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Abstract

The sensitivity of the human visual system is thought to be shaped by environmental
statistics. A major endeavour in vision science, therefore, is to uncover the image statistics
that predict perceptual and cognitive function. When searching for targets in natural images,
for example, it has recently been proposed that target detection is inversely related to the
spatial similarity of the target to its local background. We tested this hypothesis by
measuring observers’ sensitivity to targets that were blended with natural image
backgrounds. Targets were designed to have a spatial structure that was either similar or
dissimilar to the background. Contrary to masking from similarity, we found that observers
were most sensitive to targets that were most similar to their backgrounds. We hypothesised
that a coincidence of phase-alignment between target and background results in a local
contrast signal that facilitates detection when target-background similarity is high. We
confirmed this prediction in a second experiment. Indeed, we show that, by solely
manipulating the phase of a target relative to its background, the target can be rendered
easily visible or undetectable. Our study thus reveals that, in addition to its structural
similarity, the phase of the target relative to the background must be considered when
predicting detection sensitivity in natural images.

Introduction

The human visual system is tasked with parsing the complexity of natural environments
into a coherent representation of behaviourally relevant information. These operations have
been shaped by various selective pressures over evolutionary and developmental
timescales. Therefore, the perceptual computations that guide cognition and behaviour
ultimately serve to extract functional information from rich and complex naturalistic
environments (Carandini et al., 2005; Field, 1987; Olshausen & Field, 2005; Parraga et al.,
2000; Simoncelli & Olshausen, 2001). For example, a common task is to find a pre-defined
target object in a complex or cluttered visual environment. The vast majority of our
knowledge of the visual system, however, has been derived from experiments using
relatively sparse stimulus displays that are not representative of our typical visual diets. The
aim of the present study was to investigate how natural image structure influences target
detection. We tested how detection is influenced by the spatial structure, phase, and
contrast of natural image backgrounds to determine the features that best predict detection
sensitivity.

Luminance contrast plays a critical role in most visual tasks. The human visual system
is tuned to detect contrast across a range of spatial and temporal frequencies. Neurons in
primary visual cortex (V1) are classically understood as processing local regions of oriented
contrast that can define the borders of objects (Hubel & Wiesel, 1959). Such properties of
individual neurons govern phenomenal perception and are thought to be shaped by the
statistics of natural environments (Barlow, 1961, 1972). The encoding of contrast within the
visual system is most commonly studied with oriented grating stimuli, such as Gabor
wavelets. Grating stimuli are conveniently characterised by a simple set of parameters:
orientation, contrast, position, and spatial frequency. From a computational perspective,
“Gabor wavelet analyses” allow the decomposition of any image into mathematically
tractable component features. Such analyses are relatively simple and are common in many
computer vision applications. Early theory suggested that analogous decomposition
processes occur in the visual system (Campbell & Robson, 1968). However, more recent
studies suggest that individual visual neurons encode complex higher-order statistical
information that is not necessarily predicted by Gabor parameters (e.g. Cadena et al., 2019).
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One common approach to investigate contrast sensitivity in natural conditions is to
have observers detect contrast-defined targets embedded in digital photographs or movies.
Relative to sensitivity as typically quantified with a uniform background, spatio-temporal
contrast sensitivity is diminished when viewing dynamic movies, particularly for lower
frequencies (Bex et al., 2009). Furthermore, during free viewing of natural movies, the large-
scale retinal changes caused by saccadic eye movements also diminish sensitivity likely
due to forward and backward masking (Dorr & Bex, 2013; Wallis et al., 2015). In general,
such studies have revealed that the sensitivity of the visual system does indeed depend on
naturalistic context (Bex & Makous, 2002; Geisler, 2008).

Researchers have further sought to understand the statistical regularities of natural
scenes that impact the detectability of targets. For example, various image structures, such
as the density of edges within close proximity to the target, negatively impact detection
sensitivity (Bex et al., 2009; see also Wallis et al., 2015). Indeed, the discriminability of visual
objects can be predicted from the spatial proximity of surrounding visual clutter (Balas et al.,
2009; Greenwood et al., 2010, 2012; Harrison & Bex, 2014, 2015, 2017; Rosenholiz et al.,
2012; Wallis et al., 2019). More recently, it has been found that sensitivity scales inversely
with the structural similarity between target and background (Sebastian et al., 2017, 2020).
Structural similarity describes how similar two stimuli are in terms of the spatial distribution
of phase-invariant contrast. Sebastian et al found that observers’ detection sensitivity
decreases with increasing similarity. These studies thus predict that targets are most difficult
to detect when they are similar to their backgrounds (Sebastian et al., 2017), particularly
when those backgrounds are dense with edges (Bex et al., 2009). Other studies that have
attempted to quantify the relationship between image statistics and sensitivity use post-hoc
computational means to estimate the influence of natural image structure on target detection
or apparent contrast (e.g. Haun & Peli, 2013; Wallis et al., 2015; Wallis & Bex, 2012). Very
few studies, to the best of our knowledge, explicitly manipulated the consistency of a target’s
appearance with the appearance of a natural image background in an experimental design
(e.g. Neri, 2014, 2017; Teufel et al., 2018).

The present study

The aim of the present study was to test observers’ sensitivity to targets presented on
natural image backgrounds. Importantly, we designed the test stimuli a priori such that
targets approximated the appearance of, and were aligned with, the local structure of a
natural image background, or differed from the local structure. We therefore distinguish
target-background alignment from target-background similarity in terms of the stimulus
generation procedure (alignment) versus an image statistic (similarity). As shown in Figure
1, we automated the placement of targets within natural backgrounds according to oriented
contrast energy at different image regions. We created two conditions, one in which targets
were aligned with their backgrounds and one in which targets were misaligned with their
backgrounds. In contrast to this stimulus generation procedure, target-background similarity
is @ measure of the correlation between a target and a background without a target. While
target-background similarity ranges from 0 — 1 for all stimuli, our stimulus generation method
results in higher similarity scores for aligned targets than misaligned targets (on average).
Based on previous studies showing a negative impact of increasing target-background
similarity on detection (Bex et al., 2009; Sebastian et al., 2017), we expected to find worse
detection sensitivity when targets were aligned with the background — and were therefore
highly similar — than when they were misaligned relative to the background — and were
therefore relatively dissimilar. To anticipate our results, however, we found the opposite,
instead revealing that the influence of target-background similarity on detection sensitivity
depended almost entirely on the relative phase of the target.
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Figure 1. Stimulus generation method for testing sensitivity to contrast in natural images. A) An
example source image taken from a collection of over 26,000 labelled images in the THINGS database
(Hebart et al., 2019). B) We used a complement of derivative of Gaussian wavelets to filter each source
image and compute the dominant orientation (top panel) and contrast energy (bottom panel) at each
pixel location. Orientation is indicated by the inset colour wheel, which spans the full range (0 — 2pi)
to indicate the preservation of the phase of the dominant filter. C) As shown by the white dashed
circles, we selected target image regions according to the peaks of the oriented contrast maps. The
number of targets varied from trial to trial from 1 to 16 in equally spaced log steps. D) Targets were
oriented filters generated from the oriented contrast maps. These target features are thus aligned to
the natural structure within the source image. Targets were then added to a natural image background,
and observers were required to detect in which of two images the targets had been added. E and F)
Targets were either aligned (E) or misaligned (F) with the background structure. Note that the same
targets have been added to both examples but are more apparent in the aligned condition than the
misaligned condition. As a guide, target filters are located at the intersection of pink and blue lines at
the edges of panels D — F.

Methods

Participants. We used a single-subjects design in which we measured observers’
perceptual performance with high precision and treat each observer as a replication (Smith
& Little, 2018). All observers were authors of the paper and had normal vision (RR, RW &
WH). RW and RR were naive to the specific experimental manipulations at the time of
testing. The experiment was designed and carried out during a COVID-19 lockdown in
Brisbane, Australia, in March 2021. Testing occurred, therefore, in each observer’s private
residence.

Design. We measured observers’ sensitivity to contrast changes in natural images in
a 2 (target-background alignment: aligned or misaligned) x 5 (number of targets: 1, 2, 4, 8,
or 16) x 5 (target amplitude: 0, 0.05, 0.1, 0.2, or 0.4 of maximum) design. Each observer
completed 40 trials per condition for a total of 2000 trials in a fully within-participants design.

Stimuli. Stimuli were programmed with the Psychophysics Toolbox (Brainard, 1997;
Kleiner et al., 2007; Pelli, 1997) in MATLAB (v2018b, Mathworks) and were displayed either
on a 15” MacBook Pro Retina or a 16” MacBook Pro Retina. Natural images of objects were
taken from the THINGS database (Hebart et al., 2019), available via the Open Science
Framework (https://osf.io/jum2f/). Images were converted to greyscale using the rgb2grey()
function in MATLAB, and we assumed digital photos were encoded with a gamma of 2, and
displays had a decoding gamma of 2.

We describe the stimulus generation process in detail below, but provide a brief
overview here. On each trial, two different natural images were displayed, both of which
were normalised in their contrast. Images had a diameter of 2° and were presented to the
left and right of a red fixation spot. We chose this relatively small stimulus size for two
reasons. First, we wanted to display images side by side, but close enough to central vision
so as to mitigate effects of e.g. crowding. Second, because we were not able to monitor
observers’ fixation compliance, the smaller stimulus size reduced the tendency for observers
to make reflexive eye movements to high contrast image regions in their periphery. The
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target stimulus was the one in which wavelet filters had been blended with the natural image;
the distractor was a natural image with no target filters. The filters were designed to be
similar or dissimilar from the underlying natural image structure. We generated target stimuli
by blending a source image of a natural object with derivative of Gaussian wavelets
(henceforth: filters). The blending process followed four steps: 1) find the dominant
orientation of each pixel in a source image, 2) find the relative contrast of each pixel in the
image, 3) draw some number of filters at the highest contrast image regions, and 4) combine
the filters with a source image. We expand on these steps below.

First, we used a steerable filter approach to determine the dominant orientation at
every pixel in a given source image (Freeman & Adelson, 1991). Filters were directional first
derivative of Gaussians oriented at 0° and 90°:

. X _x2+y2
Equation 1 G” = —2>e

. _x%+y?
Equation 2 G = —2% e o2

Where ois the standard deviation of the Gaussian, x and y are the coordinates of each
image pixel with point (0,0) at the centre, and G? is the resulting filter. The Gaussian standard
deviation was 0.08°. Within a trial, each filter was convolved with a source image:

Equation 3 R” = G x1
Equation 4 R = G x|
Where I is the source image with a mean of 0 and in the range [-1 1] and Ris a filter

response at each pixel location. We combined the filter responses to find the dominant
orientation, 8, at each location:

Equation 5 6 = atan2( X5%-R? sin(0),X5%0- RY cos(6) )
Second, we created a contrast map, C, of the filtered image by combining the filter
outputs as follows:

Equation 6 C= |X3%R3

Third, we found the dominant orientation at the location of the contrast maxima:
Equation 7 Co = argmax C

Equation 8 0 cmax = Oc

0

C, indexes the x-y coordinates of the contrast maxima, and 8,,,,,, is the orientation at
this location. We then steered a filter at this location as follows:

Equation 9 S = c05(Bemax) G& + sin(Bemax) GE

Here, Sis the resulting filter stimulus in the range -1 to 1. Note the additional subscript
of the filters that indicates that the filters were centred on the location of the contrast maxima,
Co- This is trivially achieved by centring the x-y coordinates in Equations 1 and 2 on the
coordinates of C,.

Finally, we created the target stimulus, 7, by combining the filter stimulus, S, with a
normalised source image:

2aS+Inorm

Equation 10 =05+
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Where «a is the filter amplitude expressed as a proportion of maximum possible
contrast, and

I
psd(l)

Equation 11 Lyorm = 2

Here, p is the image root mean square (RMS) contrast, and sd(I) is the standard
deviation of the source image. RMS contrast was set to 0.2 based on the findings of
Sebastian et al (2017). The addition of 0.5 and denominator in Equation 10 normalises the
range of the source image to [0 1] for display. Prior to this step, the target image was
windowed in a circular aperture with a diameter matching the width of the source image (i.e.
2°) and a raised cosine edge, transitioning to zero contrast in 6 pixels. To constrain the filters
generated by Equation 9 to appear within the windowed portion of the stimulus, the same
aperture was applied to the contrast map, C, prior to generating the stimulus. Any values
lower or higher than 0 or 1, respectively, in I,,,,,, were clipped.

For trials in which multiple filters were combined with a source image, we used an
iterative procedure to draw n local maxima from the contrast image. Following the argmax
operation in Equation 7, we updated the contrast map to minimise the contrast at the
maxima:

C, = {Cn—l[l — f(Co, 40)] n>1
C n=1
Where C,, is the contrast map for the n-th filter, and f(C,, 40) is a two-dimensional
Gaussian with a peak of 1 centred on the location of the maxima C,, and a standard deviation
of Ao. o is the standard deviation of the basis filters, while A is a scaling factor that
determines the spatial extent of change in the contrast map. The effect of this adjustment is
the creation of a new local maxima at a different location than in the previous iteration. The
greater the value of 4, the greater the spatial spread of filters. The first filter location is always
the image region with highest contrast. After accounting for the effect of 4, subsequent filters
are placed in regions of diminishing contrast. In trials in which multiple filters were present,
backgrounds were randomly selected as described above.

Equation 12

Image selection. The 26,107 images in the THINGS database are grouped into 1,854
concepts (e.g. “dog”, “cup”, “brush” etc), such that there are at least 12 unique, high quality
images for each concept (Hebart et al.,, 2019). In each testing session (500 trials), we
selected 1000 source images from unique concepts such that no two images were drawn
from the same concept. The target background was thus always drawn from a different
concept than the distractor image. However, it was necessary that some concepts were
repeated across testing sessions, and it was also possible that some individual images were

also repeated across sessions (but never within sessions).

On each trial, we selected two images from the set of 500: one image for the target
background, and a second image was the distractor. On half the trials, the target filters were
generated from the target background and were therefore aligned with the background,
while on the other half of trials they were generated from the distractor image — but blended
with the target background — and were therefore misaligned relative to the target
background. Target filters were generated from the distractor background on misaligned
trials, as opposed to an unused image, so that the filters and their source image were
presented on every trial, but we doubt this decision was important to our results. We chose
to present two different background images on each trial, rather than, for example,
presenting two of the same background images, because we did not want observers to
attempt to simply spot the difference between two similar images. Instead, observers had to
perform a more natural task of searching unfamiliar and unique backgrounds for targets.
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Procedure. A typical trial sequence is shown in Figure 2. Each trial began with a small
red fixation spot in the centre of the display, followed by outlines of the upcoming stimulus
locations. Natural image backgrounds were followed by a blank of 500ms, after which time
the observer reported which of the two patches contained the target filter(s) using the
keyboard. Following the observer’s response, the image patch with target filters was re-
displayed for an additional 500ms, outlined in green or red depending on whether the
observer’s response was correct or incorrect, respectively. Feedback was provided to
facilitate observers reaching a stable level of performance. No breaks were programmed
but could be taken by withholding a response. Each session included ten repeats of each
trial type, all presented in random order, giving 500 trials per session and taking
approximately 15 minutes when no breaks were taken.

4 : s

U N N N N J

200 ms 200 ms 200 ms 500 ms 4

Figure 2. Schematic of typical trial sequence. The target and background could appear on the left or
right of the screen with equal probability. Following an observer’s response, the background
containing the target filters was framed by a green or red circle depending on whether the response
was correct or incorrect, respectively.

Sensitivity analyses. We quantified observers’ sensitivity to the target filters in natural
images in a generalised linear model (GLM) framework. We describe the most pertinent
aspects of the framework below, but, for the impatient reader, we note that these equations
accumulate to the fitgime() function in MATLAB, or, equivalently, the Imer() function in R
with the Ime4 package (Bates et al., 2015).

In a standard single-interval detection paradigm in which a target is either present or
absent, sensitivity, d’, is calculated as:

d = ¢H — ¢pF
Where ¢ is the normal integral function, H is the proportion of hits, and F is the

proportion of false alarms, under the assumption of equal variance. An observer’s criterion,
¢, is calculated as:

Equation 13

Equation 14 c= %(d)H + ¢F)

In a GLM, @’ and c (bias) are computed as predictor weights g, and B,, respectively,
that are passed through a probit link function, which is the normal integral function:

N = Bo + BiSo1f

p(present;) = ¢mn;

Where 7 is the sum of weighted linear predictors and S,; is the absence or presence
of the signal (i.e. 0 or 1, respectively) on the i-th trial. By fitting such a probit model, estimates
of the predictor weights ; and (3, are identical to d’ and c, respectively, as calculated in
Equation 13 and Equation 14. Whereas these equations fully specify sensitivity and bias in
a single interval present/absent judgement task, some small modifications are needed to

Equation 15
Equation 16

7
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quantify sensitivity in a two-alternative forced choice task (2AFC) as in our experiment. First,
So1 denotes whether the target filter(s) appeared in the left or right spatial interval, defined
as -.5 or .5, respectively. Similarly, observers’ reports (i.e. “target appeared in the left or right
interval”), were defined as -1 and 1, respectively. Finally, in a 2AFC, observers have two
opportunities to detect the target — once per spatial interval — and so raw d’ will be greater
than in a single-interval detection design. Therefore, sensitivity (but not bias) must be scaled

by % (Macmillan & Creelman, 2004):

FEquation 17 dyarc = \/%181 = \/%(CbH—Cl)F)

Importantly, we can extend Equation 15 to quantify sensitivity to any number of other
predictors, x,,:

FEquation 18 My = Bo + BiSoafi) + -+ BuXoi
Consider, for example, the influence of filter amplitude (@) on an observer’s sensitivity:
Equation 19 N = Bo + BraiSoayi

Note that filter amplitude is entered into the model as an interaction with target location
because the model’s predicted outcome is a spatial report; target amplitude alone can only
predict a change in bias. In preliminary model fits, we found that such bias was not
significantly different from zero, and thus included only interactive terms to facilitate
interpretability of the standard bias term, f,. We selected other model predictors according
to the model that produced the lowest Akaike information criterion (AIC; see below).

Finally, we implemented this model as a multilevel GLM (GLMM) to partially pool
coefficient estimates across observers (Gelman & Hill, 2007). By using a GLMM, we model
each observer’s predictor weights as having come from a population distribution with mean
u and variance o2:

Equation 20 Nt = Bo,j + Buj%iinSo,ji +
Where
FEquation 21 Buj = Mo +€ujl0s

Here, €, ; is the offset for each predictor w and observer j, relative to the parameter’s
mean u, contingent on the parameters’ estimated population variance 2. The partial pooling
of observers’ data in a GLMM results in more extreme values being pulled toward the
population mean estimate. Note that in our experiment, however, such pooling is relatively
minor due to the large number of trials, and therefore high precision, of each observer’s
estimated performance, as well as the relatively small humber of observers. Because
images were drawn randomly from trial to trial from a pool of tens of thousands of images,
we did not expect many, if any, repeats of each image. We therefore did not model the
background images as a random effect, but we note that such a design could be chosen in
future to estimate the variance associated with each tested background.

We entered into the model the factors target amplitude, number of filters, and target-
background alignment, which, as noted above, were each entered as an interaction with the
spatial interval of the target. In hindsight, our inclusion of the condition in which target
amplitude was 0 was unnecessary. For all such trials, therefore, we set all predictors to have
a value of 0 so they were omitted from model calculations. The model fit was improved by
including nonlinear terms by raising amplitude and number of Gabors to the exponents 0.5
and 2, respectively. We further tested all combinations of interactions, but none improved
the model fit as assessed by the Akaike information criterion.


https://doi.org/10.1101/2021.06.16.448761
http://creativecommons.org/licenses/by-nc/4.0/

306
307
308

309

310
311
312
313
314
315
316
317
318
319
320

321
322

323

324
325
326
327
328
329
330
331
332
333
334
335
336

337

338
339
340
341
342
343

344

345
346
347
348
349

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.16.448761; this version posted November 2, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

Post-hoc analysis of interaction between the number of filters and filter
amplitude. We modelled the joint influence of number of filters and filter amplitude on
proportion correct as a two-dimensional surface (see Figure 5B). The surface is defined as:

Equation 22 z =05+ % (f(a,u 050) © f(n,u"a))

Where z is the surface of estimated proportion correct, f(«,, ;) is a cumulative
probability function relating target amplitude to accuracy according to a threshold and
variance, a, and a,, respectively, and f(nu, nc,) is a cumulative probability function relating
the number of filters to accuracy according to a threshold and variance, n, and ng,
respectively. Here, © refers to the element wise product of cumulative distributions. This
function can be thought of as a two-dimensional psychometric function, with separable
means and standard deviations. The input parameters into the cumulative functions were
free parameters, fit by minimising the summed squared error between the average
proportion correct and z using Matlab’s fminsearch(). While there are no doubt other ways
of quantifying the interaction between filter amplitude, number of filters, and proportion
correct, this model suffices for our purposes.

Structural similarity. We quantified the similarity between targets and their
backgrounds using the same approach as Sebastian et al (2017 see their equation S9):

AsiAr[i]

Equation 23 = sl Al

Where ry; is the similarity between the steered filter targets (i.e. Sin Equation 9) and
the background image / on trial i. Agp;; is the Fourier amplitude spectrum of the filters, and
App is the Fourier amplitude of the natural image background, both of which are vectors and
were computed by taking the absolute of the complex values of the Fourier transforms. r;
is thus a phase-invariant metric. Prior to computing A;j;, we windowed the natural image
background to include only the same regions as the locations of target filters. This was
achieved by first computing a contrast map in which two-dimensional Gaussians were
positioned at each target location. Gaussians had the same standard deviation as the target
filters and had their peaks normalised to one. We then computed the elementwise product
of the source image and this contrast map, which produced the background image entered
into Equation 23. Note that our method to generate stimuli and target-background similarity
both depend on oriented contrast within the frequency band of the target. Variations in
structural similarity for the aligned and misaligned targets are shown in Figure 6.

Results

We tested observers’ ability to detect target filters that were blended with natural image
backgrounds. Targets were designed such that they were either aligned or misaligned with
the structure of the background. We tested detection of 1, 2, 4, 8 and 16 target filters and
across a range of target amplitudes. We first describe our results in terms of raw accuracy,
and then report the results of our modelling analysis in which we quantified observers’
sensitivity in terms of d.

The influence of target amplitude, number of filters, and target-background alignment

The proportion of correct responses as a function of each factor is shown in Figure 3.
The amplitude of the target most clearly impacts accuracy, such that accuracy increases
approximately linearly with (log) target amplitude (Figure 3A). Although the relationship
between proportion correct and the number of filters is less consistent (Figure 3B), there is
a general increase in accuracy with increasing number of target filters. As described below,
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however, the relationship between number of filters and sensitivity was not significant. We
also found a highly consistent effect of target-background alignment across observers
(Figure 3C). Contrary to our expectations based on recent reports of similarity masking
(Sebastian et al., 2017), however, we found better performance when target filters were
aligned with their backgrounds than when they were misaligned with their backgrounds. This
difference in performance is significant at the group level (#2) = 5.862, p = 0.028, d = 3.38),
but we more formally quantify the relationship between these factors in a GLMM below.
Importantly, given the high measurement precision of these data (1000 observations per
data point shown in Figure 3C), we can treat each observer as an independent replication
of the effect, regardless of any specific inferential statistic (Smith & Little, 2018).

A 1.00-

B 0.75 C 075~

Observers s
e RR °
e RW $
075 | « WH ’

0.70 0.70

0.65 0.65 —

0.60 0.60

0.50 —

Proportion correct
@ -0
-0
=
Proportion correct
——o—
L
Proportion correct

0.55 0.55

0251 0.50 L 050

| /4 | | | | | | | |
0 0.05 0.10 0.20 0.40 1 2 4 8 16 Aligned  Misaligned
Target amplitude Number of filters Target-background

Figure 3. Proportion correct target identifications based on the three experimental factors: A) Target
amplitude, B) Number of filters, and C) Target-background alignment. Colours represent different
observers, as indicated by the legend in panel (A). The dotted line in each panel shows chance
performance. There were 400 trials per data point in panels (A) and (B), and 1000 trials per data point
in panel (C). Error bars show one binomial standard deviation.

We estimated detection sensitivity as a function of the experimental factors with a
GLMM. Modelled sensitivity is shown in Figure 4 in the same format as Figure 3. Target
amplitude and target-background alignment were both significant contributors to the model.
Importantly, as shown in Figure 4C, sensitivity was greater when target filters were aligned
with the background than when they were misaligned. The number of filters did not predict
sensitivity, which is consistent with the relatively noisy relationship between accuracy and
the number of filters as shown in Figure 3B.

A 20~ [Opservers B 1.00 C1.00-
e RR :
—~ 1.5 e RW = =
e ® e e
> ° WH . = . SR S <
= = ® > > q =
=2 1.0~ ° = 0.75 20.75 -
|7} 8 7] ‘@
c PY c ) p p [ [
[ ® [} [}
» 0.5+ H 9] (7}
0L o 0.50 0.50 -
| //1 | | | | | | | |
0 g.05 010 020 0.40 1 2 4 8 16 Aligned Misaligned
Target amplitude Number of filters Target-background

Figure 4. Modelled target detection sensitivity. A) Sensitivity varies systematically with target
amplitude, but not the number of filters (B). C) Sensitivity depends on the target-background
alignment, such that it is greater when filters are aligned with the background than when they are
misaligned. Error bars in all panels show one standard error across marginalised conditions, but are
smaller than the point size in (A).
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We manipulated the number of filters because we expected to find an improvement in
performance with increasing filter number. The lack of a main effect of filter number in the
results above, therefore, was unexpected. Although not critical to our primary interest in the
influence of target-background alignment, we tested whether the number of filters interacted
with target amplitude using a more direct test than the full GLMM above. Data points in
Figure 5A show mean proportion correct responses, marginalised to show the influence of
the number of filters for each target amplitude. At the two highest target amplitudes tested
(top two lines), there is indeed an effect of the number of filters: as the number of filters
increases, so too does observers’ accuracy. The same data points are shown in Figure 5B
arranged as a surface that maps proportion correct as conditional on the combination of
conditions. We interpolated these points as a two-dimensional surface function that
quantifies the interaction between number of filters and amplitude (see Methods). The warm
colours clustering in the top right corner reveal that increasing the number of filters in the
targets has the strongest effect at higher target amplitudes.

A 1.00— B 040~ O O O O O 00
S o
o) 3020~ O @) @) O O 5]
5 0.75— 3 3
5 % 0b10FO O O O O bnd
.-E o O
8 0.50 - o g
o 5 005> O O O O O @
o [ Q
Filter amplitude
00 O 0.1 0.4
| | | | | | | | | |
1 2 4 8 16 1 2 4 8 16
Number of filters Number of filters

Figure 5. Interaction between the number of filters and filter amplitude. A) Proportion correct for each
number of filters at each amplitude level, averaged across the three observers. B) Points show the
same data as in (A), but arranged as a surface, while the background is interpolated from these points.
Error bars in (A) show one standard error across observers, which is smaller than the point size in
many cases.

The influence of target-background similarity

The perceptual performance described above reveals that observers were better able
to detect targets on natural image backgrounds when the targets were aligned with the
underlying spatial structure of the background than when the targets were misaligned with
the background. These results are contrary to our expectations based on the data of
Sebastian et al (2017) who found that sensitivity is negatively correlated with the structural
similarity between target and background, a metric that scales from zero (no similarity) to
one (perfect similarity). We therefore next tested whether observers’ performance was
instead positively correlated with target-background similarity using the same analysis of
similarity as in this previous study (Equation 23).

Shown in Figure 6A are the histograms of similarity for all trials across observers,
which, by design, can be separated according to the filter alignment relative to the
background. The dashed vertical line shows the median similarity of all trials, regardless of
target-background alignment. By isolating trials from each condition according to whether
they fall above or below this arbitrary cut-off, we can test whether accuracy depends more
on similarity or target-background alignment. Figure 6B shows the proportion of correct
target detections for aligned and misaligned targets that were most and least similar to the
background, respectively. As per the main analyses above, accuracy was greater for aligned
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than misaligned trials. The more diagnostic analysis is shown in Figure 6C, in which the
proportion of correct target detections are shown for aligned trials that were less similar than
the included misaligned trials (i.e. we limit the analyses to the tails of the similarity
distributions). We again find that accuracy was higher for the aligned condition than the
misaligned condition, despite the aligned targets having lower similarity with the background
than the misaligned trials. Therefore, target-background alignment predicts performance
much more strongly than target-background similarity.
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Figure 6. Analysis of the influence of target-background similarity on perceptual performance. A)
Histograms show structural similarity between targets and background separately for the aligned and
misaligned conditions. The vertical dashed line is the median similarity of all trials. B) Proportion
correct for misaligned trials that were lower in similarity than aligned trials, and vice versa, as
determined by median split. Accuracy for the misaligned trials is shown to the left of the median, and
accuracy for the aligned trials is shown to the right of the median. C) Proportion correct for aligned
trials that were lower in similarity than misaligned trials, and vice versa, as determined by median split.
Accuracy for the aligned trials is shown to the left of the median, and accuracy for the misaligned trials
is shown to the right of the median. Note that proportion correct is higher in the aligned condition
regardless of similarity. Error bars in (B) and (C) show one binomial standard deviation.

In a final analysis of perceptual performance, we attempted to replicate the findings of
Sebastian et al (2017) using the condition in our experiment that is most analogous to the
one in theirs, namely, the misaligned condition. In both this previous study and the
misaligned condition of the present study, the blending of target filters and their backgrounds
did not depend on any structural alignment. Instead, any incidental alignment can be
quantified in terms of structural similarity. We therefore tested whether we found an inverse
relationship between target-background similarity and detection accuracy for the misaligned
condition. Figure 7 shows proportion correct for trials in similarity bins (bin width = 0.1) for
each observer. We modelled these data with logistic regression, with random intercept and
slopes grouped by observer (i.e. a logistic GLMM). Fits are shown as solid lines in Figure 7.
There is a clear negative relationship between structural similarity and accuracy, with a
mean slope of -0.96 (population standard deviation = 0.75). Similarity was not a significant
predictor in the model (p = 0.13), but the trends are nonetheless consistent across observers
and also with the data of Sebastian et al.
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Figure 7. Proportion correct as a function of target-background similarity for misaligned trials only. A-
C) show data for each observer, colour coded as in Figure 3. Solid lines are fits from a logistic GLMM,
showing a negative relationship between similarity and detection accuracy, as reported by Sebastian
et al (2017).

Discussion

We found that observers are better at detecting contrast-defined targets when they are
aligned with a natural image background compared with when they are misaligned with the
natural image background. The superior performance on aligned than misaligned trials did
not depend on the structural similarity of targets relative to backgrounds, in contrast to the
results of Sebastian et al (2017). Because the target filters tended to be aligned with object
edges (i.e. the points of highest contrast in natural images; see Figure 1 and Methods),
these data also appear to contradict the findings of Bex et al (2009; see also Wallis & Bex,
2012). Bex et al found that sensitivity was lower in image regions of relatively high edge
density, whereas we found higher sensitivity when targets were aligned with edges than
when they are randomly positioned.

A potentially simple explanation for the discrepancy between our data and earlier work
concerns the phase alignment of target filters and backgrounds: the phase of a target filter
relative to the phase of the local natural image background determines local contrast. This
fact is demonstrated in Figure 8A. When target filters are designed to be aligned with their
background structure (left panels), local contrast depends strongly on phase. When the
targets and background are phase-matched, target-background amplitude is additive,
resulting in greater local contrast (top left panel). By inverting the phase of those same filters,
target-background amplitude is subtractive, reducing local contrast (bottom left panel).
Indeed, Bex and Makous (2002) speculated that this dependence of local contrast on phase
alignment explains a loss of sensitivity to phase-scrambled natural images. We tested this
hypothesis directly in Experiment 2. Note, however, that, while phase-mismatched target
filters reduce local contrast, they may not be less visible. See, for example, the
demonstrations in Figure 8B. While the phase-mismatched filter has a lower local contrast
than the phase-matched filter, the phase-mismatched filter is conspicuous. Indeed, within
each half of these images, the absolute change of luminance is the same, regardless of filter
phase. It therefore remains an open question as to how this manipulation will affect
observers’ sensitivity.
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A Aligned (similarity = .89) Misaligned (similarity =.71) B

s

Figure 8. A demonstration of the influence of filter phase on local contrast, and examples of conditions
tested in Experiment 2. A) Added to all panels are the same two target filters that were designed to be
phase-matched with the local spatial structure in the top left panel. Filters in the bottom row have an
inverse phase, and are therefore mismatched relative to the source image. Filters are most apparent
in the top left panel: one filter is aligned with the top horizontal edge of the cracker, and the other is
aligned to the left side of the vertical shadow of the thumb. Note that the structural similarity metric is
phase invariant, and therefore the filters have the same similarity score within each column. Target
filters are located at the intersection of pink and blue lines at the edges of each panel. In Experiment
2, we averaged observers’ performance over the misaligned conditions (right column), because phase
alignment is relative only to the source image. B) Simplified demonstrations of phase-matched and
phase-mismatched filters aligned to an edge. Note that, while the phase-mismatched filter reduces
contrast, it appears similarly visible to the phase-matched edge.

Experiment 2

The results presented above reveal that the alignment of target filters with the spatial
structure of the background determines detection sensitivity at least somewhat
independently of target-background similarity. In Experiment 2 we tested our hypothesis that
aligned targets are easier to detect because their amplitude is additive with the background
amplitude, increasing local contrast. We therefore compared detection sensitivity to target
filters that were either aligned or misaligned, and were either phase-matched or phase-
mismatched with the original source image.

Methods

All methods were identical to those of the preceding experiment, with the following
changes. This experiment was carried out in our testing lab on a Display++ monitor
(Cambridge Research Systems) with 14bit luminance precision (i.e. our local lockdown had
lifted). The experimental design was a 2 (alignment: aligned versus misaligned) x 2 (phase:
phase-matched versus phase-mismatched) factorial design (see Figure 8 for example
stimuli). All target filters had an amplitude of 0.15, which, based on the data shown in Figure
4, we expected to yield a mean @’ of approximately 1. In all trials, there were four filters.
Importantly, on half the trials, target filters were blended with the background as per
Experiment 1, whereas in the other half of the trials the phase of the filters were reversed
before blending. Note that, in the misaligned condition, the phase of the filters relative to the
background is somewhat arbitrary, so in the analysis we average across these trials. Each
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observer completed a total of 800 trials, giving 200 trials per unique condition demonstrated
in Figure 8. Testing took approximately 30 minutes per observer.

Results

In Experiment 2, we included conditions that provided an opportunity to replicate our
findings from Experiment 1. As demonstrated in the top left panel of Figure 8, we included
a condition in which target filters were both aligned and phase-matched to the natural
background structure, as per the aligned condition of Experiment 1. We first compare
observers’ accuracy in this condition with the accuracy in the misaligned condition. The
results are shown as connected points in Figure 9A, and reveal better performance in the
(phase-matched) aligned condition than the misaligned condition for all observers. We
therefore replicate the results from Experiment 1 under strict laboratory conditions. Also
shown in Figure 9A are the results from the phase-mismatched condition, in which target
filters were aligned with their backgrounds, but had their phase inverted. Importantly, phase-
matched and phase-mismatched targets were well equated on similarity (phase-matched
and phase-mismatched average similarities were .7 and 0.71, respectively). In the phase-
mismatched condition, however, all observers were close to chance level, revealing they
were unable to detect these targets (mean accuracy = 49%; RR = 45%, RW = 50%, WH =
51%).
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Figure 9. Proportion of correct target detections in Experiment 2. A) Results are shown according to
the two main experimental factors: target-background alignment (x-axis) and target-background phase
alignment (grouped data points). Note that target-background similarity is matched across aligned
conditions (see left column of Figure 8). Colours indicate different observers as per Figure 3. B-D)
Proportion correct as a function of target-background similarity for misaligned trials only. Solid lines
are fits from a logistic GLMM, showing a positive relationship between similarity and detection
accuracy, in contrast to the fits of Experiment 1 data and results reported by Sebastian et al (2017).

We again tested whether there was an inverse relationship between accuracy and
similarity in the condition most closely matching the condition tested by Sebastian et al
(2017), i.e. the misaligned condition (see Figure 7). We again used a logistic GLMM, and
similarity was binned in 0.1 steps. In contrast to the fitted model in Experiment 1, however,
we found a non-significant positive relationship between similarity and proportion correct
(slope = 0.33, population standard deviation = 0.28, p = 0.596). Fits to observers’ data are
shown in Figure 9B-D.

Discussion

The aim of Experiment 2 was to test the prediction that targets aligned with their natural
image backgrounds are easier to identify than targets that are misaligned with their
backgrounds (i.e. the results of Experiment 1) due to a difference in local contrast. The
differences in local contrast across these conditions results from contrast additivity in the
aligned condition when filters are phase-matched with their background. We tested this
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prediction in Experiment 2 by inverting the phase of target filters on half of the trials in which
the filters were aligned with the background structure. Inverting the phase of target filters
aligned with their background has a subtractive effect on local contrast, and, as we
expected, rendered observers incapable of detecting the targets (Figure 9). The results of
Experiment 2 thus support the notion that target-background similarity is not a useful metric
of the detectability of targets per se, whereas the interaction between relative phase and
structural alignment is critical.

Generative model of task performance

We next aimed to develop a model that captures the key results reported for
Experiment 1 and Experiment 2. We hoped to account for the finding that aligned targets
are more accurately detected than misaligned targets, and that this effect of alignment
depends on the relative phase of target and background. These effects suggest that
observers are tuning to local changes in the images caused by the additivity of filter and
background luminance. The model is therefore based on simple luminance and contrast
detection mechanisms like those involved in the generation of our stimuli (Figure 1). On
each trial, the model detects difference in various image statistics across the target and
distractor images, and then generates a response based on these differences. Simulated
responses were determined by fitting the model output to observers’ responses in
Experiment 1. We then tested whether the fitted model reproduced the key Experiment 2
results.

On each trial, the model was given the target image and the distractor image. The
maximum contrast of each image was found by taking the maximum value of contrast maps
as computed in Equations 1 — 6. The maximum luminance extreme of each image was the
maximum absolute deviation of each image from mid-grey, capturing both local minima and
maxima in images across trials. For each trial and each metric, we computed a ratio between
left and right images:

Equation 24 LR = In (%
left

Equation 25 CRy = In (% )
left

LR and CR refer to ratios of the most extreme luminance and contrast values,
respectively, where negative values indicate greater extremes in the left image, and positive
values indicate greater extremes in the right image. We weighted these metrics by fitting
them to observers’ responses (i.e. left or right spatial interval) using logistic regression. We
then analysed the model predictions as per the behavioural analyses. We built different
models that included 1) just the absolute luminance peak of stimuli, 2) just the contrast
energy maxima of stimuli, or 3) both.

The best model was one that detects the absolute luminance peak and the maximum
contrast energy within the target and distractor images. As shown in Figure 10, this model
reproduces the qualitative patterns of performance observed in Experiment 1 (compare the
model data in Figure 10 with the empirical data in Figure 3). Importantly, each image statistic
significantly contributes to the model (p’s < 0.001), and including both parameters provided
a better fit than including either parameter alone based on formal model comparison (chi-
square test compared with the next best model: y?(Adf = 4) = 114.3,p < 0.001). Note that
the generative model responses are fit to the observer data based solely on the image-
computable features, not on the labels of the experimental conditions (e.g. the data are not
fit to aligned vs misaligned conditions) — yet the model reproduces the same patterns of data
across conditions as observers. Adding the model’s predicted response to the signal
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detection model also improved estimates of observers’ d’(y?(Adf = 6) = 163.1,p < 0.001).
These model results are consistent with the notion that adding filters to the image causes
local peaks in absolute luminance and contrast that can differentiate the target image from
the distractor image (Bex & Makous, 2002). As described next, however, this model cannot
account for the findings in Experiment 2.
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Figure 10. Model performance for Experiment 1. Compare with Figure 3. The model captures the key
results from Experiment 1. Error bars show one binomial standard deviation.

We fit the model to observers’ responses from Experiment 1, as shown above, and
tested whether the fitted model could predict observers’ responses to Experiment 2. The
critical test is whether the model falls to chance when filters were spatially aligned but phase-
inverted relative to their backgrounds (i.e. the phase-mismatched condition). As shown in
Figure 11, however, model performance was well below chance in this condition. This below-
chance performance occurs because phase-inversion reduces the luminance and contrast
peaks of the target image to below those of the distractor image, resulting in the model
reporting the distractor as the target more often than not. The model again reproduces the
effect of alignment, but overestimates the size of the effect. The overestimation may have
resulted from the changes we made between experiments, including using different displays
and filter amplitudes. These differences are less relevant than the model’s gross
misestimation of the phase-mismatched condition as described below.

1.00 —

Ph?se-matched

0.75

0.50

Proportion correct
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0.25 Phase-mismatched

Aligned Misaligned
Target-background

Figure 11. Model performance for Experiment 2. Compare with Figure 9A. The model performs below
chance in the phase mismatched condition, whereas observers were at chance (Figure 9A).

The relatively poor fit to the phase-mismatched condition of Experiment 2 is
informative. Observers’ data cannot be explained fully by assuming that they adopted a
simple rule in which they detected luminance and contrast peaks. For phase-matched trials,
therefore, the superior sensitivity to aligned filters over misaligned filters cannot be solely
accounted for by tuning to local peaks. We attempted to improve the fit using other image
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metrics, such as contrast energy combined across spatial scales and the energy of a “back
pocket” filter-rectify-filter model (Harrison & Bex, 2016; Landy, 2013), but none improved the
fits of the model. Rather than taking the maximum contrast or luminance extreme, we also
tried using k-maxima (up to k = 1000), which also did not improve the fits. Observers’
performance, therefore, escapes a relatively straightforward low-level explanation.

General Discussion

The aim of the present study was to test observers’ ability to detect contrast-defined
targets that have been blended with natural image backgrounds. We designed the target
filters so that their orientations were either aligned or misaligned with the local background
structure. Based on the recent report that detection sensitivity is inversely related to target-
background similarity (Sebastian et al., 2017), we expected to find worse performance in
the aligned condition relative to the misaligned condition based on the notion that aligned
targets would have higher target-background similarity than misaligned targets. Across two
experiments, however, we found superior detection of targets that were designed to be
aligned and phased-matched to the structure of the background compared with targets that
were designed to be misaligned with their backgrounds and were thus lower in similarity. As
noted below, our goal was not to replicate the study by Sebastian et al, but instead to test
the role of target-background similarity in target detection using a novel approach.

Our experiments show that observers’ sensitivity does not linearly scale with similarity
in all cases. In Experiment 1 we found a positive relationship between similarity and
sensitivity: observers were most sensitive to targets in which target filters were aligned with,
and most similar to, background structure (Figure 3C and Figure 4C). We replicated this
finding in Experiment 2 (Figure 9A). When we limited our analyses to only trials in which
target filters were misaligned with the background structure, we found mixed results across
the two experiments: a negative relationship between detection accuracy and target-
background similarity in Experiment 1 (Figure 7), but a positive relationship in Experiment 2
(Figure 9C-D). The cause of this difference in results across experiments is not clear, but
we note that we did not design either experiment to specifically measure the relationship
between similarity and sensitivity in this way, and neither model was significant. Regardless,
there was no clear evidence of an inverse relationship as we expected.

The limitation of a specific structural similarity metric as a predictor of sensitivity in our
study is most apparent in our Experiment 2 results. By matching or inverting the phase of
filters aligned with the background structure, we produced target-background images that
were equivalent in similarity but were different in their detectability (Figure 8 and Figure 9A).
When phase was inverted relative to the background, observers’ performance was at
chance level. The phase-mismatched condition therefore removed the information
observers depended on to perform the task (i.e. contrast). A variant of the metric of similarity
used here and by Sebastian et al (2017) may better predict sensitivity if it encodes phase
information. Computationally, similarity is analogous to a normalised correlation coefficient;
retaining phase would yield similarity scores ranging from -1 (perfectly matched counter-
phase) and 1 (perfectly matched in-phase). However, Sebastian et al. used targets and a
template-matching ideal observer model that had a fixed phase, in which case sensitivity
may indeed scale inversely with phase-invariant similarity. We also note that the similarity
between target filters and backgrounds in our study was approximately double those
reported by Sebastian et al, and so it is possible that a linear inverse influence of similarity
on sensitivity holds for relatively low levels of similarity.

In Experiment 1, there was no clear relationship between the number of filters added
to the target image and observers’ performance (Figure 3B and Figure 4B). We expected to
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find such a relationship based on the simple principle that there is an additional opportunity
to detect a target for each filter added (Macmillan & Creelman, 2004). On closer inspection
of the proportion correct data presented in Figure 3B, only a single data point in each of RW
and WH’s data are inconsistent with the expected trend for all observers. The lack of a
statistically robust finding, therefore, may be due to our limited number of observers. A clear
main effect of the number of filters was possibly also obscured by an interaction with target
amplitude as shown in Figure 5. It is interesting that our generative model also produced a
somewhat noisy relationship between accuracy and the number of filters. It is possible that
observers outperformed our model in the phase-mismatched condition of Experiment 2
because they integrated information over multiple locations rather than using the maximum
in each image. However, even when our model had access to the top 1000 maxima in the
images, it still performed below chance.

Detection thresholds in our experiments are approximately an order of magnitude
greater than those reported by Sebastian et al. This is not particularly surprising given that
we did not attempt to replicate their design, and instead used stimuli and methods that
differed from theirs. One aspect of our experiments that would have likely decreased
sensitivity was the lack of spatial certainty in the position of targets. Target filters could
appear anywhere within the natural image background, maximising spatial uncertainty. The
ability to identify targets depends on spatial (un)certainty, particularly in peripheral vision
(Bennett & Banks, 1991; Harrison & Bex, 2015, 2017; Levi et al., 1987). Sebastian et al
reduced spatial uncertainty by presenting targets at the same location on each target-
present trial. Lower thresholds should be expected with such reduced uncertainty relative to
our experiment in which observers had to search the entire background region. When
observers are required to search for a potential target in a new background, false alarms
can occur anywhere in the image. Computationally, such search can be performed using
the same basic processes as involved in detection of a target at a cued location. In addition
to determining whether a filter response is greater than a threshold (e.g. Sebastian et al.,
2017), however, search involves determining which of several locations is most likely a
target. We modelled this by taking the spatial interval with maximum luminance and contrast
energy.

Despite the differences between our study and previous studies, we can confidently
conclude that phase plays an important role in target detection for at least the sorts of targets
used in our study (i.e. directional first-derivative of Gaussians). This result was
foreshadowed by Bex and Makous (2002), who suggested detection thresholds for natural
images depend on local phase-alignment within or across frequency bands. Our modelling
suggests that observers detected the target interval by using local luminance extremes and
contrast maxima. These local visual cues were most apparent in conditions in which the
target phase was additive with the background. Phase, therefore, played an important role
in our experiments. However, the failure of this model to capture observers’ accuracy in the
phase-mismatched condition of Experiment 2 reveals that a rule using local extremes is
overly simple. We do not think it is likely that observers were switching strategies across
conditions, because observers could not have known on a given trial which condition was
displayed. In phase-mismatched trials in which the extremes of the target image were
reduced to below the level of the extremes of the distractor image, observers must have
been using other image cues that have escaped our description. Anecdotally, all observers,
who are experienced psychophysical observers, reported using a template-matching
strategy. This insight is obviously limited in its usefulness, because a template-matching
strategy is equivalent to the computations performed in our model.
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Our results are consistent with those of Neri (2011), who investigated the influence of
target phase relative to the structure of a natural image background and how these effects
differ when the stimulus is inverted. Neri found that, when the background is upright,
observers tune to feature detectors that are in-phase with a natural edge. When the
background is inverted, observers’ tuning is less phase-aligned with the natural edge. These
results suggest that upright scenes produce a bias in visual processing that steers
observers’ filtering toward the local phase of natural structures. These results are consistent
with our own finding that observers are most sensitive to filters that are spatially aligned,
and in-phase, with the background.

The extent to which the design of visual targets determines detectability in natural
backgrounds is thus clearly an important consideration. As shown in a demonstration by
Sebastian et al, it is incontrovertible that there are some targets for which phase is
unimportant for visibility. We reproduce such a demonstration in the top row of Figure 12.
We question, however, the relevance of a similarity metric in explaining the visibility of the
target in this demonstration, considering that similar demonstrations can be produced in
which target-background similarity is greater, and yet the target is easily visible (bottom row,
Figure 12). The importance of target-background phase (in)variance likely depends on
multiple factors, such as target design, as well as differences in the background in the region
of the target (i.e. ‘partial masking’, see Sebastian et al., 2020). In addition to testing target
visibility in different backgrounds based on contrast, luminance, and similarity (Sebastian et
al., 2017, 2020), binning backgrounds according to their phase-similarity with targets may
clarify these interactions in future experiments.

Figure 12. Similarity alone is a poor predictor of visibility. Top and bottom panels show a 16 cyc/image
target and Gaussian-derivative target, respectively, in each of three backgrounds (left to right): zero
noise, vertical noise, and horizontal noise. Noise is 1D Gaussian (standard deviation = 0.15), and
targets have the same amplitude in all panels (0.1). Similarity masking is demonstrated in the top right
panel, in which the high-frequency target is rendered invisible. Such a masking effect is phase-
invariant. As shown in the bottom right panel, however, a broader-band target with the same amplitude
remains unmasked by the same noise. Importantly, the structural similarity between the target and
background is greatest in the bottom right panel (0.15 bottom right vs 0.12 in the top right).

We used images from the THINGS database as naturalistic backgrounds. The
THINGS database is a recently released database with over 26,000 images from 1854
categories (Hebart et al., 2019). Relatively little has been reported about the basic statistical
properties of the images in this database, and so it is possible that they may deviate from
what one may expect from typical natural images . In Figure 13 we show the mean image
spectra as a function of spatial frequency and orientation. This analysis shows that THINGS
images have, on average, the same basic image spectra as typically found in natural
images: contrast energy decreases with increasing spatial frequency (Figure 13A), and
there is an over representation of cardinal orientations (Figure 13B). It is therefore unlikely

1 Since originally submitting this manuscript, a more thorough description of the luminance and
luminance contrast properties of THINGS images was presented by Harrison (2021).
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that something in particular about the distribution of contrast energy in the THINGS images
played a key role in our results. However, it is likely that the visual system performs different
operations when processing visual objects like those in the THINGS images compared with
visual textures (Wallis et al., 2019). Sebastian et al (2017) used images of scenes that had
no particular focus on objects per se. To the best of our knowledge, no study has
systematically investigated whether target detection differs on backgrounds of things versus
backgrounds of stuff.

A R? = .99 B R?=0.99
[ )
5
8
>
2
[}
c
L
[ ) [ )
(]
) ]
| | | | | | | | | | | | |
1 2 4 8 16 32 64 128 -90° —45° 0° 45° 90°
Frequency (cyc/im) Orientation

Figure 13. Mean spectra of all images in the THINGS database. A) Mean contrast energy as a function
of spatial frequency. The solid line is the fit of the function 1/f®, which explains 99% of the variance.
The free parameter, a, was 1.2. B) Mean contrast energy as a function of orientation. We computed
contrast energy in the frequency domain using a series of raised cosine filters centred on a given
orientation and spanning all spatial frequencies (“bow-tie filters”; full width half height = 12.5°). These
data were then fit with a function that captures the over-representation of cardinals, as well as the
greater contrast energy for horizontal contrast compared with vertical contrast 2. This function
explains 99% of the variance.

Several studies suggest that there are high-level influences over the tuning of low-level
feature detectors like those used to detect targets in the present study. For example, Teufel
et al (2018) found that prior knowledge about image content influences the detectability of
oriented targets aligned to locally occluded edges. Neri (2017) similarly found that sensitivity
is greatest on edges implied by image content, regardless of whether local contrast
detectors would respond at the region of the target. Harrison & Rideaux (2019) further
showed that edge detection in visual noise can be greatly influenced by the allocation of
visual attention. Taken together, these findings suggest that the detectability of targets in
the present study may have depended on the specific objects in background images, and
how combinations of low-level and high-level factors guided observers’ visual attention.
However, we did not design our experiments to examine such possible differences across
object images. The availability of repositories such as the THINGS database makes such
questions possible to address in future studies.

In summary, we tested observers’ ability to detect targets in natural image
backgrounds. Observers were most sensitive to targets when they were aligned and phase-
matched with their backgrounds. Inverting the phase of aligned targets reduced observers’
detection performance to chance. To best model the image factors that predict human
sensitivity to contrast defined targets in natural backgrounds, therefore, the phase of the
target relative to the background must be considered.

2 This function has the form: E = (a — mag * |sin(20) |?) = (p * (005(29)) +p+ 1),
where E is contrast energy, 6 is orientation in radians, and a, mag, b, and p are free
parameters. See Harrison (2021) for a more detailed analysis of the THINGS images.
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