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 2 

ABSTRACT 23 

The high pathogenicity of SARS-CoV-2 requires it to be handled under biosafety 24 

level 3 conditions. Consequently, Spike protein pseudotyped vectors are a useful tool to 25 

study viral entry and its inhibition, with retroviral, lentiviral (LV) and vesicular stomatitis 26 

virus (VSV) vectors the most commonly used systems. Methods to increase the titer of 27 

such vectors commonly include concentration by ultracentrifugation and truncation of the 28 

Spike protein cytoplasmic tail. However, limited studies have examined whether such a 29 

modification also impacts the protein’s function. Here, we optimized concentration 30 

methods for SARS-CoV-2 Spike pseudotyped VSV vectors, finding that tangential flow 31 

filtration produced vectors with more consistent titers than ultracentrifugation. We also 32 

examined the impact of Spike tail truncation on transduction of various cell types and 33 

sensitivity to convalescent serum neutralization. We found that tail truncation increased 34 

Spike incorporation into both LV and VSV vectors and resulted in enhanced titers, but 35 

had no impact on sensitivity to convalescent serum inhibition. In addition, we analyzed 36 

the effect of the D614G mutation, which became a dominant SARS-CoV-2 variant early 37 

in the pandemic. Our studies revealed that, similar to the tail truncation, D614G 38 

independently increases Spike incorporation and vector titers, but that this effect is 39 

masked by also including the cytoplasmic tail truncation. Therefore, the use of full-length 40 

Spike protein, combined with tangential flow filtration, is recommended as a method to 41 

generate high titer pseudotyped vectors that retain native Spike protein functions. 42 

 43 

IMPORTANCE 44 

Pseudotyped viral vectors are useful tools to study the properties of viral fusion proteins, 45 

especially those from highly pathogenic viruses. The Spike protein of SARS-CoV-2 has been 46 
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investigated using pseudotyped lentiviral and VSV vector systems, where truncation of its 47 

cytoplasmic tail is commonly used to enhance Spike incorporation into vectors and to increase 48 

the titers of the resulting vectors. However, our studies have shown that such effects can also 49 

mask the phenotype of the D614G mutation in the ectodomain of the protein, which was a 50 

dominant variant early in the COVID-19 pandemic. To better ensure the authenticity of Spike 51 

protein phenotypes when using pseudotyped vectors, we therefore recommend using full-length 52 

Spike proteins, combined with tangential flow filtration methods of concentration, if higher titer 53 

vectors are required.   54 
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INTRODUCTION 55 

Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory 56 

syndrome coronavirus 2 (SARS-CoV-2) and was first reported in Wuhan, China, in 57 

December 2019 (1). The disease rapidly spread worldwide, causing over 150 million 58 

confirmed cases and more than 3 million reported deaths by May 2021 (2). The 59 

accompanying worldwide research effort has resulted in a large number of vaccine 60 

candidates, and both national and international clinical trials to assess novel and 61 

repurposed drug regimens (3). In the United States, the SARS-CoV-2 Spike glycoprotein 62 

has been a primary target of such efforts. Spike is a major viral antigen that induces 63 

protective immune responses in COVID-19 (4–6) patients and mediates cell entry by 64 

binding to angiotensin-converting enzyme 2 (ACE2) (1, 7, 8) or other receptors (9, 10). 65 

ACE2 is expressed in the human respiratory system (11), especially on type II 66 

pneumocytes (12), which are the main target cell for SARS-CoV-2 infection. Expression 67 

of ACE2 in other organs also allows infection outside the lung (11).  68 

Due to the high pathogenicity of SARS-CoV-2, biosafety level 3 (BSL3) labs are 69 

required for studies that involve replication-competent virus. Therefore, investigators 70 

often use Spike protein pseudovirus vector systems, based on replication-incompetent 71 

vector particles and attenuated or conditional viruses. Identification of an optimal 72 

pseudovirus system for any particular viral entry glycoprotein typically involves comparing 73 

the most commonly used systems: replication-incompetent lentiviral (LV) or retroviral (RV) 74 

vectors, or conditional vesicular stomatitis virus (VSV) viruses that are deleted for the 75 

VSV glycoprotein (G) (13, 14). SARS-CoV-2 Spike protein can pseudotype all three 76 

vector systems, which have been used to investigate viral entry (15–18), neutralization 77 
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by monoclonal antibodies or convalescent plasma (4, 5, 15, 19–27), entry inhibitors (15, 78 

23, 28, 29), and to characterize surging viral variants (30–44). In approximately one third 79 

of these studies, deletions of 18-21 amino acids from the cytoplasmic tail of Spike were 80 

used to enhance vector titers and thereby facilitate the study. 81 

Cytoplasmic tail truncation of viral glycoproteins is a common strategy to enhance 82 

pseudovirus formation since this can remove steric interference that may occur between 83 

the heterologous viral glycoproteins and the vector matrix or capsid proteins (45–50). Also 84 

employed are cytoplasmic tail swaps, whereby the tail from the natural viral glycoprotein 85 

is used to create a chimeric glycoprotein with enhanced incorporation properties (46, 51). 86 

However, we and others have shown that tail modifications can also have functional 87 

consequences, for example, removing endocytosis signals that lead to increased cell 88 

surface levels and enhanced incorporation into vector particles (52, 53), alterations of the 89 

ectodomain conformation (52, 54), changes to fusogenicity (46, 54–56) and altered 90 

antigenic characteristics (57, 58). 91 

SARS-CoV-2 Spike contains a putative ER retention signal (KLHYT) at its C-92 

terminus, which is removed by the tail truncations of 13 amino acids (59) or 18-21 amino 93 

acids that are frequently employed (24, 60–63). Compared to the full-length Spike, such 94 

truncations were reported to generate ~10-20-fold higher titers of both LV vectors (59–61, 95 

63) and VSV vectors (24, 60, 62). Truncated Spike also enhances RV vector titers, albeit 96 

with a smaller effect when compared side by side with LV and VSV vectors (60). Havranek 97 

et al. (62) and Yu et al. (59) investigated the mechanism for such an effect for VSV and 98 

LV pseudoviruses, and found that tail truncation enhanced both Spike incorporation into 99 

the viral particles and cell-cell fusion for Spike-expressing cells, but without altering cell 100 
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surface expression levels. However, the impact of Spike tail truncations on any other 101 

ectodomain functions remains unclear.  102 

In this report, we compared the practicality and functionality of using Spike 103 

pseudotyped vectors based on LV and VSV, and pseudotyped with either full-length or 104 

tail truncated proteins. We compared methods to prepare such vectors and identified 105 

tangential flow filtration as a facile method that is superior to ultracentrifugation and allows 106 

efficient production at a larger scale. An optimized system based on VSV vectors was 107 

used to assess the impact of the Spike mutation D614G (34), and to assess neutralizing 108 

activity in convalescent serum. Our studies determined that although Spike tail truncation 109 

boosts incorporation into vectors and enhances the titers achieved for unconcentrated 110 

supernatants, it also blunted the ability to observe differences caused by this specific 111 

Spike mutation. We therefore recommend that studies using Spike pseudotyped vectors 112 

retain the natural full-length cytoplasmic tail and use other strategies, such as 113 

concentration method and vector system choice, to achieve the required vector titers.  114 

 115 

RESULTS 116 

 117 

Spike cytoplasmic tail truncation facilitates vector incorporation and enhances titer 118 

Cytoplasmic tail truncation of SARS-CoV-2 Spike has been reported to enhance 119 

the transduction efficiency of pseudotyped LV and VSV vectors (59–61, 63) with the effect 120 

suggested to be the result of enhanced incorporation and/or fusogenicity of Spike (59, 121 

62). Using both the full-length Spike (S) and an 18 amino acid cytoplasmic tail truncation 122 

(SΔ18), we generated pseudotyped LV and VSV vectors carrying reporter GFP or 123 
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luciferase genes, respectively. We compared the ability of the two Spike proteins to be 124 

incorporated into the vectors and to transduce HeLa cells expressing human ACE2 125 

(HeLa-ACE2). Transduction by LV-GFP vectors was analyzed at 48 hours post-126 

transduction, while VSV-Luc vectors were analyzed as early as 16-24 hours post-127 

transduction. 128 

   Consistent with previous findings, we found that the cytoplasmic tail truncation 129 

increased vector transduction efficiency on HeLa-ACE2 cells, by approximately 4- and 130 

30-fold for the LV-GFP and VSV-Luc vectors, respectively (Fig. 1A). We also observed a 131 

significant increase in incorporation for the truncated Spike protein in both vector systems 132 

(Fig. 1B), while having no impact on other viral particle proteins (Fig. 1B) or vector 133 

genome copy number (Fig. 1C). Together, these results suggest that cytoplasmic tail 134 

truncation increases Spike incorporation into both LV and VSV particles and this results 135 

in higher infectivity per particle. Since the VSV-Luc vectors have a faster read-out time, 136 

we chose this pseudovirus system for the rest of our studies. 137 

 138 

Susceptibility of different cell lines and lung organoids to Spike protein 139 

pseudovectors 140 

Next, we tested the permissivity of different cell lines and a lung organoid model 141 

to SΔ18 pseudotyped VSV vectors. In agreement with previous finding, several ACE2-142 

expressing cells were found to be susceptible to the vectors (1, 18), while ACE2 over-143 

expression was required to support transduction of HeLa cells (Fig. 2A). We also 144 

evaluated an alternative transduction protocol with a shortened timeline, whereby 145 

trypsinized cells are incubated with the vectors simultaneously with seeding (64). 146 
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Although this method shortened the overall process compared to a typical protocol that 147 

first seeds the cells in a tissue culture plate for 24 hours before incubation with vectors, it 148 

resulted in significantly lower transduction rates (Fig. 2B). Examination of cell surface 149 

ACE2 levels by flow cytometry revealed that newly trypsinized cells had 1.5-fold lower 150 

ACE2 levels compared to cells allowed to recover for 6 hours post-trypsinization (Fig. 2C), 151 

suggesting the reason for the lower titers.  152 

Finally, we tested the susceptibility of a 3D lung bud organoid model to SΔ18 VSV 153 

pseudovectors carrying a GFP reporter. Compared to cell lines, lung organoids provide 154 

more physiologically relevant models of virus infection and have been used to identify 155 

candidate COVID-19 therapeutics (29). SΔ18 pseudotyped VSV-GFP vectors were able 156 

to efficiently transduce the cells, with GFP expression observed throughout the organoid 157 

by 24 hours (Fig. 2D). 158 

 159 

Tangential flow filtration facilitates scale-up of vector production and 160 

concentration 161 

To identify an optimal method for concentration of Spike protein pseudovectors 162 

suitable for a research laboratory, we compared ultracentrifugation through a 20% w/v 163 

sucrose cushion with tangential flow filtration (TFF). Ultracentrifugation is limited by the 164 

capacity of a rotor, for example SW28 rotors have a maximum capacity of ~230 ml of 165 

vector supernatant per 2 hours run.  In contrast, TFF can process much larger volume 166 

(65, 66) and a single TFF filter with 1000 cm2 surface area can process up to 3000 ml in 167 

2 hours. Larger filter systems with capacities up to 15 L are also available. In addition, 168 
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VSV-G pseudotyped LV vectors produced by TFF are reported to have a higher recovery 169 

rate than when prepared by ultracentrifugation (66). 170 

To compare these approaches, 100 ml of SΔ18 pseudotyped VSV-Luc vector 171 

supernatants were subjected to either ultracentrifugation (Ultra) or TFF and concentrated 172 

into a 8ml final stock (12x, v/v). Vector genome copies in the unconcentrated and 12x 173 

concentrated vector stocks were measured by ddPCR, which revealed slightly better 174 

recovery rates following TFF (~70%) compared to ultracentrifugation (~60%) (Fig. 3A and 175 

3B).  At the same time, the transduction efficiencies of the three vector stocks were 176 

measured on HeLa-ACE2 cells, using serially diluted vectors (1:5 to 1:450 dilutions) (Fig. 177 

3C). At the higher dilution points, both 12x Ultra and 12x TFF vector preparations 178 

produced about a 10-fold higher luciferase signal compared to the unconcentrated 179 

vectors. Interestingly, at the lower dilutions (1:5 and 1:15), the 12x Ultra vector stock 180 

showed no enhancement over unconcentrated vectors, while the 12x TFF vector stocks 181 

retained their 10-fold higher transduction rates. This observation is suggestive of the 182 

presence of an inhibitory factor that is concentrated during ultracentrifugation but was not 183 

retained following TFF.  184 

In summary, we found that TFF facilitates large-scale processing of vector stocks, 185 

with similar genomic copy number recovery rates as the more typical ultracentrifugation 186 

method. More importantly, TFF results in vector stocks that retain a more consistent titer 187 

throughout a broader range of different dilutions than those produced by 188 

ultracentrifugation. 189 

 190 

  191 
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Cytoplasmic tail truncation alters Spike protein functional properties 192 

We used the VSV pseudovirus system to examine the impact of the D614G 193 

mutation of Spike protein. This mutation was first detected in China and Germany in late 194 

January and became the dominant circulating variant of SARS-CoV-2 globally by April 195 

2020 (34). The mutation has functional consequences for the virus, resulting in higher 196 

viral loads in the upper respiratory tract (34, 67). In vitro studies with SARS-CoV-2 197 

revealed that the D614G mutation enhanced replication on human lung epithelial cells 198 

and primary airway tissue (41), and increased replication or transmissibility in human 199 

ACE2 transgenic mice and hamster models (41, 68, 69). Effects were also observed using 200 

Spike protein pseudoviruses, where the D614G mutation was reported to enhance Spike 201 

incorporation into vector particles, despite minimal or no effect on Spike expression in 202 

vector-producing cells (43, 70), and to increase transduction rates on various cell lines 203 

(30, 32, 34, 37, 43, 63, 71).  204 

Since we had noted that the cytoplasmic tail truncation of Spike protein also 205 

increased incorporation rates and transduction efficiencies (Fig. 1), we next examined the 206 

impact of the D614G mutation in the context of both full-length and truncated Spike 207 

proteins. For the full-length Spike protein, we observed up to 18-fold higher transduction 208 

rates for the G614 variant on HeLa-ACE2 cells, with less striking effects on the other cell 209 

lines we tested. In contrast, transduction rates for the variants in the SΔ18 backbone 210 

showed minimal to no differences across the range of cell types tested (Fig. 4A). The 211 

discrepancy between the behavior of the full-length S and SΔ18 vectors occurred despite 212 

similar genome copy numbers (Fig. 4B), ruling out an effect on vector production. We 213 

also observed no differences in cell surface expression levels of Spike when comparing 214 
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the different variants in vector-producing cells (Fig. 4C). Instead, in agreement with 215 

previous studies using full-length Spike pseudotyped RV and LV vectors, we found that 216 

the D614G mutation enhanced Spike incorporation, albeit with a much larger effect for 217 

the full-length Spike versus the truncated protein (~9-fold versus ~2-fold effect) (Fig. 4D, 218 

E). Together, these observations suggest that a primary effect of both the tail truncation 219 

and the D614G mutation is on Spike protein incorporation, which in turn leads to 220 

enhanced titers, and that an upper limit for these effects likely reduces the impact of the 221 

D614G mutation when combined with a tail truncation. 222 

 223 

D614G mutation or cytoplasmic tail truncation does not alter Spike protein 224 

sensitivity to convalescent serum  225 

Spike protein pseudovectors are a useful tool to measure antibody neutralizing 226 

activity in COVID-19 patient or convalescent sera (4, 5, 15, 19, 20, 23, 24, 26, 27, 61). 227 

We examined whether the D614G mutation or the cytoplasmic tail truncation altered 228 

sensitivity to neutralization by a panel of convalescent sera. VSV-Luc vectors displaying 229 

the four different Spike proteins were incubated with serially-diluted sera for 30 minutes 230 

before being applied to HeLa-ACE2 cells. After normalizing values to the luciferase 231 

signals obtained from cells transduced in the absence of sera, we observed that all four 232 

Spike proteins exhibited similar sensitivities to each serum (Fig 5). This suggests that 233 

neither the D614G mutation nor the cytoplasmic tail truncation alter the sensitivity of the 234 

Spike protein to neutralization. 235 

 236 

  237 
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DISCUSSION 238 

Pseudotyped vectors are a useful system to study the entry glycoproteins from 239 

highly pathogenic viruses such as SARS-CoV-2, as they remove the need for BSL-3 240 

laboratory conditions. We confirmed that the SARS-CoV-2 Spike protein was able to 241 

pseudotype both LV and VSV vectors, and determined that the combination of using a 242 

conditional VSV vector and a luciferase reporter gene had the advantage of allowing titers 243 

to be read at 16 hours post-transduction. Such Spike pseudotyped VSV vectors 244 

supported entry into a variety of mammalian cell types, including lung organoid systems, 245 

making them a useful system with which to study SARS-CoV-2 entry under standard 246 

laboratory conditions.  247 

Optimization of pseudotyped vectors includes selection of an appropriate 248 

concentration method, such as centrifugation, PEG precipitation or ultrafiltration. For VSV 249 

pseudovectors, we found that concentration by TFF produced vector stocks with higher 250 

recovery rates and more consistent titers throughout a dilution series than those produced 251 

by ultracentrifugation. TFF also has the advantage of providing a partial purification due 252 

to the selective loss of potential contaminants below the cut-off value of the filter, and 253 

provides a larger processing capacity than ultracentrifugation. As a result, TFF is 254 

frequently used to facilitate large-scale vector production, including for clinical use (65, 255 

66, 72). In our own experience, 3L of supernatant can be concentrated down to 50ml in 256 

2 hours. 257 

Since pseudovector titers can be impacted by incompatibilities between a viral 258 

fusion protein and the heterologous viral particle (45–50), an additional strategy to 259 

enhance vector titers has been to truncate the fusion protein’s cytoplasmic tail. We found 260 
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that this approach increased the titers of Spike protein pseudovectors based on both LV 261 

and VSV, in agreement with previous reports (24, 59–63). Furthermore, as others have 262 

also noted (59, 62), the enhanced vector titers correlated with increased levels of Spike 263 

protein incorporation that were not simply the result of higher levels of cell surface 264 

expression following tail truncation, and tail truncation has also been reported to enhance 265 

the fusogenicity of Spike (59, 62). Together, this suggests that truncation of the 266 

cytoplasmic could also alter the conformation or function of the protein’s ectodomain, as 267 

has been reported for viral fusion proteins in HIV (57), measles virus (56), simian 268 

immunodeficiency virus (55) and gibbon ape leukemia virus (46), where truncation of the 269 

cytoplasmic tail impacted ectodomain conformation or functions such as receptor binding, 270 

or fusogenicity. 271 

Our comparison of techniques to enhance vector titers also identified an area for 272 

caution; although cytoplasmic tail truncation enhanced pseudovector titers, they can also 273 

have unintended functional consequences. Specifically, we found that the impact of the 274 

D614G mutation on Spike protein incorporation and vector titer was obscured by the 275 

cytoplasmic tail truncation. A similar lack of effect of the D614G mutation on titer was also 276 

reported in another study using a 21 amino acid deletion of the Spike protein cytoplasmic 277 

tail in VSV pseudovectors (62). These findings suggest that tail-truncated Spike proteins 278 

should be used with caution for studies analyzing the impact of Spike mutations, or to test 279 

potential therapeutics targeting SARS-CoV-2 entry.  280 

The mechanism for enhanced incorporation and/or titer by D614G is not entirely 281 

understood but structural analyses have suggested that it could impact Spike protein 282 

structure and stability, both within and between Spike monomers. For example, it has 283 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 22, 2021. ; https://doi.org/10.1101/2021.06.21.449352doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.21.449352
http://creativecommons.org/licenses/by-nc-nd/4.0/


 14 

been suggested that a glycine at this location could strengthen the association between 284 

the S1/S2 subunits through an impact on the epistructure that decreases the 285 

intramolecular wrapping in the S1 subunit but promotes intermolecular wrapping between 286 

S1 and S2 (73). In an alternative model, the D614G mutation could alter the structure 287 

and/or stability of the Spike trimer by abrogating the hydrogen bond connecting D614 in 288 

the S1 subunit of one monomer with T859 in the S2 subunit of a neighboring monomer 289 

(34). These alterations were hypothesized to result in a greater tendency of the G614 290 

monomers to form stable trimers which, in turn, could facilitate their incorporation into 291 

virions. As evidence, a mixture of equal amounts of D614 and G614 Spike variants 292 

expressed in vector-producing cells resulted in a higher level of G614 proteins in the 293 

incorporated Spike trimers (70). 294 

Finally, we also used the VSV pseudovectors to evaluate the impact of the D614G 295 

mutation on infectivity of different cell types and sensitivity to antibody neutralization. 296 

Consistent with previous findings using pseudoviruses (32–34, 37, 43, 44) or SARS-CoV-297 

2 virions (41, 68), we found that the G614 variant exhibited enhanced transduction of 298 

various cell lines when compared to the D614 variant, and that this correlated with 299 

increased Spike incorporation into the VSV particles (43, 70). As previously noted, these 300 

effects were significantly abrogated when tail truncated variants were used, consistent 301 

with an upper limit for the enhancement of Spike incorporation.  302 

In contrast, the serum neutralization studies revealed no differences in sensitivity 303 

for either residue at position 614, and in either of the cytoplasmic tail configurations. This 304 

is in agreement with the majority of reports testing the impact of the D614G mutation with 305 

full-length Spike  pseudovectors or SARS-CoV-2 virus against human convalescent 306 
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serum (30, 34, 43, 68), serum from convalescent animals (41), or vaccinated human or 307 

animals (44, 68, 74).  308 

In summary, we found that although cytoplasmic tail truncations enhance SARS-309 

CoV-2 Spike protein incorporation into both LV and VSV vectors, and enhance the titers 310 

of unconcentrated vectors, they can also mask the phenotype of the D614G mutation. 311 

Pseudotyped vectors are increasingly being used to study newly emerging SARS-CoV-2 312 

variants, where both full-length (42, 75) and truncated Spike proteins (25, 35, 39) have 313 

been used in studies investigating the impact of mutations on Spike protein properties 314 

such as ACE2 binding, transduction efficiency or sensitivity to neutralization. To better 315 

ensure the authenticity of the Spike protein functions being investigated in such vectors, 316 

we recommend using a full-length Spike protein, and combining vector production with 317 

TFF if higher titer vectors are required.  318 

 319 

METHODS 320 

Plasmids. Full-length (S) and 18 amino acid cytoplasmic tail truncated (SΔ18) Spike 321 

proteins for the Wuhan-Hu-1 isolate of SARS-CoV-2 (GenBank: MN908947.3) were 322 

provided by Dr. James Voss (The Scripps Research Institute) in a plasmid pcDNA3.3 323 

backbone. D614G mutants were generated by site-directed mutagenesis. A VSV G 324 

protein expression plasmid was obtained from Addgene (Watertown, MA; Cat.# 8454). 325 

 326 

Cell lines. 293T, HeLa, HeLa-ACE2, Vero, VeroE6 and Huh7.5 cells were maintained in 327 

Dulbecco’s modified Eagle medium (DMEM), and Calu-3 cells were maintained in Eagle's 328 

Minimum Essential Medium (EMEM). All media were supplemented with 4 mM glutamine 329 
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and 10% fetal bovine serum (FBS). HeLa-ACE2 cells were provided by Dr. James Voss, 330 

and were generated by transduction of HeLa cells with a lentiviral vector packaging a 331 

CMV-ACE2 expression cassette. The Huh7.5 cell line was provided by Dr. Jae Jung 332 

(Cleveland Clinic). All other cell lines were obtained from ATCC. 333 

 334 

VSV vector production, concentration and transduction. Replication-deficient 335 

VSVΔG vectors (76), containing expression cassettes for firefly luciferase or GFP in place 336 

of the VSV G protein, were provided by Dr. Jae Jung and Dr. Oscar Negrete (Sandia 337 

National Laboratories), respectively. To generate Spike pseudotyped VSV vectors, 4 x 338 

106 293T cells were seeded in DMEM plus 10% FBS in a 10cm plate and transfected with 339 

15 μg of Spike expression plasmid 24 hours later, using the calcium-phosphate 340 

transfection method (76). Media was replaced 16 hours later with 10 ml fresh media, and 341 

after a further 8 hours, 5 ml was removed and 2x108 vector genomes of VSVΔG particles 342 

were added for one hour at 37 °C. Following this incubation, cells were washed three 343 

times with PBS and incubated for a further 24 hours before harvesting supernatants.  344 

For larger scale production, quantities were adjusted to seed 3x107 cells in 500cm2 345 

plates, transfection with 124.5 μg of Spike expression plasmid and infection by 1.7x109 346 

vector genomes of VSVΔG particles per 500cm2 plate. To propagate VSVΔG particles, 347 

the same protocol was followed but replacing the Spike expression plasmid with the same 348 

quantity of a VSV G expression plasmid, and no PBS washes were performed after 349 

infection by VSVΔG. 350 

Vector supernatants were harvested and filtered through 0.45 μm syringe filters, 351 

and either aliquoted or concentrated by ultracentrifugation using 20% (w/v) sucrose 352 
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cushions for 2 hours at 25,000 rpm in an SW41 or SW28 rotor (Beckman, Indianapolis, 353 

IN). Alternatively, large-scale supernatant preparations were concentrated by tangential 354 

flow filtration (TFF) using a polyethersulfone membrane hollow fiber unit with 100 kDa 355 

molecular weight cut off and 155cm2 filtration surface (Spectrum Laboratories, Rancho 356 

Dominguez, CA) and a KR2i peristaltic pump (Spectrum Laboratories). To perform buffer 357 

exchange and prevent filter blockage, every 100 ml of vector supernatant was followed 358 

by 100 ml PBS. A 10- to 12-fold concentration from the original volume to approximately 359 

8 ml final volume was achieved. All vectors were stored at -80oC in aliquots. 360 

VSV-luciferase vector transductions were performed on tissue culture treated, 96-361 

well half-area white plates (Corning, Corning, NY), seeded with various cells lines to 362 

achieve 50%-75% confluency at the time of transduction. Vectors were serially diluted 363 

and added to the culture to achieve final dilutions of 1:5, 1:15, 1:45, 1:135, and 1:405 and 364 

incubated at 37 °C for 16-24 hours. Transduction efficiency was quantified by measuring 365 

luciferase activity in cell lysates using Britelite Plus (Perkin Elmer, Richmond, California) 366 

and following the manufacturer’s protocol. To calculate the fold-change in transduction 367 

efficiency between D614 and G614 mutants, data from the 1:45 dilution points was used. 368 

To titer VSV-GFP vectors, HeLa-ACE2 cells were seeding as 1x104 cells per well 369 

in 96-well plates, and the following day, 50 μl of serially-diluted unconcentrated vector 370 

stocks were added. The final dilutions in the cultures were 1:2, 1:6, 1:18, and 1:27. 371 

Transduction efficiency was determined by GFP expression 16-24 hours after 372 

transduction using flow cytometry (Guava easyCyte, MilliporeSigma, Burlington, MA). and 373 

transducing units (TU) per ml calculated from the dilutions showing a linear relationship 374 

between the dilution factor and the number of GFP-positive cells.  375 
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 376 

Lentiviral vector production, concentration and transduction. Lentiviral vectors were 377 

generated by transfection of 10 cm plates of 293T cells at 75% confluency with 2 μg of 378 

Spike expression plasmid, 10 μg of packaging plasmid pCMVdeltaR8.2 (Addgene Cat.# 379 

12263) and 10 μg of a GFP-expressing vector genome plasmid FUGW (Addgene Cat.# 380 

14883). Media was removed 16 hours later and replaced with 10 ml fresh DMEM plus 381 

10% FBS. Supernatants were harvested 48 hours after transfection and filtered through 382 

0.45 μm syringe filters, and either aliquoted or concentrated by ultracentrifugation using 383 

20% (w/v) sucrose cushions for 2 hours at 25,000 rpm in an SW41 rotor (Beckman).  384 

HeLa-ACE2 cells were transduced with Spike pseudotyped LV by seeding 1x104 385 

cells per well in 96-well plates and adding 50μl of unconcentrated vector stocks the next 386 

day. Transduction efficiency was determined by GFP expression 48 hours after 387 

transduction using flow cytometry, as described above, and reported as transducing units 388 

(TU) per ml. 389 

 390 

LV and VSV vector genome titration. RNA from 160 μl of LV or VSV vector stocks was 391 

extracted using Viral RNA mini kit (Qiagen, Hilden, Germany) and reverse transcribed 392 

into cDNA using SuperScript (Invitrogen, Carlsbad, CA), according to the manufacturer’s 393 

instructions. Genome copy number was determined by ddPCR for the WPRE sequences 394 

in the LV genome, or for Phosphoprotein (P) sequences in the VSV genome, using the 395 

QX200 Droplet Digital PCR system (Bio-Rad, Hercules, CA) and primer/probe set: 396 

WPRE-forward (CCTTTCCGGGACTTTCGCTTT), WPRE-reverse 397 

(GGCGGCGGTCACGAA), WPRE-probe (FAM- ACTCATCGCCGCCTGCCTTGCC-398 
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TAMRA), P-forward (GTCTTCAGCCTCTCACCATATC), P-reverse 399 

(AGCAGGATGGCCTCTTTATG), P-probe (FAM-TCGGAGGTGACGGACGAATGTCT-400 

IOWA BLACK). Briefly, 6.25 μl of 1:10 and 1:100 diluted cDNA was mixed with forward 401 

and reverse primers (final concentration 900nM), probe (final concentration 250nM), 2x 402 

ddPCR supermix (Bio-Rad), and made up to 25 μl with water. Twenty microliters of each 403 

reaction mix was converted to droplets by the QX200 droplet generator, and droplet-404 

partitioned samples were transferred to a 96-well plate and sealed. Thermal cycling was 405 

performed with the following conditions: 95 °C for 10 min., 40 cycles of 94 °C for 30 sec., 406 

60 °C for 1 min., and 98 °C for 10 min. Plates were read on a QX200 reader (BioRad) 407 

and DNA copies quantified by detection of FAM positive droplets.  408 

 409 

Lung bud organoid differentiation and transduction. Lung bud organoids were 410 

generated from human pluripotent stem cells (hPSCs) and validated as previously 411 

described (77). hPSC differentiation into endoderm was performed in serum-free 412 

differentiation (SFD) medium of IMDM/Ham’s F-12 (3:1) (Life Technologies, Carlsbad, CA) 413 

supplemented with the following: 1 x N2 (Life Technologies), 0.5 x B27 (Life 414 

Technologies), 50 μg/ml ascorbic acid, 1 x Glutamax (Gibco), 0.4 μM monothioglycerol, 415 

0.05% BSA, 10 µM Y27632, 0.5 ng/ml human BMP4 (R&D Systems), 2.5 ng/ml human 416 

FGF2 (R&D Systems, Minneapolis, MN), and 100 ng/ml human Activin (R&D Systems), 417 

in a 5% CO2/5% O2 atmosphere at 37 °C for 72-76 h. On day 4, endoderm yield was 418 

determined by the expressions of CXCR4 and c-KIT by flow cytometry. Cells used in all 419 

experiments had > 90% endoderm yield. For induction of anterior foregut endoderm, 420 

embryonic bodies were dissociated into single cells using 0.05% trypsin/0.02% EDTA and 421 
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plated onto fibronectin-coated, six-well tissue culture plates (80,000–105,000 cells/cm2). 422 

Cells were incubated in SFD medium supplemented with 100ng/ml human Noggin (R&D 423 

Systems) and 10μM SB431542 for 24 hours followed by switching to SFD media 424 

supplemented with 10 μM SB431542 and 1 μM IWP2 (R&D Systems) for another 24 425 

hours. At the end of anterior foregut endoderm induction, cells were maintained in SFD 426 

media supplemented with the following: 3 μM CHIR 99021 (CHIR, R&D Systems), 10 427 

ng/ml human FGF10, 10 ng/ml human KGF, 10 ng/ml human BMP4 and 50nM all-trans 428 

retinoic acid for 48 hours, when three-dimensional cell clumps formed. Clumps were 429 

suspended by gently pipetting around the wells to form lung bud organoids, which were 430 

maintained in Ultra-Low Attachment multiple well plates (Corning) and fed every other 431 

day, and used for vector transduction after day 35. 432 

To transduce lung bud organoids, 10 to 20 organoids were picked manually and 433 

transferred to 96-well U-bottom plates and transduced with 50 μl of GFP-expressing VSV 434 

vectors (1.7x104 TU/ml). Transduction efficiency was examined by GFP expression 24 435 

hours later by fluorescence microscopy. 436 

 437 

Western blot analysis of Spike protein incorporation. Vector supernatants were 438 

concentrated by ultracentrifugation (100-fold), electrophoresed on 4-12% Bis-Tris protein 439 

gels (Bio-Rad) and transferred to PVDF membranes using Trans-Blot Turbo Transfer 440 

System (Bio-Rad). Membranes were blocked with 5% milk in PBST buffer (PBS plus 0.1% 441 

of Tween®20). The S1 subunit of Spike was detected using SARS-CoV-2 (COVID-19) 442 

Spike S1 antibody at 1:1000 (Prosci, Cat.# 9083); the S2 subunit was detected using  443 

anti-SARS-CoV/SARS-CoV-2 (COVID-19) spike antibody clone [1A9] at 1:1000 444 
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(GeneTex, Cat.# GTX632604); HIV-1 p24 was detected using a polyclonal anti-HIV-1 SF2 445 

p24 rabbit antiserum at 1:6000 (obtained through the NIH HIV Reagent Program, Division 446 

of AIDS, NIAID, NIH: ARP-4250, contributed by DAIDS/NIAID; produced by BioMolecular 447 

Technologies). VSV M protein was detected using anti-VSV M antibody clone [23H12] 448 

(KeraFast, Boston, MA, Cat.# EB0011) at 1:1000. HRP-conjugated goat anti-mouse and 449 

goat anti-rabbit antibodies were used as secondary antibodies (Santa Cruz Biotechnology, 450 

Dallas, TX). Blots were imaged by Amersham ECL Prime Western Blotting Detection 451 

Reagent (GE healthcare, Chicago, IL) and Chemidoc (Bio-rad). Densitometry was 452 

measured using ImageJ software (http://rsb.info.nih.gov/ij/).   453 

 454 

ACE2 cell surface expression by flow cytometry. HeLa-ACE2 cells were detached 455 

from culture flasks by 0.05% trypsin (Corning) and washed once with PBS. One million 456 

cells were re-suspend in 100 μl PBS and either immediately incubated with 0.25 μg anti-457 

ACE2 antibody (R&D systems, Cat.# AF933) or first incubated at 37 °C for 6 hours with 458 

shaking to allow recovery of cell surface proteins after trypsinization. Alexa Fluor 647 459 

conjugated donkey anti-goat antibody (1:200 dilution, Thermo Fisher Scientific, Waltham, 460 

MA, Cat.# A21447) was used as a secondary antibody and ACE2 expression was 461 

determined by flow cytometry (Guava easyCyte). 462 

 463 

Spike protein cell surface expression. VSV pseudovector-producing 293T cells were 464 

harvested to examine cell surface expression of the Spike protein. The S1 subunit was 465 

detected using SARS-CoV-2 (COVID-19) Spike S1 antibody at 1:100 (Prosci, Fort Collins, 466 

Colorado, Cat.# 9083) and the S2 subunit was detected using  anti-SARS-CoV/SARS-467 
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CoV-2 (COVID-19) spike antibody clone [1A9]  at 1:100 (GeneTex, Irvine, CA, Cat.# 468 

GTX632604). APC-conjugated goat anti-mouse and ducky anti-rabbit antibodies were 469 

used as secondary antibodies (1:100 dilution, Invitrogen), and expression was detected 470 

by flow cytometry (Guava easyCyte). The expression levels of different Spike proteins 471 

were reported as mean fluorescence intensity (MFI).  472 

 473 

Convalescent serum neutralization. Convalescent serum from COVID-19 patients or 474 

healthy donors (collected before April 30, 2020) was obtained from Children’s Hospital 475 

Los Angeles. Convalescent sera was confirmed to be positive for IgG class antibodies 476 

against SARS-CoV-2 Spike using anti-SARS-CoV-2 ELISA (IgG) (EUROIMMUN, Lübeck, 477 

Germany) (78).  478 

A suitable dose of Spike pseudotyped VSV-Luc vectors was used in the 479 

neutralization assays to produce approximately 105 relative light unit (RLU) of luciferase 480 

activity on HeLa-ACE2 cells in the absence of serum. Five x103 HeLa-ACE2 cells were 481 

seeded in tissue culture-treated, 96-well half-area white plates (Corning) to achieve 50%-482 

75% confluency the following day. Convalescent or control sera were 3-fold serially 483 

diluted from 1:10 to 1:7290 and 50 μl incubated with the predetermined dose of the VSV-484 

Luc vectors for 30 mins at 37°C, before addition of the mixture to HeLa-ACE2 cells. Cells 485 

were incubated at 37 °C overnight for 16-24 hours. Vector transduction efficiency was 486 

quantified by measuring luciferase activity as described above and neutralization (%) 487 

calculated by normalization to the values obtained on cells transduced without serum. 488 

 489 

  490 
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FIGURE LEGENDS 839 

 840 

Figure 1. Impact of Spike protein cytoplasmic tail truncation on LV and VSV vectors. 841 

(A) Transduction of HeLa-ACE2 cells by equal volumes of unconcentrated vector 842 

supernatants of LV-GFP or VSV-Luc vectors, pseudotyped with full-length (S) or 843 

truncated (SΔ18) Spike proteins. Shown are mean and standard deviations from 3 844 

independent vector stocks, *p<0.05, unpaired t-test, one-tail (B) Spike protein 845 

incorporation into vector particles, analyzed by Western blot using antibodies against the 846 

Spike S2 subunit and vector particle components p24 (LV) and M (VSV). Full length Spike 847 

(S) and S2 subunit are indicated. (C) Genomic copy number for indicated vectors. Shown 848 

are mean and standard deviations from 3 independent vector stocks. 849 

 850 

Figure 2. Transduction of cells by Spike VSV pseudovectors. (A) Indicated cell lines 851 

were transduced with equal amounts of SΔ18 VSV-Luc vectors and luciferase activity in 852 

cell lysates analyzed 24 hr later. Shown are mean and standard deviations from 3 853 

independent vector stocks. (B) HeLa and HeLa-ACE2 cells were detached from culture 854 

flasks by trypsin, seeded into 96 well plates and transduced (Td) with equal amounts of 855 

SΔ18 VSV-Luc vectors. either immediately (0 hr) or 24 hours after seeding, and luciferase 856 

measured 24 hours later. Data from 9 different wells in a single experiment are shown. 857 

****p<0.001, multiple T test. (C) ACE2 expression levels on cell surface measured by flow 858 

cytometry. Cells were stained with anti-ACE2 antibody at 0 or 6 hours after trypsinization. 859 

Means and standard deviations for MFI from two independent experiments are shown. 860 

(D) Lung bud organoids were transduced with equal amounts of VSV-GFP vectors 861 
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pseudotyped with SΔ18 or control (bald) vectors with no glycoprotein. GFP expression 862 

was visualized 24 hours later.  863 

 864 

Figure 3. Concentration methods for Spike VSV pseudovectors. (A) Genome copy 865 

numbers of VSV-Luc vectors pseudotyped with SΔ18 Spike protein, from unconcentrated 866 

supernatants (1x Uncon.), or following 12x concentration (v/v) by either ultracentrifugation 867 

(Ultra) or tangential flow filtration (TFF). Shown are mean and standard deviations from 868 

3 independent vector stocks. (B) Vector recovery, calculated by comparing genome 869 

copies in concentrated versus unconcentrated vector stocks. Shown are mean and 870 

standard deviation from 3 independent vector concentrations for each method, *p<0.05, 871 

one-tailed Paired T test. (C) Transduction of HeLa-ACE2 cells by serial dilutions (1:5 to 872 

1:405) of indicated vectors. Shown are mean and standard deviation from three 873 

independent vector stocks. *p<0.01, two tail Paired T test, for comparison between 12x 874 

Ultra and 12x TFF at the same dilutions. 875 

 876 

Figure 4. Impact of D614G mutation only observed with full-length Spike protein.  877 

(A) Indicated cell lines were transduced with G614 or D614 variants of VSV-Luc vectors, 878 

for both full-length and truncated Spike protein versions. The pairs of compared vectors 879 

were produced in the same way, and equal volumes applied. Luciferase activity was 880 

measured after 24 hours and ratios calculated. Means and standard deviations for 3 881 

independent vector stocks are shown. (B) Ratio of genomic titers of G614 versus D614 882 

vectors, for both full-length and truncated Spike proteins. Shown are mean and standard 883 

deviations from equal volumes of 3 independent vector stocks, produced in the same way 884 
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for each pairwise comparison. (C) Cell surface expression levels of different Spike protein 885 

variants on 293T vector-producing cells, measured by flow cytometry using anti-S1 or 886 

anti-S2 antibodies at the time of vector harvest. Expression levels are reported as mean 887 

fluorescence intensity (MFI). Control 293T cells were from “bald” vector production, which 888 

were not transfected with any glycoprotein but still infected by the VSVΔG particles. 889 

Means and standard deviations from two independent experiments are shown. (D) 890 

Western blot showing incorporation of Spike proteins into VSV particles, from equal 891 

volumes of 100x concentrated vector supernatants, using antibodies against S1 or S2 892 

subunits of Spike, or VSV M protein. (E) Comparison of Spike subunit incorporation into 893 

vectors, normalized to VSV M. Data from 2-3 independent vector stocks, indicated by 894 

individual dots. S1 and S2 subunits were only detected in one stock of S-D614 vectors. 895 

 896 

Figure 5. Sensitivity of different Spike proteins to convalescent serum 897 

neutralization. Indicated VSV-Luc pseudoviruses were incubated with serially-diluted 898 

sera (1:10 to 1:7290 fold) from control or convalescent COVID-19 patients (CCS) for 30 899 

mins. before addition to HeLa-ACE2 cells. Luciferase activity was determined 24 hours 900 

later. All values were normalized to the luciferase signal from cells transduced with the 901 

same pseudovirus without serum. Means and standard deviations from 3 technical 902 

replicates of single vector stocks are shown.903 
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