

1 **Splice Factor Polypyrimidine tract-binding protein 1 (Ptbp1) is Required for Immune Priming of the**
2 **Endothelium in Atherogenic Disturbed Flow Conditions**

3
4 Jessica A Hensel¹, Sarah-Anne E Nicholas¹, Evan R Jellison², Amy L Kimble¹, Antoine Menoret², Manabu
5 Ozawa³, Annabelle Rodriguez-Oquendo¹, Anthony T Vella², Patrick A Murphy¹

6

7 ¹ Center for Vascular Biology, UCONN Health, Farmington, Connecticut, United States

8 ² Department of Immunology, UCONN Health, Farmington, Connecticut, United States

9 ³ Institute of Medical Science, University of Tokyo, Tokyo, Japan

10

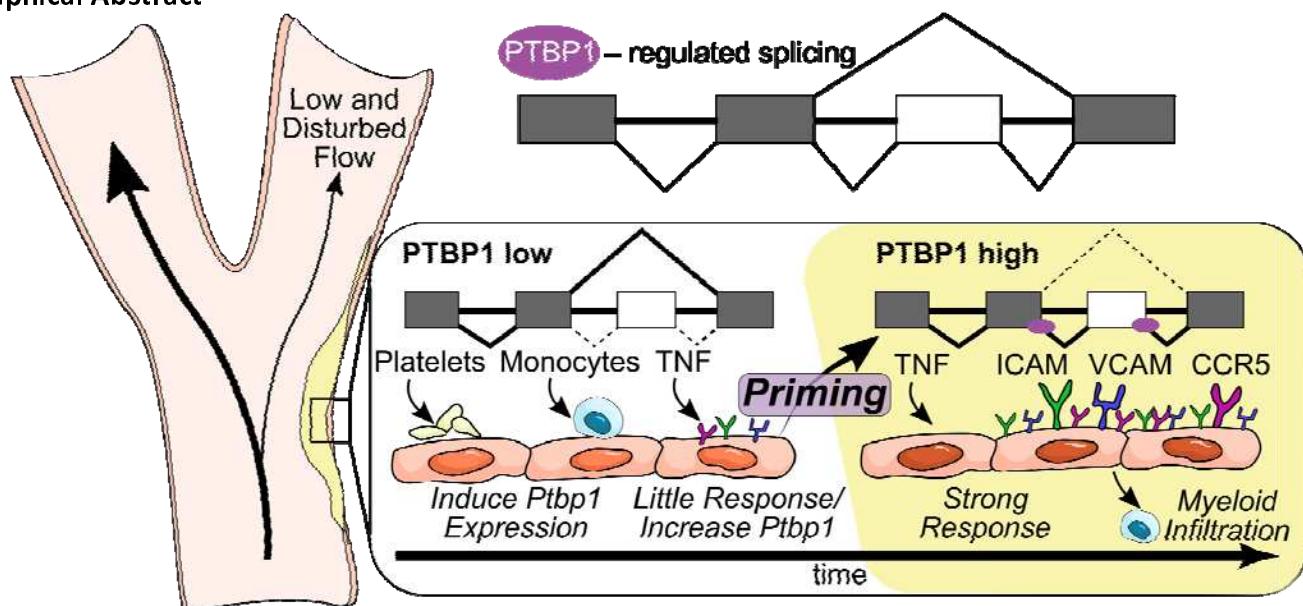
11 Corresponding Author

12 Patrick A. Murphy, Ph.D.

13 Assistant Professor

14 Center for Vascular Biology & Calhoun Cardiology Center

15 University of Connecticut Medical School


16 263 Farmington Avenue

17 Farmington, CT 06030

18 Tel: 860-679-2829

19 Email : pamurphy@uchc.edu

20 **Graphical Abstract**

21
22 *Plaque forms in low and disturbed flow regions of the vasculature, where endothelial cells are “primed” to*
23 *respond to cytokines (e.g. TNF α) with elevated levels of cell adhesion molecules via the NF κ B signaling*
24 *pathway. We show that the splice factor Ptbp1 (purple) mediates priming. Ptbp1 is induced in endothelial*
25 *cells by platelet recruitment, promoting priming and subsequent myeloid cell infiltration into plaque.*
26 *Mechanistically, Ptbp1 regulates splicing of genes involved in the NF κ B signaling pathway and is required*
27 *for efficient nuclear translocation of NF κ B in endothelial cells. This provides new insight into the molecular*
28 *mechanisms underlying an endothelial priming process that reinforces vascular inflammatory responses.*

29

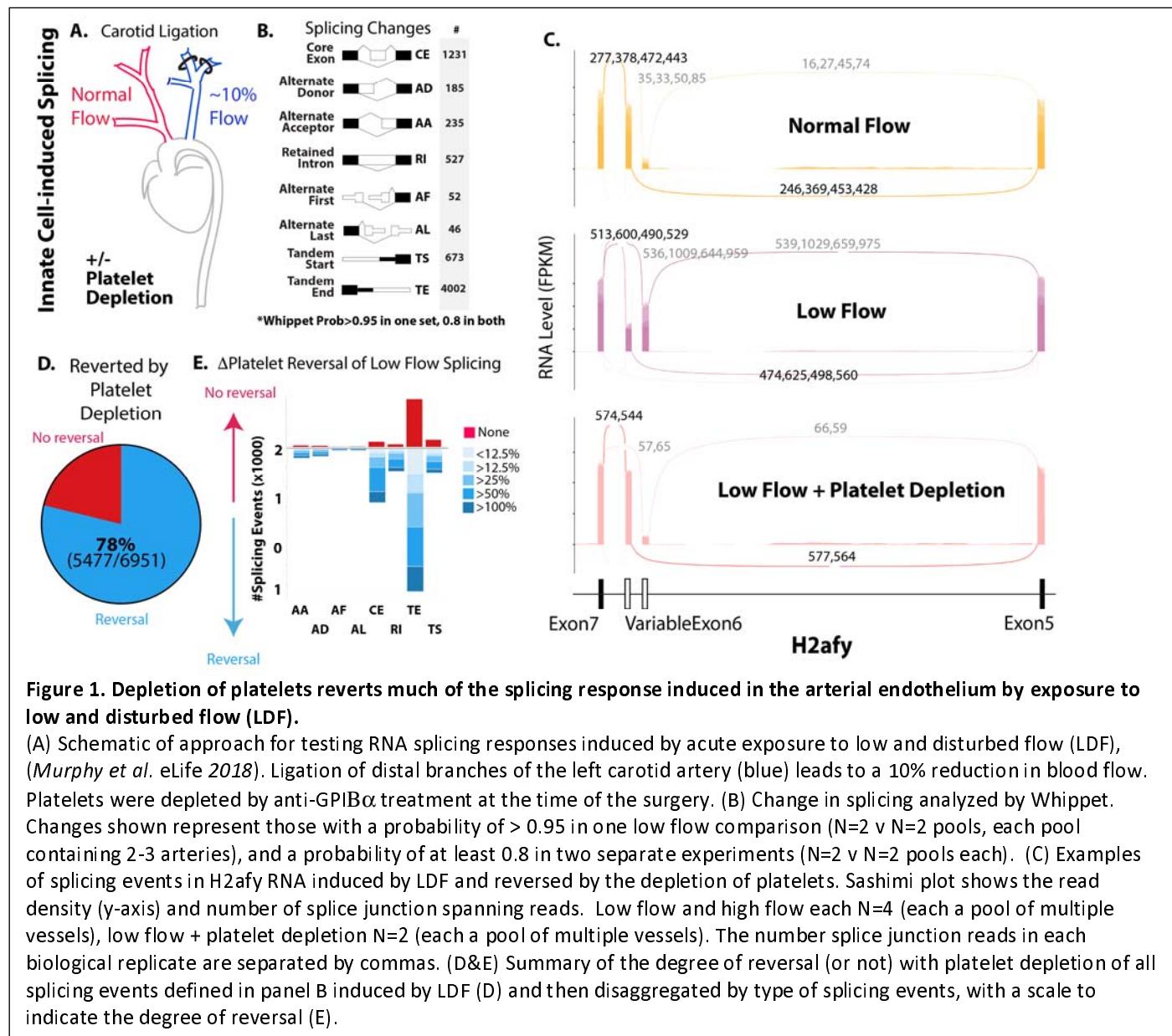
30 **Abstract**

31 NF κ B mediated endothelial activation drives leukocyte recruitment and atherosclerosis, in part through
32 upregulation of adhesion molecules Icam1 and Vcam. The endothelium is “primed” for cytokine activation
33 of NF κ B by exposure to low and disturbed blood flow (LDF) *in vivo* and by LDF or static conditions in
34 cultured cells. While priming leads to an exaggerated expression of Icam1 and Vcam following cytokine
35 stimulation, the molecular underpinnings are not fully understood. We showed that alternative splicing of
36 genes regulating NF κ B signaling occurs during priming, but the functional implications of this are not
37 known. We hypothesize that the regulation of splicing by RNA-binding splice factors is critical for priming.
38 Here, we perform a CRISPR screen in cultured aortic endothelial cells to determine whether splice factors
39 active in the response to LDF participate in endothelial cell priming. Using Icam1 and Vcam induction by
40 TNF α stimulation as a marker of priming, we identify polypyrimidine tract binding protein (Ptbp1) as a
41 required splice factor. Ptbp1 expression is increased and its motifs are enriched nearby alternatively spliced
42 exons in endothelial cells exposed to LDF *in vivo* in a platelet dependent manner, indicating its induction by
43 early innate immune cell recruitment. At a mechanistic level, deletion of Ptbp1 inhibited NF κ B nuclear
44 translocation and transcriptional activation. These changes coincided with altered splicing of key
45 components of the NF κ B signaling pathway that were similarly altered in the LDF response. However, these
46 splicing and transcriptional changes could be restored by expression of human PTBP1 cDNA in Ptbp1
47 deleted cells. *In vivo*, endothelial specific deletion of Ptbp1 reduced myeloid cell infiltration at regions of
48 LDF in atherosclerotic mice. In human coronary arteries, PTBP1 expression correlates with expression of
49 TNF pathway genes and amount of plaque. Together, our data suggest that Ptbp1, which is activated in the
50 endothelium by innate immune cell recruitment in regions of LDF, is required for priming of the
endothelium for subsequent NF κ B activation and myeloid cell recruitment in vascular inflammation.

52 Introduction

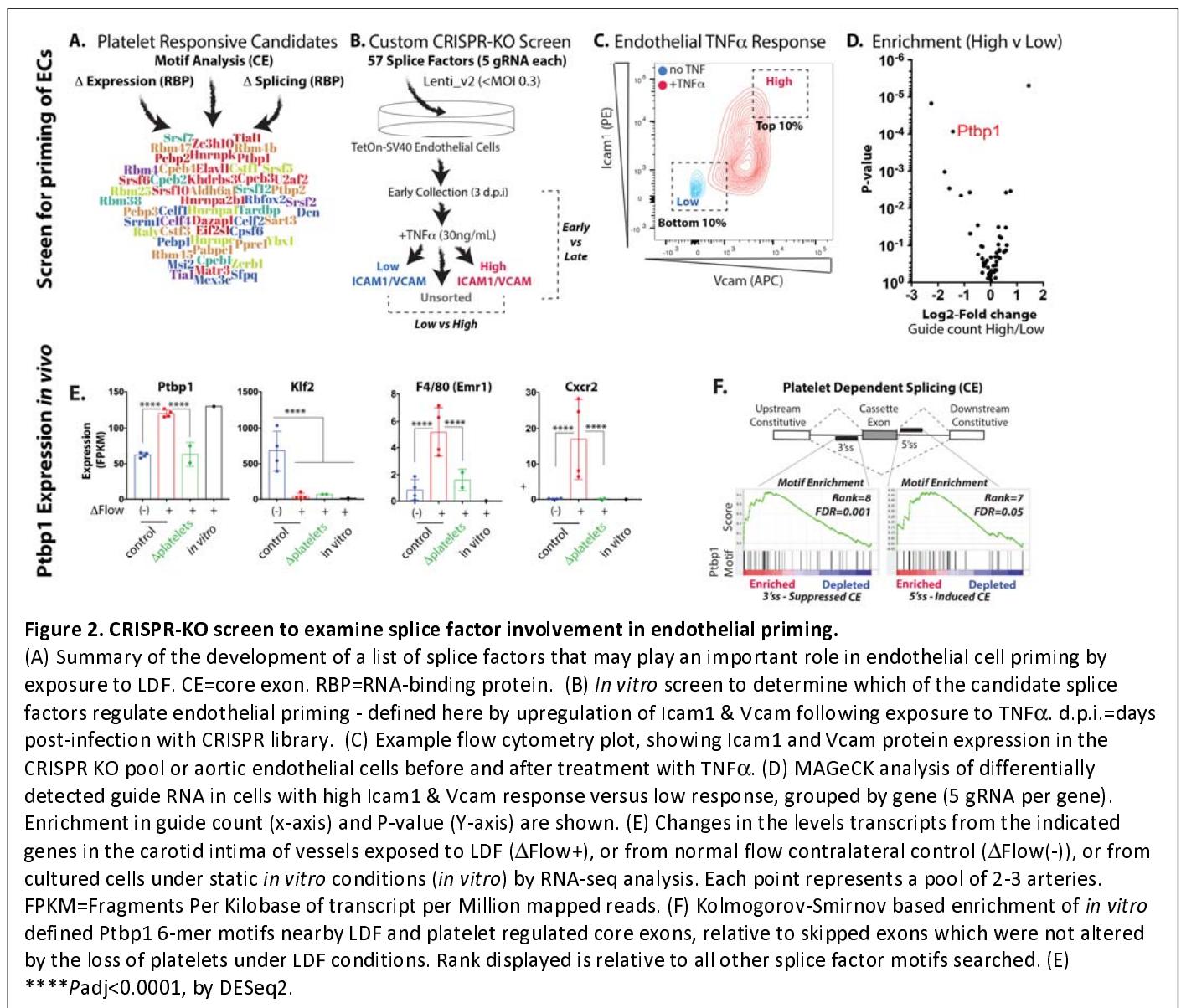
53 Atherosclerosis is a disease characterized by chronic sterile inflammation, driven by leukocyte
54 recruitment to regions of low and disturbed flow (LDF) in arteries. In these regions, endothelial expression
55 of leukocyte adhesion molecules, such as *Icam1*, *Vcam*, and P-, E- and L-selectins, and cytokines, such as
56 *CCL2* (MCP1) and *CCL5* (RANTES), mediate leukocyte recruitment ^{1,2}. Complete inhibition of these
57 molecules, or the NF κ B signaling pathway suppresses leukocyte recruitment to the endothelium, and
58 reduces both acute and chronic inflammation in atherosclerotic plaque ³. The expression of these
59 molecules is tightly regulated in the endothelium, primarily by NF κ B signaling. Activity of this pathway and
60 expression of downstream leukocyte recruitment factors is low under quiescent conditions, but increased
61 through both transcriptional and post-transcriptional mechanisms in response to circulating inflammatory
62 cytokines. Not all areas of the vasculature are similarly affected however, as it is only regions exposed to
63 LDF that exhibit elevated levels of adhesion molecules in response to NF κ B agonists ⁴.

64 While low and disturbed flow alone is insufficient to induce high levels of adhesion molecule
65 expression, it does prime the endothelium for subsequent activation by cytokines. Endothelial cell priming
66 in disturbed flow regions *in vivo* is demonstrated by response to systemic NF κ B agonist lipopolysaccharide
67 (LPS) with increased *Vcam* and E-selectin expression, while cells in regions with laminar flow do not ⁴. *In*
68 *vitro*, endothelial cells cultured under LDF or static conditions respond to NF κ B agonist $\text{I}\kappa\text{B}\alpha$ by increasing
69 surface *Vcam* expression, while cells cultured under laminar flow conditions do not ⁵. Both chronic and
70 acute changes in the endothelium contribute the priming of NF κ B responses. In chronic conditions of LDF,
71 subendothelial deposition of fibronectin changes the repertoire of integrin binding and increases NF κ B
72 responses ⁶⁻⁸. However, the mechanisms responsible for priming following acute changes in flow are
73 poorly understood and may contribute to atherosclerosis and other inflammatory responses.


74 Using an acute partial carotid ligation model of LDF, we observed alterations in post-transcriptional
75 regulation by RNA splicing in primed endothelial cells ⁹. Among the affected transcripts were multiple
76 regulators of the NF κ B signaling pathway, including canonical pathway genes such as *Ikbk γ* (Nemo) and
77 other known regulators, such as fibronectin ⁹. Alternative splicing, which is coordinated by the spliceosome
78 but directed by hundreds of RNA-binding proteins in the cell, allows a single gene and pre-mRNA to encode
79 multiple unique mRNA molecules and protein products. Alterations in the levels and activities of RNA-
80 binding splice factors can allow a cell to rapidly modify the composition of signaling pathways. For example,
81 increased inclusion of alternative exons EIIIA and EIIIB in fibronectin is linked to alterations in extracellular
82 matrix composition, integrin binding, and increased NF κ B signaling ^{7,10}. Thus, we hypothesize that
83 alternative splicing mediates acute endothelial priming during the arterial response to LDF. Here, we test
84 this hypothesis by determining whether splice factors of the arterial endothelium activated in response to
85 LDF are important in endothelial cell priming, identifying *Ptbp1* as a potent mediator of priming and
86 subsequent myeloid cell recruitment and atherogenesis.

87 Results

88 A CRISPR-KO screen of splice factors modulating alternative splicing in endothelial cells exposed to low 89 and disturbed flow reveals a requirement for Polypyrimidine tract-binding protein 1 (*Ptbp1*) in 90 endothelial cell priming.


91 To identify splice factors activated in endothelial cells in the earliest stages of priming, we examined
92 splicing patterns in endothelial cells experimentally exposed to LDF for 48hrs through a partial carotid
93 ligation (Figure 1A) ⁹. In our earlier work, we had observed that many of the splicing changes in the
94 endothelium were dependent on platelet recruitment. Platelets are an essential component of endothelial
95 cell priming as regions of LDF do not recruit myeloid cells in the absence of platelets ¹¹⁻¹⁴. Additionally,

99 activated platelets are sufficient to increase endothelial *Icam* and *Vcam* in static *in vitro* culture conditions
100 that mimic the effects of LDF¹⁵. Thus, we focused on splicing changes induced in the endothelium upon
101 platelet recruitment. Of the several thousand splicing changes we detected in the intima in priming (Figure
102 1B), we found that most were reverted by the depletion of platelets by anti-GPIB α (Figure 1C, D and E, and
103 SI Figure 1). To determine which splice factors might be regulating platelet induced splicing changes under
104 LDF, we assembled a list, based on (i) differential splice factor expression, (ii) enrichment of motifs nearby
105 regulated core exons (CE), or (iii) splicing of the factor itself, which is often an indication of splice factor
106 activity and autoregulation¹⁶. Based on these criteria, we deemed 57 splice factors likely to be important in
107 the regulation of splicing changes in the endothelium under these conditions (Figure 2A).
108

109 To assess contributions of these splice factors to endothelial cell priming, we established an *in vitro* CRISPR-
110 KO screening approach which took advantage of our previous discovery that splicing patterns in cultured
111 aortic endothelial cells resemble endothelial cells primed by LDF *in vivo* (Figure 2A & SI Figure 2&3). In our
112 screen, we treated aortic endothelial cells with TNF α , and examined induction of *Icam1* and *Vcam*. Guide

113 RNA (gRNA) targeting genes important in priming should be found more often in cells with low lcam1 &
114 Vcam responses than high responses, indicating that deletion of the targeted splice factors suppressed the
115 TNF α -response. Indeed, we could identify cells in our CRISPR pool that did not respond strongly to TNF α
116 (Figure 2C). Importantly, we observed that this “low responder” phenotype was retained upon
117 restimulation, indicating their stable alteration by CRISPR editing (SI Figure 4). Using this approach, and
118 subsequent identification of enriched gRNA in low and high responders by 1) PCR amplification of lentiviral
119 insertions, 2) high-throughput sequencing and 3) statistical analysis, we found that Ptbp1 gRNA was
120 consistently enriched in cells with a reduced lcam1 & Vcam response to TNF α across multiple screens
121 (Figure 2D, and SI Table 1). We also observed that gRNA to Ptbp1 was enriched in low responders in our
122 iterative sorting experiment (low responders plated and sorted for low response a second time, (SI Table 1).

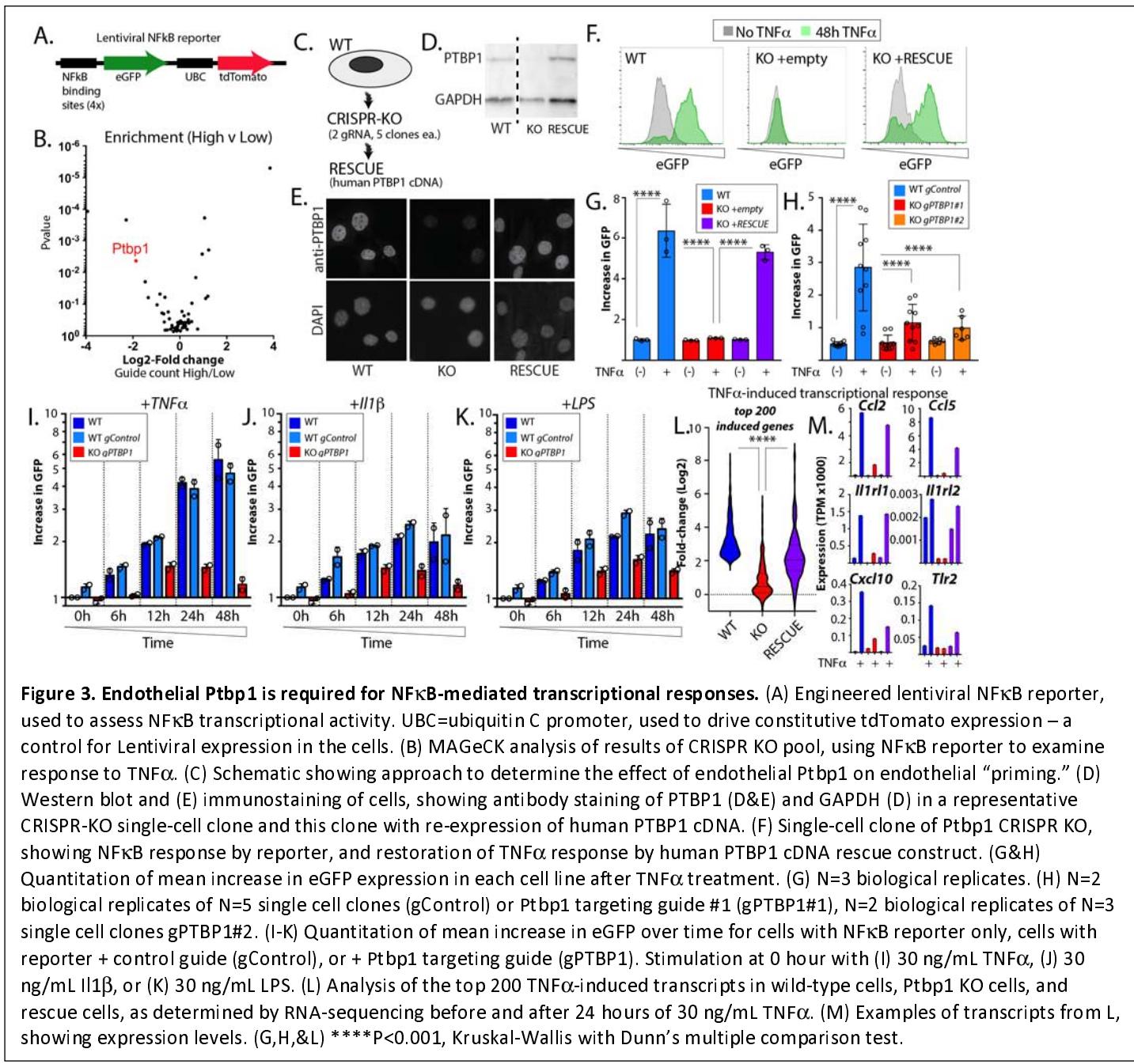
123
124 To determine whether impaired *lcam1* & *Vcam* induction in cells containing *Ptbp1* gRNA might be a result
125 of generally impaired cell function, we examined presence of *Ptbp1* gRNA at early and late timepoints in
126 our pool of cells. Losses could represent reduced cell viability or proliferation, while gains could reveal
127 growth-suppressive splice factors as deletion of these genes would allow these cells to expand within the

128 pool over time. We found no significant loss or enrichment of Ptbp1-targeting gRNA, while we did observe
129 reduced representation of other gRNA and increased representation of gRNA for Hnrnpa1, a splice factor
130 that has been shown to inhibit cell proliferation in other contexts (SI Figure 5 and SI Table 2)¹⁷.
131

132 We then reexamined the expression and motif analysis (Figure 2A) that had landed Ptbp1 on our short list
133 of splice factors to be targeted, and observed that Ptbp1 expression is induced, in a platelet dependent
134 manner, by exposure of the carotid endothelium to LDF (Figure 2E). There is a similar induction in
135 endothelial cells in static conditions and in the presence of serum — as we would expect under these
136 priming *in vitro* conditions (Figure 2E). Expression of Klf2, a transcription factor reduced in expression under
137 LDF, was not affected by platelet depletion, while myeloid cell recruitment (indicated by macrophage
138 marker F4/80 and neutrophil marker Cxcr2) was strongly impaired. These data support the hypothesis that
139 platelets are not required for the initial low flow response of the endothelium (e.g. Klf2), but are required
140 for full immune-activation. Finally, we found significant enrichment of Ptbp1 motifs at the 3'splice site side
141 of core exons (CE) that were included less frequently under LDF conditions in a platelet dependent manner,
142 consistent with the known role of increased Ptbp1 in suppressing exon inclusion from the 3'splice site
143 (Figure 2F)^{18,19}. We also found a weaker association of Ptbp1 motifs with the 5' splice site side of CE that
144 were included more frequently under LDF in a platelet dependent manner (Figure 2F).
145

146 Thus, informatics analysis and a targeted CRISPR-KO screen suggest that endothelial Ptbp1 expression,
147 which is induced in a platelet dependent manner under LDF, contributes to the priming of endothelial cells.
148

149 **Endothelial Ptbp1 is required for NF κ B-mediated transcriptional activation**


150
151 The dampening effect of Ptbp1 deletion on TNF α -induced expression of Icam1 and Vcam on the surface of
152 endothelial cells could be mediated by several mechanisms, including a block in NF κ B transcriptional
153 activity or inhibition of Icam1 & Vcam translation or translocation to the plasma membrane. We had
154 previously observed changes in splicing in key components of the NF κ B signaling pathway in the response
155 to LDF (e.g., I κ B κ , or Nemo)⁹, so we focused on NF κ B transcriptional activation.
156

157 To examine NF κ B transcriptional activity, we modified a lentiviral NF κ B reporter²⁰, introducing eGFP as the
158 reporter gene downstream of the NF κ B binding motif (Figure 3A). Using this reporter, we again screened a
159 CRISPR KO pool of aortic endothelial cells, with our targeted group of splice factors. Ptbp1 gRNA was
160 enriched in cells with reduced NF κ B activity to TNF α as determined by decreased GFP fluorescence (Figure
161 3B), suggesting that deletion of Ptbp1 impairs TNF α -mediated NF κ B transcriptional responses.
162

163 CRISPR activity in pooled approaches leads to varying levels of deletion within the population, so to assess
164 the effects of a verified Ptbp1 deletion, we generated independent CRISPR-KO endothelial cell clones, using
165 two different Ptbp1 gRNA, as well as a set of non-targeting gRNA single cell clones (Figure 3C). To further
166 confirm specificity, we rescued Ptbp1 expression in these Ptbp1 KO clonal lines by introducing a human
167 PTBP1 cDNA construct (Figure 3C and data not shown). This is 97% identical to murine Ptbp1 at the amino
168 acid level, but prevents CRISPR targeting of the construct due to the divergent nucleic sequence. We
169 demonstrated Ptbp1 loss in the KO lines, and found that the human PTBP1 rescue restored Ptbp1
170 expression (Figure 3D) and nuclear localization (Figure 3E).
171

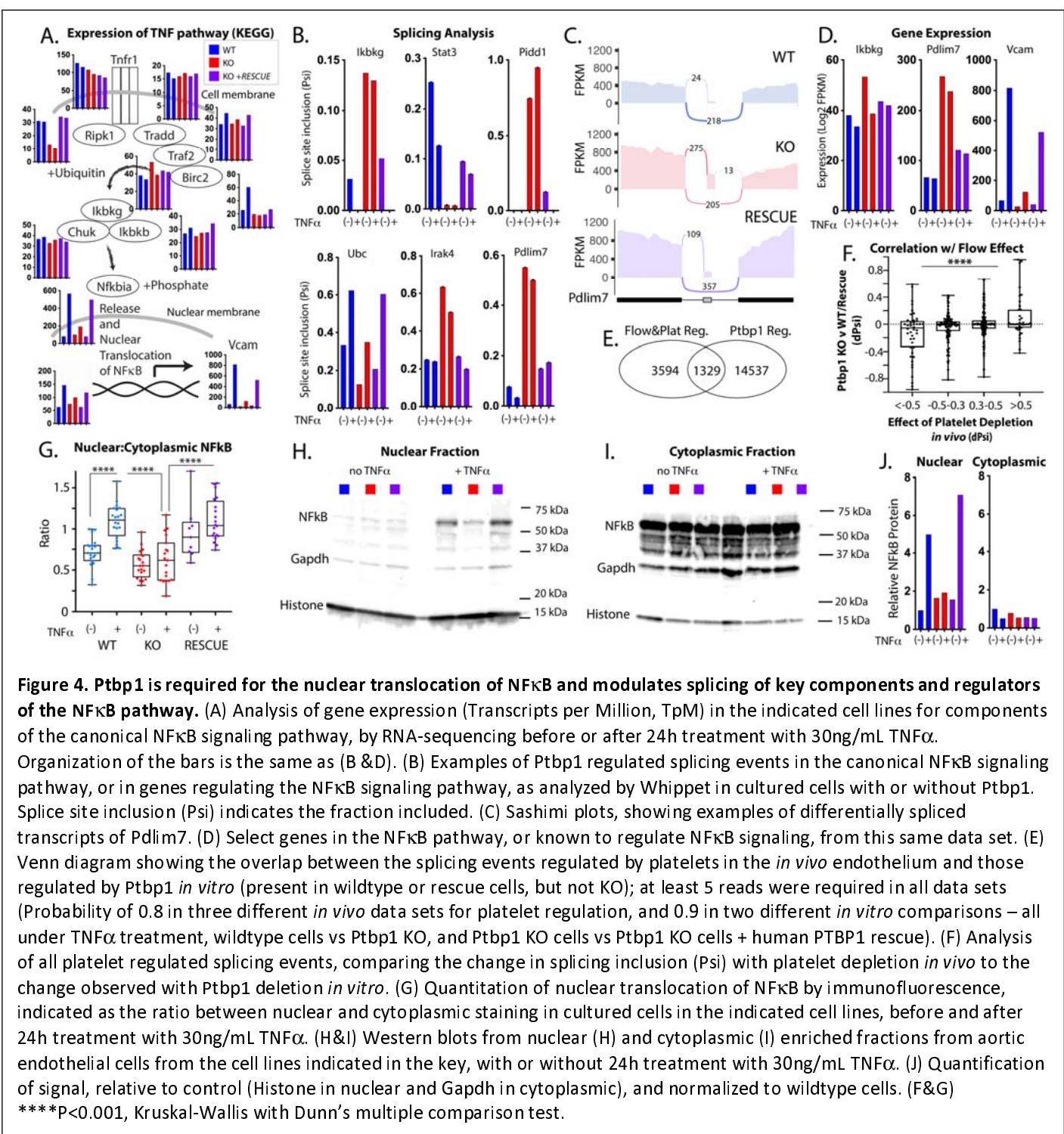
172 Using these Ptbp1 KO cell lines, we examined our NF κ B transcriptional reporter and found that the NF κ B
173 response to TNF α was blocked by the loss of Ptbp1, and restored upon human PTBP1 rescue (Figure 3F
174 with quantification in 3G). Multiple single-cell clones from different gRNA exhibited the same response,

175 further verifying these results (Figure 3H). Notably, as we had previously observed in our screens, loss of
 176 Ptbp1 had little effect on endothelial cell survival or proliferation, as we found no significant differences in
 177 proliferation among these different cell lines (SI Figure 5B).

178
 179 The NFκB signaling pathway is a common downstream mediator of many upstream inputs, including TNFα,
 180 IL1β, and LPS, each of which signal through different receptors at the plasma membrane. To understand
 181 whether Ptbp1-mediated NFκB inhibition was specific to TNFα, or whether it may act on the core pathway
 182 downstream of multiple inputs, we examined eGFP responses at multiple timepoints in CRISPR-KO cells and
 183 both wild-type or gRNA control cells. We found a similar inhibition of all signaling responses, beginning as
 184 early as 6 hours (Figure 3I-K), suggesting that loss of Ptbp1 inhibits core NFκB signaling.
 185

186 As our work had focused on a single synthetic NF κ B responsive element, we wondered if endogenous
187 NF κ B-mediated transcription was similarly affected. To examine this, we performed RNA-sequencing
188 analysis on wildtype cells, our Ptbp1 CRISPR-KO cell line, and human PTBP1 rescue of these Ptbp1 CRISPR-
189 KO cells, before and after treatment with TNF α . As expected, TNF α treatment led to large changes in
190 transcription of canonical NF κ B target genes. Analysis of the top 200 induced transcripts found in wild-type
191 cells showed a nearly complete block in induction by TNF α in the Ptbp1 CRISPR-KO cells, and that this could
192 be rescued, although not completely, in the human PTBP1 rescue cells (Figure 3L&M). The partial rescue
193 could reflect differences in human and mouse Ptbp1, or that we restored only a single isoform of Ptbp1 – as
194 we noted a second Ptbp1 band on Western blots that was not restored with human cDNA expression.
195

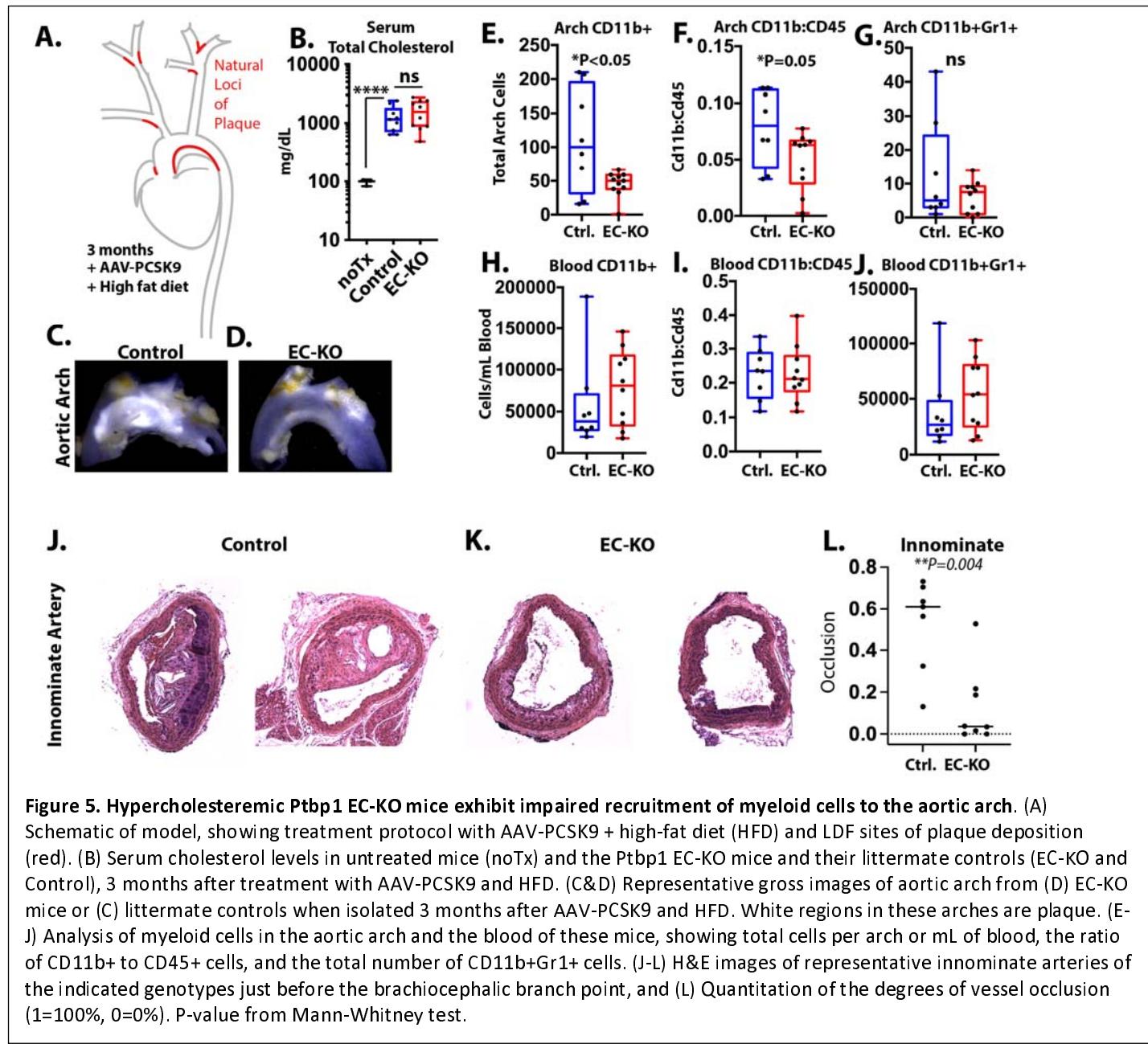
196 Thus, Ptbp1 is critical for NF κ B signaling responses in endothelial cells downstream of various inputs.
197 Expression of Ptbp1 primes endothelial cell to respond to TNF α , IL1 β , and LPS, licensing them to express a
198 wide range of genes involved in the regulation of inflammation and immunity.
199


200 Ptbp1 coordinates splicing in endothelial activation that modulates nuclear translocation of NF κ B 201

202 We reasoned that if Ptbp1 affects the core NF κ B signaling pathway, it may alter expression or splicing of
203 key components or modifiers of the pathway. To test this, we assessed levels of core NF κ B signaling genes,
204 using RNA-sequencing data from the different cell lines generated (Figure 4A). With the exception of Ripk1
205 and Nfkbia, we found very little change in any of these genes at the whole transcript level, despite strong
206 effects on canonical NF κ B-induced genes. We then examined changes in RNA splicing. Consistent with the
207 splice factor activity of Ptbp1, we observed many changes in alternative splicing, including some in coding
208 regions of core NF κ B pathway genes (e.g., I κ B κ γ/NEMO & Ubc), and key regulators of the NF κ B signaling
209 pathway (e.g., Pidd1, Stat3, Irak4, and Pdlim7) (Figure 4B&C and SI Table 4). In total, there were 110
210 splicing changes in the Kegg NF κ B pathway genes, 54 with a splicing difference of >10% and 38 with a
211 splicing difference >20% (SI Table 4). In these datasets, splicing levels at a particular junction are indicated
212 by the percent spliced in (Psi), where a Psi of 0.1=10% spliced and 0.9=90% spliced in. Notably, large
213 changes in RNA splicing often occurred in the absence of changes in total RNA expression, as was the case
214 for I κ B κ γ (Figure 4B&D). For other genes, like Pdlim7, changes in splicing were correlated, though generally
215 larger than the changes in transcript levels.
216

217 To determine whether Ptbp1 affected splicing of genes in the platelet-mediated endothelial activation we
218 previously observed (Figure 1), we examined the overlap between platelet regulated transcripts *in vitro* and
219 this *in vivo* dataset, limiting to splicing events with at least 5 reads of support in both sets. We found
220 evidence for Ptbp1 regulation of ~25% of all the platelet-regulated splicing events (Figure 4E). Analysis of
221 these splicing events revealed that those with reduced inclusion upon platelet depletion also showed
222 reduced inclusion upon Ptbp1 depletion (Figure 4F), and vice versa, consistent with our hypothesis that
223 Ptbp1 activity is increased in endothelial cells under LDF in a platelet dependent manner.
224

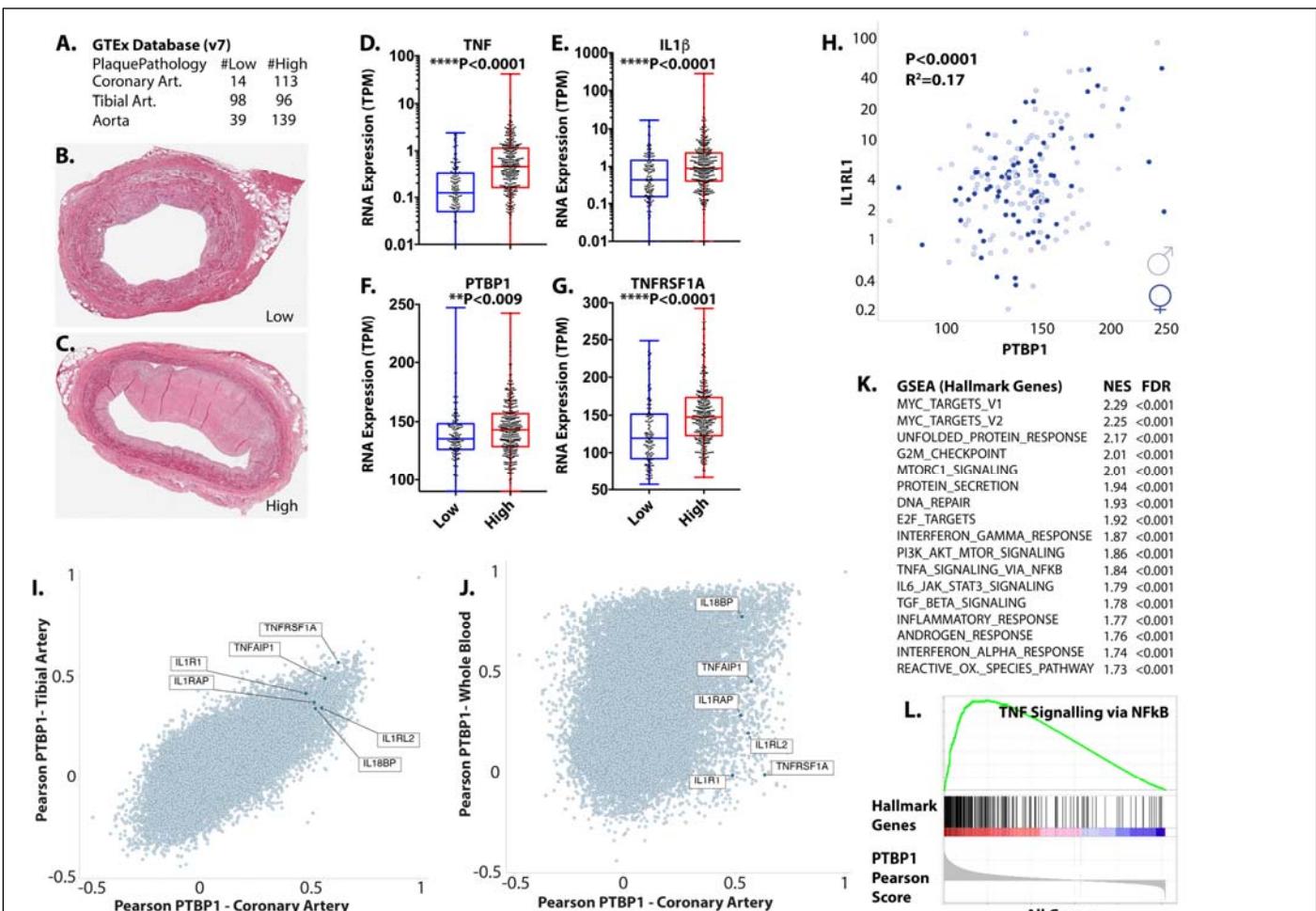
225 To determine whether Ptbp1 loss affected localization or activity of NF κ B components, we examined the
226 expression of key proteins in the pathway, including IKK α , IKK β , I κ B κ γ(NEMO), IK β α and its
227 phosphorylation, and nuclear translocation of NF κ B. Although levels of IKK α , IKK β , I κ B κ γ, and IK β α were
228 similar (SI Figure 6), we observed reduced TNF α -mediated nuclear translocation of NF κ B in Ptbp1 KO cells,
229 which was rescued by restoration of Ptbp1 (Figure 4G-J).
230


231 Thus, loss of Ptbp1 altered splicing in several genes in the core NF κ B signaling pathway (e.g. I κ B κ γ), or in
 232 important modifier pathways (e.g., Pdlim7), and lead to a loss of NF κ B nuclear translocation following TNF α
 233 treatment.
 234

235 **Endothelial Ptbp1 deletion reduces myeloid cells in atherosclerotic plaque**
 236

237 To test the *in vivo* requirement for Ptbp1 in endothelial cell priming in the context of atherosclerosis, we
 238 generated a conditional endothelial specific Ptbp1 mouse (*Cdh5(PAC)CreERT2; Ptbp1^{ff}* or EC-KO), by

239 intercrossing mice with these alleles^{21,22}. We induced *Ptbp1* excision in 6 to 7 week-old mice by tamoxifen
 240 treatment. We induced hypercholesterolemia by treating *Ptbp1* EC-KO mice or their littermate controls with
 241 AAV-PCSK9 and a high fat diet²³. After 3 months of this diet, we collected aortic arches, innominate
 242 arteries and blood samples for immune cell analysis and plaque composition. The inner curvature of the
 243 aortic arch and the innominate arteries are regions exposed to LDF, where endothelial cells are primed and
 244 plaque develops⁴. We found that, while both *Ptbp1* EC-KO mice and their littermate controls exhibited a


245 robust increase in cholesterol levels (~10-fold standard chow diet mice; Figure 5B) and developed
 246 atherosclerotic plaque in the aortic arch, that plaque was visibly reduced in the arches of EC-KO mice
 247 (Figure 5C&D). Consistent with an impaired inflammatory priming of the endothelium, there were also
 248 fewer CD11b+ cells found in these plaques (Figure 5E), and the ratio of CD11b+ cells to CD45+ cells was
 249 reduced in the plaque (Figure 5F). We observed a similar trend in CD11b+Gr1+ cells (Figure 5G), although
 250 the proportion of CD11b+ cells that were also Gr1+ was very low (~10%). This did not appear to result from

251 a systemic reduction in the number of circulating CD11b+ cells, either in total, or as a percentage of CD45+
 252 cells, as these were not reduced in Ptbp1 EC-KO mice (Figure 5H-J).

253
 254 Therefore, Ptbp1 deletion from the endothelium impairs myeloid cell accumulation in atherosclerotic
 255 plaque in regions of endothelial cell priming, consistent with the reduced levels of priming we observed in
 256 cultured cells.

257
 258 **Ptbp1 expression positively associates with plaque burden and TNF/NF κ B signaling pathway in human
 259 arteries**

260
 261 We reasoned, if Ptbp1 is required for efficient TNF α /NF κ B signaling responses and myeloid cell recruitment
 262 to plaque, that we might find these correlations in human tissues. To test this, we examined the GTEx
 263 database, which contains RNA transcript analysis and pathology reports from hundreds of donor arteries
 264 (Figure 6A). While this database is focused on non-diseased tissues, nearly all arteries in the donor group

Figure 6. Ptbp1 expression correlates with plaque and expression of TNF pathway genes in human arteries. (A) Summary of arteries (Art.) of each type with indicated pathology data from the GTEx database (v7). (B&C) Examples of histological sections used for analysis of plaque characteristics in the GTEx database, showing examples of low (B) and high (C) plaque. (D-G) Analysis of expression of the indicated genes in arteries separated by low and high plaque phenotype. (H) Gene-gene correlation between the expression of PTBP1 and TNFRSF1A in human coronary arteries, where sex is indicated by different shading (gray=female; male=black). (I&J) Pearson correlation scoring for each gene-gene interaction in coronary and tibial arteries (I) or coronary arteries and blood (J), showing whether these gene-gene interactions are conserved between tissues. (K) Top GSEA Hallmark Gene Groups for genes most associated with Ptbp1 (highest Pearson scores). NES=normalized enrichment score, FDR=false-discovery rate (L) Example GSEA plot, showing the location of TNF Signaling via NF κ B Hallmark Genes among those most associated with PTBP1 expression (left side of the Pearson Score plot). (D-G) Mann-Whitney test.

265 collected include some degree of plaque formation, reflecting the ubiquitous nature of this process in
266 human arteries with age. Nevertheless, a small subset of arteries was deemed free, or mostly free of
267 plaque by pathology report (Figure 6B), while others had increasing levels of plaque (Figure 6C). As
268 expected, expression of TNF α and IL1 β , cytokines central to plaque development and immune cell
269 composition, were enriched in arteries with plaque versus those without (Figure 6D&E). Ptbp1 and the TNF
270 receptor were also increased in arteries with plaque versus those without (Figure 6F&G). Notably, there is a
271 wide range of expression of both cytokines and their receptors in plaque, reflecting widely varied immune
272 milieus within plaque (Figure 6D-G). This variation is important, as immune cell composition in plaque is
273 strongly correlated with myocardial infarction and stroke. Therefore, we asked what pathways are most
274 associated with Ptbp1 in coronary arteries by examining gene-gene correlations with Ptbp1 expression (e.g.
275 TNFRSF1A, Figure 6H). Doing this for all genes in specific arteries (e.g. coronary, tibial, aorta) revealed a
276 strong conservation of gene-gene interactions between arteries (Figure 6I), but that genes correlated with
277 Ptbp1 in arteries did not have the same correlation in whole blood (Figure 6J). We then asked what gene
278 groups are most often positively correlated with Ptbp1 expression, and found a strong signature for Myc
279 (which can induce Ptbp1 expression, and is also regulated by Ptbp1²⁴⁻²⁶), but also Interferon gamma
280 signaling, and TNF signaling via NF κ B (Figure 6K&L and SI Table).

281
282 Thus, in human arteries, Ptbp1 expression is positively associated with plaque accumulation and with
283 inflammatory pathways (TNF signaling via NF κ B), that are also regulated by Ptbp1 in mice.

285 Conclusions

286
287 Here, through a focused CRISPR-KO screen of splice factors involved in the early endothelial response to
288 LDF, we found that Ptbp1 is required for efficient NF κ B signaling responses in arterial endothelial cells.
289 Absence of Ptbp1 limits NF κ B transcriptional responses to pro-inflammatory cytokines by reducing nuclear
290 translocation of NF κ B, effects which are rescued by human PTBP1. As Ptbp1 expression and downstream
291 splicing responses are induced in the arterial endothelium in the early inflammatory response to LDF, we
292 propose that activation of Ptbp1 may be an important step in the priming of endothelial cells, licensing
293 them for the induction of cell adhesion molecules Icam and Vcam upon cytokine stimulation. Consistent
294 with this idea, Ptbp1 is positively correlated with human plaque burden and TNF α -mediated signaling
295 pathways in human coronary arteries. Furthermore, deletion of Ptbp1 from the endothelium limits myeloid
296 cell recruitment to sites of natural LDF and endothelial priming.

298 Contextual role of Ptbp1 in priming acute and chronic inflammatory responses

300 In this work, we have used a simplified *in vitro* model to understand the role of RNA-binding protein
301 expression on endothelial cell priming, and to show that this process depends on platelet recruitment. We
302 have previously shown that endothelial cells cultured *in vitro* under serum and static conditions exhibit an
303 expression and splicing profile that mimics activated carotid endothelium *in vivo*, after exposure to partial
304 carotid ligation⁹. This is an expected result, as typical *in vitro* culture conditions expose endothelial cells to
305 platelet and immune releasate in serum, and a lack of flow that removes quiescence signals from laminar
306 flow. Indeed, cultured endothelial cells *in vitro* are primed for the expression of Icam1 and Vcam in
307 response to TNF α or IL1 β stimulation⁵. Expression of Ptbp1 is elevated *in vitro*, as it is *in vivo* in endothelial
308 cells activated by exposure of LDF. Notably, the expression of Ptbp1 *in vivo* is not altered by flow alone, as it
309 did not change under LDF conditions when platelets were removed. Similarly, although basal levels of
310 Ptbp1 in culture were higher than *in vivo*, these levels were further increased by the addition of platelets
311 and monocytes (SI Figure 7), but neither plasma nor platelets and monocytes alone. Thus, our model is that

312 platelets are recruited to endothelial cells exposed to LDF *in vivo*, where they interact with the endothelium
313 through an unknown mechanism to induce endothelial cell priming – mediated in part by an increase in
314 Ptbp1 expression. This leads to an elevated response to pro-inflammatory cytokines, such as TNF α or IL1 β ,
315 and increased recruitment of myeloid cells to the endothelium.

316 Our model is consistent with the observation that not all endothelial cells in LDF regions of aorta
317 exhibit Vcam expression upon systemic LPS treatment⁴. We propose that the differential response among
318 cells may be due to local recruitment of platelets and activation of the priming response we describe here,
319 through increased expression of Ptbp1. Consistent with this idea, platelets are critical for the recruitment of
320 myeloid cells to regions of the vasculature exposed to LDF, and also for the development of atherosclerotic
321 plaque¹¹⁻¹⁴. While some of these effects are due to mechanisms previously described, such as deposition
322 of CCL5 on the endothelial cell surface by activated platelets, and the tethering of myeloid cells to the
323 endothelium by P-selectin expression on platelet intermediates¹⁴, we propose that induction of Ptbp1 in
324 the endothelium is an important consequence of platelet recruitment and contributes to the progression of
325 vascular inflammation and plaque development.

327 Ptbp1 and the NF κ B signaling pathway

328
329 Polypyrimidine tract binding protein (Ptbp1, or hnRNP I) is widely expressed, and has been shown to
330 regulate splicing responses and differentiation in a wide range of tissues, including neurons,
331 cardiomyocytes and leukocytes. While this work is the first that we know of to show a direct effect on the
332 NF κ B signaling pathway, prior reports suggest that Ptbp1 effects on inflammatory responses are not limited
333 to the endothelium. Ptbp1 was identified in an RNA interference (RNAi) screen to identify regulators of the
334 senescence-associated secretory phenotype (SASP) in cancer cells, indicated by expression of IL-6 and IL-8²⁷.
335 NF κ B signaling activation is critical in the induction of the SASP response, and small interfering RNA
336 (siRNA) to NF κ B subunit RELA suppressed the response as well. Interestingly, knockdown of Ptbp1 had little
337 effect on the growth of cells in this screen, as we observed in human arterial endothelial cells here.
338 However, in contrast to our results in endothelial cells, knockdown of Ptbp1 in cancer cells did not interfere
339 with TNF-mediated induction of an NF κ B reporter²⁷. In another study, knockdown of Ptbp1 in T cells led to
340 increased T cell expansion, which coincided with increased level of IK β α . While nuclear NF κ B was not
341 measured, the prediction would be that increased IK β α could lead to increased cytoplasmic sequestration
342 of NF κ B²⁸. The consistent theme is not the mechanism, as there was little difference in IK β α with or
343 without Ptbp1 in arterial endothelial cells, but that the pathway is consistently affected by Ptbp1.

344 The specific mediators of the effect of Ptbp1 on the NF κ B signaling pathway are not yet clear, but
345 alterations in RNA splicing are a likely cause. RNA-binding proteins can have diverse cellular functions,
346 including RNA transport, stability, and translation, but given the predominantly nuclear localization of the
347 splice factor in these cells, altered nuclear splicing functions is the most likely possibility. Consistent with
348 this idea, there is a substantial overlap between RNA splicing events regulated *in vivo* by the loss of
349 platelets and those regulated *in vitro* by the loss of Ptbp1. Some notable examples include an altered 3'UTR
350 in IK β κ γ (Nemo), a core NF κ B signaling pathway component, a skipped exon in Pdlim7, an ubiquitin ligase
351 of p65 which limits NF κ B signaling²⁹, and several genes linked to autoimmune or inflammatory diseases in
352 human genetic association studies, such as STAT3 (Crohn's disease, multiple sclerosis, and psoriasis)³⁰,
353 FNBP1 (Crohn's disease, multiple sclerosis, psoriasis, Type I diabetes)³¹ and MAGI1 (Crohn's disease,
354 psoriasis and Type-1 diabetes)³². In total, we detected splicing alterations in about half of the Kegg NF κ B
355 genes in our Ptbp1 KO cells, and many more splicing events peripherally related to the pathway. It is likely
356 that the reduced NF κ B signaling response we observed in cells is a result of more than one of these
357 alterations, but a future broad analysis of the regulated splicing events will be required to understand their
358 relative contributions.

359

360 Ptbp1 in the context of atherosclerosis and human cardiovascular disease

361

362 Two major risk factors for atherosclerosis are also linked to increased Ptbp1 expression: senescence
363 and integrin-mediated adhesions to fibronectin. Increased Ptbp1 expression has been observed with age
364 and in senescent cells^{27,33}. Aging is arguably the single greatest risk factor for atherosclerosis. Increasing
365 numbers of senescent cells in the arterial intima appear to be an important contributor³⁴. Senescent
366 endothelial cells express the potent proinflammatory cytokine IL6 as a result of increased NF κ B activity³⁵,
367 and markers of senescence are more abundant in patients with endothelial dysfunction³⁶. Ptbp1
368 localization is also dynamically altered by cell adhesion to fibronectin matrix³⁷, being mainly in the
369 cytoplasm during adhesion and until the cell has established focal adhesions – at which point its nuclear
370 localization is restored. In mouse embryonic fibroblasts, Ptbp1 was bound to mRNA encoding vinculin and
371 alpha-actinin – bringing them to the spreading periphery, and was required for cell spreading³⁷. In
372 response to LDF patterns and in early atherogenesis, fibronectin is deposited beneath the endothelium of
373 arteries^{6,10,38}. Fibronectin that is deposited, either from the plasma or the endothelium, promotes NF κ B
374 activity and myeloid recruitment and plaque in these regions^{6,39}. As these responses are determined by the
375 specific matrix binding integrins^{6,40}, it may be interesting to examine Ptbp1 localization and activity upon
376 binding of cells to other matrices than fibronectin.

377

378 Our evidence from cells and the animal model indicates a causal role for Ptbp1 in endothelial
379 activation and plaque development. While there have been no focused studies on Ptbp1 function in human
380 atherosclerosis or inflammatory diseases, we note that a SNP in Ptbp1 is correlated with C-reactive protein
381 (CRP) levels, a marker of systemic inflammatory responses (rs123698-G, P=1e-9)⁴¹. As Ptbp1 levels in
382 human arteries correlated with more severe plaque, and perhaps more importantly, with RNA markers of
383 TNF α -NF κ B signaling pathway activity in those plaques, understanding the links between innate immune
384 cell recruitment, senescence, and matrix adhesion, and Ptbp1 activity may provide new insights and
385 approaches to understanding inflammatory risk in atherosclerosis and other inflammatory diseases.

386

387 In conclusion, we report that Ptbp1 – with increased expression in regions of the vasculature exposed to
388 low and disturbed flow – is required for NF κ B nuclear localization upon stimulation. As loss of Ptbp1 reverts
389 alternative splicing patterns in cultured and activated endothelial cells towards a quiescent endothelium,
390 and blunts the subsequent response to cytokine stimulations by TNF α and IL1 β , we propose that Ptbp1 is a
391 critical component of endothelial cell priming. We predict that this Ptbp1 function will be conserved across
392 different vascular beds and inflammatory responses. Therefore, further investigation of this mechanism
393 leading to increased expression and activity of Ptbp1, its associated RNA-binding splice factors, and the RNA
394 transcripts they regulate is warranted.

395

396 Materials & Methods

397

398 CRISPR-KO Screening and Single Cell Clones

399 *Generation and amplification of CRISPR plasmid pools.* (Splice factor pool) Five CRISPR-KO guide sequences
400 were designed to each of 57 splice factor targets using described rules (Azimuth 2.0)⁴². Oligos were
401 ordered and BsmBI batch-cloned into the gRNA expression core of a LentiCRISPR_v2 plasmid containing
402 Cas9 (Addgene 52961). The library was amplified in Stbl3 (Thermo) and tested by miSeq analysis for
403 coverage and skew. Individual guides (e.g. to Rbfox2) followed the same protocol, but were confirmed by
404 Sanger sequencing. (Genome-wide pool) For the genome-wide screen, the Brie library in LentiCRISPR_v2
405 (Addgene 73632) was obtained as a plasmid library and amplified in Stbl4 (Thermo) on 500cm² LB-agar
coated ampicillin+ selection plates. The library was tested by NextSeq analysis for coverage and skew.

406 *Transduction of Splice Factor pool and Genome-Wide CRISPR pool into mouse aortic endothelial cells*
407 (*mAEC*). Lentivirus was generated in 293T cells using delta 8.9 and pHCMV-EcoEnv (Addgene 15802) as
408 packaging plasmids and 25kDa linear PEI as a transfection agent. Media was changed at 1 day and
409 supernatant was taken at 3 days after transfection for the treatment of recipient cells at MOI <0.3 (>1000
410 infected cells per guide). Virus supernatant was added to recipient mAECs with polybrene (8ug/mL), and
411 cells were selected with puromycin for 4 days, confirming a MOI<0.3 and complete killing of uninfected
412 cells. In experiments examining induction of *Icam* and *Vcam* in the endothelium and protein and RNA
413 analysis, recipient cells were TetOn-Sv40 aortic endothelial cells, prepared as previously described ^{9,10}. In
414 experiments in which eGFP reported NFkB signaling activity, recipient cells had been infected with a
415 modified version of an NFkB reporter construct, engineered to express RFP constitutively and eGFP upon
416 activation of the 4x NFkB binding motif. An aliquot of cells was taken 3-4 days post infection for an early
417 timepoint analysis of lentiviral library representation.

418 *Assessing effects on inflammatory response.* mAECs harboring CRISPR guides were trypsinized and split into
419 low glucose DMEM and 10% FBS into new dishes, without doxycycline to stop growth. 24 hours later, cells
420 were once again trypsinized and collected for staining and flow cytometry.

421
422 **Enrichment of guides in cells with increased or decreased *Icam1/Vcam* or **NFkB** reporter.** DNA was
423 collected from sorted subsets of cells Quick DNA kit (Zymo). Lentiviral insertions in genomic DNA were
424 amplified by nested PCR, using PCR1 primers (see table) followed by PCR2 primers containing barcodes and
425 Illumina priming sequences (see table). PCR reactions were separated using a 2% agarose gel, and bands of
426 interest were excised. PCR products were column cleaned (Gel cleanup kit, Zymo), and pooled based on
427 relative concentration. Pooled samples were sequenced on Illumina NextSeq instrument using 75bp single
428 end (SE) reads.

429
430 **Identification of top *Icam1/Vcam* or **NFkB** regulators (Bioinformatics approach).** Fastq files were analyzed
431 using Mageck-0.5.6 software, providing counts of each guide in each sequenced population, and
432 differences in their representation (mageck test).

433
434 **Expression of human PTBP1 cDNA in cells**

435 Poly(A) primed cDNA was prepared from human aortic endothelial cells. PCR primers with restriction sites
436 were used to amplify the expected band size for *Ptbp1*, and this was ligated into pLV-EF1a-IRES-Blast
437 (Addgene Plasmid #85133) using EcoR1 and BamHI restriction sites. The sequence of the inserted cDNA was
438 confirmed by Sanger sequencing. In the described experiments, both a “empty” rescue construct and the
439 *Ptbp1* containing construct were used.

440
441 **Immunofluorescence and Quantification**

442 mAEC (TetOn-SV40, hTert immortalized) were plated onto collagen-coated coverslips in a 6 well cell culture
443 plate without the presence of doxycycline (to stop growth), but with low glucose DMEM + 10% FBS. 24
444 hours after plating, DMEM + FBS was removed, and coverslips were washed in the cell culture plates with
445 cold PBS (3x). Cells were fixed with cold 4% paraformaldehyde (PFA) for 5 minutes on ice. Coverslips were
446 washed again 3x with cold PBS. For *Ptbp1* staining, cells on coverslips were permeabilized for 10 minutes at
447 room temperature with 0.1% Triton-x in PBS. All other immunofluorescence experiments did not
448 permeabilize before staining with primary antibody. Blocking buffer for *Ptbp1* staining was 1% BSA, 0.3M
449 glycine in PBS + 0.1% Tween for 1 hour at room temperature. All other staining used 10% normal goat
450 serum (NGS) + 0.1% Tween in PBS. *Ptbp1* staining was performed for 2 hours at 1:500 (Abcam, ab133734)
451 and NFkB (Cell Signaling, 8242) staining for 2 hours at 1:100 at room temperature. Secondary staining was

452 done for 1 hour at room temperature using a fluorescently-conjugated antibody. Images were taken on a
453 Zeiss epifluorescent microscope using ZenPro software. Quantification was performed using ImageJ (1.50i).
454

455 **Western Blot and Quantitation**

456 2x Laemmli buffer was added to the adherent cells and 2uL of phosphatase inhibitor cocktail 2 (Sigma,
457 P5726) and 2uL of phosphatase inhibitor cocktail 3 (Sigma, P0044) were added to the cell culture plates for
458 5 minutes before cell lysate was scraped into 1.5mL Eppendorf tubes. 1uL of Benzonase (Sigma, E1014) was
459 added to each sample and lysates were placed on ice for 5 minutes before being sheared 5 times with a 26
460 gauge needle. 5% of total volume was then placed in a separate Eppendorf tube, and freshly prepared 1M
461 DTT (dithiothreitol, 1uL/5uL cell lysate, Sigma D9779) was added. Samples were then placed at 95°C for 5-
462 10 minutes before being loaded onto the western blot gel. Gels were run at 125v for 1.5 hours before
463 western blot transfer was set up to run overnight at 4°C (100v for 1 hour, then O/N at 30v). Blocking was
464 done using 5% milk in TBST. Primary antibody staining (dilution is antibody dependent, but followed
465 manufacturer's recommendation) was done for 2 hours at room temperature, secondary staining (1:5,000)
466 was done for 1 hour at room temperature, and GAPDH staining (1:10,000) was done for 2 hours at room
467 temperature, all with rotation. Blots were imaged using Clarity ECL Western Blot substrate (Biorad,
468 1705060). Quantitation was performed using ImageJ (1.50i) by inverting the Western Blot image and
469 subtracting the background intensity from the GAPDH and the band of interest intensity.
470

471 **Nuclear Fractionation**

472 Adherent cells were trypsinized and pelleted. Cell counts were performed prior to any further
473 experimentation. Each cell pellet was resuspended in 100uL of Nuclei EZ Prep Isolation buffer (Sigma,
474 NUC101) and placed on ice for 5 minutes before being centrifuged (5 minutes at 500 x G). Supernatant
475 (cytoplasmic fraction) was collected, and to nuclei fraction, another 500uL of EZ Prep Isolation buffer was
476 added (resuspending the cell pellet in the buffer) and placed on ice for 5 minutes before 500uL of Isolation
477 buffer was added (for 1 mL total volume). Cells were pelleted by centrifugation, supernatant was removed,
478 and pellet was resuspended in 100uL of EZ Prep Isolation buffer before being prepared for western blot
479 analysis.
480

481 **Mice**

482 For the endothelial deletion of Ptbp1, *Cdh5(PAC)-CreERT2* and *Ptbp1^{lox/lox}* mice were used, which have been
483 previously described²²²¹. They were intercrossed to create the Ptbp1 EC-KO mice (*Cdh5(PAC)-CreERT2*;
484 *Ptbp1^{lox/lox}*) and littermate controls (*Ptbp1^{lox/lox}*) used here. Mice were used between 2 and 7 months of age
485 in paired groups of males and females. Tamoxifen (Sigma) was delivered intraperitoneally, dissolved at
486 10mg/mL in sunflower oil. 1mg was given in each of three doses.
487

488 All mice were housed and handled in accordance with protocols approved by the University of Connecticut
489 Health Center for Comparative Medicine.
490

491 **Hyperlipidemia**

492 Mice received 100 μ l intraperitoneal injections of 1×10^{11} viral particles of AAV8-encoding mutant PCSK9
493 (pAAV/D377Y-mPCSK9) produced at the Gene Transfer Vector Core (Grousbeck Gene Therapy Center,
494 Harvard Medical School). Mice were then placed on the Clinton/Cybulsky high-fat rodent diet (HFD) with
495 regular casein and 1.25% added cholesterol (D12108C; Research Diets). To measure cholesterol levels,
496 blood was collected from the right ventricle into lithium-heparinized tubes (365965; BD Biosciences) and
497 centrifuged at 5,000 g for 10 min to obtain serum. Samples were stored at -80°C and analyzed by the Total
498 Cholesterol Assay Kit (INC, cat. no. STA-384; Cell Biolabs).

499

500 **Aortic digestion**

501 Vessels were flushed with phosphate-buffered saline (PBS) through the left ventricle and out the right
502 atrium and then dissected free of adventitial tissue, minced with scissors into 1.5 ml microcentrifuge tubes
503 (Eppendorf), and incubated for 1 hour at 37°C with gentle rotation (20 rpm) in balanced salt solution (BSS)
504 media containing 150 U/ml collagenase type IV (Sigma-Aldrich C5138), 60 U/ml DNase I (Sigma-Aldrich), 1
505 μ M MgCl₂ (Sigma Aldrich), 1 μ M CaCl₂ (Sigma-Aldrich), and 5% fetal bovine serum (FBS). Digested tissues
506 were crushed through 35 μ m cell-strainer caps (BD Biosciences) and quenched with 5 ml of cold BSS + 10%
507 FBS in round-bottom tubes. Supernatant was removed after a 5 minute, 320 g centrifugation, and the cell
508 pellet was resuspended and quantified using a Z1 particle counter (Beckman Coulter).

509

510 **Flow cytometry**

511 **Aortic digestion and analysis**

512 Vessels were flushed with phosphate-buffered saline (PBS) through the left ventricle and out the right
513 atrium and then dissected free of adventitial tissue, minced with scissors into 1.5-ml Eppendorfs, and
514 incubated for 1 h at 37°C with gentle rotation (20 rpm) in balanced salt solution (BSS) media containing 150
515 U/ml collagenase type IV (Sigma-Aldrich C5138), 60 U/ml DNase I (Sigma-Aldrich), 1 μ M MgCl₂ (Sigma
516 Aldrich), 1 μ M CaCl₂ (Sigma-Aldrich), and 5% fetal bovine serum (FBS). Digested tissues were crushed
517 through 35- μ m cell-strainer caps (BD Biosciences) and quenched with 5 ml of cold BSS + 10% FBS in round-
518 bottom tubes. Supernatant was removed after a 5-min, 320-g centrifuge, and the cell pellet was
519 resuspended and quantified using a Z1 particle counter (Beckman Coulter).

520

521 **Flow Cytometry Staining**

522 Samples were stained in 2%FBS with 1mM EDTA in PBS, with the following: LIVE/DEAD UV Blue (1:100,
523 L34962, ThermoFisher), CD8 (1:200, Biolegend, 100708, clone 53-6.7), CD4 (1:200, Biolegend 100536, clone
524 RM4-5), CD45.2 (1:200, Biolegend, 103116, clone 30-F1111), Cd3e (1:200, Biolegend, 100348, clone 145-
525 2C11), Gr1 (1:200, B.D. Pharmingen, 552093, clone RB6-8C5), and Cd11b (1:200, Biolegend, 10112, clone
526 M1/70). LSR Aria-IIA (BD Biosciences) was used for acquisition. Viable cell gate is representative of a size
527 gate, single-cell gate, and viability gate.

528

529 Acquisition was performed on an LSR analyzer (Becton Dickinson). All flow cytometry data were analyzed
530 with FlowJo (Tree Star, Ashland, OR).

531

532 **Histology**

533 Innominate arteries were harvested and placed cores before being placed in Zinc-formalin fix for 24 hours.
534 24 hours later, cores were moved into 70% ethanol solution. Innominate arteries were then paraffin
535 infused, before being embedded in paraffin. 5um tissue sections were cut for each mouse. Lung tissues
536 were harvested and placed in PBS before being put in 4% paraformaldehyde (PFA) + 5% sucrose overnight
537 at 4°C. Tissues were then embedded in OCT before being sectioned in 5um sections.

538

539 **Analysis of GTEx data**

540 GTEx (version 7) was used ⁴³. Pathology was determined from the provided sample tables. Terms “some
541 intimal thickening”, “no lesions”, “no plaques”, “no significant atherosclerosis” were linked to the group
542 “Low Plaque”. Terms “mild plaques”, “minimal plaques”, “mild atherosclerosis”, “atherosclerosis”,
543 “atherosis”, etc. were linked to the group “High Plaque”. Gene-gene correlations were performed in R
544 using gene level transcript expression table, using the “cor” function. Gene set enrichment analysis was

545 performed using the desktop version of GSEA and a preranked list of genes correlated with Ptbp1 (most to
546 least), as a weighted analysis⁴⁴.
547

548 **Analysis of Gene Expression and Splicing**

549 RNA was isolated from fixed nuclei using an RNAeasy kit (RNAeasy, Qiagen 74104) with on column DNase
550 treatment. For RNA-sequencing, samples were prepared for library preparation using TruSeq RNA Library
551 Prep Kit v2 (Illumina). Total RNA was quantified and purity ratios determined for each sample using the
552 NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA). To further assess RNA
553 quality, total RNA was analyzed on the Agilent TapeStation 4200 (Agilent Technologies, Santa Clara, CA,
554 USA) using the RNA High Sensitivity assay. Amplified libraries were validated for length and adapter dimer
555 removal using the Agilent TapeStation 4200 D1000 High Sensitivity assay (Agilent Technologies, Santa Clara,
556 CA, USA) then quantified and normalized using the dsDNA High Sensitivity Assay for Qubit 3.0 (Life
557 Technologies, Carlsbad, CA, USA).
558

559 Sample libraries were prepared for Illumina sequencing by denaturing and diluting the libraries per
560 manufacturer's protocol (Illumina, San Diego, CA, USA). All samples were pooled into one sequencing pool,
561 equally normalized, and run as one sample pool across the Illumina NovaSeq. Target read depth was
562 achieved per sample with paired end 150bp reads.
563

564 Paired-end FASTQ files were processed using Whippet (Julia 0.6.4 and Whippet v0.11) using default
565 settings, after generating an index from GRCm38.primary_assembly.genome.fa.gz and
566 gencode.vM23.annotation.gtf.gz (Gencode, M23). Psi files and read support were used to select only
567 splicing events with read coverage >5 across all replicates. TpM files were used to examine expression
568 level. ggSashimi was used to plot alternative splicing events identified by Whippet analysis.

Key Resources Table

Reagent Type	Description	Source	Identifier
Vector	LentiCRISPR_v2	Addgene	
Packaging Plasmid	Delta 8.9		
Packaging Plasmid	CMV-Eco	Addgene	
Vector	pLV-EF1a-IRES-Blast	Addgene	
Software, algorithm	Mageck-0.5.6	SourceForge	
Software, algorithm	Whippet	GitHub	
Software, algorithm	GSEA	http://www.gsea-msigdb.org/gsea/index.jsp	
Database	GTEx	http://www.gtexportal.org	Version 7
Software, algorithm	Whippet	http://www.omictools.com	
Software	ImageJ	http://imagej.nih.gov	
Software	Zen Pro 2.6 (Blue)	Zeiss	
Software	FlowJo	BD Biosciences	
Bacterial cells	Stbl3	ThermoFisher	
Bacterial cells	Stbl4	ThermoFisher	
Commercial kit	Plasmid Miniprep	Zymo	D4208
Commercial kit	Plasmid Maxiprep	Zymo	D4202
Commercial kit	Gel Cleanup	Zymo	D4007
Commercial kit	Nuclei Isolation	Sigma	NUC101
Commercial kit	Total Cholesterol Assay kit	Cell Biolabs	STA-384
Mouse Line	Ptbp1 Mice	Institute of Medical Science, University of Tokyo, Tokyo, Japan	
Mouse Line	C57BL/6J	Jackson Lab	
Mouse Line	Cdh5(PAC)-CreERT2	Jackson Lab	
Antibody	Anti-CD45.2	Biolegend	103116
Antibody	Anti-CD3e	Biolegend	100348
Antibody	Anti-CD4	Biolegend	100536
Antibody	Anti-CD8	Biolegend	100708
Antibody	Anti-Gr1	B.D. Pharmingen	552093
Antibody	Anti-CD11b	Biolegend	10112
Antibody	Live/dead	ThermoFisher	L34962
Antibody	Anti-Ptbp1	Abcam	133734
Antibody	Anti-Icam1	Biolegend	116108
Antibody	Anti-Vcam1	Biolegend	105718
Antibody	Anti-NFkB	Cell Signaling Technology	8242
Antibody	Anti-Ikbkg (NEMO)	Abcam	ab178872
Antibody	Anti-Tnfr1	Abcam	ab19139
Antibody	Anti-IKba	Cell Signaling Technology	4814
Antibody	Anti-IKba-p	Cell Signaling Technology	2859
Reagent	Phosphatase Inhibitor Cocktail 2	Sigma	P5726
Reagent	Phosphatase Inhibitor	Sigma	P0044

	Cocktail 3		
Reagent	Benzonase	Sigma	E1014
Reagent	Clarity Western Blot ECL Substrate	Biorad	1705060
Reagent	Collagenase Type IV from Clostridium Histolyticum	Sigma	C5138
Reagent	DNase I	Sigma	DN25

570

571

572 **Acknowledgements:**

573 We appreciate the work of Xenia Bradley, who worked with Jessica in the summer of 2017 to test
574 conditions for the CRISPR screen that was eventually performed. Bo Reese, in the Center for Genome
575 Innovation at UCONN aided in the adaptation of the CRISPR screen sequencing protocols from published
576 work, and was a valuable consult in RNA-sequencing studies performed here. In the course of this work,
577 we received valuable input from the ImmunoCardiovascular Group at UCONN Health, particularly Dr.
578 Beiyan Zhou (University of Connecticut) and Alison Kohan (University of Pittsburgh). We also thank
579 Christopher Bonin and Geneva Hargis in the Science Writing and Illustration group at UCONN Health, for
580 editing and help with our graphical abstract.

581

582 **Competing Interests:**

583 Dr. Annabelle Rodriguez-Oquendo is an owner of Lipid Genomics, Inc. Farmington, CT.

584

585 **References:**

586 1. Ley, K., Laudanna, C., Cybulsky, M. I. & Nourshargh, S. Getting to the site of inflammation: the leukocyte
587 adhesion cascade updated. *Nat Rev Immunol* **7**, 678–89 (2007).

588 2. Gimbrone, M. A. & Garcia-Cardenas, G. Endothelial Cell Dysfunction and the Pathobiology of
589 Atherosclerosis. *Circ Res* **118**, 620–36 (2016).

590 3. Gareus, R. *et al.* Endothelial cell-specific NF-kappaB inhibition protects mice from atherosclerosis. *Cell*
591 *Metab* **8**, 372–83 (2008).

592 4. Hajra, L. *et al.* The NF-kappa B signal transduction pathway in aortic endothelial cells is primed for
593 activation in regions predisposed to atherosclerotic lesion formation. *Proc Natl Acad Sci U A* **97**, 9052–7
594 (2000).

595 5. Dai, G. *et al.* Distinct endothelial phenotypes evoked by arterial waveforms derived from atherosclerosis-
596 susceptible and -resistant regions of human vasculature. *Proc Natl Acad Sci U A* **101**, 14871–6 (2004).

597 6. Orr, A. W. *et al.* The subendothelial extracellular matrix modulates NF- κ B activation by flow: a
598 potential role in atherosclerosis. *J Cell Biol* **169**, 191–202 (2005).

599 7. Al-Yafeai, Z. *et al.* Endothelial FN (Fibronectin) Deposition by α 5 β 1 Integrins Drives Atherogenic
600 Inflammation. *Arter. Thromb Vasc Biol* **38**, 2601–2614 (2018).

601 8. Feaver, R. E., Gelfand, B. D., Wang, C., Schwartz, M. A. & Blackman, B. R. Atheroprone hemodynamics
602 regulate fibronectin deposition to create positive feedback that sustains endothelial inflammation. *Circ
603 Res* **106**, 1703–11 (2010).

604 9. Murphy, P. A. *et al.* Alternative RNA splicing in the endothelium mediated in part by Rbfox2 regulates the
605 arterial response to low flow. *Elife* **7**, (2018).

606 10. Murphy, P. A. *et al.* Alternative Splicing of FN (Fibronectin) Regulates the Composition of the Arterial
607 Wall Under Low Flow. *Arterioscler. Thromb. Vasc. Biol.* **41**, e18–e32 (2021).

608 11. Massberg, S. *et al.* A critical role of platelet adhesion in the initiation of atherosclerotic lesion
609 formation. *J Exp Med* **196**, 887–96 (2002).

610 12. Massberg, S. *et al.* Platelet adhesion via glycoprotein IIb integrin is critical for atheroprotection and
611 focal cerebral ischemia: an in vivo study in mice lacking glycoprotein IIb. *Circulation* **112**, 1180–1188
612 (2005).

613 13. Burger, P. C. & Wagner, D. D. Platelet P-selectin facilitates atherosclerotic lesion development. *Blood*
614 **101**, 2661–2666 (2003).

615 14. Huo, Y. *et al.* Circulating activated platelets exacerbate atherosclerosis in mice deficient in
616 apolipoprotein E. *Nat Med* **9**, 61–7 (2003).

617 15. Henn, V. *et al.* CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells.
618 *Nature* **391**, 591–594 (1998).

619 16. Leclair, N. K. *et al.* Poison Exon Splicing Regulates a Coordinated Network of SR Protein Expression
620 during Differentiation and Tumorigenesis. *Mol. Cell* **80**, 648–665.e9 (2020).

521 17. Zhang, L. *et al.* Novel Pathological Role of hnRNPA1 (Heterogeneous Nuclear Ribonucleoprotein A1) in
522 Vascular Smooth Muscle Cell Function and Neointima Hyperplasia. *Arterioscler. Thromb. Vasc. Biol.* **37**,
523 2182–2194 (2017).

524 18. Llorian, M. *et al.* Position-dependent alternative splicing activity revealed by global profiling of
525 alternative splicing events regulated by PTB. *Nat. Struct. Mol. Biol.* **17**, 1114–1123 (2010).

526 19. Xue, Y. *et al.* Genome-wide analysis of PTB-RNA interactions reveals a strategy used by the general
527 splicing repressor to modulate exon inclusion or skipping. *Mol. Cell* **36**, 996–1006 (2009).

528 20. Wilson, A. A. *et al.* Lentiviral delivery of RNAi for in vivo lineage-specific modulation of gene expression
529 in mouse lung macrophages. *Mol. Ther. J. Am. Soc. Gene Ther.* **21**, 825–833 (2013).

530 21. Sorensen, I., Adams, R. H. & Gossler, A. DLL1-mediated Notch activation regulates endothelial identity
531 in mouse fetal arteries. *Blood* **113**, 5680–8 (2009).

532 22. Shibasaki, T. *et al.* PTB deficiency causes the loss of adherens junctions in the dorsal telencephalon and
533 leads to lethal hydrocephalus. *Cereb Cortex* **23**, 1824–35 (2013).

534 23. Roche-Molina, M. *et al.* Induction of sustained hypercholesterolemia by single adeno-associated virus-
535 mediated gene transfer of mutant hPCSK9. *Arterioscler. Thromb. Vasc. Biol.* **35**, 50–59 (2015).

536 24. Monzón-Casanova, E. *et al.* Polypyrimidine tract-binding proteins are essential for B cell development.
537 *eLife* **9**, (2020).

538 25. Monzón-Casanova, E. *et al.* The RNA-binding protein PTBP1 is necessary for B cell selection in germinal
539 centers. *Nat. Immunol.* **19**, 267–278 (2018).

540 26. David, C. J., Chen, M., Assanah, M., Canoll, P. & Manley, J. L. HnRNP proteins controlled by c-Myc
541 deregulate pyruvate kinase mRNA splicing in cancer. *Nature* **463**, 364–368 (2010).

542 27. Georgilis, A. *et al.* PTBP1-Mediated Alternative Splicing Regulates the Inflammatory Secretome and the
543 Pro-tumorigenic Effects of Senescent Cells. *Cancer Cell* **34**, 85-102 e9 (2018).

544 28. La Porta, J., Matus-Nicodemos, R., Valentín-Acevedo, A. & Covey, L. R. The RNA-Binding Protein,
545 Polypyrimidine Tract-Binding Protein 1 (PTBP1) Is a Key Regulator of CD4 T Cell Activation. *PLoS One* **11**,
546 e0158708 (2016).

547 29. Jodo, A., Shibasaki, A., Onuma, A., Kaisho, T. & Tanaka, T. PDLIM7 Synergizes With PDLIM2 and
548 p62/Sqstm1 to Inhibit Inflammatory Signaling by Promoting Degradation of the p65 Subunit of NF-κB.
549 *Front. Immunol.* **11**, 1559 (2020).

550 30. Flanagan, S. E. *et al.* Activating germline mutations in STAT3 cause early-onset multi-organ autoimmune
551 disease. *Nat. Genet.* **46**, 812–814 (2014).

552 31. Nakamura, R. *et al.* A multi-ethnic meta-analysis identifies novel genes, including ACSL5, associated
553 with amyotrophic lateral sclerosis. *Commun. Biol.* **3**, 526 (2020).

554 32. Julià, A. *et al.* A deletion at ADAMTS9-MAGI1 locus is associated with psoriatic arthritis risk. *Ann.*
555 *Rheum. Dis.* **74**, 1875–1881 (2015).

556 33. Angarola, B. L. & Añczuków, O. Splicing alterations in healthy aging and disease. *Wiley Interdiscip. Rev.*
557 *RNA* e1643 (2021) doi:10.1002/wrna.1643.

558 34. Childs, B. G. *et al.* Senescent intimal foam cells are deleterious at all stages of atherosclerosis. *Science*
559 **354**, 472–477 (2016).

560 35. Bent, E. H., Gilbert, L. A. & Hemann, M. T. A senescence secretory switch mediated by PI3K/AKT/mTOR
561 activation controls chemoprotective endothelial secretory responses. *Genes Dev* **30**, 1811–21 (2016).

562 36. Rossman, M. J. *et al.* Endothelial cell senescence with aging in healthy humans: prevention by habitual
563 exercise and relation to vascular endothelial function. *Am J Physiol Heart Circ Physiol* **313**, H890–H895
564 (2017).

565 37. Babic, I., Sharma, S. & Black, D. L. A role for polypyrimidine tract binding protein in the establishment of
566 focal adhesions. *Mol. Cell. Biol.* **29**, 5564–5577 (2009).

567 38. Murphy, P. A. & Hynes, R. O. Alternative splicing of endothelial fibronectin is induced by disturbed
568 hemodynamics and protects against hemorrhage of the vessel wall. *Arter. Thromb Vasc Biol* **34**, 2042–
569 50 (2014).

570 39. Rohwedder, I. *et al.* Plasma fibronectin deficiency impedes atherosclerosis progression and fibrous cap
571 formation. *EMBO Mol Med* **4**, 564–76 (2012).

572 40. Yurdagul, A. *et al.* $\alpha 5\beta 1$ integrin signaling mediates oxidized low-density lipoprotein-induced
573 inflammation and early atherosclerosis. *Arterioscler. Thromb. Vasc. Biol.* **34**, 1362–1373 (2014).

574 41. Han, X. *et al.* Using Mendelian randomization to evaluate the causal relationship between serum C-
575 reactive protein levels and age-related macular degeneration. *Eur. J. Epidemiol.* **35**, 139–146 (2020).

576 42. Doench, J. G. *et al.* Optimized sgRNA design to maximize activity and minimize off-target effects of
577 CRISPR-Cas9. *Nat Biotechnol* **34**, 184–191 (2016).

578 43. GTEx Consortium. The GTEx Consortium atlas of genetic regulatory effects across human tissues.
579 *Science* **369**, 1318–1330 (2020).

580 44. Subramanian, A. *et al.* Gene set enrichment analysis: a knowledge-based approach for interpreting
581 genome-wide expression profiles. *Proc Natl Acad Sci U A* **102**, 15545–50 (2005).

582