

The *Gossypium anomalum* genome as a resource for cotton improvement and evolutionary analysis of hybrid incompatibility

Corrinne E. Grover*, Daojun Yuan†, Mark A. Arick II‡, Emma R. Miller*, Guanjing Hu§, Daniel G. Peterson‡, Jonathan F. Wendel*, and Joshua A. Udall**

* Ecology, Evolution, and Organismal Biology Dept., Iowa State University, Ames, IA, 50010

† College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China

‡ Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, United States

§ State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China

** USDA/Agricultural Research Service, Crop Germplasm Research Unit, College Station, TX 77845

ORCID (email):

CEG: 0000-0003-3878-5459 (corrinne@iastate.edu)

DY: 0000-0001-6007-5571(robert@mail.hzau.edu.cn)

MAA: 0000-0002-7207-3052 (maa146@IGBB.MsState.Edu)

ERM: 0000-0001-9009-5303 (erdostal@iastate.edu)

GH: 0000-0001-8552-7394 (hugj2006@iastate.edu)

DGP 0000-0002-0274-5968 (peterson@IGBB.MsState.Edu)

JFW 0000-0003-2258-5081 (jfw@iastate.edu)

JAU 0000-0003-0978-4764 (Joshua.Udall@usda.gov)

Running title:

Genome sequence of *Gossypium anomalum* as a germplasm resource

Keywords:

Gossypium anomalum, genome sequence, PacBio

corresponding author:

Joshua A Udall

Crop Germplasm Research Unit

USDA-ARS

2881 F&B Road

College Station, TX USA 77845
979-260-9310
Joshua.Udall@usda.gov

Abstract (250 words max)

Cotton is an important crop that has been the beneficiary of multiple genome sequencing efforts, including diverse representatives of wild species for germplasm development. *Gossypium anomalum* is a wild African diploid species that harbors stress-resistance and fiber-related traits with potential application to modern breeding efforts. In addition, this species is a natural source of cytoplasmic male sterility and a resource for understanding hybrid lethality in the genus. Here we report a high-quality *de novo* genome assembly for *G. anomalum* and characterize this genome relative to existing genome sequences in cotton. In addition, we use the synthetic allopolyploids 2(A2D1) and 2(A2D3) to discover regions in the *G. anomalum* genome potentially involved in hybrid lethality, a possibility enabled by introgression of regions homologous to the D3 (*G. davidsonii*) lethality loci into the synthetic 2(A2D3) allopolyploid.

Introduction (500 words)

The genus *Gossypium* is responsible for providing a majority of natural textile fiber through cultivation of its four independently domesticated species. Recent efforts in genome sequencing have resulted in high-quality genomes for all domesticated species (Yuan *et al.* 2015; Chen *et al.* 2020; Huang *et al.* 2020) and for other important species (Paterson *et al.* 2012; Udall *et al.* 2019; Chen *et al.* 2020). Recent efforts at sequencing additional wild cotton species (Udall *et al.* 2019; Grover *et al.* 2020, 2021) have resulted in several high-quality resources for exploring the evolution of agronomically favorable traits, e.g., stress resistance, that are found naturally in the wild cotton species.

Comprising more than 50 known species, the diploid species of cotton have been placed into genome groups (known as A-G, and K) based on meiotic chromosome associations and sequence similarities (see Wang *et al.* 2018 for review). The wild African species *G. anomalum* Waw. & Peyr. is one of four species comprising the “B-genome” cottons. The B-genome cottons are *G. anomalum* (B1), *G. triphyllum* (B2), *G. capitis-viridis* (B3), and perhaps the poorly understood *G. trifurcatum* (Vollesen 1987; Fryxell 1992; Wendel *et al.* 2010), although relationships for the latter, rare species are unclear (Wang *et al.*, 2018). All of these species are in clades that are close relatives of the diploid domesticated species *G. arboreum* and *G. herbaceum*. *Gossypium anomalum* has a large but disjunct geographic range, encompassing southwest Africa, centered in Namibia (*G. anomalum* subsp. *anomalum*), and then also a broad distribution in northern Africa (*G. anomalum* subsp. *Senarensis*; Vollesen 1987; Fryxell 1992). Although the species has no obvious traits of agronomic interest, *G. anomalum* has many understudied characteristics that may be useful in breeding programs and understanding the evolution of favorable phenotypes.

The fiber of *G. anomalum* is short and not spinnable, but *G. anomalum* has been considered a potential source for fiber fineness and strength (Mehetre 2010), and the xerophytic nature of *G. anomalum* makes it a candidate for understanding drought resistance in cotton species.

Gossypium anomalum also exhibits natural resistance to various cotton pests, including jassids (Mammadov *et al.* 2018), bacterial blight/blackarm (Knight 1954; Fryxell *et al.* 1984), mites (Mehetre 2010), bollworms (Mehetre 2010), and rust (Fryxell *et al.* 1984; Mehetre 2010).

Mechanisms underlying pest resistance are understudied, but it is clear that investigation of the *G. anomalum* genome may illuminate valuable genes and alleles underlying resistance (Fryxell *et al.* 1984), as demonstrated by hybridization experiments involving *G. anomalum* and cultivated cottons (Mehetre 2010).

In addition to stress resistance and fiber quality traits, *G. anomalum* is both a source of cytoplasmic male sterility (Meyer and Meyer 1965; Marshall *et al.* 1974) and one of the few cotton species that can be crossed with cottons from subsection *Integrifolia* (i.e., *G. klotzschianum* and *G. davidsonii*; (Hutchinson *et al.* 1947)), which generally exhibit hybrid lethality in other crosses. Both cytoplasmic male sterility and *Integrifolia* derived lethality have applications in cotton (Weaver and Weaver 1977; Lee 1981a; Stelly *et al.* 1988; Stelly 1990; Suzuki *et al.* 2013; Bohra *et al.* 2016), the latter being accessible only in crosses that are non-lethal, e.g., with *G. anomalum*.

Here we describe a high-quality, *de novo* genome assembly for *G. anomalum*, the first for a member of *Gossypium* section *Anomala*, which are colloquially known as the “B-genome” cottons (Wang *et al.* 2018). This genome provides a genetic repository for investigating potentially valuable agronomic traits.

Methods & Materials

Plant material and sequencing methods

Gossypium anomalum was grown from seed under greenhouse conditions at Brigham Young University (BYU), and mature leaves were collected for sequencing. High-quality DNA was extracted via CTAB (Kidwell and Osborn 1992) and subsequently quantified using a Qubit Fluorometer (ThermoFisher, Inc.). DNA was size selected for fragments >18 kb on the BluePippen (Sage Science, LLC) prior to library construction; fragment size was verified using a Fragment Analyzer (Advanced Analytical Technologies, Inc). A single PacBio (Pacific Biosciences) sequencing library was constructed by the BYU DNA Sequencing Center (DNASC), and 15 PacBio cells were sequenced using the Sequel system. Raw reads were assembled using Canu V1.4 with default parameters (Koren *et al.* 2017).

Leaf tissue was shipped to PhaseGenomics LLC for DNA extraction and HiC library construction. HiC libraries were sequenced on the Illumina HiSeq 2500 (PE125 bp) at the BYU DNASC, and the resulting reads were used to join contigs. JuiceBox (Durand *et al.*, 2016) was

used in conjunction with the HiC reads to correct the assembly based on the association frequency between paired-ends. A custom python script (available through PhaseGenomics, LLC) was used to construct the final genome sequence of *G. anomalum*, which consists of 13 scaffolds corresponding to the haploid complement of chromosomes.

Repeat and gene annotation

Repeats were identified using RepeatMasker (Smit *et al.* 2015) and a custom library consisting of Repbase 23.04 repeats (Bao *et al.* 2015) with cotton-specific repeats (Grover *et al.* 2020). RepeatMasker run parameters were set to a high-sensitivity scan that only masked transposable elements (TEs). Multiple hits were aggregated using “One code to find them all” using default parameters (Bailly-Bechet *et al.* 2014), and the resulting output was summarized in R/4.0.3 (R Core Team 2020) using *dplyr*/2.0.0 (Wickham *et al.* 2015). Repeats were quantified relative to other cotton species with resequencing data downloaded from the GenBank Short-Read Archive (Supplementary Table 1) using the RepeatExplorer pipeline (Novák *et al.* 2010), and results were parsed in R/4.0.3 (R Core Team 2020) as previously described (Grover *et al.* 2020). All code is available at <https://github.com/Wendellab/anomalum>.

Genome annotations were conducted using existing RNA-seq data from tissues of closely related species (Supplementary Table 2) as previously described (Grover *et al.* 2021). Hisat2 was used to map each RNA-seq library to the hard-masked *G. anomalum* genome [v2.1.0] (Kim *et al.* 2015), and *de novo* transcriptome assemblies were generated via StringTie [v2.1.1] (Pertea *et al.* 2015) and Cufflinks [v2.2.1] (Ghosh and Chan 2016). These RNA-seq assemblies were combined with a Trinity [v2.8.6] (Grabherr *et al.* 2011) reference-guided transcriptome assembly and splice junction information from Portcullis [v1.2.2] (Mapleson *et al.* 2018) in Mikado [v1.2.4] (Venturini *et al.* 2018). GeneMark [v4.38] (Borodovsky and Lomsadze 2011) generated annotations were used in BRAKER2 [v2.1.2] (Hoff *et al.* 2019) to train Augustus [v3.3.2] (Stanke *et al.* 2006). MAKER2 [v2.31.10] (Holt and Yandell 2011; Campbell *et al.* 2014) integrated gene predictions from all three sources, i.e., BRAKER2 trained Augustus, GeneMark, and Mikado, with additional evidence from all available *Gossypium* ESTs (NCBI nt database with the filters “txid3633” and “is_est”), all curated proteins in Uniprot Swissprot [v2019_07] (UniProt Consortium 2008), and all annotated proteins from the *G. hirsutum* (https://www.cottongen.org/species/Gossypium_hirsutum/jgi-AD1_genome_v1.1) and *G. raimondii* (Paterson *et al.* 2012) genomes.

Each gene model was scored by Maker using the annotation edit distance (AED - (Eilbeck *et al.* 2009; Holt and Yandell 2011; Yandell and Ence 2012) relative to EST and protein evidence, and gene models with an AED less than 0.37 were retained. These gene models were functionally annotated using InterProScan [v5.47-82.0] (Jones *et al.* 2014) and BlastP [v2.9.0+] (Camacho *et al.* 2009) searches against the Uniprot SwissProt database. Orthologous relationships between *G. anomalum* and other sequenced diploid cotton genomes, i.e., *G. longicalyx* (Grover *et al.* 2020),

G. arboreum (Du *et al.* 2018), *G. herbaceum* (Huang *et al.* 2020), *G. raimondii* (Paterson *et al.* 2012) are derived from previously published (Grover *et al.* 2021) OrthoFinder analyses (Emms and Kelly 2015, 2019). All genomes are hosted through CottonGen (<https://www.cottongen.org/>; (Yu *et al.* 2014) and running parameters are available from <https://github.com/Wendellab/anomalum>.

***G. anomalam* introgression in the synthetic allotetraploid, 2(A2D3)**

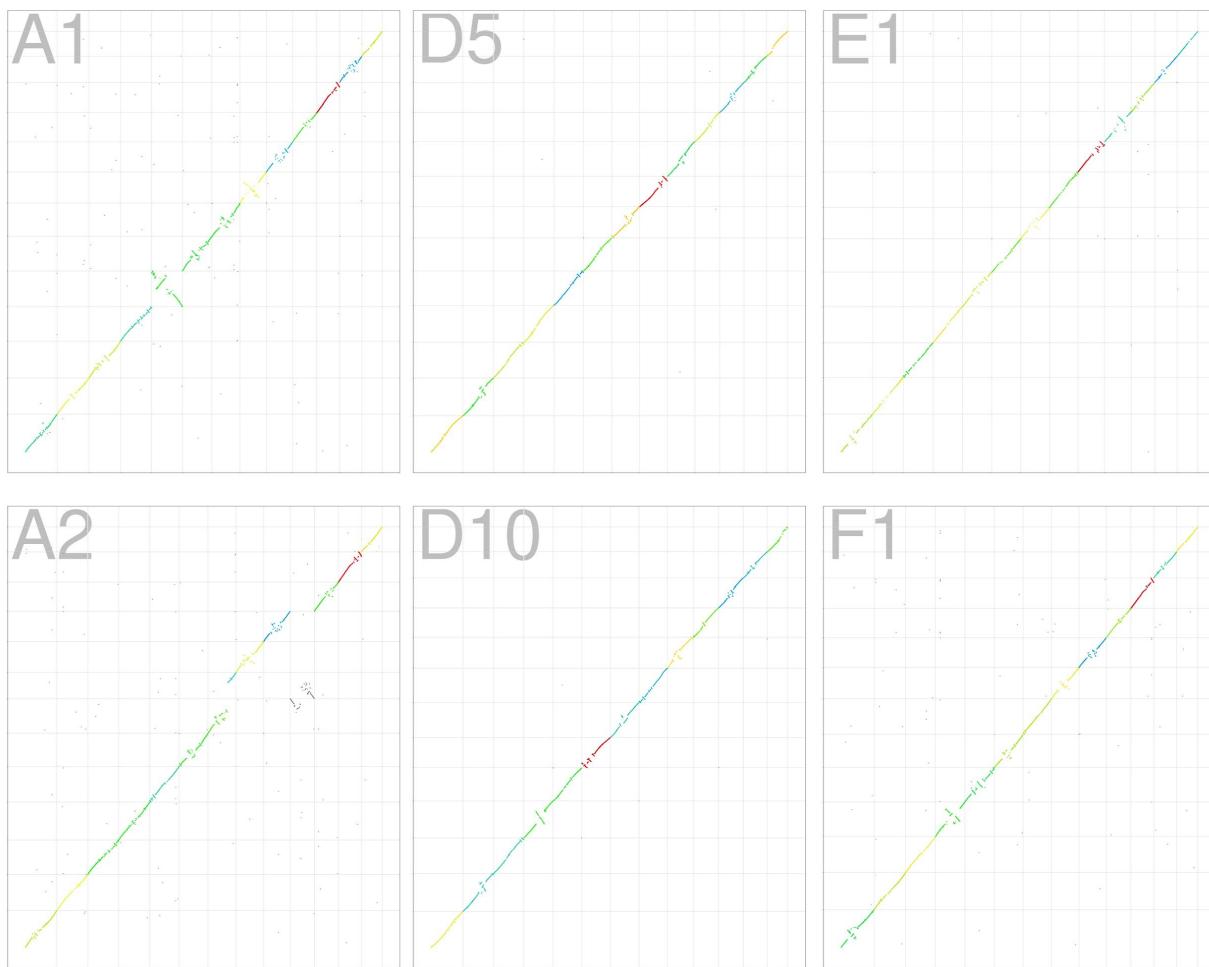
A synthetic allotetraploid, i.e., 2(A2D3), was generated by Joshua Lee in the late 1970s to early 1980s. The first step in producing the allotetraploid involved crossing *G. anomalam* (B1) with *G. arboreum* (A2; Supplementary Figure 2). The latter species is incompatible with *G. davidsonii* (D3), as are all species tested except *G. anomalam*; *G. anomalam* likely possesses a null allele for the lethality locus. By repeatedly backcrossing the *G. anomalam* compatibility region into the recipient *G. arboreum* parent, Lee was able to create a *G. arboreum* line that was compatible with *G. davidsonii*. This was subsequently used to generate a diploid hybrid with *G. davidsonii*, i.e., A2 x D3. Subsequent doubling of this hybrid generated the synthetic 2(A2D3), and this plant has been subsequently maintained by Jonathan Wendel in the Iowa State University greenhouse since the mid-1980s. We downloaded previously generated reads from this synthetic allotetraploid (Supplementary Table 1), along with reads for an additional synthetic allotetraploid, 2(A2D1) (Beasley 1940). Chromosomes from all three diploid species, i.e., *G. arboreum*, *G. anomalam*, and *G. davidsonii*, were combined to generate an *in silico* genome designated “ABD”. Mapping of the 2(A2D3) reads to the ABD genome identified reads which best match *G. anomalam*. To verify the mapping results, we also mapped reads from *G. arboreum*, *G. davidsonii*, and the 2(A2D1) synthetic to the same (synthetic) ABD genome. The 2(A2D1) synthetic was included as an additional control because the *G. arboreum* (A2) used in this initial cross (i.e., *var. neglectum* (Beasley 1940)) did not include known introgression from other cotton species. All reads were mapped to the ABD genome using BWA [v0.7.17] (Li and Durbin 2009), and samtools [v1.9] (Li *et al.* 2009) was used to select the reads from each species that uniquely mapped (mapq ≥ 30) to the *G. anomalam* genome. Contiguous regions of uniquely mapped reads were combined in bedtools [v2.28.0] (Quinlan 2014) for each of the control libraries, i.e., *G. arboreum*, *G. davidsonii*, and 2(A2D1) to identify putative regions of ambiguity (i.e., where reads may preferentially map to the *G. anomalam* chromosomes by chance). Overlapping regions between the mapping results of 2(A2D1) and 2(A2D3) were filtered to retain regions where only 2(A2D3) reads mapped to the *G. anomalam* genome sequence. Regions < 5 kb in length were then discarded. These filters resulted in a high-confidence set of reads that were likely derived from the *G. anomalam* introgression specific to 2(A2D3).

Data availability

The *G. anomalam* genome sequence and raw data are available at NCBI under PRJNA421337 and CottonGen (<https://www.cottongen.org/>). Supplemental files are available from figshare.

Results and Discussion

Genome assembly and annotation


Here we report a *de novo* genome assembly for *G. anomalum* using 55x coverage of PacBio reads and 140.5 million (M) HiC reads. The initial assembly yielded 229 contigs with an N50 of 11 Mb. HiC information was integrated to produce a more contiguous assembly, consisting of 13 chromosomes with an average length of 92 Mb and containing only 20.7 kb (0.002%) gap sequence within the chromosomal scaffolds. The total assembly length is 88% of the estimated 1359 Mb genome (Hendrix and Stewart 2005).

BUSCO analysis (Waterhouse *et al.* 2017) of the 13 assembled chromosomes recovered 97.1% complete BUSCOs from the 2326 BUSCO groups comprising euidcots_odb10 database (Table 1). In general, most BUSCOs were both complete and single copy (89.5%), with a low level of duplication (7.6%). Few BUSCOs were fragmented (0.5%) or missing (2.4%), which indicates a general completeness of the assembly. Dotplot comparisons to other cotton genomes (Figure 1) further confirms that the *G. anomalum* assembly is similar to or superior to recently published genomes.

Genome annotation produced 37,830 primary transcripts, which is similar to other cotton diploids (Paterson *et al.* 2012; Du *et al.* 2018; Udall *et al.* 2019; Grover *et al.* 2020, 2021; Huang *et al.* 2020; Wang *et al.* 2021) whose gene numbers range between 34,928 (Grover *et al.* 2021) in *G. stocksii* to 43,952 (Huang *et al.* 2020) in *G. herbaceum*. BUSCO analysis of the transcriptome exhibited similar quality to the genome, with 86.1% complete and single copy and few duplicated or missing (8% and 4.8%, respectively). Ortholog analysis of primary transcripts suggests that the pattern of orthogroups including *G. anomalum* is similar to other diploid cotton species, although the number of genes not assigned to orthogroups is fewer than previously noted (Grover *et al.* 2021), whereas the number of species-specific orthogroups is higher, albeit still low (Table 2; Supplementary Table 3).

Table 1. BUSCO scores for the genome and transcriptome of *G. anomalum*

	Genome	Annotation
Complete BUSCOs (C)	2258 (97.1%)	2188 (94.1%)
Complete and single-copy BUSCOs (S)	2082 (89.5%)	2002 (86.1%)
Complete and duplicated BUSCOs (D)	176 (7.6%)	186 (8.0%)
Fragmented BUSCOs (F)	12 (0.5%)	25 (1.1%)
Missing BUSCOs (M)	56 (2.4%)	113 (4.8%)
Total BUSCO groups searched		2326

Figure 1. Pairwise comparisons of *G. anomalum* with *G. herbaceum* (A1; (Huang *et al.* 2020)), *G. raimondii* (D5; (Udall *et al.* 2019)), *G. stocksii* (Grover *et al.* 2021), *G. arboreum* (A2; (Huang *et al.* 2020)), *G. turneri* (D10; (Udall *et al.* 2019)), and *G. longicalyx* (F1; (Grover *et al.* 2020)).

Repeats

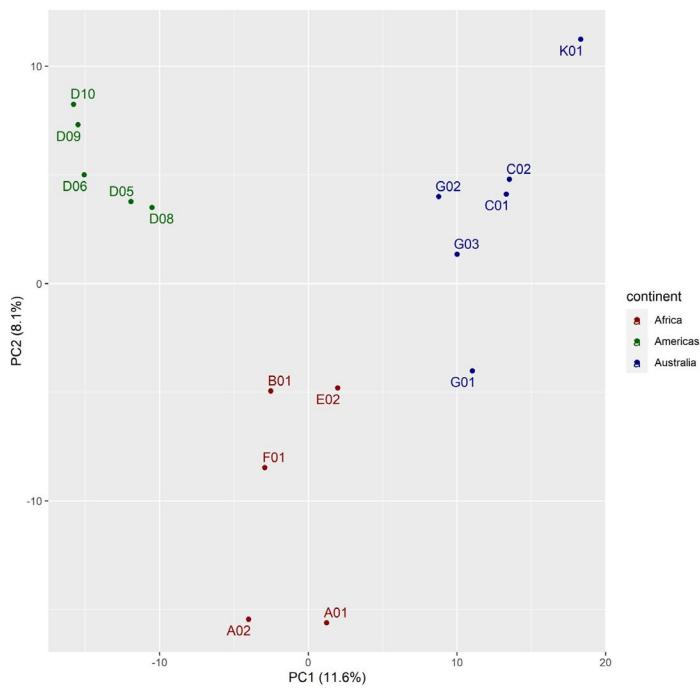

Both *de novo* TE prediction (Bailly-Bechet *et al.* 2014; Smit *et al.* 2015) and repetitive clustering (Novák *et al.* 2010) were used to assess repetitive elements in the *G. anomalum* genome. As with *G. longicalyx* (Grover *et al.* 2020), RepeatExplorer estimated a larger proportion of the *G. anomalum* genome as repetitive (46.5%) compared to RepeatMasker (42%). Estimates for the different TE categories surveyed (e.g., DNA, Ty3/gypsy, Ty1/copia, etc.) were generally consistent between the two methods (Supplementary Table 4), although RepeatMasker recovered far more *copia* elements than did RepeatExplorer (47.7 Mbp, versus 29.1 Mbp). This is likely due to the inability of RepeatExplorer to efficiently categorize *copia*-like elements in this genome, instead placing them in a general “LTR” category (21.9 Mbp, versus 0 Mbp for RepeatMasker). As is common among plants, most of the repetitive sequence recovered by both

Table 2: Orthogroup relationships between *G. anomalam* and other cotton diploid genomes (primary transcripts only).

	<i>G. anomalam</i>	<i>G. arboreum</i>			<i>G. herbaceum</i>	<i>G. raimondii</i>			<i>G. turneri</i>	<i>G. longicalyx</i>	<i>G. australe</i>	<i>G. stocksii</i>	<i>G. rotundifolium</i>
		Li 2014	Du 2018	Huang 2020	Huang 2020	Paterson 2012	Wang 2012	Udall 2019	Udall 2019	Grover 2020	Cai 2020	Grover 2021	Wang 2021
Number of genes	37,830	40,134	40,960	43,278	43,952	37,223	40,976	41,030	38,871	38,378	38,281	34,928	39,355
Genes in orthogroups	36,847 (97%)	38,605 (96%)	40,565 (99%)	42,599 (98%)	42,955 (98%)	36,774 (99%)	39,829 (97%)	38,317 (93%)	36,501 (94%)	37,016 (97%)	36,164 (95%)	34,012 (97%)	38,511 (98%)
Unassigned genes	983 (3%)	1,529 (4%)	395 (1%)	679 (2%)	997 (2%)	449 (1%)	1147 (3%)	2,713 (7%)	2,370 (6%)	1,362 (4%)	2,117 (6%)	916 (3%)	844 (2%)
Orthogroups containing species	24,591 (64%)	27,731 (72%)	28,614 (75%)	28,452 (74%)	29,359 (77%)	27,216 (71%)	26,844 (70%)	26,017 (68%)	26,451 (69%)	25,940 (68%)	20,504 (54%)	24,500 (64%)	25,055 (65%)
Species-specific orthogroups	109	130	30	86	107	13	309	137	133	136	634	96	313
Genes in species-specific orthogroups	389 (1%)	367 (1%)	90 (0%)	412 (1%)	396 (1%)	30 (0%)	1,421 (4%)	516 (1%)	338 (1%)	406 (1%)	2,794 (7%)	509 (2%)	2,167 (6%)

methods was attributed to *gypsy* elements, which occupy 38% of the genome according to RepeatMasker and 42% of the genome based on RepeatExplorer analysis.

In addition to characterizing the *G. anomalam* genome via clustering, we also co-clustered a diverse array of previously sequenced species (see methods) to evaluate the repeat content of *G. anomalam* in the broader context of the genus (Supplementary Table 1). This clustering included at least one member of each lettered cotton “genome group” (i.e., A-G and K; Wang *et al.* 2018), which were all sampled to represent 1% of their genome size (Hendrix and Stewart 2005). Principal components analysis (PCA; Figure 2) generally separates the species by geography on the first axis, with the American “D-genome” cottons toward the left part of the plot, the Australian species (groups C, G, and K) toward the right, and the African species (genome groups A, B, E, and F) intermediate between those two. Notably, the PCA groupings loosely follow the phylogenetic relationships among the genome groups (Cronn *et al.* 2002).

Figure 2. PCA analysis of repeats in cotton species. Species placement on the first two axes is primarily due to a small number of *gypsy* clusters. Species are colored by their broad geographic groups, i.e., the Americas (green), Africa/Arabian Peninsula (red), and Australia (blue) and listed by their official designations (Wang *et al.* 2018). The American cottons are *G. raimondii* (D5), *G. gossypoides* (D6), *G. trilobum* (D8), *G. laxum* (D9), and *G. turneri* (D10). The African/Arabian cottons are *G. herbaceum* (A1), *G. arboreum* (A2), *G. anomalam* (B1), *G. somalense* (E2), and *G. longicalyx* (F1). The Australian cottons are *G. sturtianum* (C1), *G. robinsonii* (C2), *G. bickii* (G1), *G. australe* (G2), *G. nelsonii* (G3), and *G. exiguum* (K1).

G. sturtianum (C1), *G. robinsonii* (C2), *G. bickii* (G1), *G. australe* (G2), *G. nelsonii* (G3), and *G. exiguum* (K1).

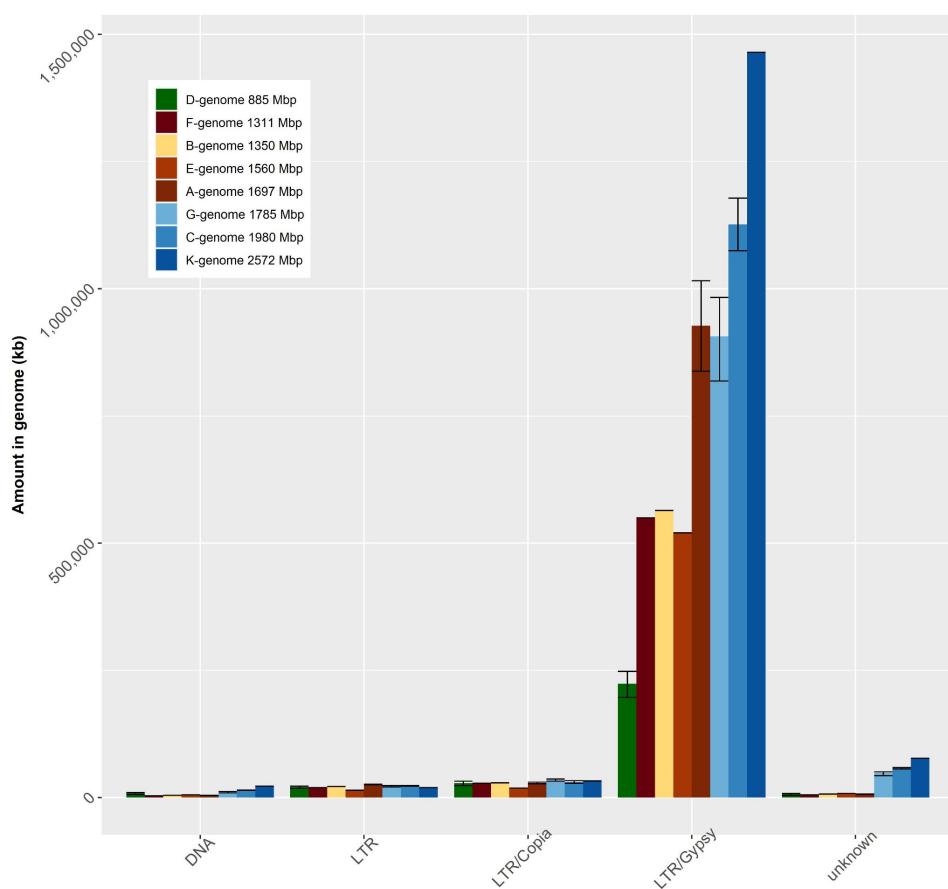

Relative to other cotton species, *G. anomalam* (B-genome) has an intermediate amount of TEs (Figure 3; Table 3), as expected from its intermediate genome size. Like most of the other cottons, the *G. anomalam* genome consists of approximately half repetitive sequences (627 Mb), most of which (90%) are *gypsy* elements.

Table 3. Repetitive amounts (average) in *Gossypium* genome groups compared to *G. anomalam* (B). Species representing each genome group are given in Supplementary Table 1.

Genome Group	Geographic location	Genome Size (Mb)	Repeats (Mb)	Repeats (%)	Gypsy (Mb)	Gypsy (% repeats)	Gypsy (% genome)
B	Africa	1350	627.1	47%	565	90%	42%
A	Africa	1697	992.9	59%	927	93%	55%
C	Australia	1980	1253	63%	1127	90%	57%
D	Americas	885	286.6	32%	224	78%	25%
E	Africa	1560	567.5	36%	520	92%	33%
F	Africa	1311	607.4	46%	550	91%	42%
G	Australia	1785	1022	57%	906	89%	51%
K	Australia	2572	1617.6	63%	1465	91%	57%

Interestingly, while the *G. anomalam* genome is around 200 Mbp smaller than the African E-genome species (represented here by *G. somalense*), cluster analysis suggests that it has about 60 Mbp *more* repetitive sequences, most of which (40 Mb) are annotated as *gypsy* elements (Table 3). Regression analysis suggests that the amount of repetitive sequence observed in the E-genome clade is lower than expected, given the rest of the genome groups (Supplementary Figure 1). This may indicate general degradation and/or divergence in the repeats found in the E-genome clade, possibly indicating the presence of older elements, and/or that prior estimates of genome size are overestimates. The latter hypothesis would be consistent with the high contiguity and quality of our assembly that nevertheless recovered only 88% of the expected genome size.

Also notable is the observation that while the A-genome species (represented by both extant species, *G. herbaceum* and *G. arboreum*) are only ~350 Mbp larger than *G. anomalam*, clustering suggests that they have approximately 1.5x more repetitive sequences, mostly *gypsy* (927 Mbp in A, versus 565 Mbp in B). This is, however, within what is expected as genome sizes in *Gossypium* increase (Supplementary Figure 1).

Figure 3. Average transposable element amounts in each genome group. Genome groups follow (Wang *et al.* 2018), and genome sizes for each genome group are from (Hendrix and Stewart 2005). Here, *G. anomalam* (yellow) is the sole representative of the B-genome clade.

***G. anomalam* as a vehicle to understand hybrid lethality in cotton**

Hybrid lethality is a postzygotic reproductive barrier

that results in embryo and/or seedling death in crosses involving incompatible plants, resulting in reduction and/or elimination of gene flow between populations or species (Bomblies and Weigel 2007; Maheshwari and Barbash 2011). While interspecific incompatibilities are common between species from different genome groups in *Gossypium*, interfertility is quite common between species from the same genome group (Hutchinson 1932; Silow 1941; Stephens 1946; Gerstel 1954; Menzel and Brown 1955; Phillips and Merritt 1972; Phillips and Reid 1975; Lee 1981c). For example, crosses are possible for most combinations of the 14 recognized D-genome diploids, insofar as these have been tested. An exception to this generality involves hybrid lethality in crosses that involve species from subsection *Integerrifolia* (i.e., *G. davidsonii* and *G. klotzschianum*; D3d and D3k, respectively). These sister species are incompatible with nearly every other species in the genus, with the exception of *G. longicalyx* (F-genome) and *G. anomalam* (Phillips 1963). Notably, in some cases this lethality can be circumvented by increasing germination and growth temperatures (Phillips 1977), making lethality potentially useful in cultivar development (Lee 1981a).

While loci conferring hybrid lethality have been genetically identified through crosses and/or hexaploid bridging (Lee 1981a, 1981c; Endrizzi *et al.* 1985; Stelly 1990; Samora *et al.* 1994; Song *et al.* 2009), the underlying gene(s) controlling the D3 incompatibility are not yet known. In the late 1970s to early 1980s, Joshua A Lee generated a synthetic 2(A2D3) allotetraploid (Supplemental Figure 2) as described above, using the trick that *G. anomalum* was apparently “null” for the incompatibility factor and thus could be introgressed into A2 for purposes of creating the novel allopolyploid. Using a scheme of repeated backcrossing into *G. arboreum* and testing for fertility with *G. davidsonii*, crosses were continued for an unknown number of generations, but until hybrid progeny were uniformly healthy. Thus, the interspecific F1 hybrids were really tri-species constructs, in part, containing an introgressed locus (or loci) from *G. anomalum* that permits crosses with D3 to survive; ostensibly, this locus codes for a lethality factor in wildtype D3. Progeny from the last successful *G. arboreum* (BC) x *G. davidsonii* was subsequently doubled to create the synthetic 2(A2D3). This synthetic allotetraploid is thus primarily composed of *G. arboreum* and *G. davidsonii*, containing only a residual contribution from *G. anomalum*.

At present, the nature of the gene or genes controlling this hybrid lethality are unknown. Previous cytogenetic work on D3-lethality suggests that a single locus in *G. davidsonii* (i.e., Le^{dav}) is responsible for lethality (Lee 1981b), and that this may interact with 1-2 loci in other cotton species (Lee 1981b; Stelly 1990). We downloaded resequencing reads from 2(A2D3) and a second synthetic allotetraploid (i.e., 2(A2D1)), which is a doubled *G. arboreum* x *G. thurberi* (Beasley 1940), and thus similar to 2(A2D3) but lacking the *G. anomalum* introgression. Competitive mapping of both synthetic allotetraploids to a reference containing the combined genomes of *G. arboreum*, *G. anomalum*, and *G. raimondii* (i.e., hereafter ABD-reference) reveals that approximately 1-2% of reads in each synthetic map strictly to *G. anomalum* chromosomes (Table 4), with a slightly higher percentage of reads from 2(A2D3) characterized as B-like (1.97 versus 1.66%). The number of reads considered A- or D-like is over an order of magnitude higher for both synthetics. Reads that could not be distinguished as A-, B-, or D-like (due to shared ancestry) were discarded from all samples, retaining approximately 70-75% of the reads. Because symplesiomorphy, autapomorphy, and technical error all have the potential to confound species identification of reads, we filtered locations in the ABD-reference *G. anomalum* chromosomes where we unexpectedly observed mapping of *G. arboreum*, *G. davidsonii*, and/or 2(A2D1)-derived reads, all of which should not have a *G. anomalum* origin. The remaining regions were considered markers for candidate locations where *G. anomalum* introgression remains in the 2(A2D3) synthetic allotetraploid.

After discarding short (<5 kb) regions as putative artifacts, we identified 28 regions on 9 chromosomes with putative introgression (Supplementary Table 5), for a total length of 195.7 kb. Most chromosomes exhibit small, discontiguous regions of putative introgression (<25 kb in length); however, a 287.5 kb window on chromosome B06 contains 13 of the 28 regions that

collective comprise 69% (111.5 kb) of the total introgressed *G. anomalum* sequence. Genome annotation in this putative introgressed hotspot reveals only two gene models (i.e., B06G223600 and B06G223900) that overlap with the B-like regions, suggesting that one or both of these genes may be important for conferring fertility with *Integrifolia* (D3) species. Although these gene models are near-sequential in the genome, they are separated by over 172 kb of intervening sequence, as well as two additional genes contained within the 287.5 kb window that do not exhibit evidence of introgression. The first gene, B06G223600, is a putative F-box/kelch-repeat protein similar to At4g19870, whereas the second (B06G223900) is similar to PAP12, a phosphatase from *Arabidopsis thaliana*. Notably, in 2(A2D3), B06G223600 has 15 bp of extra sequence relative to the A-genome ortholog, representing an additional 5 amino acids in the protein. The second gene, B06G223900, however has no obvious sequence or structural differences, other than increased heterozygosity representing the presence of both A- and B-derived alleles. Further research, including expression-based analyses, will be required to fully understand the contribution of these and/or other genes to D3-lethality in cotton.

Table 4. Reads (in million; M) uniquely mapped to *G. arboreum* (A2), *G. anomalum* (B1), and *G. raimondii* (D5).

Species	total	mapped	B1	B1 %	A2	A2 %	D5	D5 %
<i>G. davidsonii</i>	242.34	240.32	7.27	3.0	10.12	4.2	148.05	61.6
<i>G. davidsonii</i>	337.44	334.70	8.62	2.6	9.09	2.7	196.92	58.8
2(A2D1)	310.72	295.84	4.90	1.7	159.14	53.8	59.25	20.0
2(A2D3)	322.04	316.19	6.23	2.0	132.88	42.0	80.05	25.3
<i>G. anomalum</i>	305.98	297.64	250.27	84.1	5.23	1.8	0.72	0.2
<i>G. anomalum</i>	269.21	263.53	221.04	83.9	4.62	1.8	0.64	0.2
<i>G. anomalum</i>	132.07	128.74	107.68	83.7	2.35	1.8	0.32	0.3
<i>G. anomalum</i>	219.44	218.38	183.82	84.2	7.06	3.2	0.97	0.4
<i>G. arboreum</i>	478.36	476.17	5.46	1.2	346.42	72.8	1.72	0.4
<i>G. arboreum</i>	424.56	422.36	4.77	1.1	308.67	73.1	1.60	0.4
<i>G. arboreum</i>	415.34	414.20	4.49	1.1	302.71	73.1	1.29	0.3

Conclusion

The cotton genus has been the beneficiary of multiple high-quality genome sequences. While many have focused on the domesticated species, recent efforts have led to the generation of reference genomes for some of the wild representatives among the approximately 50 species in the genus (Cai *et al.* 2019; Grover *et al.* 2020, 2021; Chen *et al.* 2020; Wang *et al.* 2021). Here we report the first *de novo* sequence for a representative of the B-genome (Wang *et al.* 2018), whose members provide additional germplasm resources for both understanding and incorporating features like stress resistance and/or hybrid lethality into breeding programs. This resource will provide the foundation for future research into cotton diseases, such as blackarm

(Knight 1954; Fryxell *et al.* 1984), as well as provide a potential source for fiber quality improvements (Mehetre 2010) and/or fertility control among different cotton lines.

Acknowledgements

We thank and remember the late Joshua A Lee for his contributions to science, including improving our understanding of hybrid lethality and for creating the 2(A2D3) synthetic. We thank the National Science Foundation Plant Genome Research Program (Grant #1339412), the United States Dept. of Agriculture - Agriculture Research Service (Grant #58-6066-6-046), and Cotton Inc. for their financial support. We thank the Iowa State University ResearchIT unit, the BYU Fulton SuperComputer lab, the USDA-ARS, and the Mississippi State University High Performance Computing Collaboratory for computational resources and support.

References

Bailly-Bechet, M., A. Haudry, and E. Lerat, 2014 “One code to find them all”: a perl tool to conveniently parse RepeatMasker output files. *Mob. DNA* 5: 13.

Bao, W., K. K. Kojima, and O. Kohany, 2015 Repbase Update, a database of repetitive elements in eukaryotic genomes. *Mob. DNA* 6: 11.

Beasley, J. O., 1940 The Origin of American Tetraploid *Gossypium* Species. *Am. Nat.* 74: 285–286.

Bohra, A., U. C. Jha, P. Adhimoolam, D. Bisht, and N. P. Singh, 2016 Cytoplasmic male sterility (CMS) in hybrid breeding in field crops. *Plant Cell Rep.* 35: 967–993.

Bomblies, K., and D. Weigel, 2007 Hybrid necrosis: autoimmunity as a potential gene-flow barrier in plant species. *Nat. Rev. Genet.* 8: 382–393.

Borodovsky, M., and A. Lomsadze, 2011 Eukaryotic gene prediction using GeneMark.hmm-E and GeneMark-ES. *Curr. Protoc. Bioinformatics* Chapter 4: Unit 4.6.1–10.

Cai, Y., X. Cai, Q. Wang, P. Wang, Y. Zhang *et al.*, 2019 Genome sequencing of the Australian wild diploid species *Gossypium austral* highlights disease resistance and delayed gland morphogenesis. *Plant Biotechnol. J.*

Camacho, C., G. Coulouris, V. Avagyan, N. Ma, J. Papadopoulos *et al.*, 2009 BLAST+: architecture and applications. *BMC Bioinformatics* 10: 421.

Campbell, M. S., C. Holt, B. Moore, and M. Yandell, 2014 Genome Annotation and Curation Using MAKER and MAKER-P. *Curr. Protoc. Bioinformatics* 48: 4.11.1–39.

Chen, Z. J., A. Sreedasyam, A. Ando, Q. Song, L. M. De Santiago *et al.*, 2020 Genomic diversifications of five *Gossypium* allopolyploid species and their impact on cotton improvement. *Nat. Genet.* 52: 525–533.

Cronn, R. C., R. L. Small, T. Haselkorn, and J. F. Wendel, 2002 Rapid diversification of the cotton genus (*Gossypium*: Malvaceae) revealed by analysis of sixteen nuclear and chloroplast genes. *Am. J. Bot.* 89: 707–725.

Du, X., G. Huang, S. He, Z. Yang, G. Sun *et al.*, 2018 Resequencing of 243 diploid cotton accessions based on an updated A genome identifies the genetic basis of key agronomic

traits. *Nat. Genet.* 50: 796–802.

Eilbeck, K., B. Moore, C. Holt, and M. Yandell, 2009 Quantitative measures for the management and comparison of annotated genomes. *BMC Bioinformatics* 10: 67.

Emms, D. M., and S. Kelly, 2019 OrthoFinder: phylogenetic orthology inference for comparative genomics. *bioRxiv* 466201.

Emms, D. M., and S. Kelly, 2015 OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. *Genome Biol.* 16: 157.

Endrizzi, J. E., E. L. Turcotte, and R. J. Kohel, 1985 Genetics, cytology, and evolution of *Gossypium*, pp. 271–375 in *Advances in Genetics*, edited by E. W. Caspari and J. G. Scandalios. Academic Press.

Fryxell, P. A., 1992 A revised taxonomic interpretation of *Gossypium* L (Malvaceae). *Rheeda* 2: 108–165.

Fryxell, P. A., R. J. Kohel, and C. F. Lewis, 1984 Taxonomy and germplasm resources, pp. 27–57 in *Cotton*, American Society of Agronomy, Crop Science Society of America, Soil Science Society of America.

Gerstel, D. U., 1954 A New Lethal Combination in Interspecific Cotton Hybrids. *Genetics* 39: 628–639.

Ghosh, S., and C.-K. K. Chan, 2016 Analysis of RNA-Seq Data Using TopHat and Cufflinks. *Methods Mol. Biol.* 1374: 339–361.

Grabherr, M. G., B. J. Haas, M. Yassour, J. Z. Levin, D. A. Thompson *et al.*, 2011 Full-length transcriptome assembly from RNA-Seq data without a reference genome. *Nat. Biotechnol.* 29: 644–652.

Grover, C. E., M. Pan, D. Yuan, M. A. Arick, G. Hu *et al.*, 2020 The *Gossypium longicalyx* Genome as a Resource for Cotton Breeding and Evolution. *G3* .

Grover, C. E., D. Yuan, M. A. Arick, E. R. Miller, G. Hu *et al.*, 2021 The *Gossypium stocksii* genome as a novel resource for cotton improvement. *G3* .

Hendrix, B., and J. M. Stewart, 2005 Estimation of the nuclear DNA content of *Gossypium* species. *Ann. Bot.* 95: 789–797.

Hoff, K. J., A. Lomsadze, M. Borodovsky, and M. Stanke, 2019 Whole-Genome Annotation with BRAKER. *Methods Mol. Biol.* 1962: 65–95.

Holt, C., and M. Yandell, 2011 MAKER2: an annotation pipeline and genome-database management tool for second-generation genome projects. *BMC Bioinformatics* 12: 491.

Huang, G., Z. Wu, R. G. Percy, M. Bai, Y. Li *et al.*, 2020 Genome sequence of *Gossypium herbaceum* and genome updates of *Gossypium arboreum* and *Gossypium hirsutum* provide insights into cotton A-genome evolution. *Nat. Genet.* 52: 516–524.

Hutchinson, J. B., 1932 The genetics of cotton. Part VII.““Crumpled””: A new dominant in Asiatic cottons produced by complementary factors. *J. Genet.* 25: 281–291.

Hutchinson, J. B., R. A. Silow, and S. G. Stephens, 1947 *The Evolution of Gossypium and the Differentiation of the Cultivated Cottons*. The University of Chicago Press.

Jones, P., D. Binns, H.-Y. Chang, M. Fraser, W. Li *et al.*, 2014 InterProScan 5: genome-scale

protein function classification. *Bioinformatics* 30: 1236–1240.

Kidwell, K. K., and T. C. Osborn, 1992 Simple plant DNA isolation procedures, pp. 1–13 in *Plant Genomes: Methods for Genetic and Physical Mapping*, edited by J. S. Beckmann and T. C. Osborn. Springer Netherlands, Dordrecht.

Kim, D., B. Langmead, and S. L. Salzberg, 2015 HISAT: a fast spliced aligner with low memory requirements. *Nat. Methods* 12: 357–360.

Knight, R. L., 1954 The genetics of blackarm resistance. *J. Genet.* 52: 466.

Koren, S., B. P. Walenz, K. Berlin, J. R. Miller, N. H. Bergman *et al.*, 2017 Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. *Genome Res.* 27: 722–736.

Lee, J. A., 1981a A genetical scheme for isolating cotton cultivars. *Crop Sci.* 21: 339–341.

Lee, J. A., 1981b A new linkage relationship in cotton. *Crop Sci.* 21: 346–347.

Lee, J. A., 1981c Genetics of D3 complementary lethality in *Gossypium hirsutum* and *G. barbadense*. *J. Hered.* 72: 299–300.

Li, H., and R. Durbin, 2009 Fast and accurate short read alignment with Burrows-Wheeler transform. *Bioinformatics* 25: 1754–1760.

Li, H., B. Handsaker, A. Wysoker, T. Fennell, J. Ruan *et al.*, 2009 The Sequence Alignment/Map format and SAMtools. *Bioinformatics* 25: 2078–2079.

Maheshwari, S., and D. A. Barbash, 2011 The genetics of hybrid incompatibilities. *Annu. Rev. Genet.* 45: 331–355.

Mammadov, J., R. Buyyarapu, S. K. Guttikonda, K. Parliament, I. Y. Abdurakhmonov *et al.*, 2018 Wild Relatives of Maize, Rice, Cotton, and Soybean: Treasure Troves for Tolerance to Biotic and Abiotic Stresses. *Front. Plant Sci.* 9: 886.

Mapleson, D., L. Venturini, G. Kaithakottil, and D. Swarbreck, 2018 Efficient and accurate detection of splice junctions from RNA-seq with Portcullis. *Gigascience* 7:.

Marshall, D. R., N. J. Thompson, G. H. Nicholls, and C. M. Patrick, 1974 Effects of temperature and day length on cytoplasmic male sterility in cotton (*Gossypium*). *Aust. J. Agric. Res.* 25: 443–447.

Mehetre, S. S., 2010 Wild *Gossypium anomalum*: a unique source of fibre fineness and strength. *Curr. Sci.* 99: 58–71.

Menzel, M. Y., and M. S. Brown, 1955 Isolating Mechanisms in Hybrids of *Gossypium gossypoides*. *Am. J. Bot.* 42: 49–57.

Meyer, V. G., and J. R. Meyer, 1965 Cytoplasmically Controlled Male Sterility in Cotton. *Crop Sci.* 5: cropsci1965.0011183X000500050021x.

Novák, P., P. Neumann, and J. Macas, 2010 Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. *BMC Bioinformatics* 11: 378.

Paterson, A. H., J. F. Wendel, H. Gundlach, H. Guo, J. Jenkins *et al.*, 2012 Repeated polyploidization of *Gossypium* genomes and the evolution of spinnable cotton fibres. *Nature* 492: 423–427.

Pertea, M., G. M. Pertea, C. M. Antonescu, T.-C. Chang, J. T. Mendell *et al.*, 2015 StringTie

enables improved reconstruction of a transcriptome from RNA-seq reads. *Nat. Biotechnol.* 33: 290–295.

Phillips, L. L., 1977 Interspecific incompatibility in *Gossypium*. IV. Temperature-conditional lethality in hybrids of *G. klotzschianum*. *Am. J. Bot.* 64: 914–915.

Phillips, L. L., 1963 The Cytogenetics of *Gossypium* and the Origin of New World Cottons. *Evolution* 17: 460–469.

Phillips, L. L., and J. F. Merritt, 1972 Interspecific incompatibility in *Gossypium*. I. Stem histogenesis of *G. hirsutum* x *G. gossypoides*. *American Journal of Botany* 59: 203–208.

Phillips, L. L., and R. K. Reid, 1975 Interspecific incompatibility in *Gossypium*. II. Light and electron microscope studies of cell necrosis and tumorigenesis in hybrids of *G. klotzschianum*. *Am. J. Bot.* 62: 790–796.

Quinlan, A. R., 2014 BEDTools: the Swiss-army tool for genome feature analysis. *Curr. Protoc. Bioinformatics* 47: 11–12.

R Core Team, 2020 *R: A language and environment for statistical computing*. R Foundation for Statistical Computing., Vienna, Austria.

Samora, P. J., D. M. Stelly, and R. J. Kohel, 1994 Localization and Mapping of the Le1, and Gl2 Loci of Cotton (*Gossypium hirsutum* L.). *J. Hered.* 85: 152–157.

Silow, R. A., 1941 The comparative genetics of *Gossypium anomalum* and the cultivated Asiatic cottons. *J. Genet.* 42: 259–358.

Smit, A. F. A., R. Hubley, and P. Green, 2015 RepeatMasker Open-4.0. 2013–2015.

Song, L., W. Guo, and T. Zhang, 2009 Interaction of novel Dobzhansky–Muller type genes for the induction of hybrid lethality between *Gossypium hirsutum* and *G. barbadense* cv. Coastland R4-4. *Theor. Appl. Genet.* 119: 33–41.

Stanke, M., O. Keller, I. Gunduz, A. Hayes, S. Waack *et al.*, 2006 AUGUSTUS: ab initio prediction of alternative transcripts. *Nucleic Acids Res.* 34: W435–9.

Stelly, D. M., 1990 Localization of the Le2 Locus of Cotton (*Gossypium hirsutum* L.). *J. Hered.* 81: 193–197.

Stelly, D. M., J. A. Lee, and W. L. Rooney, 1988 Proposed schemes for mass-extraction of doubled haploids of cotton. *Crop Sci.* 28: 885–890.

Stephens, S. G., 1946 The genetics of corky; the New World alleles and their possible role as an interspecific isolating mechanism. *J. Genet.* 47: 150–161.

Suzuki, H., J. Yu, S. A. Ness, M. A. O’Connell, and J. Zhang, 2013 RNA editing events in mitochondrial genes by ultra-deep sequencing methods: a comparison of cytoplasmic male sterile, fertile and restored genotypes in cotton. *Mol. Genet. Genomics* 288: 445–457.

Udall, J. A., E. Long, C. Hanson, D. Yuan, T. Ramaraj *et al.*, 2019 De Novo Genome Sequence Assemblies of *Gossypium raimondii* and *Gossypium turneri*. *G3* 9: 3079–3085.

UniProt Consortium, 2008 The universal protein resource (UniProt). *Nucleic Acids Res.* 36: D190–5.

Venturini, L., S. Caim, G. G. Kaithakottil, D. L. Mapleson, and D. Swarbreck, 2018 Leveraging multiple transcriptome assembly methods for improved gene structure annotation.

Gigascience 7.:

Vollesen, K., 1987 The Native Species of *Gossypium* (Malvaceae) in Africa, Arabia and Pakistan. *Kew Bull.* 42: 337–349.

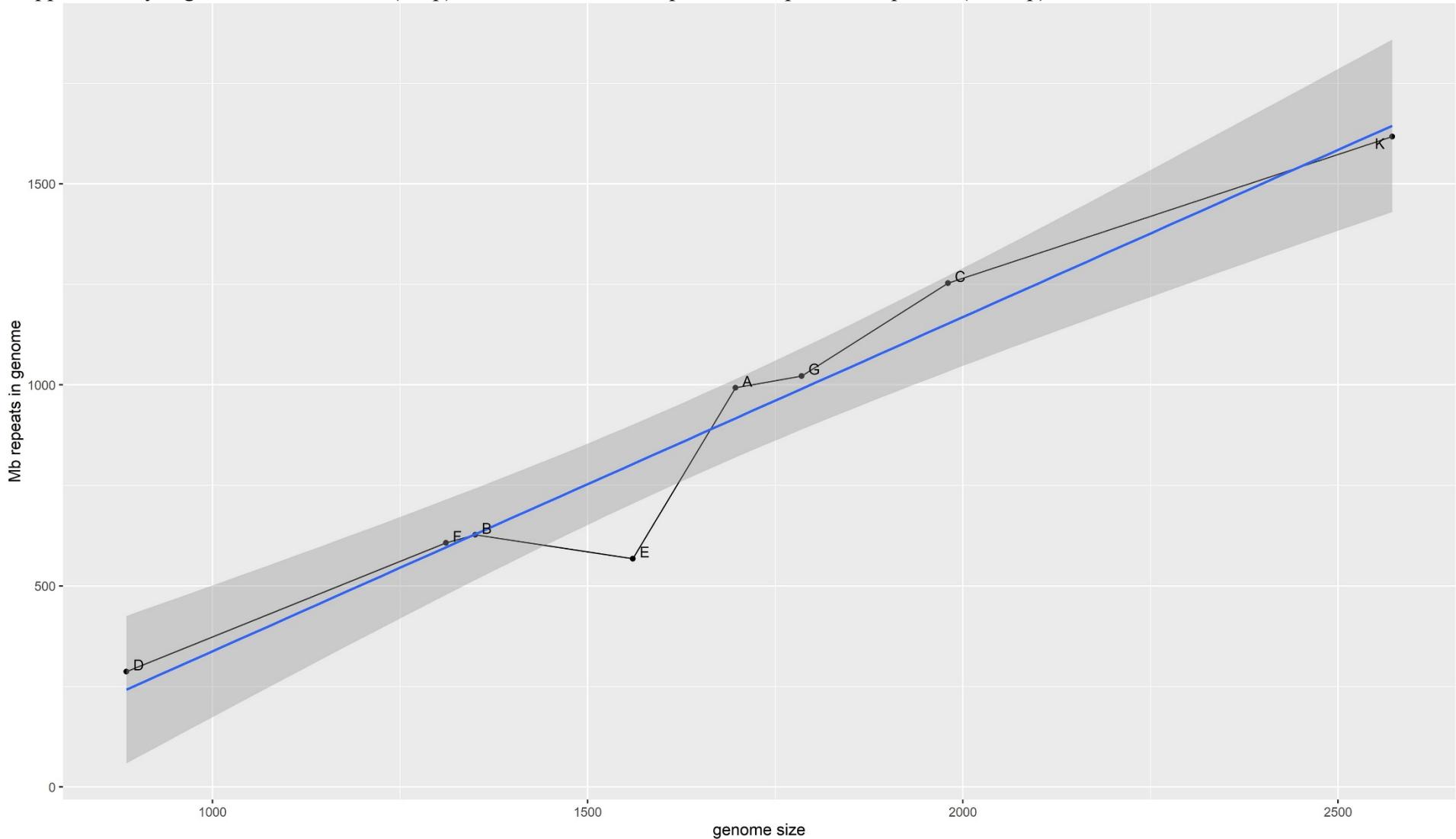
Wang, M., J. Li, P. Wang, F. Liu, Z. Liu *et al.*, 2021 Comparative genome analyses highlight transposon-mediated genome expansion and the evolutionary architecture of 3D genomic folding in cotton. *Mol. Biol. Evol.*

Wang, K., J. F. Wendel, and J. Hua, 2018 Designations for individual genomes and chromosomes in *Gossypium*. *Journal of Cotton Research* 1: 3.

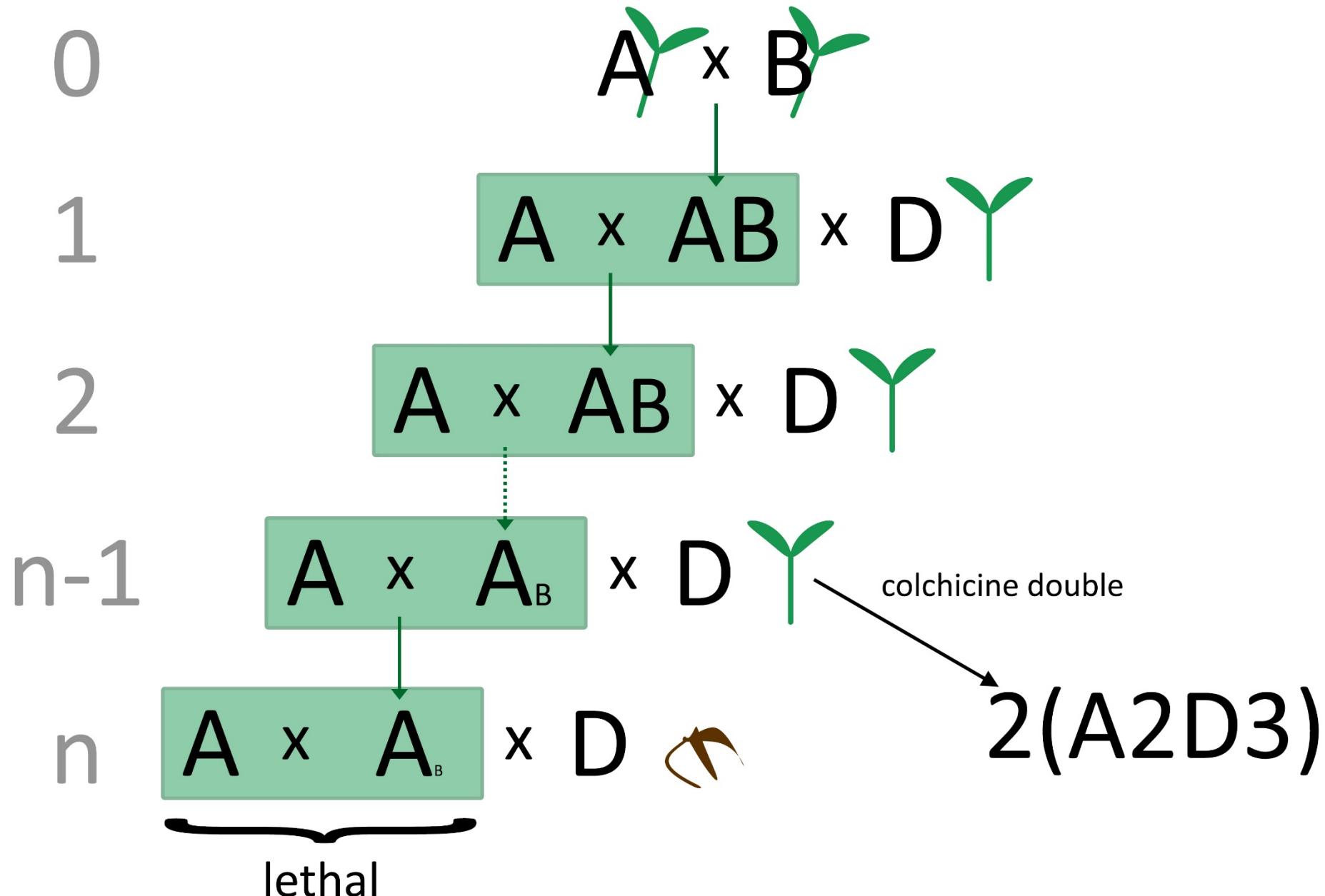
Waterhouse, R. M., M. Seppey, F. A. Simão, M. Manni, P. Ioannidis *et al.*, 2017 BUSCO applications from quality assessments to gene prediction and phylogenomics. *Mol. Biol. Evol.*

Weaver, D. B., and J. B. Weaver Jr, 1977 Inheritance of pollen fertility restoration in cytoplasmic male-sterile upland cotton. *Crop Sci.* 17: 497–499.

Wendel, J. F., C. L. Brubaker, and T. Seelanan, 2010 The Origin and Evolution of *Gossypium*, pp. 1–18 in *Physiology of Cotton*, edited by J. M. Stewart, D. M. Oosterhuis, J. J. Heitholt, and J. R. Mauney. Springer Netherlands, Dordrecht.


Wickham, H., R. Francois, L. Henry, K. Müller, and Others, 2015 dplyr: A grammar of data manipulation. R package version 0.4.3.:

Yandell, M., and D. Ence, 2012 A beginner’s guide to eukaryotic genome annotation. *Nat. Rev. Genet.* 13: 329–342.


Yuan, D., Z. Tang, M. Wang, W. Gao, L. Tu *et al.*, 2015 The genome sequence of Sea-Island cotton (*Gossypium barbadense*) provides insights into the allopolyploidization and development of superior spinnable fibres. *Sci. Rep.* 5: 17662.

Yu, J., S. Jung, C.-H. Cheng, S. P. Ficklin, T. Lee *et al.*, 2014 CottonGen: a genomics, genetics and breeding database for cotton research. *Nucleic Acids Res.* 42: D1229–36.

Supplementary Figure 1: Genome size (Mbp) versus the amount of predicted repetitive sequence (in Mbp).

Supplementary Figure 2: Diagram of the crossing scheme used to create the synthetic 2(A2D3). Crosses with *G. davidsonii* (D) test the viability of the introgressed *G. arboreum* line with *G. davidsonii*. Backcrossing with *G. arboreum* was continued until fertility was lost. The last fertile lineage was crossed with *G. davidsonii* and subsequently doubled to make 2(A2D3).

Supplementary Table 1. Genomic sequences from SRA used in *G. anomalam* analyses.

Species	Genome code	SRA number	Method
2(A2D3)	2(A2D3)	<u>SRR6334602</u>	genome mapping
2(A2D3)	2(A2D3)	<u>SRR6334601</u>	genome mapping
<i>Gossypium anomalam</i>	B01	<u>SRR3560153</u>	genome mapping
<i>Gossypium anomalam</i>	B01	<u>SRR3560155</u>	genome mapping
<i>Gossypium anomalam</i>	B01	<u>SRR3560156</u>	genome mapping
<i>Gossypium anomalam</i>	B01	<u>SRR12745560</u>	genome mapping
<i>Gossypium arboreum</i>	A02	<u>SRR8979965</u>	genome mapping
<i>Gossypium arboreum</i>	A02	<u>SRR8979944</u>	genome mapping
<i>Gossypium arboreum</i>	A02	<u>SRR8979925</u>	genome mapping
<i>Gossypium davidsonii</i>	D03	<u>SRR6334584</u>	genome mapping
<i>Gossypium davidsonii</i>	D03	<u>SRR8136261</u>	genome mapping

Species	Genome code	SRA number	Method	Genome size
<i>G. herbaceum</i>	A01	SRR8979969	clustering	1697
<i>G. arboreum</i>	A02	SRR8979922	clustering	1710
<i>G. anomalam</i>	B01	SRR3560153	clustering	1359
<i>G. sturtianum</i>	C01	SRR8979990	clustering	2015
<i>G. robinsonii</i>	C02	SRR8979901	clustering	1951
<i>G. raimondii</i>	D05	SRR847980	clustering	880
<i>G. gossypoides</i>	D06	SRR3560149	clustering	841
<i>G. trilobum</i>	D08	SRR8136271	clustering	851
<i>G. laxum</i>	D09	SRR8136274	clustering	934
<i>G. turneri</i>	D10	SRR8136255	clustering	910
<i>G. somalense</i>	E02	SRR3560162	clustering	1496
<i>G. longicalyx</i>	F01	SRR617704	clustering	1311
<i>G. bickii</i>	G01	SRR3560189	clustering	1756
<i>G. australae</i>	G02	SRR8979992	clustering	1834
<i>G. nelsonii</i>	G03	SRR8979903	clustering	1756
<i>G. exiguum</i>	K01	SRR3560141	clustering	2460

Supplementary Table 2. RNA-seq downloaded from the SRA and used to annotate the *G. anomalam* genome

Organism	Tissue	Run	Gb of sequence
<i>Gossypium arboreum</i>	Developing seed	SRR617067	3.0
<i>Gossypium arboreum</i>	Developing seed	SRR617068	3.4
<i>Gossypium arboreum</i>	Developing seed	SRR617073	3.0
<i>Gossypium arboreum</i>	Developing seed	SRR617075	2.8
<i>Gossypium arboreum</i>	Seedling	SRR959508	2.4
<i>Gossypium davidsonii</i>	Roots and Leaves	SRR2132267	19.4
<i>Gossypium herbaceum</i>	Developing fiber	SRR10675234	2.7
<i>Gossypium herbaceum</i>	Developing fiber	SRR10675235	3.2
<i>Gossypium herbaceum</i>	Developing fiber	SRR10675236	3.0
<i>Gossypium herbaceum</i>	Developing fiber	SRR10675237	3.8
<i>Gossypium herbaceum</i>	Seed	SRR959585	2.7
<i>Gossypium longicalyx</i>	Leaf	SRR1174179	3.4
<i>Gossypium longicalyx</i>	Leaf	SRR6327759	6.9
<i>Gossypium longicalyx</i>	Stem	SRR6327757	5.9
<i>Gossypium longicalyx</i>	Whole flower	SRR6327758	9.5
<i>Gossypium raimondii</i>	Developing seed	SRR617009	1.7
<i>Gossypium raimondii</i>	Developing seed	SRR617011	2.7
<i>Gossypium raimondii</i>	Developing seed	SRR617013	2.3
<i>Gossypium raimondii</i>	Floral bud	SRR8878565	4.5
<i>Gossypium raimondii</i>	Immature bud	SRR8878745	5.1
<i>Gossypium raimondii</i>	Leaf	SRR8878526	4.6
<i>Gossypium raimondii</i>	Leaf	SRR8878661	5.8
<i>Gossypium raimondii</i>	Meristem	SRR8878534	5.5
<i>Gossypium raimondii</i>	Petals	SRR8878800	3.3
<i>Gossypium raimondii</i>	Root	SRR8267554	7.2
<i>Gossypium raimondii</i>	Stem	SRR8267566	7.3
<i>Gossypium thurberi</i>	Leaf	SRR8267623	7.5
<i>Gossypium thurberi</i>	Root	SRR8267616	8.4
<i>Gossypium thurberi</i>	Stem	SRR8267619	7.3
<i>Gossypium trilobum</i>	Leaf	SRR8267606	7.3
<i>Gossypium trilobum</i>	Root	SRR8267582	8.2
<i>Gossypium trilobum</i>	Stem	SRR8267601	8.4

Supplementary Table 3. *G. anomalam*-specific orthogroups. Orthogroups are from Grover et al (2021).

OG0028671	Goano.001G191300	Goano.003G147100	Goano.003G220400	Goano.010G245100
OG0030787	Goano.003G136200	Goano.009G026000	Goano.011G329200	
OG0034106	Goano.010G047200	Goano.010G047400		

Supplementary Table 4. Comparison between RepeatMasker and RepeatExplorer outputs for the *G. anomalam* genome

Element type	Repeat Masker			Repeat Explorer	
	Fragments	Copies	SoloLTR	Total Mbp	Total Mbp
DNA	13,383	8,152	-	12.51	4.734
DNA/CMC-EnSpm	3	3	-	0	-
DNA/EnSpmCACTA	1,660	983	-	2.75	-
DNA/Harbinger	4	2	-	0	-
DNA/hAT	1,462	936	-	0.69	0.189
DNA/hAT-Tip100	20	12	-	0.02	-
DNA/L1	1,009	503	-	1.16	-
DNA/MarinerTc1	87	49	-	0.06	-
DNA/MuDR	9,138	5,664	-	7.82	4.545
LTR	693,041	383,488	211,824	557.51	615.474
LTR	35	34	-	0	21.87
LTR/Copia	48,948	29,393	10,230	47.72	29.07
LTR/Gypsy	644,058	354,061	201,594	509.79	564.534
Unknown	-	-	-	-	6.894
Total	706,424	391,640	-	570.0 (42%)	627.1 (46%)

Supplementary Table 5. Regions of putative *G. anomalam* introgression in 2(A2D3) and gene models within those regions.

Chromosome	Start	Stop	Length	Chromosome total (bp)	Gene	Gene Start	Gene Stop	Function
B_02	1,751,517	1,759,641	8,124	19,076	B1.B_02G017200	1,759,353	1,759,641	NGA4: B3 domain-containing transcription factor NGA4
B_02	20,496,842	20,502,002	5,160					
B_02	70,412,653	70,418,445	5,792					
B_03	106,013,266	106,019,946	6,680	6,680	B1.B_03G260300	106,013,267	106,019,946	Os03g0733400: Zinc finger BED domain-containing protein RICESLEEPER 2
B_04	50,725,528	50,730,720	5,192	5,192				
B_05	2,823,728	2,829,382	5,654					
B_05	10,464,363	10,469,657	5,294		B1.B_05G053800	10,464,364	10,465,910	At3g47570: Probable LRR receptor-like serine/threonine-protein kinase At3g47570
B_06	92,554,341	92,562,783	8,442	111,544				
B_06	92,562,858	92,570,652	7,794		B1.B_06G223600	92,567,389	92,568,340	At4g19870: F-box/kelch-repeat protein At4g19870
B_06	92,641,196	92,646,951	5,755					
B_06	92,646,956	92,657,533	10,577					
B_06	92,670,418	92,675,475	5,057					
B_06	92,675,847	92,681,845	5,998					
B_06	92,681,890	92,694,410	12,520					
B_06	92,736,613	92,744,234	7,621		B1.B_06G223900	92,741,077	92,741,403	PAP12: Fe(3+)-Zn(2+) purple acid phosphatase 12;
B_06	92,748,186	92,760,871	12,685					
B_06	92,774,479	92,782,790	8,311					
B_06	92,785,370	92,790,493	5,123					
B_06	92,819,750	92,830,095	10,345					
B_06	92,830,555	92,841,871	11,316					
B_07	76,245,298	76,251,283	5,985	12,335				
B_08	15,137,345	15,143,614	6,269					
B_08	94,864,034	94,870,100	6,066		B1.B_08G233100	94,864,035	94,870,100	HMA5: Probable copper-transporting ATPase HMA5
B_11	51,368,114	51,373,226	5,112	24,037				
B_11	86,773,815	86,779,971	6,156					
B_11	95,280,456	95,287,671	7,215		B1.B_11G340700	95,280,537	95,281,955	Retrovirus-related Pol polyprotein from transposon TNT 1-94
B_11	99,060,757	99,066,311	5,554		B1.B_11G362400	99,060,758	99,066,311	At3g47200: UPF0481 protein At3g47200;
B_12	17,145,074	17,150,915	5,841	5,841				