual readout. Here, we relied on the vLGP analysis to describe the tem-
poral dependence of the population response on the motion pulses by looking at the directional
response along the stimulus axis. We calculated a pulse-triggered average (PTA) to summarize the
regression coefficients that predict the change in latent states (Yates et al., 2017). Each "bump"
in Figure 3 represents the modulation of the stimulus-axis latent factor by a pulse of unit motion
strength (i.e, a single Gabor drifting in one direction) for each pulse in the stimulus presentation
(Figure 1). As temporal weighting strategy shifted across conditions, one might expect nothing
to change in MT, consistent with a constant (and thus largely veridical) representation of visual
information despite changes in readout/weighting strategy. An alternative hypothesis based on
temporal attention would predict gain modulation congruent with behaviorally up-weighted and
down-weighted stimulus epochs (Ghose and Maunsell, 2002). Instead, to our surprise, we observed
changes to sensory encoding with an unintuitive, if almost paradoxical, link to psychophysical di-
rection discrimination.

In the flat stimulus condition there was a modest decrease in the sensory response over time
(i.e., PTA magnitude fell across the 7 pulse epochs; Figure 3A). Such a gradually-declining time
course is consistent with known adaptation phenomena in many visual brain areas, and has been
observed in MT during viewing of this same stimulus (Yates et al., 2017). However, during the
late-stimulus condition, the sensory response decreased for the late pulses relative to the flat
condition time course (Figure 3B). The behavioral profile shows precisely the opposite: relative
down-weighting of early pulses and up-weighting of later pulses. And most strikingly, when sub-
jects switched to the early-stimulus condition, the sensory response showed a stark up-weighting
of later pulses, resulting in a dramatically non-monotonic, U-shaped profile (Figure 3C). Once again,
this is directly at odds with the temporal weighting of behavior, which sharply favors the first 2-3
pulses over the rest. This modulation is counterintuitive from standard perspectives, which would
predict that if any changes in sensory response are evident, they would be reflected by increases
in response to stimulus portions that were weighted more strongly for decision making.

Instead of gain changes that reflect behavioral readout strategy, the sensory response modu-
lations we observed make more sense viewed as compensating for “missing” signal relative to a
time-stationary motion expectation. In our experiments, both animals were trained extensively on
the flat condition before undergoing temporal manipulation. The change in gain thus manifested
as a function of the mismatch between this apparently “default” temporally-uniform expectation
of motion and the statistics of the currently-encountered condition. In more detail, during the
late condition motion strength was decreased in the early portions of the stimulus, but the PTA
revealed decreased gain on later pulses instead (Figure 3B). During the early condition, the motion
strength on later pulses was decreased, but the PTA revealed a striking gain increase on these por-
tions of the stimulus for which the expected motion was quite weak (Figure 3C). Thus, while the
temporal weighting evident in behavior changed across conditions in a way that tracked changes
in stimulus statistics (i.e., weighting the stronger periods of motion more, and weaker periods of
motion less), MT's response to motion was changed inversely to those patterns.

Large choice-correlated activity also exists in the absence of the motion stimulus
We also observed another choice-related signal in MT of substantial magnitude. The vLGP analysis
revealed significant choice-correlated activity after the offset of the motion stimulus, in anticipation
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Figure 3. Time course of motion-driven MT response changes opposite that of changes in temporal
weighting strategy. A-C. The pulse-triggered average (PTA) describes the modulation of the stimulus-axis
latent factor by a pulse of unit motion strength for each of the seven pulses in the visual motion stimulus. A.
The PTA for the flat-stimulus condition reflects the expected transient-to-sustained response, where a pulse
at the beginning of the stimulus affects the MT response more than a pulse closer to the end of the stimulus.
B. In the late-stimulus condition, the relative drop from early pulses to later ones is even more exaggerated
than in the flat, despite highest motion strength occurring late in the trial. C. The PTA during the
early-stimulus condition exhibits substantial increase on later pulses, despite a lack of high motion signal in
the stimulus during those pulses.

of an upcoming saccade. There was a minimum 500 ms window between the stimulus offset and
the disappearance of the fixation point which signaled the monkey could move their eyes to make
their choice, and during this window we saw choice probabilities up to > 0.7 (Figure 4A).

The magnitude of post-stimulus choice probability is comparable to, and often greater than,
what we observed from our decoders during the stimulus period, and is quite high compared to
traditional measures of choice probability based on single neuron measurements. Most impor-
tantly, the finding of large amounts of choice-correlated activity without the presence of a visual
stimulus in MT strengthens the case for such signals being non-sensory in origin. The choice signal
measured during the delay period is present when there is no sensory drive whatsoever, further
ruling out interpretations of choice probabilities as a product of noise in sensory representations.
Instead, its full magnitude (revealed by "looking" off the stimulus axis), late time course, and pres-
ence up to the response are more similar to choice-related activity seen in a multitude of areas that
are often considered much more cognitive or associative in nature, such as LIP and PFC (Roitman
and Shadlen, 2002; Mante et al., 2013).

Interestingly, the onset of CP during the delay period varies with reaction time (RT) in a way
that suggests the choice signal is not simple premotor activity. If this were the case, we would
expect that CP would increase later on trials with longer RTs compared to trials with shorter RTs.
Instead, when reaction times were longer than the median RT, the saccade-aligned CP increased
noticeably earlier than on trials with reaction times in the shorter half of the RT distribution (Fig-
ure 4B). This was true of all three temporal stimulus conditions. The result is striking, especially
given the fixed-stimulus experimental design and the coarse division of “short” and “long” RTs by
median. Temporally divorced from stimulus processing and not tightly linked to motor behavior
timing, this delay-period choice signal appears to have a more cognitive origin reflecting the main-
tenance of choice information between stimulus and response.

Time-varying readout of population activity confirms the dynamics of choice-related
signals

In all analyses leading up to this point, the weights used to decode the stimulus or the choice were
calculated using the neural responses and/or the derived latent factors from the entire stimulus
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Figure 4. Presence of large choice-related signals in MT during post-stimulus delay period. A. CP along
the choice (dashed lines) and direction (solid lines) axes, aligned to the time of the saccade. In all three
conditions, there is high CP in the choice axis for the entire 500ms preceding the saccade, without any
stimulus drive. CP increased over the last 200ms leading up to the saccade. There was realtively little CP
along the stimulus axis. B. Saccade-aligned CP along the choice axis only, separated by median reaction time
(RT). CP for longer RT trials (dashed lines) increased earlier than that of shorter RT trials (dotted lines). This
was true in all three conditions.
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period. Even with this fixed temporal readout scheme, we saw nuanced temporal dynamics in
both sensory- and choice-related activity that differed from the time course of temporal weighting
evident in the psychophysical behavior. Although, from a decoding perspective, using temporal
fixed weights makes for a readout process that the brain might find easier to implement, we know
very little about how sophisticated the brain’s decoding machinery might be (and indeed, our abil-
ity to manipulate the timecourse of motion weighting suggests that temporally-static decoding is
not a hard limit). Furthermore, from a purely statistical perspective, we were also motivated to
consider decoding with a temporally dynamic readout scheme to confirm that the rich dynam-
ics we observed were neither constrained nor distorted by the assumption of constant read-out
weights. We therefore performed further latent factor analyses in which weights were fitted and
applied based on the activity within individual 100 ms bins for both the delay and motion periods
(Figure 5).

The timecourse of choice-correlated activity was quite similar from fixed to dynamic readout
models. With temporally varied readout weights, the same pattern persisted: high CP late in the
stimulus period regardless of temporal stimulus condition. This is strong support for CP as a top-
down signal that arrives in MT mostly after decisions have been made. That is, after the pulses with
the highest weight in the psychophysical kernel. In this interpretation, during the late condition we
have in essence delayed the decision and thus further delayed the decision-correlated activity that
follows. The time-varying readout schemes also confirmed the dynamics in the post-stimulus, de-
lay period. In all three conditions, CP was high throughout the delay period, but increased over the
last 200ms. Along the stimulus axis, CP was flatter and closer to chance. Altogether, the similar-
ity in CP timecourse between fixed and dynamic readout models suggests that a fixed weighting
scheme is sufficient to describe the temporal patterns of choice information in MT during motion
information both during and after the stimulus.

Discussion

By manipulating the temporal weighting strategy of subjects while they performed a direction
discrimination task, aided by ensemble recordings and population-level decoding analyses, we
discovered multiple signals in MT that are distinct from its representation of motion direction,
solidly established to be used by later decision stages for perceptual reports and behavior. Striking
changes in sensory response were associated with the mismatch between the current strength of
sensory evidence and prior, learned time courses of sensory evidence. Although these large modu-
lations affected the sensory encoding, they appear not to have affected the psychophysical behav-
ior. Choice-correlated activity was also surprisingly strong, but was delayed relative to temporal
weighting behavior, even when the latter was under direct experimenter control. Furthermore, the
choice-correlated activity was evident at the population level in a manner that was distinct from
stimulus-driven responses in MT, and was "readout-irrelevant” as well, in that it was largest when
the subjects were not primarily reading out the stimulus, or even viewing a stimulus at all.

The changes we observed in sensory responses may seem paradoxical at first, as the gain was
increased for periods of the stimulus during which the subjects applied the smallest amount of
weight in forming decisions. This is opposite the notion of attention affecting gain for parts of a
stimulus that are more relevant for decisions (Treue and Maunsell, 1996; Seidemann and New-
some, 1999). But, these modulations appear more sensible when viewed as resulting from a mis-
match between trained statistics and the current ones. The hypo-responsivity to late pulses in the
late condition, and the hyper-responsivity to those same late pulses during the early condition,
could both reflect a compensatory response to motion in the current condition compared to the
expectation of the temporally uniform stimulus on which animals were trained. Indeed, potentially-
releated homeostatic mechanisms have been observed in sensory cortex (Benucci et al., 2013).
Through this lens, the temporal changes in the PTA reflect a recalibration of incoming informa-
tion to meet the expectation of a temporally-flat stimulus. Thus, even MT's sensory responses are
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Figure 5. Time course of choice-related activity in MT is similar when time-varying decoding weights
are used. Choice probabilities calculated with time-varying readout weights aligned to motion (left), and the
saccade (right) for the flat (A), late (B), and early (C) conditions. CP along the choice axis is represented by
dashed lines, while CP along the stimulus axis is represented by solid lines. Choice-axis CP was significantly
higher in both the motion- and saccade-aligned time frames. During motion (left), we confirmed that CP was
highest during later stimulus epochs, after those with highest psychophysical weight (Figure 1E-G.) During the
post-stimulus period (right), we confirmed that CP increased primarily over the last 200ms preceding the
saccade to levels even higher than motion-aligned CP.
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strongly affected by cognitive factors in ways that are dissociable from its well-established, but no
longer sole role of representing retinal motion for the sake of perception and/or behavior.

Our findings regarding choice-related activity also add to the case for MT carrying substantial
non-sensory signals. Having previously used ensemble recordings and population decoding to
show that stimulus- and choice-related activity in MT are distinguishable (Zhao et al., 2020), our
findings in this study add several important facets. First, we exerted explicit control over the time
course of psychophysical weighting, which allowed us to experimentally dissociate the psychophys-
ical weighting from the time course of choice-correlated activity. By shifting the temporal weight-
ing strategy, we effectively changed the average time of the decision, allowing us to confirm that
choice signals followed primary decision formation when under explicit experimenter control. Sec-
ond, we saw choice activity of substantial magnitude during the post-stimulus delay period. This
result rejects virtually any stimulus-based interpretation, as the choice signal was present when the
sensory stimulus was not. These results also rule out straightforward forms of feedback creating
choice-related activity, as those explanations require the decision-related feedback to be aligned
with the sensory responses that gave rise to the corresponding choice. Furthermore, the delay
period choice signal was not entirely explainable as premotor. Given all these distinctions, the
oddly-parsimonious interpretation is that choice-related activity in MT is a distinct cognitive signal
(or set of signals) that are best understood outside of MT's encoding of visual motion. Although the
presence of large choice-related signals in macaque MT may be surprising at first, recent work in
other species (but also using ensemble recordings and analyses) has revealed widespread repre-
sentations of choice and other task-related signals (Musall et al., 2019; Stringer et al., 2018; Griin-
demann et al., 2018).

These findings provide new connections between MT function and well-established conceptual
and empirical frameworks. The sensory modulations associated with mismatches between ex-
pected and observed timecourses of motion aligns with both predictive coding and reinforcement
learning models, both of which are abstractly based on errors between expected and encountered
elements within a task (Rescorla and Wagner, 1972; Engel et al., 2015). Although our findings run
opposite known effects of temporal attention (Ghose and Maunsell, 2002) or attention-related gat-
ing of sensory responses (Seidemann et al., 1998), some recent work has decoupled attentional
modulations in MT and MST from task performance (Recanzone and Wurtz, 2000). Our dissociation
between MT modulations and task performance may be related, although in our case, their depen-
dence on the strategic history of the subjects revealed signals that are not wholly irrelevant to
the task, but are just not related to the formation of decisions on a trial-by-trial basis. This opens
up the possibility that some attention-like phenomena may arise from expectations of stimulus
statistics, instead of being modulations of sensory data per se. The post-stimulus choice signals
we observed in MT may be related to prior observations of small-amplitude, but tuned, persistent
activity in MT (Bisley et al., 2004); our findings suggest that those initial observations of relatively
small changes in spike rate may have simply caught a glimpse of larger non-sensory signals pre-
ceding the saccadic decisions mostly missed by single unit recordings that cannot see alternate
effects on population activity across diversely-tuned neurons. Finally, related work using a motion
categorization task has revealed strong non-sensory, category-related activity in area MST, but not
area MT (Freedman and Assad, 2006; Zhou et al., 2020). Such category-related activity can also be
thought of as "choice-correlated", as distinct from purely sensory-driven. Although the tasks, train-
ing histories, and analytic approaches differ between that work ours, our findings suggest that the
apparent distinction between MT and MST regarding the presence of such category/choice activity
might be less strict than previously observed. Again, the potential for ensemble recordings and
corresponding ensemble analyses may have been critical for not just observing these non-sensory
signals in MT, but for appreciating their substantial magnitude.

To conclude, our manipulation of temporal weighting strategy revealed a dissociation of sen-
sory response gain from decision formation. Likewise, our approach of using ensemble recordings
and population decoding allowed us to see large choice-related signals that were not just tempo-
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rally dissociated from psychophysical weighting (or even stimulus viewing), but that were large in
magnitude and distributed across the population in a manner distinct from how visual motion di-
rection is represented. Together, these signals and modulations call for consideration of MT well
beyond its role in encoding of retinal motion. Understanding the population coding structure and
functional roles of such task-related but non-sensory computations are new open questions.

Methods and Materials

Stimulus presentation and design

Stimuli were presented using the Psychophysics Toolbox with Matlab (Math-works) using a Dat-
apixx /0 box (Vpixx) for precise temporal registration (Eastman and Huk, 2012). Sample stim-
ulus presentation code is available on request. Eye position was tracked using an Eyelink eye
tracker (SR Research), sampled at 1 kHz. M1 was seated 57 cm away from a 150 cm x 86 ¢cm
rear-projection screen (IRUS; Draper Inc.) covering the central 106° x 73° of visual angle. Images
were projected onto the screen by a PROPixx projector (VPixx Technologies Inc.) driven at a reso-
lution of 1920 x 1080 pixels at 120 Hz. M2 viewed stimuli on a 55-inch LCD (LG) display (resolution
= 1920 x 1080p, refresh rate = 60 Hz, background luminance = 26.49 cd/m2) that was corrected
to have a linear gamma function. M2 viewed the stimulus from a distance of 118 cm (such that
the screen width subtended 54° of visual angle, and each pixel subtended 0.0282° of visual angle).
Auditory feedback was played at the end of every trial, and fluid reward was delivered through a
computer-controlled solenoid.

Subjects were required to discriminate the net direction of a motion stimulus and communicate
their decision with an eye movement to one of two targets, placed on either side of the motion stim-
ulus. The sequence of task events is presented in Figure 1A. A trial began with the appearance of a
fixation point. Once the subject acquired fixation and held for 750-1300 ms (uniform distribution),
two targets appeared and remained visible until the end of the trial. 500-1000 ms after target on-
set, the motion stimulus was presented at a range of eccentricities from 4° to 12° for a duration
of 1050 ms. The fixation point was extinguished 500-1000 ms after motion offset, and the subject
was then required to shift their gaze toward one of the two targets within 600 ms (saccade end
points within 3° of the target location were accepted). The timing of each event was randomly and
independently jittered from trial to trial.

The reverse-correlation motion stimulus contained motion toward one direction or the oppo-
site, with varying motion strength. Spatially, the stimulus consisted of a hexagonal grid of 19 Gabor
elements, where individual Gabor elements were set to approximate the receptive field (RF) size
of a V1 neuron, and the entire motion stimulus approximated the RF size of an MT neuron, which
scaled based on eccentricity from fixation (Van Essen et al., 19817). Motion was presented by varying
the phase of the sine-wave carrier of the Gabors. Each Gabor underwent a sinusoidal contrast mod-
ulation over time with independent random phase. Gabor spatial frequency (0.8 cycles/° sigma =
0.1 x eccentricity) and temporal frequency 5-6 Hz, yielding velocities of 5.55-6.66°/s, respectively)
were selected to match the approximate sensitivity of MT neurons (Bair and Movhshon, 2004).

Each motion stimulus presentation consisted of seven consecutive motion pulses lasting 150
ms each (9 frames on the 60 Hz display, 18 on the 120 Hz display), producing a motion sequence
of 1050 ms in duration in total. On any given pulse, a number of Gabor elements would have their
carrier sine waves drift in unison to produce motion (“signal elements”), and the remaining would
counter-phase flicker (“noise elements”). Within any given pulse, signal elements were spatially
assigned at random within the grid, and all signal element drifted in the same direction.

Motion strength on pulse i was defined as the proportion of signal elements out of the total
number of elements, the value of which was drawn from a Gaussian distribution, X; N(y,, s) and
rounded to the nearest integer, where k is the distribution index for the five trial types (strong left,
weak left, zero-mean, weak right, strong right). Thus, while each pulse within a sequence could take
on any value (and either sign/direction) from distribution N(x,,s), the expectation of a sequence
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would be y, (Figure 1B-D). The subjects were rewarded for selecting the target consistent with the
sign of the motion pulse sequence sum (i.e., the net direction), independent of the distribution y,
from which the pulses were drawn.

Subjects performed the motion-discrimination task with three variations of temporal stimulus
statistics (Levi et al., 2018). First was the flat-stimulus, in which expected motion strength was
uniform over time within a trial. In other words, the mean of the motion strength distribution
N (u,, s) would be held constant throughout a stimulus presentation. In other words, the mean of
the distribution from which X, was drawn was fixed at (y,), for pulses 1-7 (Figure 1B).

Next, subjects encountered the late-stimulus, where motion strength was reduced substantially
in early pulses, but not late. In this condition, y, is set to 0 for the first pulse (i = 1), and reaches
its expected value (u,) by pulse 7. Finally, the opposite is done for the “early-stimulus” condition
(Figure 1D), in which the first pulses maintain mean motion strength equal to u, and later pulses
have a mean near zero. In the late- and early-stimulus conditions, the transition from g, at pulse
1to u, at pulse 7 is governed by a logistic function with parameters chosen to result in a smooth
transition between the first 3 and last 3 pulses (midpoint = 4, slope = 0.3).

All subjects began the experiments with the flat-stimulus condition (Monkey L: 13; Monkey N: 10
sessions). After multiple sessions of stable psychophysical performance, the stimulus was changed
to the late-stimulus conditions (Monkey L: 11; Monkey N: 11 sessions). Finally, after multiple ses-
sions of stable psychophysical performance the stimulus was changed to the early-stimulus condi-
tion (Monkey L: 11 sessions; Monkey N: 15 sessions). Subjects were exposed to only one stimulus
condition per session and were not cued as to which stimulus condition they were viewing before
or during any given session (other than the stimulus statistics themselves).

Throughout all conditions, there existed a subset of “zero-mean” trials in which p, = 0 for all 7
pulses, regardless of whether the stimulus condition is flat, late, or early. Sessions also contained
5-10% frozen seed trials, which were identical stimulus displays. The “frozen noise” stimulus always
summed to zero, had the same temporal structure across sessions, and was completely identical
within sessions. Subjects were rewarded at random on frozen noise trials.

Behavioral analysis

Subject choices in the direction-discrimination task were analyzed with a maximum likelihood fit
of a three-parameter logistic function (Wichmann and Hill, 2007) assuming a Bernoulli distribution
of binary choices, in which the probability of a rightward choice is p and leftward choice is 1 — p,
where pis given by

M

where x is the net motion strength value (z-scored over all sessions for each subject separately),
a is the bias parameter (reflecting the midpoint of the function in units of motion strength), b is
the slope (i.e., sensitivity, in units of log-odds per motion strength), and g captures the lapse rate
as the offset from the 0 and 1 bounds. Error estimates on the parameters were obtained from
the square root of the diagonal of the inverse Hessian (2nd derivative matrix) of the negative log-
likelihood. The temporal weighting kernel (which we also refer to as “temporal weighting strategy”
or “temporal weighting profile”) was computed using ridge regression via maximum likelihood. The
log posterior of the psychophysical weights is given by

1
P—7+(1—2}’)m

N
L(w) = Z[)/[wTX[ —log(1 + exp(w” X,)] + Al|wl? (2)

i=1
where Y € {0, 1} is a vector of choice on every trial and X is a matrix of the seven pulses on each
trial, augmented by a column of ones (to capture bias). 4 was estimated using evidence optimiza-
tion (Sahani and Linden, 2003). Psychophysical weights are normalized by the Euclidean norm of
the vector of weights. The seven temporal weights assigned to the seven motion pulses, w, were
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computed by using all trials within a session. These include trials where p, was set to zero (i.e.
“zero-mean trials”, where motion on a given pulse is temporally independent of all other pulses
in the sequence) and trials where u, was set to a non-zero value (“signal trials”, where motion is
correlated over pulses)

Electrophysiology

A custom titanium chamber was fabricated and placed over the superior temporal sulcus and in-
traparietal sulcus to allow for a dorsal approach to access area MT. Chamber placement was as
guided by structural MRI and cranial landmarks. Extracellular recordings were performed using
linear electrode arrays from Plexon (U-Probe, V-Probe, or S-Probe; 24 or 32 channels; 50-100 mi-
crometer spacing).

MT was identified using electrode depths and paths (i.e., sulcal anatomy), and functional map-
ping. Functionally, MT was identified via size and location of RFs, and preponderance of direction
selective neurons. MT units were hand-mapped using a field of moving dots with experimenter
control of stimulus location, aperture size, dot speed, dot size, and dot density. Upon choosing
the stimulus location that maximally drove the highest number of neurons, direction tuning was
measured by 500ms presentations of a randomly drawn direction of motion from one of 12 di-
rections from 0 to 330 degrees. A total of 71 recording sessions were performed; 23 during the
flat-stimulus condition (Monkey L: 13; Monkey N: 10), 22 during the late-stimulus condition (Mon-
key L: 11; Monkey N: 11) and 26 during the early-stimulus condition (Monkey L: 11; Monkey N:
15).

Spike sorting was performed using KiloSort (Pachitariu et al., 2016) followed by manual merging
and splitting of clusters as necessary. A total of 583 units were identified; 161 during the flat-
stimulus condition, 219 during the late-stimulus, and 203 during the early stimulus.

Logistic regression neural decoder

To interrogate the roles and relationship of direction and decision-related signals, we used various
decoding methods to approximate how information may be gleaned from groups of MT neurons.
The first method we employed was logistic regression directly between spike counts and the binary
direction or choice on each trial (Kiani et al., 2014; Yates et al., 2020). The regression is done for
each session such that each neuron is a feature in the model, where each neuron received a weight
according to how well it predicts the binary outcome of interest. The resultis alinear readout model
that allows for maximal prediction of the stimulus direction or the animal's choice.

Specifically, the decoding weights are calculated as coefficients in a logistic regression between
trial spike counts (summed over a window starting at stimulus onset and ending 150ms after stim-
ulus onset) and one of two binary variables (the stimulus direction, or the observer’s choice) using
MATLAB's gimfit. The choice decoder weights were calculated using only the zero-sum, frozen
noise trials, while the direction decoder used all other trials.

The probability of a trial's stimulus direction or choice given each neuron’s firing rate is given
by:

exp(Yb)

1+ exp(Y b) 3)

XY, p) =

Where b = g, + Z,ﬁl B,X, for N neurons present during a session. X is a vector of spike counts per
neuron, and the choice or direction is Y € 0,1. The weights are then applied to their respective
neuron’'s temporally binned trial spike rates. Spikes were counted in 10ms bins and smoothed
with a 50ms boxcar. This was expressed in terms of rates by dividing by the bin size. The resultis a
population response that best represented stimulus or choice information present in a recording
session.

The resulting decoder output was then used to calculate population-level choice probability (CP)
for each session. We measured CP over the course of stimulus presentation as a metric of trial-by-
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trial correlation between firing rate and choice, given a fixed stimulus. CP was calculated as the area
under the ROC curve generated from choice-conditioned distributions of the reweighted activity in
each temporal bin. CP time course traces were smoothed with a 100ms boxcar for visualization.

Latent factor analysis

To understand how stimulus and perceptual choice are encoded across the population, we em-
ployed the variational latent Gaussian process (vVLGP) method (Zhao and Park, 2017) to extract
single-trial low-dimensional latent factors from population recordings in area MT. We used the
recording between target onset and reward. The spike counts were binned at 10 ms. Let x, denote
the k-th dimension of the latent factors. We assumed that the spatial dimensions of latent factors
are independent and imposed a Gaussian Process (GP) prior to the temporal correlation of each
dimension,

x, ~ N(0,K). (4)

To obtain smoothness, we used the squared exponential covariance function and respective
covariance matrix K in the case of discrete time. Let y,, denote the occurrence of a spike of the nth
neuron at time ¢, y,, = 1 if there was a spike at time r and y,, = 0 otherwise at this time resolution.
Theny, is the vector of length N, total number of neurons in a session, that concatenates all neu-
rons at time t. The spikes y, are assumed to be a point-process generated by the latent state x, at
that time via a linear-nonlinear model,

y, ~ Poisson(exp(Ax, + b)). (5)

To infer the latent factors (x, for each trial) and the model parameters (A and b), we used vari-
ational inference technique, as the pair of prior and likelihood do not have an tractable posterior.
We assumed parametric variational posterior distribution of the latent factors,

q(x,) = N(ﬂkvzk)- (6)

We analyzed the mean {u, } as the latent factors in this study. The dimensionality of the latent
factors was determined to be 4 by leave-one-neuron-out cross-validation on the session with the
largest population. All the sessions with at least 4 simultaneously recorded units were included in
this analysis (Monkey N: 13 sessions, Monkey L: 28 sessions).

Pulse-triggered average

To measure the relationship between the time-varying pulse strength and the inferred latent fac-
tors, we measured the contribution of pulses to the latent factors. The pulse-triggered average
(PTA) measures the change in latent factors resulting from an additional pulse at a particular time
of unit strength. To calculate the PTA, we used the pulse stimulus and latent response at 1 ms
resolution. For each session, let s; denote the value of the i-th motion stimulus, and let x,, denote
the k-th dimension of the latent factors at time z. All trials were concatenated such that the latent
factors X is a matrix of length T x 4, where T is the total time. For the i-th pulse, s, is the number
of Gabors pulsing, with s, > 0 for pulses in one direction and s, < 0 for pulses in the other direction.
To calculate the temporal lags of the PTA, we built design matrices, D = [D,,D,,...,D,]. For the
i-th pulse, the design matrix D, is a T x 28 matrix that consists of 4 cosine basis functions at the
4i + 1,4i + 2,...,4i + 4-th columns and 0 elsewhere. These basis functions starts at 0 ms, 50 ms,
100 ms and 150 ms after the onset, lasts 100 ms each and spans the rows of D,. The magnitude of
the bases is equal to the corresponding pulse value s,. We calculated a separate D, for each of the
seven pulses and concatenated them to obtain a design matrix for all seven pulses and estimated
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the weights with #,-regularization,

X=DW +E

w =argV5ninI|X—DWII§ +7IIWII3 )
where W is the weight matrix to estimate and E is the Gaussian noise matrix and the regularization
hyperparameter y was chosen by the generalized cross-validation (GCV) (Golub et al., 1979). The
PTA was calculated with the design matrices of unit-strength pulse and the estimated weights W.
We smoothed the PTA with a temporal Gaussian kernel (40 ms kernel width).

Subject to arbitrary rotations, a latent trajectory forms an equivalence class of which the mem-
bers have the same explanatory power in the vLGP model. We seek a particular rotation for each
session that makes the encoded task signal concentrate in the first few dimensions. By singular
value decomposition, WT = USVT, we rotate the factors x to UTx.

Choice decoder

Since there were some recording sessions with less than ideal number of frozen trials (identical
visual motion trials) for the calculation of choice probability, we instead analyzed the “weak” trials
of which the monkeys' correct rate was below a threshold (65%). We started at the trials of zero
pulse coherence and gradually increased the magnitude of coherence (absolute value) until the
correct rate reached the threshold. One of the sessions containing less than 100 weak trials was
excluded in this analysis.

We removed the stimulus information that is encoded in the latent factors of weak trials by
regressing out the pulses and analyzed the residuals. The latent factors were re-binned at 100 ms
resolution where the value of each bin is the sum of latent state x, or spike counts y, over the bin
fort=1,2,...,T. For each t, we assumed a linear model

;
X, = 2 w,s; +e, (8)
i=1

where s; denote the strength of the i-th pulse, w,, is the weight vector corresponding to the bin and
pulse, and e is the homogeneous Gaussian noise across all bins. We estimated the weight vector
by least-squares with #,-regularization to prevent over-fitting,

7
: 2 2
w, = argmin [Ix, = 3" s, I3 + v [Iw,I1. €)

Wi i=1

Again, the hyperparameter of regularization was chosen by GCV. We then analyzed the contribu-
tion of behavioral choice on the residuals

n=x— Y W, (10

For the whole trial we used the sum residual of the windows r = Y, r,. The range of + depends on
the period of interest.

We trained logistic models, to which we refer to as choice decoders, to predict the choice on
each trial using latent factors. The weights g and bias g, were estimated by maximum likelihood
with #,-regularization,

B.by= ar%nax log L(choice | r; B, fy) = 7| B, By ;- (11)
Po

The hyperparameter of regularization was chosen via 5-fold (balanced classes in test set) cross-
validation for every session individually.
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Choice mapping

The conventional choice probability only applies to univariate variables. However, the latent factors
and population activity are multivariate. We transformed the multivariate variables mentioned
above onto a one-dimensional subspace that has the same direction as the choice through the
choice decoders,

1
T lrera

We refer to the transform as the choice mapping. The quantity ¢ is a normalized value within
[0, 1] that maps the residual onto the choice direction (Lueckmann et al., 2018), and enables pooling
across sessions.

In order to prevent potential inflation of choice probability due to multidimensionality (3D), we
regularized the choice decoder and used only the choice mapping on the test set (pooled samples
held-out by cross-validation). This approach guarantees that choice probability will not be overes-
timated.

We pooled these mappings across all sessions. Using different subsets of latent factors as r
in the mapping, we obtained the choice-mapping of the stimulus-dimension and non-stimulus-
dimensions of latent factors. Then we calculated the choice probability of the corresponding di-
mensions based on the values. To investigate the time course of choice probabilities, we used
choice decoders to perform choice-mapping on the whole dataset with non-overlapping moving
windows. For fixed readout, we estimated the weights using mean value of 0-1.2s for the stimu-
lus period and —0.5-0s for the delay period. We use the weights to obtain readout and CP values
with 10ms moving window, and smooth the CP values with a 100ms boxcar. Finally; for dynamic
readout, we estimated the weights and calculated the CP values within 100ms moving windows
individually.

(12)
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