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Abstract 1 

The sensitivity of the human visual system is thought to be shaped by environmental 2 

statistics. A major endeavour in vision science, therefore, is to uncover the image statistics 3 

that predict perceptual and cognitive function. When searching for targets in natural images, 4 

for example, it has recently been proposed that target detection is inversely related to the 5 

spatial similarity of the target to its local background. We tested this hypothesis by 6 

measuring observers’ sensitivity to targets that were blended with natural image 7 

backgrounds. Targets were designed to have a spatial structure that was either similar or 8 

dissimilar to the background. Contrary to masking from similarity, we found that observers 9 

were most sensitive to targets that were most similar to their backgrounds. We hypothesised 10 

that a coincidence of phase-alignment between target and background results in a local 11 

contrast signal that facilitates detection when target-background similarity is high. We 12 

confirmed this prediction in a second experiment. Indeed, we show that, by solely 13 

manipulating the phase of a target relative to its background, the target can be rendered 14 

easily visible or undetectable. Our study thus reveals that, in addition to its structural 15 

similarity, the phase of the target relative to the background must be considered when 16 

predicting detection sensitivity in natural images.   17 

Introduction 18 

The human visual system is tasked with parsing the complexity of natural environments 19 

into a coherent representation of behaviourally relevant information. These operations have 20 

been shaped by various selective pressures over evolutionary and developmental 21 

timescales. Therefore, the perceptual computations that guide cognition and behaviour 22 

ultimately serve to extract functional information from rich and complex naturalistic 23 

environments (Carandini et al., 2005; Field, 1987; Olshausen & Field, 2005; Parraga et al., 24 

2000; Simoncelli & Olshausen, 2001). For example, a common task is to find a pre-defined 25 

target object in a complex or cluttered visual environment. The vast majority of our 26 

knowledge of the visual system, however, has been derived from experiments using 27 

relatively sparse stimulus displays that are not representative of our typical visual diets. The 28 

aim of the present study was to investigate how natural image structure influences target 29 

detection. We tested how detection is influenced by the spatial structure, phase, and 30 

contrast of natural image backgrounds to determine the features that best predict detection 31 

sensitivity. 32 

Luminance contrast plays a critical role in most visual tasks. The human visual system 33 

is tuned to detect contrast across a range of spatial and temporal frequencies. Neurons in 34 

primary visual cortex (V1) are classically understood as processing local regions of oriented 35 

contrast that can define the borders of objects (Hubel & Wiesel, 1959). Such properties of 36 

individual neurons govern phenomenal perception and are thought to be shaped by the 37 

statistics of natural environments (Barlow, 1961, 1972). The encoding of contrast within the 38 

visual system is most commonly studied with oriented grating stimuli, such as Gabor 39 

wavelets. Grating stimuli are conveniently characterised by a simple set of parameters: 40 

orientation, contrast, position, and spatial frequency. From a computational perspective, 41 

“Gabor wavelet analyses” allow the decomposition of any image into mathematically 42 

tractable component features. Such analyses are relatively simple and are common in many 43 

computer vision applications. Early theory suggested that analogous decomposition 44 

processes occur in the visual system (Campbell & Robson, 1968). However, more recent 45 

studies suggest that individual visual neurons encode complex higher-order statistical 46 

information that is not necessarily predicted by Gabor parameters (e.g. Cadena et al., 2019). 47 
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One common approach to investigate contrast sensitivity in natural conditions is to 48 

have observers detect contrast-defined targets embedded in digital photographs or movies. 49 

Relative to sensitivity as typically quantified with a uniform background, spatio-temporal 50 

contrast sensitivity is diminished when viewing dynamic movies, particularly for lower 51 

frequencies (Bex et al., 2009). Furthermore, during free viewing of natural movies, the large-52 

scale retinal changes caused by saccadic eye movements also diminish sensitivity likely 53 

due to forward and backward masking (Dorr & Bex, 2013; Wallis et al., 2015). In general, 54 

such studies have revealed that the sensitivity of the visual system does indeed depend on 55 

naturalistic context (Bex & Makous, 2002; Geisler, 2008).  56 

Researchers have further sought to understand the statistical regularities of natural 57 

scenes that impact the detectability of targets. For example, various image structures, such 58 

as the density of edges within close proximity to the target, negatively impact detection 59 

sensitivity (Bex et al., 2009; see also Wallis et al., 2015). Indeed, the discriminability of visual 60 

objects can be predicted from the spatial proximity of surrounding visual clutter (Balas et al., 61 

2009; Greenwood et al., 2010, 2012; Harrison & Bex, 2014, 2015, 2017; Rosenholtz et al., 62 

2012; Wallis et al., 2019). More recently, it has been found that sensitivity scales inversely 63 

with the structural similarity between target and background (Sebastian et al., 2017, 2020). 64 

Structural similarity describes how similar two stimuli are in terms of the spatial distribution 65 

of phase-invariant contrast. Sebastian et al found that observers’ detection sensitivity 66 

decreases with increasing similarity. These studies thus predict that targets are most difficult 67 

to detect when they are similar to their backgrounds (Sebastian et al., 2017), particularly 68 

when those backgrounds are dense with edges (Bex et al., 2009). Other studies that have 69 

attempted to quantify the relationship between image statistics and sensitivity use post-hoc 70 

computational means to estimate the influence of natural image structure on target detection 71 

or apparent contrast (e.g. Haun & Peli, 2013; Wallis et al., 2015; Wallis & Bex, 2012). Very 72 

few studies, to the best of our knowledge, explicitly manipulated the consistency of a target’s 73 

appearance with the appearance of a natural image background in an experimental design 74 

(e.g. Neri, 2014, 2017; Teufel et al., 2018).  75 

The present study 76 

The aim of the present study was to test observers’ sensitivity to targets presented on 77 

natural image backgrounds. Importantly, we designed the test stimuli a priori such that 78 

targets approximated the appearance of, and were aligned with, the local structure of a 79 

natural image background, or differed from the local structure. We therefore distinguish 80 

target-background alignment from target-background similarity in terms of the stimulus 81 

generation procedure (alignment) versus an image statistic (similarity). As shown in Figure 82 

1, we automated the placement of targets within natural backgrounds according to oriented 83 

contrast energy at different image regions. We created two conditions, one in which targets 84 

were aligned with their backgrounds and one in which targets were misaligned with their 85 

backgrounds. In contrast to this stimulus generation procedure, target-background similarity 86 

is a measure of the correlation between a target and a background without a target. While 87 

target-background similarity ranges from 0 – 1 for all stimuli, our stimulus generation method 88 

results in higher similarity scores for aligned targets than misaligned targets (on average). 89 

Based on previous studies showing a negative impact of increasing target-background 90 

similarity on detection (Bex et al., 2009; Sebastian et al., 2017), we expected to find worse 91 

detection sensitivity when targets were aligned with the background – and were therefore 92 

highly similar – than when they were misaligned relative to the background – and were 93 

therefore relatively dissimilar. To anticipate our results, however, we found the opposite, 94 

instead revealing that the influence of target-background similarity on detection sensitivity 95 

depended almost entirely on the relative phase of the target. 96 
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 97 

 98 
Figure 1. Stimulus generation method for testing sensitivity to contrast in natural images. A) An 99 
example source image taken from a collection of over 26,000 labelled images in the THINGS database 100 
(Hebart et al., 2019). B) We used a complement of derivative of Gaussian wavelets to filter each source 101 
image and compute the dominant orientation (top panel) and contrast energy (bottom panel) at each 102 
pixel location. Orientation is indicated by the inset colour wheel, which spans the full range (0 – 2pi) 103 
to indicate the preservation of the phase of the dominant filter. C) As shown by the white dashed 104 
circles, we selected target image regions according to the peaks of the oriented contrast maps. The 105 
number of targets varied from trial to trial from 1 to 16 in equally spaced log steps. D) Targets were 106 
oriented filters generated from the oriented contrast maps. These target features are thus aligned to 107 
the natural structure within the source image. Targets were then added to a natural image background, 108 
and observers were required to detect in which of two images the targets had been added. E and F) 109 
Targets were either aligned (E) or misaligned (F) with the background structure. Note that the same 110 
targets have been added to both examples but are more apparent in the aligned condition than the 111 
misaligned condition. As a guide, target filters are located at the intersection of pink and blue lines at 112 
the edges of panels D – F. 113 

Methods 114 

Participants. We used a single-subjects design in which we measured observers’ 115 

perceptual performance with high precision and treat each observer as a replication (Smith 116 

& Little, 2018). All observers were authors of the paper and had normal vision (RR, RW & 117 

WH). RW and RR were naïve to the specific experimental manipulations at the time of 118 

testing. The experiment was designed and carried out during a COVID-19 lockdown in 119 

Brisbane, Australia, in March 2021. Testing occurred, therefore, in each observer’s private 120 

residence.  121 

Design. We measured observers’ sensitivity to contrast changes in natural images in 122 

a 2 (target-background alignment: aligned or misaligned) x 5 (number of targets: 1, 2, 4, 8, 123 

or 16) x 5 (target amplitude: 0, 0.05, 0.1, 0.2, or 0.4 of maximum) design. Each observer 124 

completed 40 trials per condition for a total of 2000 trials in a fully within-participants design.  125 

Stimuli. Stimuli were programmed with the Psychophysics Toolbox (Brainard, 1997; 126 

Kleiner et al., 2007; Pelli, 1997) in MATLAB (v2018b, Mathworks) and were displayed either 127 

on a 15” MacBook Pro Retina or a 16” MacBook Pro Retina. Natural images of objects were 128 

taken from the THINGS database (Hebart et al., 2019), available via the Open Science 129 

Framework (https://osf.io/jum2f/). Images were converted to greyscale using the rgb2grey() 130 

function in MATLAB, and we assumed digital photos were encoded with a gamma of 2, and 131 

displays had a decoding gamma of 2. 132 

We describe the stimulus generation process in detail below, but provide a brief 133 

overview here. On each trial, two different natural images were displayed, both of which 134 

were normalised in their contrast. Images had a diameter of 2° and were presented to the 135 

left and right of a red fixation spot. We chose this relatively small stimulus size for two 136 

reasons. First, we wanted to display images side by side, but close enough to central vision 137 

so as to mitigate effects of e.g. crowding. Second, because we were not able to monitor 138 

observers’ fixation compliance, the smaller stimulus size reduced the tendency for observers 139 

to make reflexive eye movements to high contrast image regions in their periphery. The 140 

*

AlignedA B C D E F Misaligned
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target stimulus was the one in which wavelet filters had been blended with the natural image; 141 

the distractor was a natural image with no target filters. The filters were designed to be 142 

similar or dissimilar from the underlying natural image structure. We generated target stimuli 143 

by blending a source image of a natural object with derivative of Gaussian wavelets 144 

(henceforth: filters). The blending process followed four steps: 1) find the dominant 145 

orientation of each pixel in a source image, 2) find the relative contrast of each pixel in the 146 

image, 3) draw some number of filters at the highest contrast image regions, and 4) combine 147 

the filters with a source image. We expand on these steps below.  148 

First, we used a steerable filter approach to determine the dominant orientation at 149 

every pixel in a given source image (Freeman & Adelson, 1991). Filters were directional first 150 

derivative of Gaussians oriented at 0° and 90°: 151 

Equation	1	 	 �!° =	22 #

$
	�%!

"#$"

%" 		152 

Equation	2	 	 �&!° =	22 '

$
	�%!

"#$"

%" 		153 

Where s is the standard deviation of the Gaussian, x and y are the coordinates of each 154 

image pixel with point (0,0) at the centre, and G( is the resulting filter. The Gaussian standard 155 

deviation was 0.08°. Within a trial, each filter was convolved with a source image: 156 

Equation	3	 	 �!° =	�!° 7 �		157 

Equation	4	 	 �&!° =	�&!° 7 �		158 

Where � is the source image with a mean of 0 and in the range [-1 1] and R is a filter 159 

response at each pixel location. We combined the filter responses to find the dominant 160 

orientation, �7, at each location: 161 

Equation	5	 	 �7 = 	����2<	3 �( ���(�)&!°
()!° , 3 �( ���(�)&!°

()!° 	E		162 

Second, we created a contrast map, C, of the filtered image by combining the filter 163 

outputs as follows: 164 

Equation	6	 	 � = 	H3 �(
*&!°

()!° 		165 

Third, we found the dominant orientation at the location of the contrast maxima: 166 

Equation	7  �! = ������	�		167 

Equation	8	 	 �7+,-# = �7.& 	168 

�! indexes the x-y coordinates of the contrast maxima, and �7+,-# is the orientation at 169 

this location. We then steered a filter at this location as follows: 170 

Equation	9	 	 � = ���<�7+,-#E �.&!° +	���<�7+,-#E �.&&!°	171 

Here, S is the resulting filter stimulus in the range -1 to 1. Note the additional subscript 172 

of the filters that indicates that the filters were centred on the location of the contrast maxima, 173 

�!. This is trivially achieved by centring the x-y coordinates in Equations 1 and 2 on the 174 

coordinates of �!. 175 

Finally, we created the target stimulus, �, by combining the filter stimulus, S, with a 176 

normalised source image: 177 

Equation	10	 	 � = 0.5 +	*/012'()*
*

	178 
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Where � is the filter amplitude expressed as a proportion of maximum possible 179 

contrast, and  180 

Equation	11	 	 �345, = 2� 2

67(2)
		181 

Here, � is the image root mean square (RMS) contrast, and ��(�) is the standard 182 

deviation of the source image. RMS contrast was set to 0.2 based on the findings of 183 

Sebastian et al (2017). The addition of 0.5 and denominator in Equation 10 normalises the 184 

range of the source image to [0 1] for display. Prior to this step, the target image was 185 

windowed in a circular aperture with a diameter matching the width of the source image (i.e. 186 

2°) and a raised cosine edge, transitioning to zero contrast in 6 pixels. To constrain the filters 187 

generated by Equation 9 to appear within the windowed portion of the stimulus, the same 188 

aperture was applied to the contrast map, C, prior to generating the stimulus. Any values 189 

lower or higher than 0 or 1, respectively, in �345, were clipped.  190 

For trials in which multiple filters were combined with a source image, we used an 191 

iterative procedure to draw n local maxima from the contrast image. Following the argmax 192 

operation in Equation 7, we updated the contrast map to minimise the contrast at the 193 

maxima: 194 

Equation	12	 	 	�3 =	 X�3%:[1 2 �(�!, ��)]								� > 1
�																																											� = 1	195 

Where �3 is the contrast map for the n-th filter, and �(�!, ��) is a two-dimensional 196 

Gaussian with a peak of 1 centred on the location of the maxima �!, and a standard deviation 197 

of ��. � is the standard deviation of the basis filters, while � is a scaling factor that 198 

determines the spatial extent of change in the contrast map. The effect of this adjustment is 199 

the creation of a new local maxima at a different location than in the previous iteration. The 200 

greater the value of �, the greater the spatial spread of filters. The first filter location is always 201 

the image region with highest contrast. After accounting for the effect of �, subsequent filters 202 

are placed in regions of diminishing contrast. In trials in which multiple filters were present, 203 

backgrounds were randomly selected as described above. 204 

Image selection. The 26,107 images in the THINGS database are grouped into 1,854 205 

concepts (e.g. “dog”, “cup”, “brush” etc), such that there are at least 12 unique, high quality 206 

images for each concept (Hebart et al., 2019). In each testing session (500 trials), we 207 

selected 1000 source images from unique concepts such that no two images were drawn 208 

from the same concept. The target background was thus always drawn from a different 209 

concept than the distractor image. However, it was necessary that some concepts were 210 

repeated across testing sessions, and it was also possible that some individual images were 211 

also repeated across sessions (but never within sessions). 212 

On each trial, we selected two images from the set of 500: one image for the target 213 

background, and a second image was the distractor. On half the trials, the target filters were 214 

generated from the target background and were therefore aligned with the background, 215 

while on the other half of trials they were generated from the distractor image – but blended 216 

with the target background – and were therefore misaligned relative to the target 217 

background. Target filters were generated from the distractor background on misaligned 218 

trials, as opposed to an unused image, so that the filters and their source image were 219 

presented on every trial, but we doubt this decision was important to our results. We chose 220 

to present two different background images on each trial, rather than, for example, 221 

presenting two of the same background images, because we did not want observers to 222 

attempt to simply spot the difference between two similar images. Instead, observers had to 223 

perform a more natural task of searching unfamiliar and unique backgrounds for targets.  224 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 2, 2021. ; https://doi.org/10.1101/2021.06.16.448761doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.16.448761
http://creativecommons.org/licenses/by-nc/4.0/


 7 

Procedure. A typical trial sequence is shown in Figure 2. Each trial began with a small 225 

red fixation spot in the centre of the display, followed by outlines of the upcoming stimulus 226 

locations. Natural image backgrounds were followed by a blank of 500ms, after which time 227 

the observer reported which of the two patches contained the target filter(s) using the 228 

keyboard. Following the observer’s response, the image patch with target filters was re-229 

displayed for an additional 500ms, outlined in green or red depending on whether the 230 

observer’s response was correct or incorrect, respectively. Feedback was provided to 231 

facilitate observers reaching a stable level of performance. No breaks were programmed 232 

but could be taken by withholding a response. Each session included ten repeats of each 233 

trial type, all presented in random order, giving 500 trials per session and taking 234 

approximately 15 minutes when no breaks were taken. 235 

 236 
Figure 2. Schematic of typical trial sequence. The target and background could appear on the left or 237 
right of the screen with equal probability. Following an observer’s response, the background 238 
containing the target filters was framed by a green or red circle depending on whether the response 239 
was correct or incorrect, respectively. 240 

Sensitivity analyses. We quantified observers’ sensitivity to the target filters in natural 241 

images in a generalised linear model (GLM) framework. We describe the most pertinent 242 

aspects of the framework below, but, for the impatient reader, we note that these equations 243 

accumulate to the fitglme() function in MATLAB, or, equivalently, the lmer() function in R 244 

with the lme4 package (Bates et al., 2015). 245 

In a standard single-interval detection paradigm in which a target is either present or 246 

absent, sensitivity, d’, is calculated as: 247 

Equation	13		 	 �; = 	�� 2 ��		248 

Where � is the normal integral function, H is the proportion of hits, and F is the 249 

proportion of false alarms, under the assumption of equal variance. An observer’s criterion, 250 

c, is calculated as:  251 

Equation	14		 	 � = :

*
(�� + ��)	252 

In a GLM, d’ and c (bias) are computed as predictor weights �: and �!, respectively, 253 

that are passed through a probit link function, which is the normal integral function:  254 

Equation	15	 	 �[=] = �! + �:�!:[=]	255 

Equation	16	 		 	�(�������=) = 	��= 	256 

Where � is the sum of weighted linear predictors and �!: is the absence or presence 257 

of the signal (i.e. 0 or 1, respectively) on the i-th trial. By fitting such a probit model, estimates 258 

of the predictor weights �: and �! are identical to d’ and c, respectively, as calculated in 259 

Equation 13 and Equation 14. Whereas these equations fully specify sensitivity and bias in 260 

a single interval present/absent judgement task, some small modifications are needed to 261 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 2, 2021. ; https://doi.org/10.1101/2021.06.16.448761doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.16.448761
http://creativecommons.org/licenses/by-nc/4.0/


 8 

quantify sensitivity in a two-alternative forced choice task (2AFC) as in our experiment. First, 262 

�!: denotes whether the target filter(s) appeared in the left or right spatial interval, defined 263 

as -.5 or .5, respectively. Similarly, observers’ reports (i.e. “target appeared in the left or right 264 

interval”), were defined as -1 and 1, respectively. Finally, in a 2AFC, observers have two 265 

opportunities to detect the target – once per spatial interval – and so raw d’ will be greater 266 

than in a single-interval detection design. Therefore, sensitivity (but not bias) must be scaled 267 

by 
:

:*
 (Macmillan & Creelman, 2004):  268 

Equation	17		 	 �2���2 =	 1
!2
�1 =	 1

!2
(��2��)	269 

Importantly, we can extend Equation 15 to quantify sensitivity to any number of other 270 

predictors, �F: 271 

Equation	18	 	 �[=] = �! + �:�!:[=] +ï+	�F�F[=]	272 

Consider, for example, the influence of filter amplitude (�) on an observer’s sensitivity: 273 

Equation	19	 	 �[=] = �! + �:�[=]�!:[=]	274 

Note that filter amplitude is entered into the model as an interaction with target location 275 

because the model’s predicted outcome is a spatial report; target amplitude alone can only 276 

predict a change in bias. In preliminary model fits, we found that such bias was not 277 

significantly different from zero, and thus included only interactive terms to facilitate 278 

interpretability of the standard bias term, �!. We selected other model predictors according 279 

to the model that produced the lowest Akaike information criterion (AIC; see below).  280 

Finally, we implemented this model as a multilevel GLM (GLMM) to partially pool 281 

coefficient estimates across observers (Gelman & Hill, 2007). By using a GLMM, we model 282 

each observer’s predictor weights as having come from a population distribution with mean 283 

� and variance �*: 284 

Equation	20	 	 �[=] = �!,H +	�:,H�H[=]�!:,H[=] +ï	285 

Where  286 

Equation	21	 	 �F,H =	�F + �F,H 	|	�F* 	287 

Here,	�F,H is the offset for each predictor � and observer �, relative to the parameter’s 288 

mean �, contingent on the parameters’ estimated population variance �*. The partial pooling 289 

of observers’ data in a GLMM results in more extreme values being pulled toward the 290 

population mean estimate. Note that in our experiment, however, such pooling is relatively 291 

minor due to the large number of trials, and therefore high precision, of each observer’s 292 

estimated performance, as well as the relatively small number of observers. Because 293 

images were drawn randomly from trial to trial from a pool of tens of thousands of images, 294 

we did not expect many, if any, repeats of each image. We therefore did not model the 295 

background images as a random effect, but we note that such a design could be chosen in 296 

future to estimate the variance associated with each tested background.  297 

We entered into the model the factors target amplitude, number of filters, and target-298 

background alignment, which, as noted above, were each entered as an interaction with the 299 

spatial interval of the target. In hindsight, our inclusion of the condition in which target 300 

amplitude was 0 was unnecessary. For all such trials, therefore, we set all predictors to have 301 

a value of 0 so they were omitted from model calculations. The model fit was improved by 302 

including nonlinear terms by raising amplitude and number of Gabors to the exponents 0.5 303 

and 2, respectively. We further tested all combinations of interactions, but none improved 304 

the model fit as assessed by the Akaike information criterion.  305 
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Post-hoc analysis of interaction between the number of filters and filter 306 

amplitude. We modelled the joint influence of number of filters and filter amplitude on 307 

proportion correct as a two-dimensional surface (see Figure 5B). The surface is defined as: 308 

Equation	22	 	 	�	 = 0.5 + :

*
(�<�I , �$E » �<�I , �$E)	309 

Where z is the surface of estimated proportion correct, f<³J, ³KE is a cumulative 310 

probability function relating target amplitude to accuracy according to a threshold and 311 

variance, ³J and ³$, respectively, and f<nJ, nKE is a cumulative probability function relating 312 

the number of filters to accuracy according to a threshold and variance, nJ and n$, 313 

respectively. Here, » refers to the element wise product of cumulative distributions. This 314 

function can be thought of as a two-dimensional psychometric function, with separable 315 

means and standard deviations. The input parameters into the cumulative functions were 316 

free parameters, fit by minimising the summed squared error between the average 317 

proportion correct and z using Matlab’s fminsearch(). While there are no doubt other ways 318 

of quantifying the interaction between filter amplitude, number of filters, and proportion 319 

correct, this model suffices for our purposes.  320 

Structural similarity. We quantified the similarity between targets and their 321 

backgrounds using the same approach as Sebastian et al (2017 see their equation S9): 322 

Equation	23	 	 	�[=] 	= 	 L+[-]çL/[-]
||L+[-]||	||L/[-]||

	323 

Where r[P] is the similarity between the steered filter targets (i.e. S in Equation 9) and 324 

the background image I on trial i. AQ[P] is the Fourier amplitude spectrum of the filters, and 325 

AR[P] is the Fourier amplitude of the natural image background, both of which are vectors and 326 

were computed by taking the absolute of the complex values of the Fourier transforms. r[P] 327 

is thus a phase-invariant metric. Prior to computing AR[P], we windowed the natural image 328 

background to include only the same regions as the locations of target filters. This was 329 

achieved by first computing a contrast map in which two-dimensional Gaussians were 330 

positioned at each target location. Gaussians had the same standard deviation as the target 331 

filters and had their peaks normalised to one. We then computed the elementwise product 332 

of the source image and this contrast map, which produced the background image entered 333 

into Equation 23. Note that our method to generate stimuli and target-background similarity 334 

both depend on oriented contrast within the frequency band of the target. Variations in 335 

structural similarity for the aligned and misaligned targets are shown in Figure 6. 336 

Results 337 

We tested observers’ ability to detect target filters that were blended with natural image 338 

backgrounds. Targets were designed such that they were either aligned or misaligned with 339 

the structure of the background. We tested detection of 1, 2, 4, 8 and 16 target filters and 340 

across a range of target amplitudes. We first describe our results in terms of raw accuracy, 341 

and then report the results of our modelling analysis in which we quantified observers’ 342 

sensitivity in terms of d’.  343 

The influence of target amplitude, number of filters, and target-background alignment 344 

The proportion of correct responses as a function of each factor is shown in Figure 3. 345 

The amplitude of the target most clearly impacts accuracy, such that accuracy increases 346 

approximately linearly with (log) target amplitude (Figure 3A). Although the relationship 347 

between proportion correct and the number of filters is less consistent (Figure 3B), there is 348 

a general increase in accuracy with increasing number of target filters. As described  below, 349 
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however, the relationship between number of filters and sensitivity was not significant. We 350 

also found a highly consistent effect of target-background alignment across observers 351 

(Figure 3C). Contrary to our expectations based on recent reports of similarity masking 352 

(Sebastian et al., 2017), however, we found better performance when target filters were 353 

aligned with their backgrounds than when they were misaligned with their backgrounds. This 354 

difference in performance is significant at the group level (t(2) = 5.862, p = 0.028, d = 3.38), 355 

but we more formally quantify the relationship between these factors in a GLMM below. 356 

Importantly, given the high measurement precision of these data (1000 observations per 357 

data point shown in Figure 3C), we can treat each observer as an independent replication 358 

of the effect, regardless of any specific inferential statistic (Smith & Little, 2018). 359 

 360 
Figure 3. Proportion correct target identifications based on the three experimental factors: A) Target 361 
amplitude, B) Number of filters, and C) Target-background alignment. Colours represent different 362 
observers, as indicated by the legend in panel (A). The dotted line in each panel shows chance 363 
performance. There were 400 trials per data point in panels (A) and (B), and 1000 trials per data point 364 
in panel (C). Error bars show one binomial standard deviation.  365 

We estimated detection sensitivity as a function of the experimental factors with a 366 

GLMM. Modelled sensitivity is shown in Figure 4 in the same format as Figure 3. Target 367 

amplitude and target-background alignment were both significant contributors to the model. 368 

Importantly, as shown in Figure 4C, sensitivity was greater when target filters were aligned 369 

with the background than when they were misaligned. The number of filters did not predict 370 

sensitivity, which is consistent with the relatively noisy relationship between accuracy and 371 

the number of filters as shown in Figure 3B.  372 

 373 
Figure 4. Modelled target detection sensitivity. A) Sensitivity varies systematically with target 374 
amplitude, but not the number of filters (B). C) Sensitivity depends on the target-background 375 
alignment, such that it is greater when filters are aligned with the background than when they are 376 
misaligned. Error bars in all panels show one standard error across marginalised conditions, but are 377 
smaller than the point size in (A). 378 
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We manipulated the number of filters because we expected to find an improvement in 379 

performance with increasing filter number. The lack of a main effect of filter number in the 380 

results above, therefore, was unexpected. Although not critical to our primary interest in the 381 

influence of target-background alignment, we tested whether the number of filters interacted 382 

with target amplitude using a more direct test than the full GLMM above. Data points in 383 

Figure 5A show mean proportion correct responses, marginalised to show the influence of 384 

the number of filters for each target amplitude. At the two highest target amplitudes tested 385 

(top two lines), there is indeed an effect of the number of filters: as the number of filters 386 

increases, so too does observers’ accuracy. The same data points are shown in Figure 5B 387 

arranged as a surface that maps proportion correct as conditional on the combination of 388 

conditions. We interpolated these points as a two-dimensional surface function that 389 

quantifies the interaction between number of filters and amplitude (see Methods). The warm 390 

colours clustering in the top right corner reveal that increasing the number of filters in the 391 

targets has the strongest effect at higher target amplitudes. 392 

 393 
Figure 5. Interaction between the number of filters and filter amplitude. A) Proportion correct for each 394 
number of filters at each amplitude level, averaged across the three observers. B) Points show the 395 
same data as in (A), but arranged as a surface, while the background is interpolated from these points. 396 
Error bars in (A) show one standard error across observers, which is smaller than the point size in 397 
many cases.  398 

The influence of target-background similarity 399 

The perceptual performance described above reveals that observers were better able 400 

to detect targets on natural image backgrounds when the targets were aligned with the 401 

underlying spatial structure of the background than when the targets were misaligned with 402 

the background. These results are contrary to our expectations based on the data of 403 

Sebastian et al (2017) who found that sensitivity is negatively correlated with the structural 404 

similarity between target and background, a metric that scales from zero (no similarity) to 405 

one (perfect similarity). We therefore next tested whether observers’ performance was 406 

instead positively correlated with target-background similarity using the same analysis of 407 

similarity as in this previous study (Equation 23). 408 

Shown in Figure 6A are the histograms of similarity for all trials across observers, 409 

which, by design, can be separated according to the filter alignment relative to the 410 

background. The dashed vertical line shows the median similarity of all trials, regardless of 411 

target-background alignment. By isolating trials from each condition according to whether 412 

they fall above or below this arbitrary cut-off, we can test whether accuracy depends more 413 

on similarity or target-background alignment. Figure 6B shows the proportion of correct 414 

target detections for aligned and misaligned targets that were most and least similar to the 415 

background, respectively. As per the main analyses above, accuracy was greater for aligned 416 
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than misaligned trials. The more diagnostic analysis is shown in Figure 6C, in which the 417 

proportion of correct target detections are shown for aligned trials that were less similar than 418 

the included misaligned trials (i.e. we limit the analyses to the tails of the similarity 419 

distributions). We again find that accuracy was higher for the aligned condition than the 420 

misaligned condition, despite the aligned targets having lower similarity with the background 421 

than the misaligned trials. Therefore, target-background alignment predicts performance 422 

much more strongly than target-background similarity. 423 

 424 
Figure 6. Analysis of the influence of target-background similarity on perceptual performance. A) 425 
Histograms show structural similarity between targets and background separately for the aligned and 426 
misaligned conditions. The vertical dashed line is the median similarity of all trials. B) Proportion 427 
correct for misaligned trials that were lower in similarity than aligned trials, and vice versa, as 428 
determined by median split. Accuracy for the misaligned trials is shown to the left of the median, and 429 
accuracy for the aligned trials is shown to the right of the median. C) Proportion correct for aligned 430 
trials that were lower in similarity than misaligned trials, and vice versa, as determined by median split. 431 
Accuracy for the aligned trials is shown to the left of the median, and accuracy for the misaligned trials 432 
is shown to the right of the median. Note that proportion correct is higher in the aligned condition 433 
regardless of similarity. Error bars in (B) and (C) show one binomial standard deviation. 434 

In a final analysis of perceptual performance, we attempted to replicate the findings of 435 

Sebastian et al (2017) using the condition in our experiment that is most analogous to the 436 

one in theirs, namely, the misaligned condition. In both this previous study and the 437 

misaligned condition of the present study, the blending of target filters and their backgrounds 438 

did not depend on any structural alignment. Instead, any incidental alignment can be 439 

quantified in terms of structural similarity. We therefore tested whether we found an inverse 440 

relationship between target-background similarity and detection accuracy for the misaligned 441 

condition. Figure 7 shows proportion correct for trials in similarity bins (bin width = 0.1) for 442 

each observer. We modelled these data with logistic regression, with random intercept and 443 

slopes grouped by observer (i.e. a logistic GLMM). Fits are shown as solid lines in Figure 7. 444 

There is a clear negative relationship between structural similarity and accuracy, with a 445 

mean slope of -0.96 (population standard deviation = 0.75). Similarity was not a significant 446 

predictor in the model (p = 0.13), but the trends are nonetheless consistent across observers 447 

and also with the data of Sebastian et al.  448 
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 449 
Figure 7. Proportion correct as a function of target-background similarity for misaligned trials only. A-450 
C) show data for each observer, colour coded as in Figure 3. Solid lines are fits from a logistic GLMM, 451 
showing a negative relationship between similarity and detection accuracy, as reported by Sebastian 452 
et al (2017).  453 

Discussion 454 

We found that observers are better at detecting contrast-defined targets when they are 455 

aligned with a natural image background compared with when they are misaligned with the 456 

natural image background. The superior performance on aligned than misaligned trials did 457 

not depend on the structural similarity of targets relative to backgrounds, in contrast to the 458 

results of Sebastian et al (2017). Because the target filters tended to be aligned with object 459 

edges (i.e. the points of highest contrast in natural images; see Figure 1 and Methods), 460 

these data also appear to contradict the findings of Bex et al (2009; see also Wallis & Bex, 461 

2012). Bex et al found that sensitivity was lower in image regions of relatively high edge 462 

density, whereas we found higher sensitivity when targets were aligned with edges than 463 

when they are randomly positioned. 464 

A potentially simple explanation for the discrepancy between our data and earlier work 465 

concerns the phase alignment of target filters and backgrounds: the phase of a target filter 466 

relative to the phase of the local natural image background determines local contrast. This 467 

fact is demonstrated in Figure 8A. When target filters are designed to be aligned with their 468 

background structure (left panels), local contrast depends strongly on phase. When the 469 

targets and background are phase-matched, target-background amplitude is additive, 470 

resulting in greater local contrast (top left panel). By inverting the phase of those same filters, 471 

target-background amplitude is subtractive, reducing local contrast (bottom left panel). 472 

Indeed, Bex and Makous (2002) speculated that this dependence of local contrast on phase 473 

alignment explains a loss of sensitivity to phase-scrambled natural images. We tested this 474 

hypothesis directly in Experiment 2. Note, however, that, while phase-mismatched target 475 

filters reduce local contrast, they may not be less visible. See, for example, the 476 

demonstrations in Figure 8B. While the phase-mismatched filter has a lower local contrast 477 

than the phase-matched filter, the phase-mismatched filter is conspicuous. Indeed, within 478 

each half of these images, the absolute change of luminance is the same, regardless of filter 479 

phase. It therefore remains an open question as to how this manipulation will affect 480 

observers’ sensitivity.  481 
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 482 
Figure 8. A demonstration of the influence of filter phase on local contrast, and examples of conditions 483 
tested in Experiment 2. A) Added to all panels are the same two target filters that were designed to be 484 
phase-matched with the local spatial structure in the top left panel. Filters in the bottom row have an 485 
inverse phase, and are therefore mismatched relative to the source image. Filters are most apparent 486 
in the top left panel: one filter is aligned with the top horizontal edge of the cracker, and the other is 487 
aligned to the left side of the vertical shadow of the thumb. Note that the structural similarity metric is 488 
phase invariant, and therefore the filters have the same similarity score within each column. Target 489 
filters are located at the intersection of pink and blue lines at the edges of each panel. In Experiment 490 
2, we averaged observers’ performance over the misaligned conditions (right column), because phase 491 
alignment is relative only to the source image. B) Simplified demonstrations of phase-matched and 492 
phase-mismatched filters aligned to an edge. Note that, while the phase-mismatched filter reduces 493 
contrast, it appears similarly visible to the phase-matched edge.  494 

Experiment 2 495 

The results presented above reveal that the alignment of target filters with the spatial 496 

structure of the background determines detection sensitivity at least somewhat 497 

independently of target-background similarity. In Experiment 2 we tested our hypothesis that 498 

aligned targets are easier to detect because their amplitude is additive with the background 499 

amplitude, increasing local contrast. We therefore compared detection sensitivity to target 500 

filters that were either aligned or misaligned, and were either phase-matched or phase-501 

mismatched with the original source image. 502 

Methods 503 

All methods were identical to those of the preceding experiment, with the following 504 

changes. This experiment was carried out in our testing lab on a Display++ monitor 505 

(Cambridge Research Systems) with 14bit luminance precision (i.e. our local lockdown had 506 

lifted). The experimental design was a 2 (alignment: aligned versus misaligned) x 2 (phase: 507 

phase-matched versus phase-mismatched) factorial design (see Figure 8 for example 508 

stimuli). All target filters had an amplitude of 0.15, which, based on the data shown in Figure 509 

4, we expected to yield a mean d’ of approximately 1. In all trials, there were four filters. 510 

Importantly, on half the trials, target filters were blended with the background as per 511 

Experiment 1, whereas in the other half of the trials the phase of the filters were reversed 512 

before blending. Note that, in the misaligned condition, the phase of the filters relative to the 513 

background is somewhat arbitrary, so in the analysis we average across these trials. Each 514 
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observer completed a total of 800 trials, giving 200 trials per unique condition demonstrated 515 

in Figure 8. Testing took approximately 30 minutes per observer. 516 

Results 517 

In Experiment 2, we included conditions that provided an opportunity to replicate our 518 

findings from Experiment 1. As demonstrated in the top left panel of Figure 8, we included 519 

a condition in which target filters were both aligned and phase-matched to the natural 520 

background structure, as per the aligned condition of Experiment 1. We first compare 521 

observers’ accuracy in this condition with the accuracy in the misaligned condition. The 522 

results are shown as connected points in Figure 9A, and reveal better performance in the 523 

(phase-matched) aligned condition than the misaligned condition for all observers. We 524 

therefore replicate the results from Experiment 1 under strict laboratory conditions. Also 525 

shown in Figure 9A are the results from the phase-mismatched condition, in which target 526 

filters were aligned with their backgrounds, but had their phase inverted. Importantly, phase-527 

matched and phase-mismatched targets were well equated on similarity (phase-matched 528 

and phase-mismatched average similarities were .7 and 0.71, respectively). In the phase-529 

mismatched condition, however, all observers were close to chance level, revealing they 530 

were unable to detect these targets (mean accuracy = 49%; RR = 45%, RW = 50%, WH = 531 

51%).  532 

 533 
Figure 9. Proportion of correct target detections in Experiment 2. A) Results are shown according to 534 
the two main experimental factors: target-background alignment (x-axis) and target-background phase 535 
alignment (grouped data points). Note that target-background similarity is matched across aligned 536 
conditions (see left column of Figure 8). Colours indicate different observers as per Figure 3. B-D) 537 
Proportion correct as a function of target-background similarity for misaligned trials only. Solid lines 538 
are fits from a logistic GLMM, showing a positive relationship between similarity and detection 539 
accuracy, in contrast to the fits of Experiment 1 data and results reported by Sebastian et al (2017). 540 

We again tested whether there was an inverse relationship between accuracy and 541 

similarity in the condition most closely matching the condition tested by Sebastian et al 542 

(2017), i.e. the misaligned condition (see Figure 7). We again used a logistic GLMM, and 543 

similarity was binned in 0.1 steps. In contrast to the fitted model in Experiment 1, however, 544 

we found a non-significant positive relationship between similarity and proportion correct 545 

(slope = 0.33, population standard deviation = 0.28, p = 0.596). Fits to observers’ data are 546 

shown in Figure 9B-D.  547 

Discussion 548 

The aim of Experiment 2 was to test the prediction that targets aligned with their natural 549 

image backgrounds are easier to identify than targets that are misaligned with their 550 

backgrounds (i.e. the results of Experiment 1) due to a difference in local contrast. The 551 

differences in local contrast across these conditions results from contrast additivity in the 552 

aligned condition when filters are phase-matched with their background. We tested this 553 
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prediction in Experiment 2 by inverting the phase of target filters on half of the trials in which 554 

the filters were aligned with the background structure. Inverting the phase of target filters 555 

aligned with their background has a subtractive effect on local contrast, and, as we 556 

expected, rendered observers incapable of detecting the targets (Figure 9). The results of 557 

Experiment 2 thus support the notion that target-background similarity is not a useful metric 558 

of the detectability of targets per se, whereas the interaction between relative phase and 559 

structural alignment is critical. 560 

Generative model of task performance 561 

We next aimed to develop a model that captures the key results reported for 562 

Experiment 1 and Experiment 2. We hoped to account for the finding that aligned targets 563 

are more accurately detected than misaligned targets, and that this effect of alignment 564 

depends on the relative phase of target and background. These effects suggest that 565 

observers are tuning to local changes in the images caused by the additivity of filter and 566 

background luminance. The model is therefore based on simple luminance and contrast 567 

detection mechanisms like those involved in the generation of our stimuli (Figure 1). On 568 

each trial, the model detects difference in various image statistics across the target and 569 

distractor images, and then generates a response based on these differences. Simulated 570 

responses were determined by fitting the model output to observers’ responses in 571 

Experiment 1. We then tested whether the fitted model reproduced the key Experiment 2 572 

results. 573 

On each trial, the model was given the target image and the distractor image. The 574 

maximum contrast of each image was found by taking the maximum value of contrast maps 575 

as computed in Equations 1 – 6. The maximum luminance extreme of each image was the 576 

maximum absolute deviation of each image from mid-grey, capturing both local minima and 577 

maxima in images across trials. For each trial and each metric, we computed a ratio between 578 

left and right images: 579 

Equation	24	 	 	��[=] 	= 	��	(S,-#)-012
S,-#3452

)	580 

Equation	25	 	 	��[=] 	= 	��	(.,-#)-012
.,-#3452

).	581 

LR and CR refer to ratios of the most extreme luminance and contrast values, 582 

respectively, where negative values indicate greater extremes in the left image, and positive 583 

values indicate greater extremes in the right image. We weighted these metrics by fitting 584 

them to observers’ responses (i.e. left or right spatial interval) using logistic regression. We 585 

then analysed the model predictions as per the behavioural analyses. We built different 586 

models that included 1) just the absolute luminance peak of stimuli, 2) just the contrast 587 

energy maxima of stimuli, or 3) both.  588 

The best model was one that detects the absolute luminance peak and the maximum 589 

contrast energy within the target and distractor images. As shown in Figure 10, this model 590 

reproduces the qualitative patterns of performance observed in Experiment 1 (compare the 591 

model data in Figure 10 with the empirical data in Figure 3).  Importantly, each image statistic 592 

significantly contributes to the model (p’s < 0.001), and including both parameters provided 593 

a better fit than including either parameter alone based on formal model comparison (chi-594 

square test compared with the next best model: �*(��� = 4) = 114.3, � < 0.001). Note that 595 

the generative model responses are fit to the observer data based solely on the image-596 

computable features, not on the labels of the experimental conditions (e.g. the data are not 597 

fit to aligned vs misaligned conditions) – yet the model reproduces the same patterns of data 598 

across conditions as observers. Adding the model’s predicted response to the signal 599 
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detection model also improved estimates of observers’ d’ (�*(��� = 6) = 163.1, � < 0.001).  600 

These model results are consistent with the notion that adding filters to the image causes 601 

local peaks in absolute luminance and contrast that can differentiate the target image from 602 

the distractor image (Bex & Makous, 2002). As described next, however, this model cannot 603 

account for the findings in Experiment 2. 604 

 605 
Figure 10. Model performance for Experiment 1. Compare with Figure 3. The model captures the key 606 
results from Experiment 1. Error bars show one binomial standard deviation. 607 

We fit the model to observers’ responses from Experiment 1, as shown above, and 608 

tested whether the fitted model could predict observers’ responses to Experiment 2. The 609 

critical test is whether the model falls to chance when filters were spatially aligned but phase-610 

inverted relative to their backgrounds (i.e. the phase-mismatched condition). As shown in 611 

Figure 11, however, model performance was well below chance in this condition. This below-612 

chance performance occurs because phase-inversion reduces the luminance and contrast 613 

peaks of the target image to below those of the distractor image, resulting in the model 614 

reporting the distractor as the target more often than not. The model again reproduces the 615 

effect of alignment, but overestimates the size of the effect. The overestimation may have 616 

resulted from the changes we made between experiments, including using different displays 617 

and filter amplitudes. These differences are less relevant than the model’s gross 618 

misestimation of the phase-mismatched condition as described below. 619 

 620 
Figure 11. Model performance for Experiment 2. Compare with Figure 9A. The model performs below 621 
chance in the phase mismatched condition, whereas observers were at chance (Figure 9A). 622 

The relatively poor fit to the phase-mismatched condition of Experiment 2 is 623 

informative. Observers’ data cannot be explained fully by assuming that they adopted a 624 

simple rule in which they detected luminance and contrast peaks. For phase-matched trials, 625 

therefore, the superior sensitivity to aligned filters over misaligned filters cannot be solely 626 

accounted for by tuning to local peaks. We attempted to improve the fit using other image 627 
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metrics, such as contrast energy combined across spatial scales and the energy of a “back 628 

pocket” filter-rectify-filter model (Harrison & Bex, 2016; Landy, 2013), but none improved the 629 

fits of the model. Rather than taking the maximum contrast or luminance extreme, we also 630 

tried using k-maxima (up to k = 1000), which also did not improve the fits. Observers’ 631 

performance, therefore, escapes a relatively straightforward low-level explanation.  632 

General Discussion 633 

 The aim of the present study was to test observers’ ability to detect contrast-defined 634 

targets that have been blended with natural image backgrounds. We designed the target 635 

filters so that their orientations were either aligned or misaligned with the local background 636 

structure. Based on the recent report that detection sensitivity is inversely related to target-637 

background similarity (Sebastian et al., 2017), we expected to find worse performance in 638 

the aligned condition relative to the misaligned condition based on the notion that aligned 639 

targets would have higher target-background similarity than misaligned targets. Across two 640 

experiments, however, we found superior detection of targets that were designed to be 641 

aligned and phased-matched to the structure of the background compared with targets that 642 

were designed to be misaligned with their backgrounds and were thus lower in similarity. As 643 

noted below, our goal was not to replicate the study by Sebastian et al, but instead to test 644 

the role of target-background similarity in target detection using a novel approach.  645 

Our experiments show that observers’ sensitivity does not linearly scale with similarity 646 

in all cases. In Experiment 1 we found a positive relationship between similarity and 647 

sensitivity: observers were most sensitive to targets in which target filters were aligned with, 648 

and most similar to, background structure (Figure 3C and Figure 4C). We replicated this 649 

finding in Experiment 2 (Figure 9A). When we limited our analyses to only trials in which 650 

target filters were misaligned with the background structure, we found mixed results across 651 

the two experiments: a negative relationship between detection accuracy and target-652 

background similarity in Experiment 1 (Figure 7), but a positive relationship in Experiment 2 653 

(Figure 9C-D). The cause of this difference in results across experiments is not clear, but 654 

we note that we did not design either experiment to specifically measure the relationship 655 

between similarity and sensitivity in this way, and neither model was significant. Regardless, 656 

there was no clear evidence of an inverse relationship as we expected. 657 

The limitation of a specific structural similarity metric as a predictor of sensitivity in our 658 

study is most apparent in our Experiment 2 results. By matching or inverting the phase of 659 

filters aligned with the background structure, we produced target-background images that 660 

were equivalent in similarity but were different in their detectability (Figure 8 and Figure 9A). 661 

When phase was inverted relative to the background, observers’ performance was at 662 

chance level. The phase-mismatched condition therefore removed the information 663 

observers depended on to perform the task (i.e. contrast). A variant of the metric of similarity 664 

used here and by Sebastian et al (2017) may better predict sensitivity if it encodes phase 665 

information. Computationally, similarity is analogous to a normalised correlation coefficient; 666 

retaining phase would yield similarity scores ranging from -1 (perfectly matched counter-667 

phase) and 1 (perfectly matched in-phase). However, Sebastian et al. used targets and a 668 

template-matching ideal observer model that had a fixed phase, in which case sensitivity 669 

may indeed scale inversely with phase-invariant similarity. We also note that the similarity 670 

between target filters and backgrounds in our study was approximately double those 671 

reported by Sebastian et al, and so it is possible that a linear inverse influence of similarity 672 

on sensitivity holds for relatively low levels of similarity.  673 

In Experiment 1, there was no clear relationship between the number of filters added 674 

to the target image and observers’ performance (Figure 3B and Figure 4B). We expected to 675 
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find such a relationship based on the simple principle that there is an additional opportunity 676 

to detect a target for each filter added (Macmillan & Creelman, 2004). On closer inspection 677 

of the proportion correct data presented in Figure 3B, only a single data point in each of RW 678 

and WH’s data are inconsistent with the expected trend for all observers. The lack of a 679 

statistically robust finding, therefore, may be due to our limited number of observers. A clear 680 

main effect of the number of filters was possibly also obscured by an interaction with target 681 

amplitude as shown in Figure 5. It is interesting that our generative model also produced a 682 

somewhat noisy relationship between accuracy and the number of filters. It is possible that 683 

observers outperformed our model in the phase-mismatched condition of Experiment 2 684 

because they integrated information over multiple locations rather than using the maximum 685 

in each image. However, even when our model had access to the top 1000 maxima in the 686 

images, it still performed below chance.  687 

Detection thresholds in our experiments are approximately an order of magnitude 688 

greater than those reported by Sebastian et al. This is not particularly surprising given that 689 

we did not attempt to replicate their design, and instead used stimuli and methods that 690 

differed from theirs. One aspect of our experiments that would have likely decreased 691 

sensitivity was the lack of spatial certainty in the position of targets. Target filters could 692 

appear anywhere within the natural image background, maximising spatial uncertainty. The 693 

ability to identify targets depends on spatial (un)certainty, particularly in peripheral vision 694 

(Bennett & Banks, 1991; Harrison & Bex, 2015, 2017; Levi et al., 1987). Sebastian et al 695 

reduced spatial uncertainty by presenting targets at the same location on each target-696 

present trial. Lower thresholds should be expected with such reduced uncertainty relative to 697 

our experiment in which observers had to search the entire background region. When 698 

observers are required to search for a potential target in a new background, false alarms 699 

can occur anywhere in the image. Computationally, such search can be performed using 700 

the same basic processes as involved in detection of a target at a cued location. In addition 701 

to determining whether a filter response is greater than a threshold (e.g. Sebastian et al., 702 

2017), however, search involves determining which of several locations is most likely a 703 

target. We modelled this by taking the spatial interval with maximum luminance and contrast 704 

energy.  705 

Despite the differences between our study and previous studies, we can confidently 706 

conclude that phase plays an important role in target detection for at least the sorts of targets 707 

used in our study (i.e. directional first-derivative of Gaussians). This result was 708 

foreshadowed by Bex and Makous (2002), who suggested detection thresholds for natural 709 

images depend on local phase-alignment within or across frequency bands. Our modelling 710 

suggests that observers detected the target interval by using local luminance extremes and 711 

contrast maxima. These local visual cues were most apparent in conditions in which the 712 

target phase was additive with the background. Phase, therefore, played an important role 713 

in our experiments. However, the failure of this model to capture observers’ accuracy in the 714 

phase-mismatched condition of Experiment 2 reveals that a rule using local extremes is 715 

overly simple. We do not think it is likely that observers were switching strategies across 716 

conditions, because observers could not have known on a given trial which condition was 717 

displayed. In phase-mismatched trials in which the extremes of the target image were 718 

reduced to below the level of the extremes of the distractor image, observers must have 719 

been using other image cues that have escaped our description. Anecdotally, all observers, 720 

who are experienced psychophysical observers, reported using a template-matching 721 

strategy. This insight is obviously limited in its usefulness, because a template-matching 722 

strategy is equivalent to the computations performed in our model. 723 
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Our results are consistent with those of Neri (2011), who investigated the influence of 724 

target phase relative to the structure of a natural image background and how these effects 725 

differ when the stimulus is inverted. Neri found that, when the background is upright, 726 

observers tune to feature detectors that are in-phase with a natural edge. When the 727 

background is inverted, observers’ tuning is less phase-aligned with the natural edge. These 728 

results suggest that upright scenes produce a bias in visual processing that steers 729 

observers’ filtering toward the local phase of natural structures. These results are consistent 730 

with our own finding that observers are most sensitive to filters that are spatially aligned, 731 

and in-phase, with the background. 732 

The extent to which the design of visual targets determines detectability in natural 733 

backgrounds is thus clearly an important consideration. As shown in a demonstration by 734 

Sebastian et al, it is incontrovertible that there are some targets for which phase is 735 

unimportant for visibility. We reproduce such a demonstration in the top row of Figure 12. 736 

We question, however, the relevance of a similarity metric in explaining the visibility of the 737 

target in this demonstration, considering that similar demonstrations can be produced in 738 

which target-background similarity is greater, and yet the target is easily visible (bottom row, 739 

Figure 12). The importance of target-background phase (in)variance likely depends on 740 

multiple factors, such as target design, as well as differences in the background in the region 741 

of the target (i.e. ‘partial masking’, see Sebastian et al., 2020). In addition to testing target 742 

visibility in different backgrounds based on contrast, luminance, and similarity (Sebastian et 743 

al., 2017, 2020), binning backgrounds according to their phase-similarity with targets may 744 

clarify these interactions in future experiments. 745 

 746 
Figure 12. Similarity alone is a poor predictor of visibility. Top and bottom panels show a 16 cyc/image 747 
target and Gaussian-derivative target, respectively, in each of three backgrounds (left to right): zero 748 
noise, vertical noise, and horizontal noise. Noise is 1D Gaussian (standard deviation = 0.15), and 749 
targets have the same amplitude in all panels (0.1). Similarity masking is demonstrated in the top right 750 
panel, in which the high-frequency target is rendered invisible. Such a masking effect is phase-751 
invariant. As shown in the bottom right panel, however, a broader-band target with the same amplitude 752 
remains unmasked by the same noise. Importantly, the structural similarity between the target and 753 
background is greatest in the bottom right panel (0.15 bottom right vs 0.12 in the top right).  754 

We used images from the THINGS database as naturalistic backgrounds. The 755 

THINGS database is a recently released database with over 26,000 images from 1854 756 

categories (Hebart et al., 2019). Relatively little has been reported about the basic statistical 757 

properties of the images in this database, and so it is possible that they may deviate from 758 

what one may expect from typical natural images 1. In Figure 13 we show the mean image 759 

spectra as a function of spatial frequency and orientation. This analysis shows that THINGS 760 

images have, on average, the same basic image spectra as typically found in natural 761 

images: contrast energy decreases with increasing spatial frequency (Figure 13A), and 762 

there is an over representation of cardinal orientations (Figure 13B). It is therefore unlikely 763 

 
1 Since originally submitting this manuscript, a more thorough description of the luminance and 

luminance contrast properties of THINGS images was presented by Harrison (2021). 
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that something in particular about the distribution of contrast energy in the THINGS images 764 

played a key role in our results. However, it is likely that the visual system performs different 765 

operations when processing visual objects like those in the THINGS images compared with 766 

visual textures (Wallis et al., 2019). Sebastian et al (2017) used images of scenes that had 767 

no particular focus on objects per se. To the best of our knowledge, no study has 768 

systematically investigated whether target detection differs on backgrounds of things versus 769 

backgrounds of stuff.  770 

 771 
Figure 13. Mean spectra of all images in the THINGS database. A) Mean contrast energy as a function 772 
of spatial frequency. The solid line is the fit of the function �/��, which explains 99% of the variance. 773 
The free parameter, �, was 1.2. B) Mean contrast energy as a function of orientation. We computed 774 
contrast energy in the frequency domain using a series of raised cosine filters centred on a given 775 
orientation and spanning all spatial frequencies (“bow-tie filters”; full width half height = 12.5°). These 776 
data were then fit with a function that captures the over-representation of cardinals, as well as the 777 
greater contrast energy for horizontal contrast compared with vertical contrast 2. This function 778 
explains 99% of the variance.  779 

Several studies suggest that there are high-level influences over the tuning of low-level 780 

feature detectors like those used to detect targets in the present study. For example, Teufel 781 

et al (2018) found that prior knowledge about image content influences the detectability of 782 

oriented targets aligned to locally occluded edges. Neri (2017) similarly found that sensitivity 783 

is greatest on edges implied by image content, regardless of whether local contrast 784 

detectors would respond at the region of the target. Harrison & Rideaux (2019) further 785 

showed that edge detection in visual noise can be greatly influenced by the allocation of 786 

visual attention. Taken together, these findings suggest that the detectability of targets in 787 

the present study may have depended on the specific objects in background images, and 788 

how combinations of low-level and high-level factors guided observers’ visual attention. 789 

However, we did not design our experiments to examine such possible differences across 790 

object images. The availability of repositories such as the THINGS database makes such 791 

questions possible to address in future studies. 792 

In summary, we tested observers’ ability to detect targets in natural image 793 

backgrounds. Observers were most sensitive to targets when they were aligned and phase-794 

matched with their backgrounds. Inverting the phase of aligned targets reduced observers’ 795 

detection performance to chance. To best model the image factors that predict human 796 

sensitivity to contrast defined targets in natural backgrounds, therefore, the phase of the 797 

target relative to the background must be considered.  798 

 
2 This function has the form: � = 	 (�	 2 	��� 7 |���(2�	)	|T) 	7 <	� 7 <���(2�)E + � + 1E, 

where E is contrast energy, � is orientation in radians, and �, ���, �, and � are free 

parameters. See Harrison (2021) for a more detailed analysis of the THINGS images. 
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