

1 **Cytoplasmic tail truncation of SARS-CoV-2 Spike protein enhances titer of**
2 **pseudotyped vectors but masks the effect of the D614G mutation**

3

4 ¹Hsu-Yu Chen, ¹Chun Huang, ^{2,4}Lu Tian, ¹Xiaoli Huang, ^{2,4}Chennan Zhang, ¹George N.
5 Llewellyn, ¹Geoffrey L. Rogers, ⁵Kevin Andresen, ⁵Maurice R.G. O'Gorman, ^{2,3,4}Ya-Wen
6 Chen, ¹Paula M. Cannon*

7

8 ¹Department of Molecular Microbiology and Immunology, ²Department of Medicine,
9 ³Department of Stem Cell Biology and Regenerative Medicine, ⁴Hastings Center for
10 Pulmonary Research, Keck School of Medicine of the University of Southern California,
11 Los Angeles, California, USA.

12 ⁵Pathology and Laboratory Medicine, Children's Hospital Los Angeles/ Keck School of
13 Medicine of USC, Los Angeles, California, USA.

14

15

16 **Running title:** Cytoplasmic tail truncation of SARS-CoV-2 Spike

17

18

19 *Address correspondence to:

20 Paula M. Cannon, pcannon@usc.edu

21

22

23 **ABSTRACT**

24 The high pathogenicity of SARS-CoV-2 requires it to be handled under biosafety
25 level 3 conditions. Consequently, Spike protein pseudotyped vectors are a useful tool to
26 study viral entry and its inhibition, with retroviral, lentiviral (LV) and vesicular stomatitis
27 virus (VSV) vectors the most commonly used systems. Methods to increase the titer of
28 such vectors commonly include concentration by ultracentrifugation and truncation of the
29 Spike protein cytoplasmic tail. However, limited studies have examined whether such a
30 modification also impacts the protein's function. Here, we optimized concentration
31 methods for SARS-CoV-2 Spike pseudotyped VSV vectors, finding that tangential flow
32 filtration produced vectors with more consistent titers than ultracentrifugation. We also
33 examined the impact of Spike tail truncation on transduction of various cell types and
34 sensitivity to convalescent serum neutralization. We found that tail truncation increased
35 Spike incorporation into both LV and VSV vectors and resulted in enhanced titers, but
36 had no impact on sensitivity to convalescent serum inhibition. In addition, we analyzed
37 the effect of the D614G mutation, which became a dominant SARS-CoV-2 variant early
38 in the pandemic. Our studies revealed that, similar to the tail truncation, D614G
39 independently increases Spike incorporation and vector titers, but that this effect is
40 masked by also including the cytoplasmic tail truncation. Therefore, the use of full-length
41 Spike protein, combined with tangential flow filtration, is recommended as a method to
42 generate high titer pseudotyped vectors that retain native Spike protein functions.

43

44 **IMPORTANCE**

45 Pseudotyped viral vectors are useful tools to study the properties of viral fusion proteins,
46 especially those from highly pathogenic viruses. The Spike protein of SARS-CoV-2 has been

47 investigated using pseudotyped lentiviral and VSV vector systems, where truncation of its
48 cytoplasmic tail is commonly used to enhance Spike incorporation into vectors and to increase
49 the titers of the resulting vectors. However, our studies have shown that such effects can also
50 mask the phenotype of the D614G mutation in the ectodomain of the protein, which was a
51 dominant variant early in the COVID-19 pandemic. To better ensure the authenticity of Spike
52 protein phenotypes when using pseudotyped vectors, we therefore recommend using full-length
53 Spike proteins, combined with tangential flow filtration methods of concentration, if higher titer
54 vectors are required.

55 INTRODUCTION

56 Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory
57 syndrome coronavirus 2 (SARS-CoV-2) and was first reported in Wuhan, China, in
58 December 2019 (1). The disease rapidly spread worldwide, causing over 150 million
59 confirmed cases and more than 3 million reported deaths by May 2021 (2). The
60 accompanying worldwide research effort has resulted in a large number of vaccine
61 candidates, and both national and international clinical trials to assess novel and
62 repurposed drug regimens (3). In the United States, the SARS-CoV-2 Spike glycoprotein
63 has been a primary target of such efforts. Spike is a major viral antigen that induces
64 protective immune responses in COVID-19 (4–6) patients and mediates cell entry by
65 binding to angiotensin-converting enzyme 2 (ACE2) (1, 7, 8) or other receptors (9, 10).
66 ACE2 is expressed in the human respiratory system (11), especially on type II
67 pneumocytes (12), which are the main target cell for SARS-CoV-2 infection. Expression
68 of ACE2 in other organs also allows infection outside the lung (11).

69 Due to the high pathogenicity of SARS-CoV-2, biosafety level 3 (BSL3) labs are
70 required for studies that involve replication-competent virus. Therefore, investigators
71 often use Spike protein pseudovirus vector systems, based on replication-incompetent
72 vector particles and attenuated or conditional viruses. Identification of an optimal
73 pseudovirus system for any particular viral entry glycoprotein typically involves comparing
74 the most commonly used systems: replication-incompetent lentiviral (LV) or retroviral (RV)
75 vectors, or conditional vesicular stomatitis virus (VSV) viruses that are deleted for the
76 VSV glycoprotein (G) (13, 14). SARS-CoV-2 Spike protein can pseudotype all three
77 vector systems, which have been used to investigate viral entry (15–18), neutralization

78 by monoclonal antibodies or convalescent plasma (4, 5, 15, 19–27), entry inhibitors (15,
79 23, 28, 29), and to characterize surging viral variants (30–44). In approximately one third
80 of these studies, deletions of 18-21 amino acids from the cytoplasmic tail of Spike were
81 used to enhance vector titers and thereby facilitate the study.

82 Cytoplasmic tail truncation of viral glycoproteins is a common strategy to enhance
83 pseudovirus formation since this can remove steric interference that may occur between
84 the heterologous viral glycoproteins and the vector matrix or capsid proteins (45–50). Also
85 employed are cytoplasmic tail swaps, whereby the tail from the natural viral glycoprotein
86 is used to create a chimeric glycoprotein with enhanced incorporation properties (46, 51).
87 However, we and others have shown that tail modifications can also have functional
88 consequences, for example, removing endocytosis signals that lead to increased cell
89 surface levels and enhanced incorporation into vector particles (52, 53), alterations of the
90 ectodomain conformation (52, 54), changes to fusogenicity (46, 54–56) and altered
91 antigenic characteristics (57, 58).

92 SARS-CoV-2 Spike contains a putative ER retention signal (KLHYT) at its C-
93 terminus, which is removed by the tail truncations of 13 amino acids (59) or 18-21 amino
94 acids that are frequently employed (24, 60–63). Compared to the full-length Spike, such
95 truncations were reported to generate ~10-20-fold higher titers of both LV vectors (59–61,
96 63) and VSV vectors (24, 60, 62). Truncated Spike also enhances RV vector titers, albeit
97 with a smaller effect when compared side by side with LV and VSV vectors (60). Havranek
98 *et al.* (62) and Yu *et al.* (59) investigated the mechanism for such an effect for VSV and
99 LV pseudoviruses, and found that tail truncation enhanced both Spike incorporation into
100 the viral particles and cell-cell fusion for Spike-expressing cells, but without altering cell

101 surface expression levels. However, the impact of Spike tail truncations on any other
102 ectodomain functions remains unclear.

103 In this report, we compared the practicality and functionality of using Spike
104 pseudotyped vectors based on LV and VSV, and pseudotyped with either full-length or
105 tail truncated proteins. We compared methods to prepare such vectors and identified
106 tangential flow filtration as a facile method that is superior to ultracentrifugation and allows
107 efficient production at a larger scale. An optimized system based on VSV vectors was
108 used to assess the impact of the Spike mutation D614G (34), and to assess neutralizing
109 activity in convalescent serum. Our studies determined that although Spike tail truncation
110 boosts incorporation into vectors and enhances the titers achieved for unconcentrated
111 supernatants, it also blunted the ability to observe differences caused by this specific
112 Spike mutation. We therefore recommend that studies using Spike pseudotyped vectors
113 retain the natural full-length cytoplasmic tail and use other strategies, such as
114 concentration method and vector system choice, to achieve the required vector titers.

115

116 **RESULTS**

117

118 ***Spike cytoplasmic tail truncation facilitates vector incorporation and enhances titer***

119 Cytoplasmic tail truncation of SARS-CoV-2 Spike has been reported to enhance
120 the transduction efficiency of pseudotyped LV and VSV vectors (59–61, 63) with the effect
121 suggested to be the result of enhanced incorporation and/or fusogenicity of Spike (59,
122 62). Using both the full-length Spike (S) and an 18 amino acid cytoplasmic tail truncation
123 (SΔ18), we generated pseudotyped LV and VSV vectors carrying reporter GFP or

124 luciferase genes, respectively. We compared the ability of the two Spike proteins to be
125 incorporated into the vectors and to transduce HeLa cells expressing human ACE2
126 (HeLa-ACE2). Transduction by LV-GFP vectors was analyzed at 48 hours post-
127 transduction, while VSV-Luc vectors were analyzed as early as 16-24 hours post-
128 transduction.

129 Consistent with previous findings, we found that the cytoplasmic tail truncation
130 increased vector transduction efficiency on HeLa-ACE2 cells, by approximately 4- and
131 30-fold for the LV-GFP and VSV-Luc vectors, respectively (Fig. 1A). We also observed a
132 significant increase in incorporation for the truncated Spike protein in both vector systems
133 (Fig. 1B), while having no impact on other viral particle proteins (Fig. 1B) or vector
134 genome copy number (Fig. 1C). Together, these results suggest that cytoplasmic tail
135 truncation increases Spike incorporation into both LV and VSV particles and this results
136 in higher infectivity per particle. Since the VSV-Luc vectors have a faster read-out time,
137 we chose this pseudovirus system for the rest of our studies.

138

139 ***Susceptibility of different cell lines and lung organoids to Spike protein***
140 ***pseudovectors***

141 Next, we tested the permissivity of different cell lines and a lung organoid model
142 to SΔ18 pseudotyped VSV vectors. In agreement with previous finding, several ACE2-
143 expressing cells were found to be susceptible to the vectors (1, 18), while ACE2 over-
144 expression was required to support transduction of HeLa cells (Fig. 2A). We also
145 evaluated an alternative transduction protocol with a shortened timeline, whereby
146 trypsinized cells are incubated with the vectors simultaneously with seeding (64).

147 Although this method shortened the overall process compared to a typical protocol that
148 first seeds the cells in a tissue culture plate for 24 hours before incubation with vectors, it
149 resulted in significantly lower transduction rates (Fig. 2B). Examination of cell surface
150 ACE2 levels by flow cytometry revealed that newly trypsinized cells had 1.5-fold lower
151 ACE2 levels compared to cells allowed to recover for 6 hours post-trypsinization (Fig. 2C),
152 suggesting the reason for the lower titers.

153 Finally, we tested the susceptibility of a 3D lung bud organoid model to S Δ 18 VSV
154 pseudovectors carrying a GFP reporter. Compared to cell lines, lung organoids provide
155 more physiologically relevant models of virus infection and have been used to identify
156 candidate COVID-19 therapeutics (29). S Δ 18 pseudotyped VSV-GFP vectors were able
157 to efficiently transduce the cells, with GFP expression observed throughout the organoid
158 by 24 hours (Fig. 2D).

159

160 ***Tangential flow filtration facilitates scale-up of vector production and***
161 ***concentration***

162 To identify an optimal method for concentration of Spike protein pseudovectors
163 suitable for a research laboratory, we compared ultracentrifugation through a 20% w/v
164 sucrose cushion with tangential flow filtration (TFF). Ultracentrifugation is limited by the
165 capacity of a rotor, for example SW28 rotors have a maximum capacity of ~230 ml of
166 vector supernatant per 2 hours run. In contrast, TFF can process much larger volume
167 (65, 66) and a single TFF filter with 1000 cm² surface area can process up to 3000 ml in
168 2 hours. Larger filter systems with capacities up to 15 L are also available. In addition,

169 VSV-G pseudotyped LV vectors produced by TFF are reported to have a higher recovery
170 rate than when prepared by ultracentrifugation (66).

171 To compare these approaches, 100 ml of SΔ18 pseudotyped VSV-Luc vector
172 supernatants were subjected to either ultracentrifugation (Ultra) or TFF and concentrated
173 into a 8ml final stock (12x, v/v). Vector genome copies in the unconcentrated and 12x
174 concentrated vector stocks were measured by ddPCR, which revealed slightly better
175 recovery rates following TFF (~70%) compared to ultracentrifugation (~60%) (Fig. 3A and
176 3B). At the same time, the transduction efficiencies of the three vector stocks were
177 measured on HeLa-ACE2 cells, using serially diluted vectors (1:5 to 1:450 dilutions) (Fig.
178 3C). At the higher dilution points, both 12x Ultra and 12x TFF vector preparations
179 produced about a 10-fold higher luciferase signal compared to the unconcentrated
180 vectors. Interestingly, at the lower dilutions (1:5 and 1:15), the 12x Ultra vector stock
181 showed no enhancement over unconcentrated vectors, while the 12x TFF vector stocks
182 retained their 10-fold higher transduction rates. This observation is suggestive of the
183 presence of an inhibitory factor that is concentrated during ultracentrifugation but was not
184 retained following TFF.

185 In summary, we found that TFF facilitates large-scale processing of vector stocks,
186 with similar genomic copy number recovery rates as the more typical ultracentrifugation
187 method. More importantly, TFF results in vector stocks that retain a more consistent titer
188 throughout a broader range of different dilutions than those produced by
189 ultracentrifugation.

190

191

192 **Cytoplasmic tail truncation alters Spike protein functional properties**

193 We used the VSV pseudovirus system to examine the impact of the D614G
194 mutation of Spike protein. This mutation was first detected in China and Germany in late
195 January and became the dominant circulating variant of SARS-CoV-2 globally by April
196 2020 (34). The mutation has functional consequences for the virus, resulting in higher
197 viral loads in the upper respiratory tract (34, 67). *In vitro* studies with SARS-CoV-2
198 revealed that the D614G mutation enhanced replication on human lung epithelial cells
199 and primary airway tissue (41), and increased replication or transmissibility in human
200 ACE2 transgenic mice and hamster models (41, 68, 69). Effects were also observed using
201 Spike protein pseudoviruses, where the D614G mutation was reported to enhance Spike
202 incorporation into vector particles, despite minimal or no effect on Spike expression in
203 vector-producing cells (43, 70), and to increase transduction rates on various cell lines
204 (30, 32, 34, 37, 43, 63, 71).

205 Since we had noted that the cytoplasmic tail truncation of Spike protein also
206 increased incorporation rates and transduction efficiencies (Fig. 1), we next examined the
207 impact of the D614G mutation in the context of both full-length and truncated Spike
208 proteins. For the full-length Spike protein, we observed up to 18-fold higher transduction
209 rates for the G614 variant on HeLa-ACE2 cells, with less striking effects on the other cell
210 lines we tested. In contrast, transduction rates for the variants in the SΔ18 backbone
211 showed minimal to no differences across the range of cell types tested (Fig. 4A). The
212 discrepancy between the behavior of the full-length S and SΔ18 vectors occurred despite
213 similar genome copy numbers (Fig. 4B), ruling out an effect on vector production. We
214 also observed no differences in cell surface expression levels of Spike when comparing

215 the different variants in vector-producing cells (Fig. 4C). Instead, in agreement with
216 previous studies using full-length Spike pseudotyped RV and LV vectors, we found that
217 the D614G mutation enhanced Spike incorporation, albeit with a much larger effect for
218 the full-length Spike versus the truncated protein (~9-fold versus ~2-fold effect) (Fig. 4D,
219 E). Together, these observations suggest that a primary effect of both the tail truncation
220 and the D614G mutation is on Spike protein incorporation, which in turn leads to
221 enhanced titers, and that an upper limit for these effects likely reduces the impact of the
222 D614G mutation when combined with a tail truncation.

223

224 ***D614G mutation or cytoplasmic tail truncation does not alter Spike protein
225 sensitivity to convalescent serum***

226 Spike protein pseudovectors are a useful tool to measure antibody neutralizing
227 activity in COVID-19 patient or convalescent sera (4, 5, 15, 19, 20, 23, 24, 26, 27, 61).
228 We examined whether the D614G mutation or the cytoplasmic tail truncation altered
229 sensitivity to neutralization by a panel of convalescent sera. VSV-Luc vectors displaying
230 the four different Spike proteins were incubated with serially-diluted sera for 30 minutes
231 before being applied to HeLa-ACE2 cells. After normalizing values to the luciferase
232 signals obtained from cells transduced in the absence of sera, we observed that all four
233 Spike proteins exhibited similar sensitivities to each serum (Fig 5). This suggests that
234 neither the D614G mutation nor the cytoplasmic tail truncation alter the sensitivity of the
235 Spike protein to neutralization.

236

237

238 **DISCUSSION**

239 Pseudotyped vectors are a useful system to study the entry glycoproteins from
240 highly pathogenic viruses such as SARS-CoV-2, as they remove the need for BSL-3
241 laboratory conditions. We confirmed that the SARS-CoV-2 Spike protein was able to
242 pseudotype both LV and VSV vectors, and determined that the combination of using a
243 conditional VSV vector and a luciferase reporter gene had the advantage of allowing titers
244 to be read at 16 hours post-transduction. Such Spike pseudotyped VSV vectors
245 supported entry into a variety of mammalian cell types, including lung organoid systems,
246 making them a useful system with which to study SARS-CoV-2 entry under standard
247 laboratory conditions.

248 Optimization of pseudotyped vectors includes selection of an appropriate
249 concentration method, such as centrifugation, PEG precipitation or ultrafiltration. For VSV
250 pseudovectors, we found that concentration by TFF produced vector stocks with higher
251 recovery rates and more consistent titers throughout a dilution series than those produced
252 by ultracentrifugation. TFF also has the advantage of providing a partial purification due
253 to the selective loss of potential contaminants below the cut-off value of the filter, and
254 provides a larger processing capacity than ultracentrifugation. As a result, TFF is
255 frequently used to facilitate large-scale vector production, including for clinical use (65,
256 66, 72). In our own experience, 3L of supernatant can be concentrated down to 50ml in
257 2 hours.

258 Since pseudovector titers can be impacted by incompatibilities between a viral
259 fusion protein and the heterologous viral particle (45–50), an additional strategy to
260 enhance vector titers has been to truncate the fusion protein's cytoplasmic tail. We found

261 that this approach increased the titers of Spike protein pseudovectors based on both LV
262 and VSV, in agreement with previous reports (24, 59–63). Furthermore, as others have
263 also noted (59, 62), the enhanced vector titers correlated with increased levels of Spike
264 protein incorporation that were not simply the result of higher levels of cell surface
265 expression following tail truncation, and tail truncation has also been reported to enhance
266 the fusogenicity of Spike (59, 62). Together, this suggests that truncation of the
267 cytoplasmic could also alter the conformation or function of the protein's ectodomain, as
268 has been reported for viral fusion proteins in HIV (57), measles virus (56), simian
269 immunodeficiency virus (55) and gibbon ape leukemia virus (46), where truncation of the
270 cytoplasmic tail impacted ectodomain conformation or functions such as receptor binding,
271 or fusogenicity.

272 Our comparison of techniques to enhance vector titers also identified an area for
273 caution; although cytoplasmic tail truncation enhanced pseudovector titers, they can also
274 have unintended functional consequences. Specifically, we found that the impact of the
275 D614G mutation on Spike protein incorporation and vector titer was obscured by the
276 cytoplasmic tail truncation. A similar lack of effect of the D614G mutation on titer was also
277 reported in another study using a 21 amino acid deletion of the Spike protein cytoplasmic
278 tail in VSV pseudovectors (62). These findings suggest that tail-truncated Spike proteins
279 should be used with caution for studies analyzing the impact of Spike mutations, or to test
280 potential therapeutics targeting SARS-CoV-2 entry.

281 The mechanism for enhanced incorporation and/or titer by D614G is not entirely
282 understood but structural analyses have suggested that it could impact Spike protein
283 structure and stability, both within and between Spike monomers. For example, it has

284 been suggested that a glycine at this location could strengthen the association between
285 the S1/S2 subunits through an impact on the epistucture that decreases the
286 intramolecular wrapping in the S1 subunit but promotes intermolecular wrapping between
287 S1 and S2 (73). In an alternative model, the D614G mutation could alter the structure
288 and/or stability of the Spike trimer by abrogating the hydrogen bond connecting D614 in
289 the S1 subunit of one monomer with T859 in the S2 subunit of a neighboring monomer
290 (34). These alterations were hypothesized to result in a greater tendency of the G614
291 monomers to form stable trimers which, in turn, could facilitate their incorporation into
292 virions. As evidence, a mixture of equal amounts of D614 and G614 Spike variants
293 expressed in vector-producing cells resulted in a higher level of G614 proteins in the
294 incorporated Spike trimers (70).

295 Finally, we also used the VSV pseudovectors to evaluate the impact of the D614G
296 mutation on infectivity of different cell types and sensitivity to antibody neutralization.
297 Consistent with previous findings using pseudoviruses (32–34, 37, 43, 44) or SARS-CoV-
298 2 virions (41, 68), we found that the G614 variant exhibited enhanced transduction of
299 various cell lines when compared to the D614 variant, and that this correlated with
300 increased Spike incorporation into the VSV particles (43, 70). As previously noted, these
301 effects were significantly abrogated when tail truncated variants were used, consistent
302 with an upper limit for the enhancement of Spike incorporation.

303 In contrast, the serum neutralization studies revealed no differences in sensitivity
304 for either residue at position 614, and in either of the cytoplasmic tail configurations. This
305 is in agreement with the majority of reports testing the impact of the D614G mutation with
306 full-length Spike pseudovectors or SARS-CoV-2 virus against human convalescent

307 serum (30, 34, 43, 68), serum from convalescent animals (41), or vaccinated human or
308 animals (44, 68, 74).

309 In summary, we found that although cytoplasmic tail truncations enhance SARS-
310 CoV-2 Spike protein incorporation into both LV and VSV vectors, and enhance the titers
311 of unconcentrated vectors, they can also mask the phenotype of the D614G mutation.
312 Pseudotyped vectors are increasingly being used to study newly emerging SARS-CoV-2
313 variants, where both full-length (42, 75) and truncated Spike proteins (25, 35, 39) have
314 been used in studies investigating the impact of mutations on Spike protein properties
315 such as ACE2 binding, transduction efficiency or sensitivity to neutralization. To better
316 ensure the authenticity of the Spike protein functions being investigated in such vectors,
317 we recommend using a full-length Spike protein, and combining vector production with
318 TFF if higher titer vectors are required.

319

320 METHODS

321 **Plasmids.** Full-length (S) and 18 amino acid cytoplasmic tail truncated (SΔ18) Spike
322 proteins for the Wuhan-Hu-1 isolate of SARS-CoV-2 (GenBank: MN908947.3) were
323 provided by Dr. James Voss (The Scripps Research Institute) in a plasmid pcDNA3.3
324 backbone. D614G mutants were generated by site-directed mutagenesis. A VSV G
325 protein expression plasmid was obtained from Addgene (Watertown, MA; Cat.# 8454).

326

327 **Cell lines.** 293T, HeLa, HeLa-ACE2, Vero, VeroE6 and Huh7.5 cells were maintained in
328 Dulbecco's modified Eagle medium (DMEM), and Calu-3 cells were maintained in Eagle's
329 Minimum Essential Medium (EMEM). All media were supplemented with 4 mM glutamine

330 and 10% fetal bovine serum (FBS). HeLa-ACE2 cells were provided by Dr. James Voss,
331 and were generated by transduction of HeLa cells with a lentiviral vector packaging a
332 CMV-ACE2 expression cassette. The Huh7.5 cell line was provided by Dr. Jae Jung
333 (Cleveland Clinic). All other cell lines were obtained from ATCC.

334

335 **VSV vector production, concentration and transduction.** Replication-deficient
336 VSV Δ G vectors (76), containing expression cassettes for firefly luciferase or GFP in place
337 of the VSV G protein, were provided by Dr. Jae Jung and Dr. Oscar Negrete (Sandia
338 National Laboratories), respectively. To generate Spike pseudotyped VSV vectors, 4 x
339 10⁶ 293T cells were seeded in DMEM plus 10% FBS in a 10cm plate and transfected with
340 15 μ g of Spike expression plasmid 24 hours later, using the calcium-phosphate
341 transfection method (76). Media was replaced 16 hours later with 10 ml fresh media, and
342 after a further 8 hours, 5 ml was removed and 2x10⁸ vector genomes of VSV Δ G particles
343 were added for one hour at 37 °C. Following this incubation, cells were washed three
344 times with PBS and incubated for a further 24 hours before harvesting supernatants.

345 For larger scale production, quantities were adjusted to seed 3x10⁷ cells in 500cm²
346 plates, transfection with 124.5 μ g of Spike expression plasmid and infection by 1.7x10⁹
347 vector genomes of VSV Δ G particles per 500cm² plate. To propagate VSV Δ G particles,
348 the same protocol was followed but replacing the Spike expression plasmid with the same
349 quantity of a VSV G expression plasmid, and no PBS washes were performed after
350 infection by VSV Δ G.

351 Vector supernatants were harvested and filtered through 0.45 μ m syringe filters,
352 and either aliquoted or concentrated by ultracentrifugation using 20% (w/v) sucrose

353 cushions for 2 hours at 25,000 rpm in an SW41 or SW28 rotor (Beckman, Indianapolis,
354 IN). Alternatively, large-scale supernatant preparations were concentrated by tangential
355 flow filtration (TFF) using a polyethersulfone membrane hollow fiber unit with 100 kDa
356 molecular weight cut off and 155cm² filtration surface (Spectrum Laboratories, Rancho
357 Dominguez, CA) and a KR2i peristaltic pump (Spectrum Laboratories). To perform buffer
358 exchange and prevent filter blockage, every 100 ml of vector supernatant was followed
359 by 100 ml PBS. A 10- to 12-fold concentration from the original volume to approximately
360 8 ml final volume was achieved. All vectors were stored at -80°C in aliquots.

361 VSV-luciferase vector transductions were performed on tissue culture treated, 96-
362 well half-area white plates (Corning, Corning, NY), seeded with various cells lines to
363 achieve 50%-75% confluency at the time of transduction. Vectors were serially diluted
364 and added to the culture to achieve final dilutions of 1:5, 1:15, 1:45, 1:135, and 1:405 and
365 incubated at 37 °C for 16-24 hours. Transduction efficiency was quantified by measuring
366 luciferase activity in cell lysates using Britelite Plus (Perkin Elmer, Richmond, California)
367 and following the manufacturer's protocol. To calculate the fold-change in transduction
368 efficiency between D614 and G614 mutants, data from the 1:45 dilution points was used.

369 To titer VSV-GFP vectors, HeLa-ACE2 cells were seeding as 1x10⁴ cells per well
370 in 96-well plates, and the following day, 50 µl of serially-diluted unconcentrated vector
371 stocks were added. The final dilutions in the cultures were 1:2, 1:6, 1:18, and 1:27.
372 Transduction efficiency was determined by GFP expression 16-24 hours after
373 transduction using flow cytometry (Guava easyCyte, MilliporeSigma, Burlington, MA). and
374 transducing units (TU) per ml calculated from the dilutions showing a linear relationship
375 between the dilution factor and the number of GFP-positive cells.

376

377 **Lentiviral vector production, concentration and transduction.** Lentiviral vectors were
378 generated by transfection of 10 cm plates of 293T cells at 75% confluency with 2 µg of
379 Spike expression plasmid, 10 µg of packaging plasmid pCMVdeltaR8.2 (Addgene Cat.#
380 12263) and 10 µg of a GFP-expressing vector genome plasmid FUGW (Addgene Cat.#
381 14883). Media was removed 16 hours later and replaced with 10 ml fresh DMEM plus
382 10% FBS. Supernatants were harvested 48 hours after transfection and filtered through
383 0.45 µm syringe filters, and either aliquoted or concentrated by ultracentrifugation using
384 20% (w/v) sucrose cushions for 2 hours at 25,000 rpm in an SW41 rotor (Beckman).

385 HeLa-ACE2 cells were transduced with Spike pseudotyped LV by seeding 1x10⁴
386 cells per well in 96-well plates and adding 50µl of unconcentrated vector stocks the next
387 day. Transduction efficiency was determined by GFP expression 48 hours after
388 transduction using flow cytometry, as described above, and reported as transducing units
389 (TU) per ml.

390

391 **LV and VSV vector genome titration.** RNA from 160 µl of LV or VSV vector stocks was
392 extracted using Viral RNA mini kit (Qiagen, Hilden, Germany) and reverse transcribed
393 into cDNA using SuperScript (Invitrogen, Carlsbad, CA), according to the manufacturer's
394 instructions. Genome copy number was determined by ddPCR for the WPRE sequences
395 in the LV genome, or for Phosphoprotein (P) sequences in the VSV genome, using the
396 QX200 Droplet Digital PCR system (Bio-Rad, Hercules, CA) and primer/probe set:
397 WPRE-forward (CCTTTCCGGGACTTCGCTTT), WPRE-reverse
398 (GGCGGCGGTACGAA), WPRE-probe (FAM- ACTCATGCCGCCTGCCTGCC-

399 TAMRA), P-forward (GTCTTCAGCCTCTCACCATATC), P-reverse
400 (AGCAGGATGGCCTCTTATG), P-probe (FAM-TCGGAGGTGACGGACGAATGTCT-
401 IOWA BLACK). Briefly, 6.25 μ l of 1:10 and 1:100 diluted cDNA was mixed with forward
402 and reverse primers (final concentration 900nM), probe (final concentration 250nM), 2x
403 ddPCR supermix (Bio-Rad), and made up to 25 μ l with water. Twenty microliters of each
404 reaction mix was converted to droplets by the QX200 droplet generator, and droplet-
405 partitioned samples were transferred to a 96-well plate and sealed. Thermal cycling was
406 performed with the following conditions: 95 °C for 10 min., 40 cycles of 94 °C for 30 sec.,
407 60 °C for 1 min., and 98 °C for 10 min. Plates were read on a QX200 reader (BioRad)
408 and DNA copies quantified by detection of FAM positive droplets.

409
410 **Lung bud organoid differentiation and transduction.** Lung bud organoids were
411 generated from human pluripotent stem cells (hPSCs) and validated as previously
412 described (77). hPSC differentiation into endoderm was performed in serum-free
413 differentiation (SFD) medium of IMDM/Ham's F-12 (3:1) (Life Technologies, Carlsbad, CA)
414 supplemented with the following: 1 x N2 (Life Technologies), 0.5 x B27 (Life
415 Technologies), 50 μ g/ml ascorbic acid, 1 x Glutamax (Gibco), 0.4 μ M monothioglycerol,
416 0.05% BSA, 10 μ M Y27632, 0.5 ng/ml human BMP4 (R&D Systems), 2.5 ng/ml human
417 FGF2 (R&D Systems, Minneapolis, MN), and 100 ng/ml human Activin (R&D Systems),
418 in a 5% CO₂/5% O₂ atmosphere at 37 °C for 72-76 h. On day 4, endoderm yield was
419 determined by the expressions of CXCR4 and c-KIT by flow cytometry. Cells used in all
420 experiments had > 90% endoderm yield. For induction of anterior foregut endoderm,
421 embryonic bodies were dissociated into single cells using 0.05% trypsin/0.02% EDTA and

422 plated onto fibronectin-coated, six-well tissue culture plates (80,000–105,000 cells/cm²).
423 Cells were incubated in SFD medium supplemented with 100ng/ml human Noggin (R&D
424 Systems) and 10 μ M SB431542 for 24 hours followed by switching to SFD media
425 supplemented with 10 μ M SB431542 and 1 μ M IWP2 (R&D Systems) for another 24
426 hours. At the end of anterior foregut endoderm induction, cells were maintained in SFD
427 media supplemented with the following: 3 μ M CHIR 99021 (CHIR, R&D Systems), 10
428 ng/ml human FGF10, 10 ng/ml human KGF, 10 ng/ml human BMP4 and 50nM all-trans
429 retinoic acid for 48 hours, when three-dimensional cell clumps formed. Clumps were
430 suspended by gently pipetting around the wells to form lung bud organoids, which were
431 maintained in Ultra-Low Attachment multiple well plates (Corning) and fed every other
432 day, and used for vector transduction after day 35.

433 To transduce lung bud organoids, 10 to 20 organoids were picked manually and
434 transferred to 96-well U-bottom plates and transduced with 50 μ l of GFP-expressing VSV
435 vectors (1.7 \times 10⁴ TU/ml). Transduction efficiency was examined by GFP expression 24
436 hours later by fluorescence microscopy.

437
438 **Western blot analysis of Spike protein incorporation.** Vector supernatants were
439 concentrated by ultracentrifugation (100-fold), electrophoresed on 4-12% Bis-Tris protein
440 gels (Bio-Rad) and transferred to PVDF membranes using Trans-Blot Turbo Transfer
441 System (Bio-Rad). Membranes were blocked with 5% milk in PBST buffer (PBS plus 0.1%
442 of Tween®20). The S1 subunit of Spike was detected using SARS-CoV-2 (COVID-19)
443 Spike S1 antibody at 1:1000 (Prosci, Cat.# 9083); the S2 subunit was detected using
444 anti-SARS-CoV/SARS-CoV-2 (COVID-19) spike antibody clone [1A9] at 1:1000

445 (GeneTex, Cat.# GTx632604); HIV-1 p24 was detected using a polyclonal anti-HIV-1 SF2
446 p24 rabbit antiserum at 1:6000 (obtained through the NIH HIV Reagent Program, Division
447 of AIDS, NIAID, NIH: ARP-4250, contributed by DAIDS/NIAID; produced by BioMolecular
448 Technologies). VSV M protein was detected using anti-VSV M antibody clone [23H12]
449 (KeraFast, Boston, MA, Cat.# EB0011) at 1:1000. HRP-conjugated goat anti-mouse and
450 goat anti-rabbit antibodies were used as secondary antibodies (Santa Cruz Biotechnology,
451 Dallas, TX). Blots were imaged by Amersham ECL Prime Western Blotting Detection
452 Reagent (GE healthcare, Chicago, IL) and Chemidoc (Bio-rad). Densitometry was
453 measured using ImageJ software (<http://rsb.info.nih.gov/ij/>).

454

455 **ACE2 cell surface expression by flow cytometry.** HeLa-ACE2 cells were detached
456 from culture flasks by 0.05% trypsin (Corning) and washed once with PBS. One million
457 cells were re-suspend in 100 μ l PBS and either immediately incubated with 0.25 μ g anti-
458 ACE2 antibody (R&D systems, Cat.# AF933) or first incubated at 37 °C for 6 hours with
459 shaking to allow recovery of cell surface proteins after trypsinization. Alexa Fluor 647
460 conjugated donkey anti-goat antibody (1:200 dilution, Thermo Fisher Scientific, Waltham,
461 MA, Cat.# A21447) was used as a secondary antibody and ACE2 expression was
462 determined by flow cytometry (Guava easyCyt).

463

464 **Spike protein cell surface expression.** VSV pseudovector-producing 293T cells were
465 harvested to examine cell surface expression of the Spike protein. The S1 subunit was
466 detected using SARS-CoV-2 (COVID-19) Spike S1 antibody at 1:100 (Prosci, Fort Collins,
467 Colorado, Cat.# 9083) and the S2 subunit was detected using anti-SARS-CoV/SARS-

468 CoV-2 (COVID-19) spike antibody clone [1A9] at 1:100 (GeneTex, Irvine, CA, Cat.#
469 GTx632604). APC-conjugated goat anti-mouse and ducky anti-rabbit antibodies were
470 used as secondary antibodies (1:100 dilution, Invitrogen), and expression was detected
471 by flow cytometry (Guava easyCyte). The expression levels of different Spike proteins
472 were reported as mean fluorescence intensity (MFI).

473

474 **Convalescent serum neutralization.** Convalescent serum from COVID-19 patients or
475 healthy donors (collected before April 30, 2020) was obtained from Children's Hospital
476 Los Angeles. Convalescent sera was confirmed to be positive for IgG class antibodies
477 against SARS-CoV-2 Spike using anti-SARS-CoV-2 ELISA (IgG) (EUROIMMUN, Lübeck,
478 Germany) (78).

479 A suitable dose of Spike pseudotyped VSV-Luc vectors was used in the
480 neutralization assays to produce approximately 10^5 relative light unit (RLU) of luciferase
481 activity on HeLa-ACE2 cells in the absence of serum. Five $\times 10^3$ HeLa-ACE2 cells were
482 seeded in tissue culture-treated, 96-well half-area white plates (Corning) to achieve 50%-
483 75% confluence the following day. Convalescent or control sera were 3-fold serially
484 diluted from 1:10 to 1:7290 and 50 μ l incubated with the predetermined dose of the VSV-
485 Luc vectors for 30 mins at 37°C, before addition of the mixture to HeLa-ACE2 cells. Cells
486 were incubated at 37 °C overnight for 16-24 hours. Vector transduction efficiency was
487 quantified by measuring luciferase activity as described above and neutralization (%)
488 calculated by normalization to the values obtained on cells transduced without serum.

489

490

491 **ACKNOWLEDGMENTS**

492 This work was supported by a grant to PMC from the W.M. Keck Foundation
493 COVID-19 Research Fund to the Keck School of Medicine of USC. The authors would
494 like to acknowledge the generosity of Drs. James Voss, Jae Jung and Oscar Negrete,
495 who provided COVID-19 reagents, cell lines and VSVΔG particles.

496

497 **REFERENCES**

498 1. Zhou P, Yang X, Lou, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B,
499 Huang CL, Chen HD, Chen J, Luo Y, Guo H, Jiang R, Di, Liu MQ, Chen Y, Shen
500 XR, Wang X, Zheng XS, Zhao K, Chen QJ, Deng F, Liu LL, Yan B, Zhan FX, Wang
501 YY, Xiao GF, Shi ZL. 2020. A pneumonia outbreak associated with a new
502 coronavirus of probable bat origin. *Nature* 579:270–273.

503 2. Johns Hopkins. 2021. Coronavirus Resource Center. Johns Hopkins Coronavirus
504 Resour Cent.

505 3. Umakanthan S, Chattu VK, Ranade A V, Das D, Basavarajegowda A, Bukelo M.
506 2021. A rapid review of recent advances in diagnosis, treatment and vaccination
507 for COVID-19. *AIMS Public Heal* 8:137–153.

508 4. Robbiani DF, Gaebler C, Muecksch F, Lorenzi JCC, Wang Z, Cho A, Agudelo M,
509 Barnes CO, Gazumyan A, Finkin S, Hägglöf T, Oliveira TY, Viant C, Hurley A,
510 Hoffmann HH, Millard KG, Kost RG, Cipolla M, Gordon K, Bianchini F, Chen ST,
511 Ramos V, Patel R, Dizon J, Shimeliovich I, Mendoza P, Hartweger H, Nogueira L,
512 Pack M, Horowitz J, Schmidt F, Weisblum Y, Michailidis E, Ashbrook AW, Waltari
513 E, Pak JE, Huey-Tubman KE, Koranda N, Hoffman PR, West AP, Rice CM,

514 Hatzioannou T, Bjorkman PJ, Bieniasz PD, Caskey M, Nussenzweig MC. 2020.
515 Convergent antibody responses to SARS-CoV-2 in convalescent individuals.
516 *Nature* 584:437–442.

517 5. Ju B, Zhang Q, Ge J, Wang R, Sun J, Ge X, Yu J, Shan S, Zhou B, Song S, Tang
518 X, Yu J, Lan J, Yuan J, Wang H, Zhao J, Zhang S, Wang Y, Shi X, Liu L, Zhao J,
519 Wang X, Zhang Z, Zhang L. 2020. Human neutralizing antibodies elicited by SARS-
520 CoV-2 infection. *Nature* 584:115–119.

521 6. Mohamed Khosroshahi L, Rokni M, Mokhtari T, Noorbakhsh F. 2021. Immunology,
522 Immunopathogenesis and Immunotherapeutics of COVID-19; an Overview. *Int
523 Immunopharmacol* 93:107364.

524 7. Wan Y, Shang J, Graham R, Baric RS, Li F. 2020. Receptor Recognition by the
525 Novel Coronavirus from Wuhan: an Analysis Based on Decade-Long Structural
526 Studies of SARS Coronavirus. *J Virol* 94:e00127-20.

527 8. Letko M, Marzi A, Munster V. 2020. Functional assessment of cell entry and
528 receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. *Nat
529 Microbiol* 5:562–569.

530 9. Masre SF, Jufri NF, Ibrahim FW, Abdul Raub SH. 2020. Classical and alternative
531 receptors for SARS-CoV-2 therapeutic strategy. *Rev Med Virol* 1–9.

532 10. Wang K, Chen W, Zhang Z, Deng Y, Lian JQ, Du P, Wei D, Zhang Y, Sun XX, Gong
533 L, Yang X, He L, Zhang L, Yang Z, Geng JJ, Chen R, Zhang H, Wang B, Zhu YM,
534 Nan G, Jiang JL, Li L, Wu J, Lin P, Huang W, Xie L, Zheng ZH, Zhang K, Miao JL,
535 Cui HY, Huang M, Zhang J, Fu L, Yang XM, Zhao Z, Sun S, Gu H, Wang Z, Wang
536 CF, Lu Y, Liu YY, Wang QY, Bian H, Zhu P, Chen ZN. 2020. CD147-spike protein

537 is a novel route for SARS-CoV-2 infection to host cells. *Signal Transduct Target*
538 *Ther* 5:1–10.

539 11. Li M-YM, Li L, Zhang Y, Wang XX-S. 2020. Expression of the SARS-CoV-2 cell
540 receptor gene ACE2 in a wide variety of human tissues. *Infect Dis Poverty* 9:45.

541 12. Ziegler CGK, Allon SJ, Nyquist SK, Mbano IM, Miao VN, Tzouanas CN, Cao Y,
542 Yousif AS, Bals J, Hauser BM, Feldman J, Muus C, Wadsworth MH, Kazer SW,
543 Hughes TK, Doran B, Gatter GJ, Vukovic M, Taliaferro F, Mead BE, Guo Z, Wang
544 JP, Gras D, Plaisant M, Ansari M, Angelidis I, Adler H, Sucre JMS, Taylor CJ, Lin
545 B, Waghray A, Mitsialis V, Dwyer DF, Buchheit KM, Boyce JA, Barrett NA, Laidlaw
546 TM, Carroll SL, Colonna L, Tkachev V, Peterson CW, Yu A, Zheng HB, Gideon HP,
547 Winchell CG, Lin PL, Bingle CD, Snapper SB, Kropski JA, Theis FJ, Schiller HB,
548 Zaragozi LE, Barbry P, Leslie A, Kiem HP, Flynn JAL, Fortune SM, Berger B,
549 Finberg RW, Kean LS, Garber M, Schmidt AG, Lingwood D, Shalek AK, Ordovas-
550 Montanes J, Banovich N, Brazma A, Desai T, Duong TE, Eickelberg O, Falk C,
551 Farzan M, Glass I, Haniffa M, Horvath P, Hung D, Kaminski N, Krasnow M,
552 Kuhnemund M, Lafyatis R, Lee H, Leroy S, Linnarson S, Lundeberg J, Meyer K,
553 Misharin A, Nawijn M, Nikolic MZ, Pe'er D, Powell J, Quake S, Rajagopal J, Tata
554 PR, Rawlins EL, Regev A, Reyfman PA, Rojas M, Rosen O, Saeb-Parsy K,
555 Samakovlis C, Schiller H, Schultze JL, Seibold MA, Shepherd D, Spence J, Spira
556 A, Sun X, Teichmann S, Theis F, Tsankov A, van den Berge M, von Papen M,
557 Whitsett J, Xavier R, Xu Y, Zhang K. 2020. SARS-CoV-2 Receptor ACE2 Is an
558 Interferon-Stimulated Gene in Human Airway Epithelial Cells and Is Detected in
559 Specific Cell Subsets across Tissues. *Cell* 181:1016-1035.e19.

560 13. Li Q, Liu Q, Huang W, Li X, Wang Y. 2018. Current status on the development of
561 pseudoviruses for enveloped viruses. *Rev Med Virol* 28:e1963.

562 14. Chen M, Zhang X. 2021. Construction and applications of SARS-CoV-2
563 pseudoviruses : a mini review. *Int J Biol Sci* 17:1574–1580.

564 15. Dieterle ME, Haslwanter D, Bortz RH, Wirchnianski AS, Lasso G, Vergnolle O,
565 Abbasi SA, Fels JM, Laudermilch E, Florez C, Mengotto A, Kimmel D, Malonis RJ,
566 Georgiev G, Quiroz J, Barnhill J, Pirofski L anne, Daily JP, Dye JM, Lai JR, Herbert
567 AS, Chandran K, Jangra RK. 2020. A Replication-Competent Vesicular Stomatitis
568 Virus for Studies of SARS-CoV-2 Spike-Mediated Cell Entry and Its Inhibition. *Cell*
569 *Host Microbe* 28:486-496.e6.

570 16. Ou X, Liu Y, Lei X, Li P, Mi D, Ren L, Guo L, Guo R, Chen T, Hu J, Xiang Z, Mu Z,
571 Chen X, Chen J, Hu K, Jin Q, Wang J, Qian Z. 2020. Characterization of spike
572 glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with
573 SARS-CoV. *Nat Commun* 11:1620.

574 17. Walls AC, Park Y-J, Tortorici MA, Wall A, McGuire AT, Veesler D. 2020. Structure,
575 Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. *Cell* 180:1–12.

576 18. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S,
577 Schiergens TS, Herrler G, Wu N-H, Nitsche A, Müller MA, Drosten C, Pöhlmann S.
578 2020. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked
579 by a Clinically Proven Protease Inhibitor. *Cell* 181:1–10.

580 19. Nie J, Li Q, Wu J, Zhao C, Hao H, Liu H, Zhang L, Nie L, Qin H, Wang M, Lu Q, Li
581 X, Sun Q, Liu J, Fan C, Huang W, Xu M, Wang Y. 2020. Establishment and
582 validation of a pseudovirus neutralization assay for SARS-CoV-2. *Emerg Microbes*

606 9:2105–2113.

607 25. Greaney AJ, Starr TN, Gilchuk P, Zost SJ, Binshtain E, Loes AN, Hilton SK,
608 Huddleston J, Eguia R, Crawford KHD, Dingens AS, Nargi RS, Sutton RE,
609 Suryadevara N, Rothlauf PW, Liu Z, Whelan SPJ, Carnahan RH, Crowe JE, Bloom
610 JD. 2021. Complete Mapping of Mutations to the SARS-CoV-2 Spike Receptor-
611 Binding Domain that Escape Antibody Recognition. *Cell Host Microbe* 29:44-57.e9.

612 26. Klingler J, Weiss S, Itri V, Liu X, Oguntuyo KY, Stevens C, Ikegame S, Hung C,
613 Enyindah-asonye G, Amanat F, Bermudez-gonzalez M, Simon V, Liu S, Lee B.
614 2020. Role of IgM and IgA Antibodies to the Neutralization of SARS-CoV-2.
615 medRxiv <https://doi.org/10.1101/2020.08.18.20177303>.

616 27. Luchsinger LL, Ransegnaola B, Jin D, Muecksch F, Weisblum Y, Bao W, George PJ,
617 Rodriguez M, Tricoche N, Schmidt F, Gao C, Jawahar S, Pal M, Schnall E, Zhang
618 H, Strauss D, Yazdanbakhsh K, Hillyer CD, Bieniasz PD, Hatzioannou T. 2020.
619 Serological Assays Estimate Highly Variable SARS-CoV-2 Neutralizing Antibody
620 Activity in Recovered COVID19 Patients. *J Clin Microbiol* 58:e02005-20.

621 28. Higuchi Y, Suzuki T, Arimori T, Ikemura N, Kirita Y, Ohgitani E, Mazda O, Motooka
622 D, Nakamura S, Matsuura Y, Matoba S, Okamoto T, Takagi J, Hoshino A. 2020.
623 High affinity modified ACE2 receptors prevent SARS-CoV-2 infection. bioRxiv
624 <https://doi.org/10.1101/2020.09.16.299891>.

625 29. Han Y, Duan X, Yang L, Nilsson-Payant BE, Wang P, Duan F, Tang X, Yaron TM,
626 Zhang T, Uhl S, Bram Y, Richardson C, Zhu J, Zhao Z, Redmond D, Houghton S,
627 Nguyen DHT, Xu D, Wang X, Jessurun J, Borczuk A, Huang Y, Johnson JL, Liu Y,
628 Xiang J, Wang H, Cantley LC, TenOever BR, Ho DD, Pan FC, Evans T, Chen HJ,

629 Schwartz RE, Chen S. 2021. Identification of SARS-CoV-2 Inhibitors using Lung
630 and Colonic Organoids. *Nature* 589:270–275.

631 30. Ozono S, Zhang Y, Ode H, Sano K, Tan TS, Imai K, Miyoshi K, Kishigami S, Ueno
632 T, Iwatani Y, Suzuki T, Tokunaga K. 2021. SARS-CoV-2 D614G spike mutation
633 increases entry efficiency with enhanced ACE2-binding affinity. *Nat Commun*
634 12:848.

635 31. Muik A, Wallisch A-K, Sänger B, Swanson KA, Mühl J, Chen W, Cai H, Maurus D,
636 Sarkar R, Türeci Ö, Dormitzer PR, Şahin U. 2021. Neutralization of SARS-CoV-2
637 lineage B.1.1.7 pseudovirus by BNT162b2 vaccine–elicited human sera. *Science*
638 371:1152–1153.

639 32. Daniloski Z, Jordan TX, Ilmain JK, Guo X, Bhabha G, Tenoever BR, Sanjana NE.
640 2021. The spike d614g mutation increases sars-cov-2 infection of multiple human
641 cell types. *eLife* 10:e65365.

642 33. Zhou T, Tsybovsky Y, Olia AS, Gorman J, Rapp M, Cerutti G 8, Chuang G-Y,
643 Katsamba PS, Nazzari A, Sampson JM, Schön A, Wang P, Bimela J, Shi W, Teng
644 I-T, Zhang B, 10 Boyington JC, Sastry M, Stephens T, Stuckey J, Wang S, 11
645 Friesner RA, Ho DD, Mascola JR, Shapiro L, Kwong PD. Cryo-EM Structures
646 Delineate a pH-Dependent Switch 4 that Mediates Endosomal Positioning of
647 SARS-CoV-2 Spike Receptor-Binding Domains. *bioRxiv*
648 <https://doi.org/10.1101/2020.07.04.187989>.

649 34. Korber B, Fischer WM, Gnanakaran S, Yoon H, Theiler J, Abfalterer W, Hengartner
650 N, Giorgi EE, Bhattacharya T, Foley B, Hastie KM, Parker MD, Partridge DG, Evans
651 CM, Freeman TM, de Silva TI, Angyal A, Brown RL, Carrilero L, Green LR, Groves

652 DC, Johnson KJ, Keeley AJ, Lindsey BB, Parsons PJ, Raza M, Rowland-Jones S,
653 Smith N, Tucker RM, Wang D, Wyles MD, McDanal C, Perez LG, Tang H, Moon-
654 Walker A, Whelan SP, LaBranche CC, Saphire EO, Montefiori DC. 2020. Tracking
655 Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the
656 COVID-19 Virus. *Cell* 182:812-827.e19.

657 35. Weisblum Y, Schmidt F, Zhang F, DaSilva J, Poston D, Lorenzi JCC, Muecksch F,
658 Rutkowska M, Michailidis H-HHE, Gaeble C, Agudelo M, Cho A, Wang Z,
659 Gazumyan A, Cipolla M, Luchsinger L, Hillyer CD, Caskey M, Robbiani DF, Rice
660 CM, Nussenzweig MC, Hatzioannou T, Bienasz PD. 2020. Escape from
661 neutralizing antibodies by SARS-CoV-2 spike protein variants. *J Chem Inf Model*
662 53:1689–1699.

663 36. Wang P, Nair MS, Liu L, Iketani S, Luo Y, Guo Y, Wang M, Yu J, Zhang B, Kwong
664 PD, Graham BS, Mascola JR, Chang JY, Yin MT, Sobieszczuk M, Kyratsous CA,
665 Shapiro L, Sheng Z, Huang Y, Ho DD. 2021. Antibody resistance of SARS-CoV-2
666 variants B.1.351 and B.1.1.7. *Nature* 593:130–135.

667 37. Hu J, He CL, Gao Q, Zhang GJ, Cao XX, Long QX, Deng HJ, Huang LY, Chen J,
668 Wang K, Tang N, Huang AL. 2020. D614G mutation of SARS-CoV-2 spike protein
669 enhances viral infectivity. *bioRxiv* <https://doi.org/10.1101/2020.06.20.161323>.

670 38. Ku Z, Xie X, Davidson E, Ye X, Su H, Menachery VD, Li Y, Yuan Z, Zhang X,
671 Muruato AE, Escuer AG, Tyrell B, Doolan K, Doranz BJ, Wrapp D, Bates PF,
672 McLellan JS, Weiss SR, Zhang N, Shi P-Y, An Z. 2021. Molecular determinants
673 and mechanism for antibody cocktail preventing SARS-CoV-2 escape. *Nat
674 Commun* 12:469.

675 39. Wang Z, Schmidt F, Weisblum Y, Muecksch F, Barnes CO, Finkin S, Schaefer-
676 Babajew D, Cipolla M, Gaebler C, Lieberman JA, Oliveira TY, Yang Z, Abernathy
677 ME, Huey-Tubman KE, Hurley A, Turroja M, West KA, Gordon K, Millard KG,
678 Ramos V, Da Silva J, Xu J, Colbert RA, Patel R, Dizon J, Unson-O'Brien C,
679 Shimeliovich I, Gazumyan A, Caskey M, Bjorkman PJ, Casellas R, Hatziloannou T,
680 Bieniasz PD, Nussenzweig MC. 2021. mRNA vaccine-elicited antibodies to SARS-
681 CoV-2 and circulating variants. *Nature* 592:616–622.

682 40. Wibmer CK, Ayres F, Hermanus T, Madzivhandila M, Kgagudi P, Oosthuysen B,
683 Lambson BE, de Oliveira T, Vermeulen M, van der Berg K, Rossouw T, Boswell M,
684 Ueckermann V, Meiring S, von Gottberg A, Cohen C, Morris L, Bhiman JN, Moore
685 PL. 2021. SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-
686 19 donor plasma. *Nat Med* 27:622–625.

687 41. Plante JA, Liu Y, Liu J, Xia H, Johnson BA, Lokugamage KG, Zhang X, Muruato
688 AE, Zou J, Fontes-Garfias CR, Mirchandani D, Scharton D, Bilello JP, Ku Z, An Z,
689 Kalveram B, Freiberg AN, Menachery VD, Xie X, Plante KS, Weaver SC, Shi PY.
690 2020. Spike mutation D614G alters SARS-CoV-2 fitness. *Nature* 592:116–121.

691 42. Starr TN, Greaney AJ, Hilton SK, Ellis D, Crawford KHD, Dingens AS, Navarro MJ,
692 Bowen JE, Tortorici MA, Walls AC, King NP, Veesler D, Bloom JD. 2020. Deep
693 Mutational Scanning of SARS-CoV-2 Receptor Binding Domain Reveals
694 Constraints on Folding and ACE2 Binding. *Cell* 182:1295-1310.e20.

695 43. Zhang L, Jackson CB, Mou H, Ojha A, Peng H, Quinlan BD, Rangarajan ES, Pan
696 A, Vanderheiden A, Suthar MS, Li W, Izard T, Rader C, Farzan M, Choe H. 2020.
697 SARS-CoV-2 spike-protein D614G mutation increases virion spike density and

698 infectivity. *Nat Commun* 11:6013.

699 44. Weissman D, Alameh MG, de Silva T, Collini P, Hornsby H, Brown R, LaBranche
700 CC, Edwards RJ, Sutherland L, Santra S, Mansouri K, Gobeil S, McDanal C, Pardi
701 N, Hengartner N, Lin PJC, Tam Y, Shaw PA, Lewis MG, Boesler C, Şahin U,
702 Acharya P, Haynes BF, Korber B, Montefiori DC. 2021. D614G Spike Mutation
703 Increases SARS CoV-2 Susceptibility to Neutralization. *Cell Host Microbe* 29:23–
704 31.

705 45. Mammano F, Salvatori F, Indraccolo S, De Rossi A, Chieco-Bianchi L, Göttlinger
706 HG. 1997. Truncation of the human immunodeficiency virus type 1 envelope
707 glycoprotein allows efficient pseudotyping of Moloney murine leukemia virus
708 particles and gene transfer into CD4+ cells. *J Virol* 71:3341–3345.

709 46. Christodoulopoulos I, Cannon PM. 2001. Sequences in the Cytoplasmic Tail of the
710 Gibbon Ape Leukemia Virus Envelope Protein That Prevent Its Incorporation into
711 Lentivirus Vectors. *J Virol* 75:4129–4138.

712 47. Funke S, Maisner A, Mühlebach MD, Koehl U, Grez M, Cattaneo R, Cichutek K,
713 Buchholz CJ. 2008. Targeted cell entry of lentiviral vectors. *Mol Ther* 16:1427–1436.

714 48. Bender RR, Muth A, Schneider IC, Friedel T, Hartmann J, Plückthun A, Maisner A,
715 Buchholz CJ. 2016. Receptor-Targeted Nipah Virus Glycoproteins Improve Cell-
716 Type Selective Gene Delivery and Reveal a Preference for Membrane-Proximal
717 Cell Attachment. *PLoS Pathog* 12:e1005641.

718 49. Witting SR, Vallanda P, Gamble AL. 2013. Characterization of a third generation
719 lentiviral vector pseudotyped with Nipah virus envelope proteins for endothelial cell
720 transduction. *Gene Ther* 20:997–1005.

721 50. Höhne M, Thaler S, Dudda JC, Groner B, Schnierle BS. 1999. Truncation of the
722 human immunodeficiency virus-type-2 envelope glycoprotein allows efficient
723 pseudotyping of murine leukemia virus retroviral vector particles. *Virology* 261:70–
724 78.

725 51. Moore MJ, Dorfman T, Li W, Wong SK, Li Y, Kuhn JH, Coderre J, Vasilieva N, Han
726 Z, Greenough TC, Farzan M, Choe H. 2004. Retroviruses Pseudotyped with the
727 Severe Acute Respiratory Syndrome Coronavirus Spike Protein Efficiently Infect
728 Cells Expressing Angiotensin-Converting Enzyme 2. *J Virol* 78:10628–10635.

729 52. Aguilar HC, Anderson WF, Cannon PM. 2003. Cytoplasmic Tail of Moloney Murine
730 Leukemia Virus Envelope Protein Influences the Conformation of the Extracellular
731 Domain: Implications for Mechanism of Action of the R Peptide. *J Virol* 77:1281–
732 1291.

733 53. Khetawat D, Broder CC. 2010. A functional henipavirus envelope glycoprotein
734 pseudotyped lentivirus assay system. *Virol J* 7:1–14.

735 54. Aguilar HC, Matreyek KA, Choi DY, Filone CM, Young S, Lee B. 2007. Polybasic
736 KKR Motif in the Cytoplasmic Tail of Nipah Virus Fusion Protein Modulates
737 Membrane Fusion by Inside-Out Signaling. *J Virol* 81:4520–4532.

738 55. Zingler K, Littman DR. 1993. Truncation of the cytoplasmic domain of the simian
739 immunodeficiency virus envelope glycoprotein increases env incorporation into
740 particles and fusogenicity and infectivity. *J Virol* 67:2824–2831.

741 56. Cathomen T, Naim HY, Cattaneo R. 1998. Measles Viruses with Altered Envelope
742 Protein Cytoplasmic Tails Gain Cell Fusion Competence. *J Virol* 72:1224–1234.

743 57. Chen J, Kovacs JM, Peng H, Rits-Volloch S, Lu J, Park D, Zablotsky E, Seaman

744 MS, Chen B. 2015. Effect of the cytoplasmic domain on antigenic characteristics of
745 HIV-1 envelope glycoprotein. *Science* 349:191–195.

746 58. White E, Wu F, Chertova E, Bess J, Roser JD, Lifson JD, Hirsch VM. 2017.
747 Truncating the gp41 Cytoplasmic Tail of Simian Immunodeficiency Virus Decreases
748 Sensitivity to Neutralizing Antibodies without Increasing the Envelope Content of
749 Virions. *J Virol* 92:e01688-17.

750 59. Yu J, Li Z, He X, Gebre MS, Bondzie EA, Wan H, Jacob-Dolan C, Martinez DR,
751 Nkolola JP, Baric RS, Barouch DH. 2021. Deletion of the SARS-CoV-2 Spike
752 Cytoplasmic Tail Increases Infectivity in Pseudovirus Neutralization Assays. *J Virol*
753 95:e00044-21.

754 60. Johnson MC, Lyddon TD, Suarez R, Salcedo B, LePique M, Graham M, Ricana C,
755 Robinson C, Ritter DG. 2020. Optimized Pseudotyping Conditions for the SARS-
756 COV-2 Spike Glycoprotein. *J Virol* 94:e01062-20.

757 61. Schmidt F, Weisblum Y, Muecksch F, Hoffmann HH, Michailidis E, Lorenzi JCC,
758 Mendoza P, Rutkowska M, Bednarski E, Gaebler C, Agudelo M, Cho A, Wang Z,
759 Gazumyan A, Cipolla M, Caskey M, Robbiani DF, Nussenzweig MC, Rice CM,
760 Hatzioannou T, Bieniasz PD. 2020. Measuring SARS-CoV-2 neutralizing antibody
761 activity using pseudotyped and chimeric viruses. *J Exp Med* 217.

762 62. Havranek KE, Jimenez AR, Acciani MD, Fernanda M, Mendoza L, Mary J, Ballista
763 R, Diaz DA, Brindley MA. 2020. SARS-CoV-2 Spike Alterations Enhance. *Viruses*
764 12:1465.

765 63. Fu X, Tao L, Zhang X. 2020. Comprehensive and systemic optimization for
766 improving the yield of SARS-CoV-2 spike pseudotyped virus. *Mol Ther - Methods*

767 Clin Dev 20:350–356.

768 64. Sarzotti-Kelsoe M, Bailer RT, Turk E, Lin C li, Bilska M, Greene KM, Gao H, Todd
769 CA, Ozaki DA, Seaman MS, Mascola JR, Montefiori DC. 2014. Optimization and
770 validation of the TZM-bl assay for standardized assessments of neutralizing
771 antibodies against HIV-1. J Immunol Methods 409:131–146.

772 65. Cooper AR, Patel S, Senadheera S, Plath K, Kohn DB, Hollis RP. 2011. Highly
773 efficient large-scale lentiviral vector concentration by tandem tangential flow
774 filtration. J Virol Methods 177:1–9.

775 66. Geraerts M, Micheils M, Baekelandt V, Debysen Z, Gijsbers R. 2005. Upscaling of
776 lentiviral vector production by tangential flow filtration. J Gene Med 7:1299–1310.

777 67. Lorenzo-Redondo R, Nam HH, Roberts SC, Simons LM, Jennings LJ, Qi C,
778 Achenbach CJ, Hauser AR, Ison MG, Hultquist JF, Ozer EA. 2020. A clade of
779 SARS-CoV-2 viruses associated with lower viral loads in patient upper airways.
780 EBioMedicine 62:103112.

781 68. Hou YJ, Chiba S, Halfmann P, Ehre C, Kuroda M, Dinnon KH, Leist SR, Schäfer A,
782 Nakajima N, Takahashi K, Lee RE, Mascenik TM, Graham R, Edwards CE, Tse L
783 V., Okuda K, Markmann AJ, Bartelt L, de Silva A, Margolis DM, Boucher RC,
784 Randell SH, Suzuki T, Gralinski LE, Kawaoka Y, Baric RS. 2020. SARS-CoV-2
785 D614G variant exhibits efficient replication ex vivo and transmission in vivo.
786 Science 370:1464–1468.

787 69. Zhou B, Thi Nhu Thao T, Hoffmann D, Taddeo A, Ebert N, Labroussaa F, Pohlmann
788 A, King J, Steiner S, Kelly JN, Portmann J, Halwe NJ, Ulrich L, Trüeb BS, Fan X,
789 Hoffmann B, Wang L, Thomann L, Lin X, Stalder H, Pozzi B, de Brot S, Jiang N,

790 Cui D, Hossain J, Wilson M, Keller M, Stark TJ, Barnes JR, Dijkman R, Jores J,
791 Benarafa C, Wentworth DE, Thiel V, Beer M. 2021. SARS-CoV-2 spike D614G
792 change enhances replication and transmission. *Nature* 592:122–127.

793 70. Michaud WA, Boland GM, Rabi SA. 2020. The SARS-CoV-2 Spike mutation D614G
794 increases entry fitness across a range of ACE2 levels, directly outcompetes the
795 wild type, and is preferentially incorporated into trimers. *bioRxiv*
796 <https://doi.org/10.1101/2020.08.25.267500>.

797 71. Yurkovetskiy L, Wang X, Pascal KE, Tomkins-Tinch C, Nyalile TP, Wang Y, Baum
798 A, Diehl WE, Dauphin A, Carbone C, Veinotte K, Egri SB, Schaffner SF, Lemieux
799 JE, Munro JB, Rafique A, Barve A, Sabeti PC, Kyratsous CA, Dudkina N V., Shen
800 K, Luban J. 2020. Structural and Functional Analysis of the D614G SARS-CoV-2
801 Spike Protein Variant. *Cell* 183:739-751.e8.

802 72. Cavazzana-Calvo M, Payen E, Negre O, Wang G, Hehir K, Fusil F, Down J, Denaro
803 M, Brady T, Westerman K, Cavallesco R, Gillet-Legrand B, Caccavelli L, Sgarra R,
804 Maouche-Chrétien L, Bernaudin F, Girot R, Dorazio R, Mulder GJ, Polack A, Bank
805 A, Soulier J, Larghero J, Kabbara N, Dalle B, Gourmel B, Socie G, Chrétien S,
806 Cartier N, Aubourg P, Fischer A, Cornetta K, Galacteros F, Beuzard Y, Gluckman
807 E, Bushman F, Hacein-Bey-Abina S, Leboulch P. 2010. Transfusion independence
808 and HMGA2 activation after gene therapy of human β -thalassaemia. *Nature*
809 467:318–322.

810 73. Fernández A. 2020. Structural Impact of Mutation D614G in SARS-CoV-2 Spike
811 Protein: Enhanced Infectivity and Therapeutic Opportunity. *ACS Med Chem Lett*
812 11:1667–1670.

813 74. McAuley AJ, Kuiper MJ, Durr PA, Bruce MP, Barr J, Todd S, Au GG, Blasdell K,
814 Tachedjian M, Lowther S, Marsh GA, Edwards S, Poole T, Layton R, Riddell SJ,
815 Drew TW, Druce JD, Smith TRF, Broderick KE, Vasan SS. 2020. Experimental and
816 in silico evidence suggests vaccines are unlikely to be affected by D614G mutation
817 in SARS-CoV-2 spike protein. *npj Vaccines* 5:96.

818 75. Deng X, Garcia-Knight MA, Khalid MM, Servellita V, Wang C, Morris MK,
819 Sotomayor-González A, Glasner DR, Reyes KR, Gliwa AS, Reddy NP, Sanchez C,
820 Martin S, Federman S, Cheng J, Balceruk J, Taylor J, Streithorst JA, Miller S,
821 Kumar GR, Sreekumar B, Chen P-Y, Schulze-Gahmen U, Taha TY, Hayashi J,
822 Simoneau CR, McMahon S, Lidsky P V., Xiao Y, Hemarajata P, Green NM,
823 Espinosa A, Kath C, Haw M, Bell J, Hacker JK, Hanson C, Wadford DA, Anaya C,
824 Ferguson D, Lareau LF, Frankino PA, Shivram H, Wyman SK, Ott M, Andino R,
825 Chiu CY. 2021. Transmission, infectivity, and antibody neutralization of an
826 emerging SARS-CoV-2 variant in California carrying a L452R spike protein
827 mutation. *medRxiv* <https://doi.org/10.1101/2021.03.07.21252647>.

828 76. Whitt MA. 2010. Generation of VSV pseudotypes using recombinant ΔG-VSV for
829 studies on virus entry, identification of entry inhibitors, and immune responses to
830 vaccines. *J Virol Methods* 169:365–374.

831 77. Chen YW, Huang SX, De Carvalho ALRT, Ho SH, Islam MN, Volpi S, Notarangelo
832 LD, Ciancanelli M, Casanova JL, Bhattacharya J, Liang AF, Palermo LM, Porotto
833 M, Moscona A, Snoeck HW. 2017. A three-dimensional model of human lung
834 development and disease from pluripotent stem cells. *Nat Cell Biol* 19:542–549.

835 78. Chandrasekaran B, Fernandes S. 2020. A Cross-Sectional Study Examining the

836 Seroprevalence of Severe Acute Respiratory Syndrome Coronavirus 2 Antibodies
837 in a University Student Population. *Diabetes Metab Syndr* 67:763–768.
838

839 **FIGURE LEGENDS**

840

841 **Figure 1. Impact of Spike protein cytoplasmic tail truncation on LV and VSV vectors.**

842 (A) Transduction of HeLa-ACE2 cells by equal volumes of unconcentrated vector
843 supernatants of LV-GFP or VSV-Luc vectors, pseudotyped with full-length (S) or
844 truncated (S Δ 18) Spike proteins. Shown are mean and standard deviations from 3
845 independent vector stocks, *p<0.05, unpaired t-test, one-tail (B) Spike protein
846 incorporation into vector particles, analyzed by Western blot using antibodies against the
847 Spike S2 subunit and vector particle components p24 (LV) and M (VSV). Full length Spike
848 (S) and S2 subunit are indicated. (C) Genomic copy number for indicated vectors. Shown
849 are mean and standard deviations from 3 independent vector stocks.

850

851 **Figure 2. Transduction of cells by Spike VSV pseudovectors.** (A) Indicated cell lines
852 were transduced with equal amounts of S Δ 18 VSV-Luc vectors and luciferase activity in
853 cell lysates analyzed 24 hr later. Shown are mean and standard deviations from 3
854 independent vector stocks. (B) HeLa and HeLa-ACE2 cells were detached from culture
855 flasks by trypsin, seeded into 96 well plates and transduced (Td) with equal amounts of
856 S Δ 18 VSV-Luc vectors. either immediately (0 hr) or 24 hours after seeding, and luciferase
857 measured 24 hours later. Data from 9 different wells in a single experiment are shown.
858 ***p<0.001, multiple T test. (C) ACE2 expression levels on cell surface measured by flow
859 cytometry. Cells were stained with anti-ACE2 antibody at 0 or 6 hours after trypsinization.
860 Means and standard deviations for MFI from two independent experiments are shown.
861 (D) Lung bud organoids were transduced with equal amounts of VSV-GFP vectors

862 pseudotyped with SΔ18 or control (bald) vectors with no glycoprotein. GFP expression
863 was visualized 24 hours later.

864

865 **Figure 3. Concentration methods for Spike VSV pseudovectors.** (A) Genome copy
866 numbers of VSV-Luc vectors pseudotyped with SΔ18 Spike protein, from unconcentrated
867 supernatants (1x Uncon.), or following 12x concentration (v/v) by either ultracentrifugation
868 (Ultra) or tangential flow filtration (TFF). Shown are mean and standard deviations from
869 3 independent vector stocks. (B) Vector recovery, calculated by comparing genome
870 copies in concentrated versus unconcentrated vector stocks. Shown are mean and
871 standard deviation from 3 independent vector concentrations for each method, *p<0.05,
872 one-tailed Paired T test. (C) Transduction of HeLa-ACE2 cells by serial dilutions (1:5 to
873 1:405) of indicated vectors. Shown are mean and standard deviation from three
874 independent vector stocks. *p<0.01, two tail Paired T test, for comparison between 12x
875 Ultra and 12x TFF at the same dilutions.

876

877 **Figure 4. Impact of D614G mutation only observed with full-length Spike protein.**
878 (A) Indicated cell lines were transduced with G614 or D614 variants of VSV-Luc vectors,
879 for both full-length and truncated Spike protein versions. The pairs of compared vectors
880 were produced in the same way, and equal volumes applied. Luciferase activity was
881 measured after 24 hours and ratios calculated. Means and standard deviations for 3
882 independent vector stocks are shown. (B) Ratio of genomic titers of G614 versus D614
883 vectors, for both full-length and truncated Spike proteins. Shown are mean and standard
884 deviations from equal volumes of 3 independent vector stocks, produced in the same way

885 for each pairwise comparison. (C) Cell surface expression levels of different Spike protein
886 variants on 293T vector-producing cells, measured by flow cytometry using anti-S1 or
887 anti-S2 antibodies at the time of vector harvest. Expression levels are reported as mean
888 fluorescence intensity (MFI). Control 293T cells were from “bald” vector production, which
889 were not transfected with any glycoprotein but still infected by the VSVΔG particles.
890 Means and standard deviations from two independent experiments are shown. (D)
891 Western blot showing incorporation of Spike proteins into VSV particles, from equal
892 volumes of 100x concentrated vector supernatants, using antibodies against S1 or S2
893 subunits of Spike, or VSV M protein. (E) Comparison of Spike subunit incorporation into
894 vectors, normalized to VSV M. Data from 2-3 independent vector stocks, indicated by
895 individual dots. S1 and S2 subunits were only detected in one stock of S-D614 vectors.

896

897 **Figure 5. Sensitivity of different Spike proteins to convalescent serum**
898 **neutralization.** Indicated VSV-Luc pseudoviruses were incubated with serially-diluted
899 sera (1:10 to 1:7290 fold) from control or convalescent COVID-19 patients (CCS) for 30
900 mins. before addition to HeLa-ACE2 cells. Luciferase activity was determined 24 hours
901 later. All values were normalized to the luciferase signal from cells transduced with the
902 same pseudovirus without serum. Means and standard deviations from 3 technical
903 replicates of single vector stocks are shown.

Figure 1.

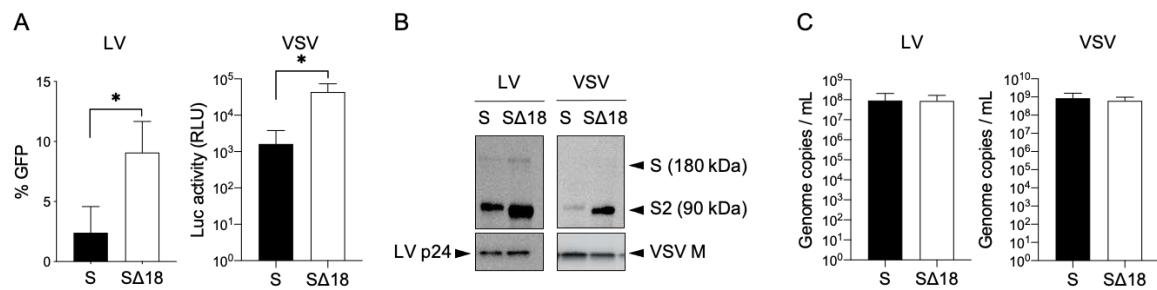


Figure 2.

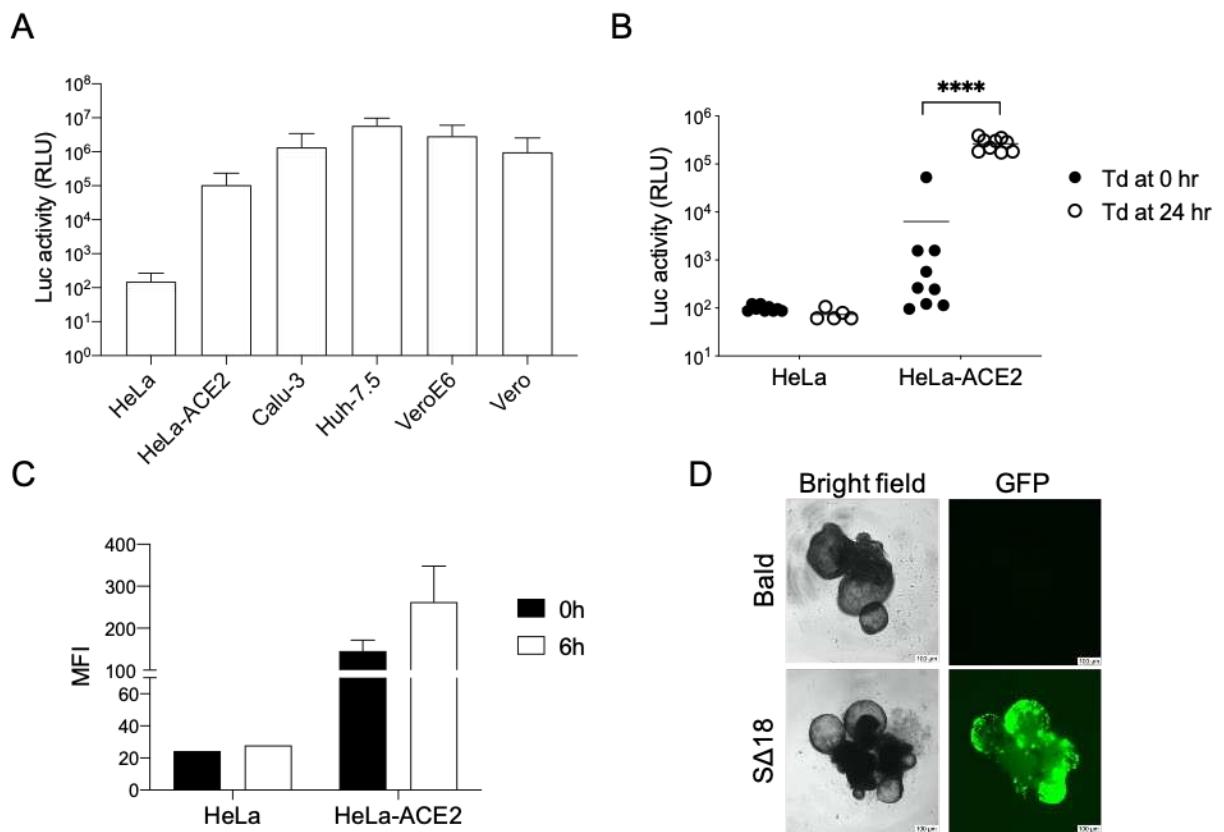


Figure 3.

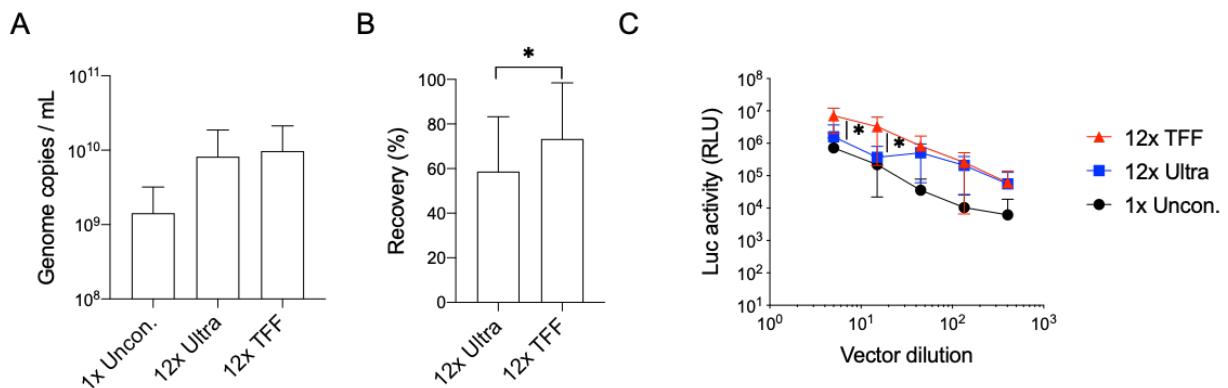


Figure 4.

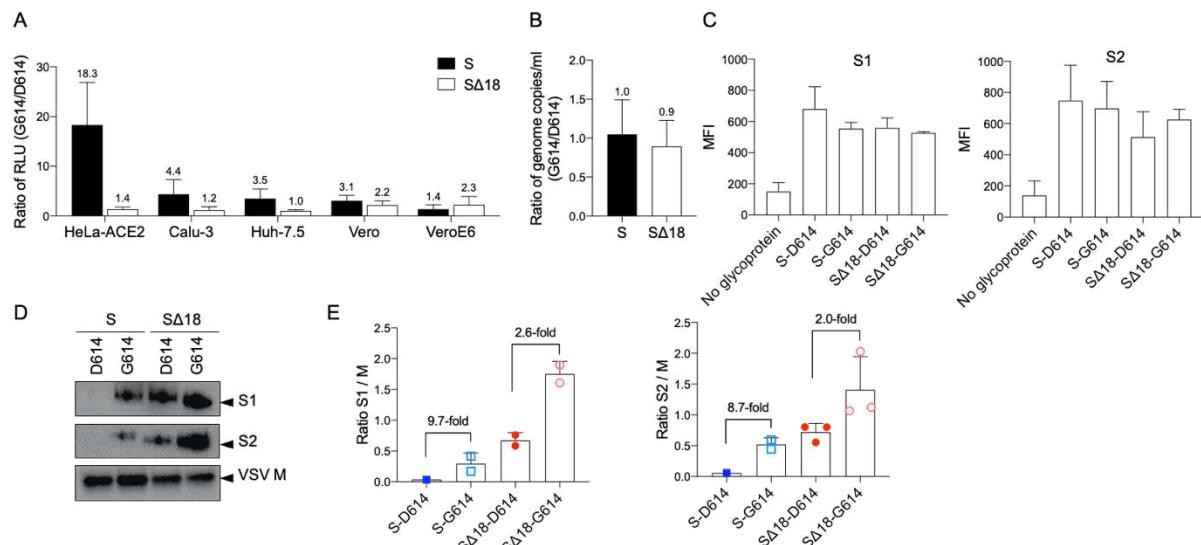
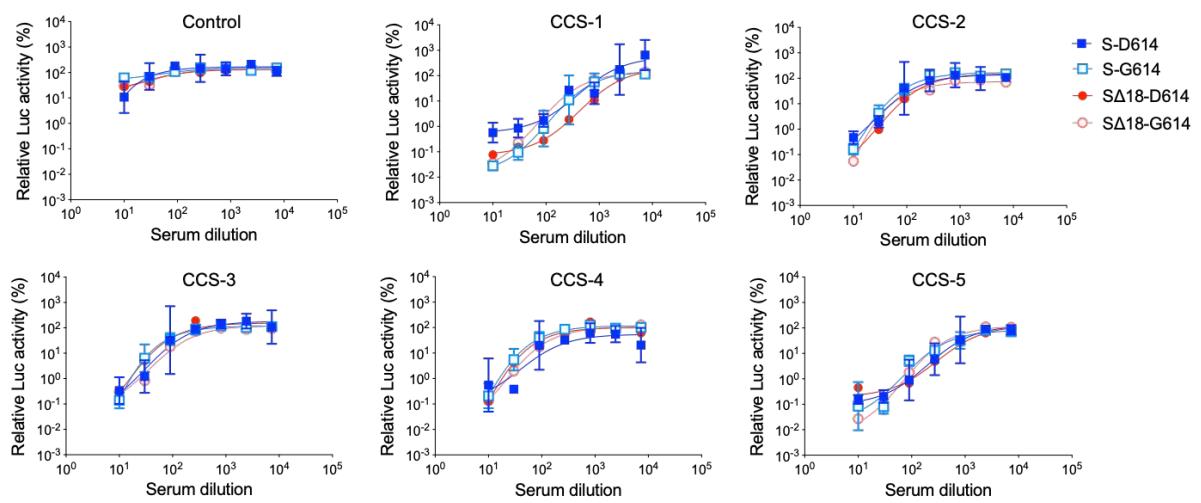



Figure 5.

