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Abstract

This paper develops and analyzes a Markov chain model for the treatment of cancer.
Cancer therapy is modeled as the patient’s Markov Decision Problem, with the objective
of maximizing the patient’s discounted expected quality of life years. Patients choose
the number of treatment rounds they wish to administer based on the progression of the
disease as well as their own preferences. We obtain a powerful analytic decision tool by
which patients may select their preferred treatment strategy. In a second model patients
may make choices on the timing of treatment rounds as well. By delaying a round of
therapy the patient forgoes the gains of therapy for a time in order to delay its side effects.
We obtain an analytic tool that allows numerical approximations of the optimal times of
delay.

1 Introduction

Cancer treatment faces many unique challenges. Arguably the most important one is that the
available therapies against the metastatic disease produce very high failure rates. As such, since
outright cure is unlikely, and the therapies themselves are invasive, costly, and often come with
a significant reduction to the patient’s quality of life, metastatic cancer treatment comes with
difficult dilemmas that require tradeoffs between curing the patient in terms of maximizing the
probability of success against caring for the patient in terms of their well-being. Preserving
a high quality of life, maximizing the probability of recovery, or the patient’s life expectancy
cannot always be achieved through the same treatment strategy. Resolving these dilemmas in
practice is further constrained by the necessarily high legal standards of medicinal practice and
the treatments’ economic and budgetary considerations, as well as patient autonomy.
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In this paper we provide a theoretical foundation to formally capture these dilemmas. By
employing mathematical tools, particularly dynamic optimization, statistics and game theory,
we build a model of cancer treatment by which these dilemmas can be explicitly addressed.
We wish to make no pretense that our model captures all possible such dilemmas, or that its
predictions represent the uniquely correct way of resolving the ones that we do consider; instead
our intention is to introduce methods and concepts by which the discussion surrounding them
can be advanced.

Survival time remains the prevailing measure of success in cancer therapy. Due to the unam-
biguity and availability of data it is the least controversial and most accessible metric. Mathe-
matical models of cancer therapy often report on their proposed regimens’ effects on (simulated)
survival or progression time. Clinical trials of new drugs and methods of delivery are similarly
evaluated on this basis. Yet, there is reason to believe that oncologists and patients do not
make treatment decisions to maximize survival time. In particular, decisions to refuse therapy
are often influenced by concerns over quality of life (Shumay et al., [2001) and cure probability
(Frenkel, 2013) possibly at the expense of expected survival time. While the prevailing response
to such decisions had been a call for oncologists to “better communicate” with their patients,
whether the prescribed therapy indeed aligns with the patient’s objectives is not so clear. In
particular, patients who refuse therapy at times report no worse quality of life than those who
complete it (Gilbar, [1991)).

Even if a positive definition could be given that defines the goals and aims of cancer therapy
with respect to improving the patient’s health outcomes, patient autonomy means that treatment
decisions also take into account the patient’s own wishes. What is at hand, therefore, is a
strategic choice of treatment strategy that is made in regards to a combination of objective
concerns relating to disease prognosis and subjective ones relating to the patient’s personal
preferences. Moreover, as cancer therapy is a long process with choices having to be made and
re-made in response to the progression of the disease as well as the consequences of past choices,
models that seek to inform cancer therapy need to be dynamic and allow for multiple points of
decision making.

The tools and concepts of game theory and decision theory have proven extremely valuable
in cancer research. The objective has been to utilize game theory’s insights in understanding the
eco-evolutionary dynamics of cancer. The practical application of this research direction is thus,
first, to calibrate the parameters (doses, timing, duration) of existing therapy regimens (see e.g.
adaptive therapy, Gatenby et al., [2009) and, second, to find new points of attack against the
disease in search of new therapy regiments.

One development towards the former branch is the concept of viewing cancer therapy as a
game played between the disease and the treating physician (Orlando et al., 2012). A useful
framework is to model the game as a leader-follower (Stackelberg-)game with the treating physi-
cian as a strategic decision maker and cancer as a reactive and adaptive player, its strategies
being a consequence of it undergoing evolution by natural selection to the environment influ-
enced by the physician’s chosen treatment strategies (Stankova et al., 2019). The key insight of
this analogy is to identify the benefits that the physician can realize by assuming the leader role
in the game and use the information about cancer’s the possible reactions to their advantage.
Instead, we often observe physicians in the reactive role and following a prescribed or standard
treatment strategy, changing only after observing a new strategy from the disease.

We advance this thread of the literature by viewing the game as a Markovian process. Such
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processes have an established application in cancer (Kay, |1986; Andersen et al. [1991). In
Markovian models of cancer, all relevant information regarding the prognosis of the patient is
encoded in health states, usually including a healthy state, various states of disease progression,
and a death state. The patient transitions between these states according to a stochastic process.
The transition probabilities of such models may be calibrated from cohort data (Duffy et al.|
1995) for simulations of likely disease progression. The resultant toolkit has applications in both
medicine (Llorca et al., [2001)) and health economics (Le Lay et al., [2007)).

Crucially, in Markovian models, the transition probabilities are assumed to depend only on
the current state of the patient, not on previous disease history. This is both a simplifying and
a limiting assumption that presents a modeling challenge: too few health states may obscure
progression-relevant patient information while having too many health states is impractical for
applications and may fail to produce insight that can be generally applied to a large cohort of
patients. To resolve this, Cooper et al.| (2003} 2004)) introduced a small number of payoff-states
(responsive, stable, progressive, dead), but allowed for changing transition dynamics between
them based on the length of the treatment, measured in the number of treatment cycles.

To this existing framework we add the element of choice by the patient[| Markov decision
processes (MDPs) (Bellman [1957)) combine the tools of stochastic processes and decision theory.
In this model the Markovian transition probabilities depend upon both the current state and
the strategy of a payoff-maximizing decision maker. The patient receives payoffs, measured
in quality adjusted life years (QALYs), from spending time in states, with more healthy states
giving higher payoffs. The tension in these problems is introduced when the decision-maker faces
a choice between strategies that lead to immediate payoff gains and strategies that lead to better
future prospects but at the cost of foregoing immediate gains. These trade-offs are also highly
relevant in the choice of cancer therapy; the choice of taking therapy involves an investment by
the patient, both in financial and in QALY terms, in the hopes of a higher probability of cure
and greater life expectancy. Under the classic results of MDP literature (Blackwell, 1962, 1965),
if the decision-maker’s objectives can be represented by discounting future expected payoffs and
the set of states is finite, then an optimal policy will exist and is generically unique (Ortega-
Gutiérrez et al., [2016)).

In this paper we use MDPs to model the novel idea of the game between the physician and
the disease in a Markovian environment. By this approach the game is reduced to a problem
with a single strategic decision maker, the patient. We treat the evolutionary processes of cancer
as an exogenous and stochastic element, whose behavior, conditional on the selected treatment
strategy, can be estimated from cohort data. We introduce exponential discounting to model
a preference for earlier QALY's over later ones. As a treatment strategy will always exist that
maximizes discounted expected QALYs, we are able to derive optimal treatment strategies.

We first place the focus on the duration of treatment. The patient’s payoff is the difference
between their QALYs and the cost of the treatment. The main tension in our model is the
trade-off between continuing with the treatment and bearing the cost in hopes of a higher cure
probability and/or longer life expectancy, or abandoning treatment. A complicating factor is the
adaptive dynamics of cancer. As the patient progresses through rounds of treatment, cancer’s
responsiveness to the therapeutic agent changes. Following |Cooper et al. (2003) our model has
an infinite series of health states (other than the absorbing ‘cured” and ‘death’ states) with the

'In the remainder of the paper we refer to the patient as the sole decision-maker without explicitly mentioning
the treating oncologist, tumor board, or any other participants of the decision making process.
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1th clone of a health state representing the patient after ¢ rounds of medication. Each clone of
the same health state offers the same QALYSs as the original but may have different transition
probabilities to other states. After another round of therapy, unless the patient moves to either
of the two absorbing states, he or she moves up to the ¢ + 1th clone, thus the next round of
therapy will happen under different transition rates. This model allows us to derive conditions
on the number of rounds a payoff-maximizing patient takes.

From this model we are able to derive efficient methods to evaluate treatment strategies of
different duration. Under two monotonicity conditions on the parameters, the patient’s best
treatment strategies may be derived analytically: in this case a myopic treatment plan, i.e.
administer therapy if and only if one more round is better than no more rounds, identifies
the globally optimal treatment strategy. In particular, if the patient’s likelihood of recovery is
not increasing with each new dose of treatment, an assumption that is motivated both by the
onset of resistance to therapy as well as observed outcomes of cancer therapy, there will exist
a unique payoff-maximizing duration of therapy, beyond which patients lose expected QALYs
due to overtreatment. We simulate this effect and show that, while the ex-ante expected payoft
loss of overtreatment may be marginal due to time-discounting and the cohort’s attrition up to
the time when overtreatment is reached, the realized payoff loss for patients who do reach that
stage is substantial.

In a second model we internalize effects of treatment to the patient’s QALYs. As cytotoxic
therapy of cancer is often highly toxic for the patient, a major constraint in the timing of doses,
and, as discussed, one of the main incentives to refuse or abandon therapy, is the lost quality of
life under therapy. We thus make this element explicit in our model; the payoff of the patient
depends upon their current health state and the current level of toxicity. We assume that each
round of therapy adds to the patient’s toxicity level which depreciates over time. When taking
therapy the QALY-cost of therapy is not instantaneous, as in our base model, but is incurred
continuously. This changes the game compared to our base model in two ways. First, the
cost of therapy becomes conditional on its outcome; surviving patients have to bear the QALY
reduction longer, while patients who are not cured may have to resort to taking on additional
QALY reductions. Second, patients are afforded the option to reduce the QALY-cost of therapy
by postponing it, allowing their level of toxicity to depreciate before taking on additional QALY
reductions. However, by doing so they also postpone any benefits of therapy to their recovery,
introducing another source of tension to the model.

Under classical MDPs, in which the decision maker’s payoffs depend only on their current
state, in optimum, the decision maker’s choice in any given state does not change until he or
she transitions to the next state. This, however, is not a sensible conclusion for cancer therapy
as the few health states usually fail to capture all relevant patient information, thus the optimal
course of therapy may change before the patient transitions to a new health state. Our model of
toxicity accounts for this as well, as the patient’s choice of therapy is allowed to be dependent on
their health-state and their level of toxicity. For instance, upon entering a health state a patient
may decide to abstain from therapy until their toxicity level falls below a certain threshold. With
this extension we are able to jointly consider optimal timing and duration of cancer therapy.

While this model is no longer analytically tractable, we provide the methods for a numerical
approximation of evaluating these more general treatment strategies. Patients therefore may
select a treatment strategy that maximizes their approximate discounted expected QALYs when
affected by toxicity. We also provide an analytical result to calibrate the myopically optimal
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time of delay of one more round of therapy. If the cure rate decreases in the number of rounds
sharply, myopically optimizing the delay of the next round without taking into account any
possible future rounds of therapy gives very similar results as approximations of the globally
optimal solution.

The paper proceeds as follows. In Section [2| we introduce our base model focusing on the
optimal duration of therapy and present a numerical example on the effects of overtreatment.
Section |3 adds toxicity to the base model and presents results on the optimal duration and
timing of therapy with two numerical examples. Section || provides concluding discussions. All
proofs are provided in the appendix.

2 State-dependent payoffs

We assume that the patient has a solid tissue detectable tumor without specifying the exact kind
of cancer. The progression of the disease is modeled as a Markov-process in continuous time.
The states encode the patient’s quality of life and prognosis-relevant data, while the transition
rates describe their prognosis and depend upon the patient’s chosen treatment strategy. Our
state space is given by the set S = {0, {1® 2001 3} The states are interpreted as follows:

e 0: Healthy, cancer free state.
e 1(®: Undetectable cancer after i rounds of therapy.

e 2(0: Detectable cancer after i rounds of therapy. The patient chooses whether to take
another round of therapy.

e 3: Death of the patient.

Without therapy, the natural progression of the disease is the following: State 1) leads
eventually to state 209, state 209 leads to state 3, an absorbing state. The healthy absorbing
state 0 may only be reached by therapy. The patient or the treating physician cannot distinguish
the states with undetectable cancer, 0 and 1%, and hence therapy can only be chosen and received
while the patient is in a state 2.

By taking therapy, the patient changes the progression of the disease. If the patient chooses
to receive therapy in state 2) he or she may transition to any one of the four states 0, 101,
20+ or 3. Transitioning to 0 and 171 represent therapy success and partial therapy success,
respectively, transitioning to 3 and 201 represent therapy failure and partial therapy failure,
respectively. The increase of the index from 7 to ¢+ 1 represents that one round of therapy affects
the efficacy of the next one, and thus, although the progression rules remain the same after the
1th round of therapy as before, the exact transition probabilities may be different. This feature
of the game represents, among other factors, the build-up of resistance within the tumor: e.g.
reaching state 0 as the result of the ¢ 4+ 1th round may be less likely than by the ith round.

A treatment strategy is characterized by a function x: {2001 — {therapy, no therapy}. In
words, for every state in which the patient has the option to choose, he or she must specify
whether or not to take therapy. As a state 20+ can only be reached if the patient chooses to
receive therapy in state 2, we restrict attention to treatment strategies such that for every i > 0
with 2(2%) = no therapy we have z(201)) = no therapy. We therefore associate a treatment
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strategy with the maximum number of rounds of therapy the patient chooses to take: z; means
that the patient takes at most i rounds of therapy. In strategy xzy the patient goes without
therapy entirely, in strategy x., he or she always opts for therapy when given the choice until
reaching an absorbing state.

Time is continuous. We assume that the states encode all progression-relevant information
to the disease. Hence the process, conditional on the treatment strategy, is Markovian. The
transition rates by which the patient moves between the states are as follows:

1. 19 — 20 at rate 4;,
2. if 2(2%) = no therapy, then 200 — 3 at rate w;

3. if 2(2Y) = therapy, then

Q

. 20 5 0 at rate \;,
.20 5 104D at rate S,

200 — 2041 at rate v,

o

o

d. 20 — 3 at rate u;.

We introduce the notation a; = \; + 5; + v + p;- The model’s states and possible transitions
are summarized by Figure [1|7]

Spending time in each health state provides payoffs to the patient measured in QALYs.
For this section we assume that this is independent of the chosen treatment strategy. For
0 <wv <wu <1 the function u: S — [0, 1] given by

1 ifs=0
u if s € {10},
uls) = . zog
() v if s € {20},
0 ifs=3

is called the patient’s instantaneous payoff function.

Upon selecting the treatment strategy z;, the patient’s progression through the states is
a stochastic (Markovian) process. A realization of the patient’s progression is called a play,
described by a class of functions s: [0,00) x X — S. The value s(t,z;), denotes the patient’s
state at time ¢ € [0,00) under treatment strategy x;. Given strategy x;, realization s(-, z;) and
J <tlett;(s(-,x;)) denote the time that the patient receives the jth round of therapy. Whenever
it does not cause confusion suppress the argument and write only ¢; to denote the time of round

VE

2The connection with the more well-known discrete-time Markov Decision Processes is summarized as follows:
In expectation, a patient who does not take therapy at state 2(*) spends time 1/w; in 2(9) before progressing to
3. The transition probability from 2(9) to 3 is thus 1 without therapy. Similarly, a patient in 1() transitions to
2(1) with probability 1, spending at expected time of 1/6; in 19 A patient who takes therapy in 2(9) spends
an expected 1/«; time in this state before transitioning to one of 0, 10+ 26+1) 3 with probabilities i/,
Bi/ai, vi/a; and p; /oy, respectively. The time spent in each state is exponentially distributed with parameter
corresponding to the total transition rate out of the state: §; for state 1), w; for state 2(¥) without therapy and
a; for state 2(9) with therapy.
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Figure 1: Schematic of transitions of the first 3 rounds of therapy. Each 0 node and each 3 node on the
figure represent one absorbing state, the figure shows multiple copies for better visibility. If the patient
opts for therapy, he or she progresses to one of the states in the next round. Otherwise, by choosing the
no therapy option, he or she eventually progresses to state 3.

Taking therapy is costly. Each time the patient accepts therapy he or she instantly incurs a
cost ¢. This may represent the monetary cost to pay for one round, lost income, or temporary
discomfort caused by the therapy.

We assume that the patient has a preference for earlier rewards, modeled via exponential
discounting with discount factor p > 0.

Given a strategy z; and realization s(-, z;), the patient’s payoffs are given as

Ulstm) = [ e uls(t,m)de = 3o, 0
0 :
7j=1
Due to p > 0, U(s(+, z;)) is finite for every realization if 7 is finite and for almost every realization
if 7 is infinite.
For 7 < let

U7 (s(-, ) = / e PV (s(t, 2;))dt — Z ce Pt =)
; =i
denote the future payoffs of a patient who evaluates their prospect starting from state 204) (and

therefore, starts discounting at ¢;).
The patient chooses x; to maximize their expected payoffs given by

V(i) = Es(apU(s(, 7)) (2)
As before, for j < i we let

V(1) = Ea(.aU7 (5, 22)

denote the expected payoff of a patient who starts evaluating their prospects from state 2.

7


https://doi.org/10.1101/2021.06.16.448669
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.16.448669; this version posted June 18, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

With this we can present this section’s main result on the evaluation of a treatment strategy.

Proposition 2.1 (Recursive evaluation). For a fized treatment strategy z; with i > 0, the
expected future payoffs in round j < i is given as follows:

, A1 . Y , ‘ 4
V](xi) _ v + Jj - + ﬁ] ( (% + j+1 Vj—i-l(xi)) + LVJ—H(:EZ-) —c,
aj+p ajtpp ajt+p\dip1t+p diptp aj+p
(3)

Vi(z;) = ip, if i is finite. (4)

[

Proposition allows for the evaluation of the patient’s payoffs in any state for any finite
treatment through a linear recursive system. The right hand side of ’s five components are
the discounted expected payoff the patient collects in state 20) before transitioning to any other
state; discounted expected value of reaching state 0; discounted expected value of transitioning
to state 1011 followed by a transition into state 2U*D: discounted expected value of a direct
transition to state 2U*tY: and the instantaneous cost of the treatment. In , as there are no
further rounds of therapy, the patient will progress to state 3, thus the right hand side contains
only the discounted expected value the patient collects in state 29 before doing so. In the
appendix we calculate each component and formally prove this result.

If for two treatment strategies, x;, x;, we have V(x;) > V(x;) (V(x;) > V(z;)) we say that
the patient (strictly) prefers i to j and denote it by z; 77 x; (x; > ;). We say that z; is optimal
if x; 77 x; for every j.

Proposition allows for optimal treatment strategies to be derived efficiently even though,
due to the time-heterogeneity of the transition rates, a closed form of cannot be given.
However, — can be transformed to a very simple comparison between two “successive”
strategies x; and x;,1, giving a myopic stopping condition of therapy. This is shown in the next
proposition.

Proposition 2.2 (Myopic stopping condition). For a finite i we have x; 77, x;11 if and only if

O — Wi Bi 1 ( Bidit1 ) Y
v +cla; +p) > u +v +7% ] +—. )
Wi +p ( 2 dit1+p wit1 +p \it1 +p ! P )

The interpretation is as follows. The advantage of stopping treatment (left-hand-side of (3]))
comes from the extra value from spending time in 2 (v term, possibly negative if no therapy
results in spending less time in expectation), plus the saved cost of treatment normalized. The
advantage of getting another round of treatment (right-hand-side of ) comes from the value
of spending time in 10+Y) (4 term), the value of spending time in 20+ either indirectly through
16+ or by a direct transition (v terms), and the value of possibly reaching 0.

Proposition [2.2] can be used to determine if, at any point, stopping therapy immediately is
better than continuing once more with the intention to not take any further rounds afterwards.
A sequence of such successive comparisons allow for a “local” optimization of the treatment
strategy, but, in the general case, not for “global” optimization, for instance, stopping treatment
may be better than continuing for one more round, but worse than continuing for two more
rounds.
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Under certain plausible, or at least possible, monotonicity conditions, however, such local
comparisons may give rise to a global optimum, e.g. if continuing for one more round is always
better than stopping, then treatment should never be stopped. The last result of this section
provides sufficient monotonicity conditions under which the optimal treatment strategy can be
calculated by local comparisons.

Take the following homogeneity /monotonicity conditions:

(

( 0; =0, Wi = w,
o (M1): M(i) < M(i+1),
o (M2): M(i) > M(i+1),

for all 7 € N, and

M(i) = + — :
a+pdi+p atpp atp

The value M (i) is a measure of the advantage of taking therapy at state 2(9; it is a weighted
sum of the progression rates corresponding to at least partial therapy success (i.e. leading to
states 101 and 0) and the difference between the death rate without and with therapy.

The first condition is on the patient’s preferences: under (H1) the patient maximizes dis-
counted life expectancy, as time spent in any state other than 3 has the same value. Regarding
the transition probabilities: (H2) introduces time homogeneity of the transition probabilities not
involving therapy, the rate by which undetectable cancer returns and presents as detectable can-
cer, and the rate by which untreated patients progress; under monotonicity condition (M1) the
patient is improving under continuous therapy, the measure of the advantage of taking therapy
is increasing in the number of rounds, while under (M2) the reverse holds, the patient’s prog-
nosis is regressing under continuous therapy as the measure of the advantage of taking therapy
decreases in the number of rounds.

Proposition 2.3 (Myopic optimization). Assume (H1) and (H2).

1. Under (M1) there exists an i’ € NU {oo} such that for every j < i < i’ we have z; < x;
and for every i > j > 1 we have x; 7 x;.

2. Under (M2) there exists an i € NU {oo} such that for every j < i < i we have x; > x;
and for every i > j > 1" we have x; 3 x;.

In the appendix we show Proposition by relying on the successive comparisons of Proposi-
tion Under the first set of conditions, V'(x;) is quasi-convex in 4, while under the second it
is quasi-concave. In either case we can determine the optimal treatment strategy, as reported in
the next corollary.

Corollary 2.4 (Myopic optimization). Assumer (H1) and (H2).

1. Under (M1), if V(z) > V(2w), then xq is the only optimal treatment strategy, if V(o) <
V(2), then x4 is the only optimal treatment strategy, in case of equality both are optimal.

2. Under (M2) x; is the only optimal treatment strategy.

9
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In the first statement, to approximate V(z.,) one can take a sufficiently high i and evaluate
V' (x;) through —. As we have p > 0, any level of approximation can be achieved. In the
second statement, finding the optimal i’ is possible through a sequence of successive comparisons:
as long as continuing with one more round of therapy is better than stopping immediately, the
patient can continue. Thus, a myopic treatment plan is able to identify the globally optimal
treatment strategy.

Naturally, Corollary is directly applicable only if the homogeneity and monotonicity
conditions (H1), (H2), and one of (M1) and (M2) hold. We argue, however, that its implication
is broader. The strategy z., is found to be optimal under an optimistic set of assumptions,
specifically that more rounds of therapy improve a measure of the patient’s chances of recovery.
Condition (M2), on the other hand is satisfied under more pessimistic parameter settings, and
is a closer fit with models of tumor resistance. As a round of therapy is affecting only sensitive
cells, further rounds are likely to provide diminishing returns. Under this condition, there exists
an interior optimal treatment strategy and any further treatment is to the detriment of the
patient.

Example 2.5 (Overtreatment). In the remainder of this section we simulate the effects of
overtreatment and calculate the value lost. To reduce the number of moving parts we introduce
a final homogeneity condition, (H3): 8; = 8, vi = 7, i = pu. Under (H1), (H2), and (H3),
only the rate of reaching state 0 by therapy, \;, depends on the number of rounds taken by the
patient. We take \; = A1 for some initial value A\. The time-homogeneous parameters of
this simulation are shown in Table [I The effect of varying A and ¢ is shown in Figure 2] As

Parameter p ) 16 v 1 w
Value 0.05 0.15 0.15 0.12 0.13 0.13

Table 1: The calibration of Example After p was fixed, the other transition parameters were
randomized values between 0.1 and 0.2, keeping w = p, under which a decreasing M (i) is guaranteed as
long as A; is also decreasing.

expected, the optimal duration of therapy increases with A and decreases with ¢. For A = 0.4

Number of treatments

0.8
0.7 A
0.6 1
< 0.51
0.4 1
0.34
0.2

1.0 15 2.0 2.5 3.0 3.5 4.0

o B N W A~ U O N © ©

Figure 2: Optimal number of treatment rounds in the cost-based model for parameter values shown in
table[l] Gray areas show the regions in which ‘always treat’ is optimal.

and ¢ = 3 the parameters satisfy (M2) and the unique optimal strategy is zo. Expected values
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of treatment strategies xy through x7, and the percentage of these compared to the payoffs of a
healthy individual are reported in Table H

; J
J X
Vi(zi) 1 9 3 4 5 6 7
zo  27.78%
z, 49.95% 27.78%
T, 52.24% 36.16% 27.78%
v, ws 52.17% 35.88% 27.04% 27.78%
2, 51.91% 34.95% 24.59% 922.36% 27.78%
zs 51.74% 34.31% 22.93% 18.69% 20.27% 27.78%
ze 51.64% 33.96% 21.99% 16.62% 16.03% 19.39% 27.78%
2. 51.59% 33.77% 21.49% 15.51% 13.77% 14.92% 19.04% 27.78%

Table 2: Expected values of treatment strategies xy to x7 evaluated in different time periods relative to
a healthy individual’s total payoffs with A = 0.4 and ¢ = 3. Taking 2 rounds is optimal, but further
rounds diminish the present value (period 0) payoffs only marginally. Patients under continuous therapy
who reach round 3 and beyond, if overtreated, have significantly lower prospects than patients who stop
therapy.

As shown by Table [2| any treatment strategy with therapy is better than xy with slight
variation in the present values, and x5 being the optimal strategy. However, as \; declines
sharply, most patients who do not reach state 0 in the first two rounds lose the opportunity to
do so in future rounds (Table E| For such patients, the cost of future rounds is higher than
the present value of the gains of postponing progression to state 3. If the standard of care is
continuing therapy indefinitely, patients who reach beyond state 2() are overtreated and incur
significant payoff losses. Patients reaching round 3 lose 6.29% points under strategy x; when
compared to the then-optimal x5, patients who reach round 4 lose 12.27%, while patients who
reach round 5 lose the most at 14.01% of a healthy person’s lifetime payoffs. Treatment strategies
xq through z; all provide very similar ex-ante evaluations despite the staggering payoff losses
described above. This is due to two reasons: (1) the losses affect a minority of the population
(only 9.47% of the cohort is in a non-absorbing state after the third treatment, 6.01% after the
fourth, 3.95% after the fifth), (2) the losses occur with a time delay starting in round 3, hence
the differences are in the discounted future expected payoffs. Hence, the losses that occur due to
overtreatment are obscured, delayed, and concentrated on a minority of patients making policy
change to move away from the ‘always treat’ strategy in the standard of care very difficult.

It should also be noted that, while in our model and simulation, overtreatment is costly
in payoff terms, more patients are cured under treatment strategies with more treatments: s
ends with 59.64% of patients cured, while under z this percentage is 62.66%. Furthermore, a
payoff-maximizing patient who stops after two rounds refuses the third round despite its cure
percentage of 13.79%, showcasing how the objectives of oncologists and patients might differ
and lead to highly different choices of treatment strategy.

3A healthy individual remains in state 0 and thus collects a payoff of 1 indefinitely. Taking into account
time-discounting, this person has a payoff of 1/p = 20.

4Note that this does not mean that subsequent rounds of therapy offer no benefits as patients under therapy
have a longer life expectancy then those who are not even if A\; = 0.
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Round 0 1 2 3 4 5
Cure rate 0.40 0.16 0.06 0.03 0.01 0.00
Cure probability 50.00% 28.57% 13.79%  6.02%  2.50%  1.01%
Death probability 16.25% 23.21% 28.02% 30.55% 31.69% 32.17%
Progression probability — 33.75% 48.21% 58.19% 63.44% 65.82% 66.82%
Under treatment 100.00% 33.75% 16.27%  9.47%  6.01%  3.95%
Cured 0.00% 50.00% 59.64% 61.89% 62.46% 62.61%
Dead 0.00% 16.25% 24.08% 28.64% 31.54% 33.44%

Table 3: A simulated cohort’s survival statistics under ‘always treat’ with A = 0.4 up to 6 rounds.

3 Toxicity-dependent payoffs

In Section 2, we modeled the patient’s main restriction for taking therapy by its cost without
explicitly mentioning the type of cost element. Such an approach produces a simple and efficient
model. Yet, to acquire a deeper understanding of the patient’s choices we need a model that
disentangles the material cost elements from those that directly affect the patient’s quality of
life.

Cancer patients often incur lifestyle limitations for extended periods. Some of these arise
from the disease, while some are due to the side effects of cytotoxic therapies. These side effects,
rather than producing a one-time reduction to the patient’s well-being at the time of receiving
therapy as we had modeled previously, accumulate and carry over from previous treatment
rounds. In particular when a round of therapy is unsuccessful in curing the disease, its lasting
effects can influence the decision to take the next round. Instead of the instantaneous reduction,
it is useful to model these persisting negative effects as the patient’s ‘rolling stock’ of negative
QALYs. We refer to this stock as the patient’s tozicity, which increases instantaneously when
the patient takes therapy, and decreases over time.

By doing so the scope of our model is also expanded. Previously, the patient’s only decision
was in the number of rounds of therapy. Immediately upon entry to a state 2() the patient chose
whether or not to undergo therapy, and the system’s transition rates changed only when the
patient entered a new state. In cancer therapy, however, patients also decide on the timing of
receiving the next round of therapy. It may be that the patient enters a decision state, spends
some time there and risks the no therapy rate of progression for some time before deciding to
take therapy, after which the therapy transition rules apply. In Section [3s model this behavior is
suboptimal as waiting offers no advantage to the patient. However, there are health- and quality
of life-related effects of cancer therapy by which delaying the next round is rationally motivated.
Modeling the patient’s cost of therapy as a stock allows us to capture these motivations and find
the optimal time of delay.

The added ingredient of our model, toxicity, is modeled as follows: Let i(t) denote the number
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of rounds of therapy taken up to time t. For 2y, 2 > 0 and ( > 0 we define

2(z0,t) = zpe~ —1—2:26_“1t ti) (6)

The value z(zo, t) is called the patient’s toxicity level7 a negative payoff component. Each round
of therapy adds a fixed amount Z to the patient’s toxicity. Its starting level is denoted by zy and
it depreciates exponentially with a constant rate .

As toxicity is an important component of the patient’s well-being, it becomes a concern for
designing treatment strategies. The patient’s choice on the future rounds of therapy is thus
contingent on their current level of toxicity. Furthermore, we allow patients to take treatment
holidays with the length of holidays also contingent upon the current level of toxicity. Upon
entering a state 29, instead of a binary choice whether to take therapy or not, the patient
chooses a time of delay. By delaying for a time ¢, the patient obeys the progression rule as if the
no therapy choice was taken, i.e. moves to state 3 at rate w;. If the patient does not progress
during this time, then he or she thereafter moves through the game tree in accordance with the
therapy choice, i.e. moves to state 0, 101, 26+D “and 3 at rates \;, £, 7i, and p;, respectively.

Formally, the patient’s strategy is now described by a function z: {219 x [0, 00) — [0, 00).
For round i and toxicity level z the value x(i, z) is the amount of time the patient waits in state 2()
before administering the next round of therapy. If this value is 0, the next round is administered
immediately, if it is infinity, then the patient does not take the ¢+ 1th round. For consistency, we
restrict attention to strategies such that if for some ¢ we have (i, z) = oo for every z, then for
every j > i and every 2z’ we have x(j, z’) = oo as well, meaning that if the patient chooses never
to take round i, all subsequent rounds’ delays are also infinity. We call a treatment strategy
finite if there exists ¢ such that z(i,z) = oo for every z, i.e. the patient stops therapy after a
finite amount of rounds.

The patient’s instantaneous payoff function when affected by toxicity, u: S x [0,00) — R, is

given as
_ 12 ifs e {0, {192, {20},
u(s,z)—{ 0 ifs=3.

In words, the patient collects a payoff of 1 in any health state other than 3, minus the amount
of toxicity he or she currently has. In state 3, the patient collects a payoff of zero. We therefore
replace the state-dependent quality-of-life-terms under therapy of our base model, u and v, with
the toxicity-adjusted quality of life, 1 — z.
Given a treatment strategy x, state-realization s(-, z) and initial toxicity level zg, the patient’s
payoff when affected by toxicity is given by
0 i(t)
U(s(-,x), z) = / e u(s(t, x), 2(z, 1))dt — Y ce ™, (7)
0 st
where, as before ¢; denotes the time of administering the jth round of therapy. Due to p > 0,
U(s(-,z), (-, x)) is finite for every realization in every finite strategy and almost every realization
for every strategy. We define a patient’s prospects starting in a general state 209, conditional on
the fact that their current toxicity level equals z; as

U'(s(-, ), 2) _/000 e Pty (s(t, ), 2(2, t) Z ce Pl (8)

J=i(t;)
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Given zj, the patient chooses z to maximize their discounted expected payoff:
V(x,20) = Eg. ) U(s(+, ), 20).

A patient’s who begins the game in state 2 with toxicity level z; has prospects given as
Vi, 2) = By U'(s(-, 1), 2).

In the following proposition we establish how to evaluate a treatment strategy of a patient
affected by toxicity.

Proposition 3.1 (Evaluation of treatment strategies under toxicity). At stage 29, for a treat-
ment strateqy x, with starting tozicity level z; and where the patient waits time t before taking
round i (i.e. x(i,2) = t), the patient’s discounted expected payoff is given by the following re-
cursive formula:

; (1 = e~ (witetO)t ;
) 1 — —(wi+p)t Zi (1 e ) R 1 ; —(t 2
Vi(x,z) = © — fe @it [ oy _me T 9)
wi +p witp+(¢ a;t+p at+p+(
1 zie 4 2 Vi , ;
+\; - - + = / Vit (z, e S 4 2)e Pmd f(7)
(p(aﬁp) (p+C)(ai+p+C)) a

Bi ¥ i (zeSt + 2) / - D L v
o - 4 (ViRm0 4 ey ) )
+ Q; ((az + P)((SZ-H + p) (Ozi +p+ C)(éz—i—l +p+ C) (ZL‘ Z;€ Z)e g(T)

with probability measures
f(r) = e 7, forT >0,

Sit10 —a;T —0i41T ;
g(1) = { 6"531_‘?&.(76 e ) Z‘f @i 7 ity , forT > 0.
a;Te ™ if o = 0it1

Proposition shows the relationship between the payoffs of treatment strategies in successive
rounds. The first component is the expected payoff the patient collects while waiting for the
next round of therapy. The second component is the sum of three parts: the expected payoft
of transitioning to state 0, the expected payoff of a direct transition to state 20+Y  and the
expected payoff of a transition to state 20%1) via state 10+D.

It is clear that the rolling-stock model of toxicity provides significantly less analytic tractabil-
ity than the instantaneous cost model of Section [2 This is most apparent by a comparison
between Proposition 2.1s and Proposition [3.1]s respective recursive formulae. While the former
shows a simple linear dependence of successive payoff states, the latter necessitates numerical
methods of approximation. At the end of this section we examine a numerical example relying
on such methods.

In special cases the toxicity model also provides analytically tractable results. Namely, a
myopic calibration of the next round’s delay, with the assumption that no further rounds will
be taken, is possible. In the next lemma we thus turn to evaluating finite treatment strategies
close to the end of treatment. These provide optimal stopping conditions for myopic treatment
strategies, and provide insights into a global optimization of treatment strategies. For ¢ € N let
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X; = {z: x(i,z) = oo for all z}. Due to the consistency restriction these sets are nested, i.e.
X; € Xy for every 1.
Let
1 Ai i 1 i1
Ailp) = I+—+ + Bi ( + 5
(p) a; +p ( p o witp Giv1+p (61 + p)(wi + p)
and
Bilp) = —
i\p it p

Lemma 3.2 (Evaluating treatment strategies). 1. For x € X;
Vi(x,2) = Bi(p) — z:Bi(p + ¢). (10)

2. For x € X1 with x(i,2) =0

Vi(z,z) = Ai(p) — (zi + 2) Ai(p + () — c. (11)

3. Forxz € X;11 with x(i,z;) =t

Vi(z,2) = Bilp) (1 - e““’"*’)ﬁ) —2Bi(p+ () (1 _ e—(Wi+p+<)f>
+ e (A(p) = (e + D) Ailp+ O =) (12)

Lemma [3.2| allows us to myopically calibrate the optimal delay before the next round of therapy
under the assumption that no further rounds will be taken.

Proposition 3.3 (Myopic calibration of delay). Of the strategies with at most i rounds of
therapy:

1. If Bi(p) — Ai(p) + 2Ai(p+ ) + ¢ and Bi(p + ¢) — Ai(p + () are both negative, then the
optimal time to administer the last round of therapy is to wait until the patient’s toxicity level
reaches a threshold Z with

Bi(p+¢) Bi(p) — Ai(p) + 2Ai(p+ Q) + ¢
Bi(p) Bi(p+¢) — Ailp+ Q) ’

or, if the patient’s tozicity is below this level, then administer the last round of therapy immedi-
ately.

2. If Bi(p) — Ai(p) + 2Ai(p+ )+ ¢ >0 and Bi(p+ () — Ai(p+ () <0, then stopping at the
1 — 1th round is better than continuing with the ith round.

3. If Bi(p) — Ai(p) + 2A;(p+ ) +¢ < 0 and Bi(p+¢) — Ai(p+) > 0, then treatment should
be administered immediately.

4. If Bi(p) — Ai(p) + 2Ai(p+¢) +c and Bi(p+ () — Ai(p+C) are both positive, then treatment
should be administered immediately if the patient’s toxicity is above the threshold z' and never if
it 1s below it, with

7 =

,_ Bilp) = Ai(p) + 2Ai(p+ () + ¢
Bi(p+¢) —Alp+¢)
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Proposition [3.3] plays a similar role as Section [2J's Proposition 2.2 It identifies a myopically
optimal stopping condition of one round of therapy without an intention of resuming therapy
with subsequent rounds. Moreover, it determines the myopically optimal waiting time through
analytic methods. Under condition (1) treatment is to be delayed until toxicity is sufficiently
diminished, under (2) it is to be canceled no matter the patient’s toxicity level, under (3) it is
to be administered immediately no matter the patient’s toxicity level, and finally, under (4) it
is to be administered only for patients with high toxicity level. The final point shows a perverse
case, resulting from the fact that patients with high negative instantaneous payoffs prefer to
immediately receive the next round even when it decreases their life expectancy.

Example 3.4. We now demonstrate the gains of calibrating the time of delivering the rounds of
therapy. As in our previous numerical example, we let \; = A\i*! for an initial value X. Consider
the transition parameters shown in Table

Parameter p o By p  w
Value 0.05 0.1 0.1 02 03 0.2

Table 4: The calibration of Example

We first consider the no toxicity case with A = 0.67. Then, as in Example (M2) is
satisfied. In Table [3], for each treatment strategy o through zs, we report the cost ranges that
produce it as the unique payoff-maximizing strategy.

Cost range Optimal strategy Payoff range (% of healthy) Total cured (%)

0.84 - 1.13 T 64.13% — 62.28% 65.90%
1.14 — 1.55 7 62.22% — 59.61% 65.90%
1.56 — 2.13 T 59.55% — 55.93% 65.89%
2.14 - 2.92 T5 55.87% — 50.92% 65.84%
2.93 - 3.94 T4 50.85% — 44.47% 65.69%
3.95 - 5.20 T3 44.40% — 36.58% 65.12%
5.21 — 6.65 T 36.52% — 27.87% 62.87%
6.66 — 8.22 1 27.81% — 20.01% 52.76%

8.23+ T 20.00% 0.00%

Table 5: Payoff-maximizing treatment strategies for various cost ranges, their corresponding ex-ante
payoff ranges relative to a healthy individual, and total cure percentages.

Now consider the case of toxicity. To showcase its effect we set ¢ = 0, i.e. the incentive of
stopping treatment comes solely from the patient’s decreased quality of life due to toxicity. We
take zg = 0, 2 = 0.5, and ¢ = 0.03. Under these parameters, the “present cost” of one round
of therapy due to toxicity is 2/(p + () = 6.25. However, this cost is realized in full only by
patients with a death rate of zero. Patients in non-absorbing states face a constant death rate
of 4 = w = 0.2 and hence face an “expected present cost” of Z/(p + ( + w) = 1.79. As such,
based on Table [5| we can expect at least 2 rounds of therapy and at most 6.

Through Proposition |3.3| we can analytically derive a myopically optimal treatment plan, i.e.
the optimal waiting times before each round under the assumption that there will be no further
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rounds of therapy attempted. As the benefits of further rounds of therapy are declining this
will produce increasingly accurate estimates of the globally optimal treatment strategy, starting
from that round. In Table[6]we report the threshold levels of toxicity in each round. With zy = 0

Round Cure rate Cure percentage Threshold toxicity

1 0.67 52.76% 0.87
2 0.45 42.80% 0.76
3 0.30 33.39% 0.65
4 0.20 25.14% 0.48
5} 0.14 18.37% 0.22
6 0.09 13.10% negative

Table 6: Threshold toxicity levels below which the next round of treatment can be delivered under
myopically optimal treatment strategies. Above this level, a payoff-maximizing myopic patient waits
until toxicity drops to the threshold level before taking therapy.

and Z = 0.5 the first two rounds are delivered as soon as possible to the patient as the threshold
of round 1 is 0.87, while that of round 2 is 0.76, and the maximum toxicity of the patient after
round 1 is 0.5. From round 3 onward, however, the patient may be better off waiting, if their
toxicity exceeds the threshold corresponding to round i + 1’s at the time of arrival to state 2(i)

For a specific case consider a patient in state 22, deciding on the delay of the third round.
This patient has taken two unsuccessful rounds of therapy and their toxicity level increased twice
by 2 = 0.5, however, in the intermittent times of waiting for the transitions (in states 200) o),
possibly visiting 1) or 1® or both as well), the patient’s toxicity level has declined. In our
example we set zo = 0.73. The patient is facing a cure rate of A3 = 0.3. By Table[6], this patient’s
payoff is maximized by waiting until the toxicity level reaches 0.65 to take the third round. The
patient’s present value, depending on their delay of taking the third round is shown in Figure 3

Payoff (%)
7.4

7.3
7.2
71

7.0

Figure 3: The patient’s payoffs relative to a healthy individual’s after completing two rounds as a function
of round 3’s delay with toxicity rate zo = 0.73 and facing a cure rate of Ao = 0.3. Expected payoffs are
maximized at a delay of t3 = In(22/2)/¢ = 3.86

We note that the patient’s decision to delay the third round may seem surprising, considering
that the probability of cure is still high (33.39%), and that during the waiting time of 3.86 their
probability of death is even higher (e73%% = 53.88%). It is clear that such a decision is not

5Note that at state 2(") the patient makes a decision on the 7 + 1th round of treatment.
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supported by practices that maximize probability of cure or survival time. The decision to delay
is cast in a more favorable light by considering that receiving the toxicity hit of the third round
immediately would yield a quality of life of —0.23 — even at the threshold toxicity of 0.65 the
patient’s quality of life turns temporarily negative. Delaying lowers the “present cost” of therapy
enough for a payoff-maximizing patient to take it.

Example showcases both the possible benefits of delaying therapy (Figure |3) and a my-
opically optimal patient’s behavior (Table @ It also highlights the comparison between the
models of Sections [2] and [8| The former prescribes the number of treatment rounds based on
the flat one-time cost the patient incurs per round, while the latter prescribes the timing of
these rounds. Note, however, that unlike in Section [2] where we were able to derive a condition
that ensured that the myopically optimal behavior produces the globally optimal one (Propo-
sition , there is no analogous result to guarantee that Table |§|’s results correspond to the
globally optimal behavior in the toxicity model. In the next example, we evaluate the same
calibration via a numerical approximation and show that its results are in agreement with the
myopically optimal waiting times.

Example 3.5. Consider the same transition parameters as shown in Table[dl As in Example[3.4]
we take A = 0.67, 2 = 0.5 and ¢ = 0.03 with zy = 0. Table[7]reports the expected optimal delays
of a maximum of six treatment rounds through a numerical approximation (see the appendix
for a summary of the methodology of the approximation).

Round 0 1 2 3 4 5)

Cure rate 0.67 0.45 0.30 0.20 0.14 0.09
) z;  Payoff Cure perc. 52.76% 42.80% 33.39% 25.14% 18.37% 13.10%
0 0.00 42.70% 0 0 0 11.27 20576 00
1 032 24.12% 0 0 13.76 17.67 00
1 040 21.16% 0 0.84 13.76 11R8.88 00
1 048 18.28% 0 3.68 13.91 13.77 00
2 0.60 11.09% 0 15.44  176.77 00
2 068 8.62% 1.44 16.96 22.31 00
2 0.76  6.73% 5.14 16.96 22.19 00
2 084 513% 8.48 16.96 21.88 00
2 092 3.63% 11.51 16.96 24.12 00

Table 7: Delay times and payoffs of approximate optimal strategies, x*(i, z;) conditional on starting
therapy in round ¢ with toxicity level z;. Bold numbers are actionable choices, all other delays are
expected values subject to change. A patient progressing through the rounds re-optimizes in each round
and tailors their behavior based on the current level of toxicity.

The interpretation of the prescribed treatment strategy starting at round 0 (first row of Table|7)
is as follows: Given the patient’s toxicity level of zy = 0, in expectation, the patient is advised to
wait time ¢; before receiving the ¢4 1th round of therapy. Note that the prescribed waiting times
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for distant treatment rounds are subject to change. At the onset, they are merely an expected
time of optimal delay given the patient’s expected progression, on which, based on backwards
induction, the optimal time of delay of the first round, ; = 0, can be calculated. Thus, only
this first delay is actionable information. Should the patient reach the next decision node, their
toxicity level may be quite different from the expected levels, hence, subsequent decisions need
to be taken according to the realized toxicity levels.

To illustrate, we report three re-optimized treatment strategies given toxicity levels z; =
0.32,0.40, and 0.48 after round 1 (rows 2 to 4 of Table @ This large divergence in toxicities is
based on the fact that patients who do not respond to the treatment (and thus progress to state
2(1) directly) are expected to have larger toxicity levels than those who do (and thus reach 2()
indirectly through 1(V), as the latter group’s toxicity depreciates for a longer timeﬁ As shown in
the table, these patients are all advised to take round 2 immediately, but their expected delays
in future rounds, as well as their expected payoffs, diverge.

Those patients who progress further again need to re-optimize based on their realized levels
of toxicity. We approximate optimal treatment strategies for patients who start after round
2 with toxicity levels zo = 0.60,0.68,0.76,0.84, and 0.92. At this stage, the prescribed delays
before taking round 3 are different, hence the different patients’ payoff-maximizing behavior di-
verges. The approximate delay times of the next round line up with the myopically optimal ones
(retrieved from Proposition up to the 3rd decimal point, indicating that the approximate
optimal solution and the myopically optimal one agree closely, provided that \; is decreasing.

4 Concluding discussion

In this paper we built a decision-making tool of cancer therapy. We model the development of
the disease as a random, Markovian process, capturing the prognosis-relevant data with four
types of health states. This approach unifies the more classical Markovian models of cancer
therapy with the novel game theoretic analysis of cancer, adding the element of patient choice to
the former, and simplifying cancer’s evolutionary dynamics to a random, Markovian process in
the latter. Framing cancer’s strategies such a way allows us to focus on the patient’s choices and
rely on classic results of the theory of Markov Decision Processes for the existence of a unique
optimal policy: an optimal treatment strategy.

In a model where the patient’s instantaneous payoffs are determined by the type of health
state they currently occupy, we provide a simple recursive formula to analytically evaluate the
performance of various treatment strategies. Estimating transition rates from cohort data and
inputting the parameters reflecting the patient’s preferences allows the patient to choose their
preferred therapy duration. Under some monotonicity and homogeneity assumptions, a local and
myopic evaluation of the treatment strategies also produces the globally optimal outcome, further
simplifying the decision-making progress. In a second model, where the patient’s instantaneous
payoffs were determined by their current toxicity levels, the evaluation of treatment strategies is
more complicated and requires numerical tools. Nevertheless, optimal duration of therapy and
optimal timing of treatment rounds can be estimated. Myopically optimizing the next round’s

6The expected time spent in state 1) is 1/§ = 10 in this example, while toxicity level upon leaving state 1()
if it was at level 2z’ upon entering it is 2’6/(d + ), so an initial toxicity level of around 0.5 decreases to around
0.38.

19


https://doi.org/10.1101/2021.06.16.448669
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.16.448669; this version posted June 18, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

delay can be performed analytically, and can provide a good approximation to a globally optimal
treatment strategy if the cure rate of future rounds decreases sharply.

We raise three discussion points on the modeling choices made in the paper. The first is the
decision to include no more than four types of health states. One reason for this is to keep our
models tractable. A second reason is that a practical application of a model with more health
states requires more cohort data. Given the same amount of cohort data, calibrating a model
with more than four health states comes with a loss of statistical power. In the case of large
cohorts, collecting patient data of a given cancer type, this may not be a problem. However,
in the case of cohorts stratified by age, sex, or by other variables, diluting the data in favor of
including a larger number of health states may not be desirable. We further argue that more
health states raises classification problems, while the four present in our paper is the lowest
number that is needed. In cases where data are abundant and classification unproblematic, our
model can be extended to include more state types in a straightforward manner.

Secondly, we raise the issue of personalized medicine. Barring some exceptional circum-
stances, the transition rates of our model must be calibrated from cohort data. The ability to
personalize our model depends on the availability cohort data corresponding to the patient’s
stratum. For some cancers and for some strata this cannot be taken as given. In these cases,
our models can still serve as useful benchmarks against which the patient and their physician
may evaluate their options given the patient’s own characteristics and response. Even when the
ability to personalize our model’s transition rates is low, some of our model’s variables such as
the patient’s instantaneous payoff parameters and discount rate can be calibrated to match the
patient’s preferences and characteristics. When personalization is high, the differences between
these patient-specific traits may still mean that two patients belonging to the same demographic
will find different treatment strategies optimal.

Thirdly, we address the relationship of the patient’s toxicity level in our second model and
the transition rates. In our model, these are mathematically independent in the sense that after
a given number of rounds of therapy, progression rates are not affected by toxicity. In prac-
tice, toxicity caused by therapy is strongly related to the patient’s prognosis. This mismatch is
caused by the fact that our model combines “objective” parameters regarding disease prognosis
with “subjective” ones that reflect to the patients’ preferences. Toxicity of therapy is related
to both. We therefore use the abstract term toxicity to reflect on the subjective aspect, mea-
suring the patient’s well-being under therapy. Introducing explicit dependence between toxicity
and transition would be problematic both for the tractability of the model and in mixing the
“objective” concerns with “subjective” ones. For example, two patients may be very similar
in their disease progression but may report varying levels of discomfort due to therapy, or vice
versa, which may influence their choice of treatment. As the “objective” effects of toxicity, the
transition rates, do depend on the number of rounds of therapy, our toxicity measure and the
patient’s prognosis are statistically not independent. Hence, our model may produce a good fit
even without mathematical dependence between toxicity and transition.

Finally, we reflect on our stated goal, to address the dilemmas arising from the difficulty in
finding a suitable measure of success of cancer therapy. Our approach, maximizing the patient’s
discounted expected QALYs is rooted in a classic economic approach that treats individuals
as rational utility maximizers. As such, we propose it as a good candidate to evaluate cancer
therapy in a way that explicitly captures the patients’ well-being. As an additional value, even if
such an approach cannot be adopted in oncology formally, a model such as this can help identify
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and understand points of disagreement between cancer patients and their treating physicians in
selecting a treatment strategy.

Our approach shares the drawbacks and criticism of similar decision theory models: (1)
QALYs (or payoffs in general) are significantly more difficult to measure than survival, and (2)
individual decisions often go against what economists or game theorists describe as “rational”.
As an added difficulty, (3) individual decision-making in dynamic situations may be, and is
often shown to be, time-inconsistent. Addressing (1) in the cancer context is part of a deeper
discussion on the appropriateness of using QALYs. We argue that, while its shortcomings do not
make it suitable to replace more convenient measures, such as survival time, considering QALY's
in addition to survival time has significant added value. To address (2) and (3) would require
a deeper mapping of the individual decision-making process. Methods that are currently used
in behavioral economics, psychology, and other decision sciences often use very similar tools as
those in strictly “rational” models. Thus, our methodology, as well as its predictions, can serve
as useful benchmarks for future research in the decision theory of cancer.

Other important aspects of decision making that have not been captured by our model include
the patients’ risk and ambiguity attitudes. Our model assumes perfect information of transition
rates and risk neutral patients but both assumptions can be relaxed in a straightforward manner,
the former by introducing noise to the transition process, the latter by incorporating the patient’s
risk and ambiguity attitude in their (perceived) payoff. Doing so constitutes an important
direction of future research. Additionally, while our model is silent on the treating physician’s
incentives, the dilemma arising from the physician and the patient’s different objectives can be
explicitly captured by a principal-agent problem, of which, our findings represent one side, that
of the principal. This direction is also left for future research.

A Appendix

Proposition
We first show the second part of the statement, that is:

v

for a finite 7.

The patient collects a constant stream of instantaneous payoffs v while still in state 2, and
0 after he or she transitions to state 3. Let 7 denote the time the patient spends in 2. As
T ~ Exp(w;), we have

) T o0 T o) —pt 7T
Vi(z;) = E,; (/ ve_ptdt) = / / ve Pidt weviTdr = vwi/ {——e } e “iTdr
0 0o Jo 0 P 1o

7 o . 5 1 1
_ / (1 — e’pT) ewidr = (2 -7
P Jo po\wi witp Wi +p

To show the first part we calculate each of the following four components separately: (1) the
discounted payoffs collected in state 2U) before transitioning; (2) those collected after transition-
ing to state 0; (3) those collected after transitioning to state 10+ followed by transitioning to
state 20+1): (4) those collected after a direct transition to 20+1,
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Calculating (1) amounts to evaluating

E- </ veptdt) :/ / ve Pdt aje”Tdr = - ,
0 o Jo o +p

with very similar steps as before, where now we have 7 ~ Exp(«;).
To calculate (2) we need to evaluate

00 e_pt 00
E, (/ e_ptdt) = / / e Pidt ae”7dr = oz]/ [——} e %7dr
; p ],

=2 e’” “NTdr = % L
P Jo paj+p

as once more we have 7 ~ Exp(a;). Multiplying by A;/«;, the probability that state 0 is reached,
we get

1A

paj+p
Component (3) has two parts: the payoffs collected while the patient is in state 1041 and the

payoff he or she collects after transitioning to 2U+Y. Taking 7 ~ Exp(«;) and 7/ ~ Exp(d;41),
the former amounts to

T4+7! 00 oo T+7/ 0o 00
—pt —pt —oT =817 3./
E, / ue Ptdt :/ / / ue” 7'dt aje” ™ Tdr djpqe” T AT :uozj5j+1/ /
T o Jo Jr o Jo

ot T+
[——e ’ } e~ %Tdr e %N qr = uozj CAR / / —(aj+p)7 ef(o‘jJrP)Te*‘stT/) dr e %017 d7!
p 1,
:uaj5j+1 1 / (e_ 17 —e —(p+84+1)T )d I _ uaJ5]+1 1 ( 1 . 1 )
p o+ pJo P ajtp \d1 i tp
o U

_ J
Qa +p5j+1 —|—p'

This, multiplied by the probability of reaching state 10+ 3, /a; gives

B; u
o+ pdjp+p

The second part, the payoff the player receives after transitioning to 20+ amounts to receiving
a payoff of V71 (x;) with time delay 7 + 7/, that is, in expectation:

(0%

J 5j+1 Vj—H(.IZ').
aj+pdj1t+p

Multiplying by the probability of reaching state 1U+!) (from which reaching state 2U+1) is cer-
tain), we get
Bi  Oin

o+ pdjp+p

Vj+1 (J]Z)
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The sum of the two parts gives the third component of as desired.
In component (4), a direct transition to state 201 provides a payoff of V7+!(z;) with a delay

of 7 with 7 ~ Exp(a;), equaling

— Nyt (g,).

7] +p
Multiplied by the probability of reaching 2041 directly, v;/ o, we get

i Vj+1( xz)
Qg +p

Finally, subtracting the cost of a round of therapy, ¢, incurred immediately, we get the right

hand side of .

Proposition

As the two treatment strategies are identical in the first ¢ periods, V(x;) > V(x;41) if and only
if V¥(x;) > V¥i(x;41). By Proposition [2.1] the left hand side amounts to v/(w; + p), while the
right hand side is

: v Ao 1 Bi U dit1 i1 ) Vi '
Vizip) = + -+ + Vi (x; + ———V"*(z) —c.
(i) Qi +p Qatpp ai+0(5i+1+0 dit1+p (i) ;4 p (@it:)

By plugging in Vi (z;11) = v/(wi11 + p) we have that Vi(z;) > V(x;41) if and only if

v v A1 Bi U i1 v Vi v
> + =4 + + -
witp  atp atpp ot p\dip1tp i1t pwiptp Q + PWit1 +p

C.

Multiplying by «; + p and rearranging produces the inequality stated by the proposition.

Proposition (2.3
Applying (H1) and (H2) to (f]), by Proposition we have z; X x;,1 if and only if

ity N —w ; 1 i0 Ai
ity = + (o +p) < By (5 +i>+—.
w+p d+p wH+p\d+p p

Multiplying by (w + p)/(a; + p) and rearranging gives

1 i i — [ 1 :
c< b _w A M(i). (13)
wtp\ai+po+p a+pp  ait+p w+p

1. Let i € N be the smallest number such that x; 3 xy41. Then we have ¢ < M(i')/(w + p).
Under (M1) M (7) is increasing in ¢, thus every successive treatment strategy with more than i’
rounds is better than the one preceding it, hence for every ¢ > j > i’ we have z; 3 ;. By the
choice of ¢/, for every j < i’ > 0 we have then z; < x;_;, implying that for every i < j <7 we
have z; < ;.

2. Let ¢' € N be the smallest number such that z; = xy41. Then we have ¢ > M(i")/(w + p).
Under (M2) M (7) is decreasing in i, thus every successive treatment strategy with more than i’
rounds is worse than the one preceding it, hence for every ¢ > j > i’ we have z; 7 ;. By the
choice of ¢, for every j < i’ > 0 we have then z; > x;_;, implying that for every i < j <7 we
have z; >~ ;.
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Proposition (3.1

The value is the sum of five values: (1) the payoff received in state 2() while waiting for the
next round of therapy. We calculate the positive part of the payoff (i.e, without toxicity). Take
T ~ Exp(w;), then

min{r,t} i T 00 i
ET/ e_ptdt:/ wie_“’”/ e_”tdtdr—l—/ wie_“’”/ e Ptdtdr
0 0 0 i 0

! T () B
p wi +p

1 — o (witp)t
n Wi+ p

With very similar calculations we may get the negative (toxicity) part of this component:

min{r,{} Z; (1 — ei(wierJrOtA)
E, / zie” (PO = :
0 wi+p+¢

(2), the payoff received in state 2(¥) after taking therapy but before transitioning to any of
the states 0, 10+D 204D or 3 as a result. Again, just taking the positive component, with
7 ~ Exp(a;) this is

T4+t N [ee) T N 1
IET/ e Pldt = e_pt/ aie_o‘”/ e Pldtdr = e )
i 0 0 a;+p

For the toxicity component that the patient started with, we get

T+t ~ .
E. / zie PO = om0l L
i ai+p+¢

Adding the toxicity caused by therapy 2 at time time ¢ we get

T+t - N
ET/ 2e*Pte*C(t75)dt — éefpz‘fET / ef(p+g)tdt _ e,ptj z .
‘ 0 ai+p+¢

Adding these three and multiplying with the probability of the patient reaching the time to take

therapy, e~wit we get
. ¢t 1 2
ot (L me A2
a+p otp+(

(3), the payoff received upon a transition to state 0. Again, with 7 ~ E(«;) this is (positive and
negative parts together):

o0 B E .
B / e =z P — s = et ! — i :
i plai+p)  (p+ (i +p+()
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Multiplying with the probability reaching the time to administer round i, et and by the
probability of transitioning to state 0 given that the patient receives round i, A;/a;, we get

\oo—witn)t 1 _ Zie_d +2
' plai+p)  (p+O(ai+p+Q) )

(4), the payoff received upon a transition to state 201, This amounts to the expected present
value of V*!(x, 2(z;, 7)) with delay 7/ where 7/ = 7 4 ¢ for 7 ~ Exp(a;). This equals

E. (e’pTlV”l(:c, 2(zi, T'))) = e "'E, (7 Vi (2, 2(z, 7 + 1)) .

Multiplying by the probability of reaching the time to administer round ¢, and by the proba-
bility of transitioning directly to state 20+1) given that the patient receives round 4, 7;/a; and
substituting in z(z;, 7 4+ ) = 2, ¢+ + 2 we get

le_(wﬂ’)f/e_pTV”l(as,Zie_qﬂﬂg) + 2)df(T).
Q;

(5), the payoff received upon a transition to state 10+ followed by a transition to state 201,
With 7 ~ Exp(a;) and 75 ~ Exp(d;11), the former amounts to

T1+To+; (%) )
Eﬁ@/ e Pt _ zie*(p“)t _ s Pt=Ct=D)
Tl+£

ia'e—ptA 1 _ zie’d + 2z
Z (i +p)0is1+p) (i+p+Q)0i1+p+C) )

Multiplying by the probability of reaching the time to administer round ¢, and by the probability
of transitioning to state 101 from 20). B; /oy, we get

By (wite)t 1 _ zie 4 2 '
(i +p)(0is1+p) (it p+C)(6is1+p+C)

Finally, upon reaching state 201 from 10+!) the patient receives the present expected value of
Vit (z, 2(2,7')) with a delay of 7/ where 7/ = 71 + 75 + t. Substituting 7 = 7, + 75 we get

E. (e_pT/V”l(x, 2(z;, 7'/>)> o (e VN &, 2(z, 7 + f))) .

Multiplying by the probability of reaching the time to administer round ¢, and by the probability
of transitioning directly to state 10*!) (from which reaching state 201 is certain) given that
the patient receives round 4, 3;/a; and substituting in z(z;, 7 +1) = 2,6 ¢+ 4 2 we get

ﬁe_(w+p)£/e_pTVi+1(I,zie_g(”g) + 2)dg(7),

Q;

as ¢(-) is the density function of 71 + 7 by definition.
Summing up components (1) through (5) and adding the cost of one round of therapy, ¢ with
delay ¢t multiplied by the probability of paying it gives the formula stated by the proposition.
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Lemma 3.2

1. (10) is obtained from @ by setting ¢ = co.
2. To calculate positive component of the payoff (without toxicity and costs), we substitute
t=2%2=2z =c=0into @toobtain

1 Ai i / +1 -
+ + — [ V"(z,0)e7"d
a+p plas+p) (2,0 df(7)

5 B o
+<Oéi + ) (01 + p) T o /V (x,0)e *"dg(T).

Vi(z,0) =

By point 1, we may substitute V! (z,0) = B;(p). Evaluating the integrals gives

1 by Vi 1 Bi Bi 0it1 1
= - + + +
a+p plait+p) witpaitp (+p)(i1+p)  atpdipi+pwitp

1 i Vi ( 1 dit1 ))
= 14+ =4 ——+f + = Ai(p).
a; +p < p o witp ) Siv1+p  (diy1 +p)(wi +p) (v)

By similar calculations the payoffs from toxicity equal (z; + 2)A;(p + (), while the cost is a
lump-sum —c. Adding these together gives .

3. Calculating the positive components amounts to substituting 2 = z; = ¢ = 0 into @ This
yields

Vi(x,0) = Bi(p)(1 — =@l o= (tnli 4 ()

where the second component follows from the calculations of the positive component of 2. The
toxicity can be deduced as

—zB(p+ )1 — e_(wi+ﬂ+of) — e—(wi+p)f(zie—cf + 2)Ai(p+ O).

Adding these together with the lump-sum cost —c, factoring in the delay and the probability of
paying the cost leads to as stated.

Proposition

We take a treatment strategy # € X,;; and evaluate it in state 209 given toxicity level z;. To
find the optimal x(i, 2;) = £ we differentiate V**!(z, z;) (deduced from Lemma [3.2)) with respect
to t to give

V@ 20) _ i _ ool :
L G + 2Ap+O) —Ailp)+e) + ————
(24i(p+ ¢) — Ailp) + ¢) B0

o “Bilp) Ai(p+ Q).

Multiplying by ewitr+Ol and rearranging, the sign of the derivative is the same as that of

d1 _d2
| _Ailp) | 2A(p+ Q) —1—0)\ 'r(Ai(P"“C) B > a
’ (1 Bi(p)+ Bi(p) “i Bi(p+ () L) =de daz;.
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There are four cases: 1. If d; and dy are both negative, then the derivative equals zero if

provided that z; > dy/dy. If so, then O(Vi(z,2))?/0t? is negative due to d; being negative,
hence { is indeed a maximizer, and ze ¢ = d; /dy = Z, thus the patient waits until toxicity falls
to z. If z; < dy/ds, then the first derivative is always negative, hence taking the next round
immediately is optimal.

2. If d; > 0 and dy < 0, then the first derivative is positive for all ¢, hence ¢ = oo is optimal.

3. If d; < 0 and dy > 0, then the first derivative is negative for all ¢, hence ¢ = 0 is optimal.

4. If d, and d, are both positive, then if z; < Z, then the first derivative is positive for all ¢,
meaning that £ = oo is optimal. If z; > Z, then the first derivative starts negative at £ = 0, then
turns positive and remains positive as ¢ approaches infinity, meaning that either ¢ = 0 or ¢ = co
is optimal. Comparing the payoffs, we get that £ = 0 is best if and only if

Bi(p) — Ailp) + 2Ailp+ Q) + ¢ _
Bi(p+¢) — Ailp+) ’

which is a stronger condition than z; > Z.

Zi >

Approximation method of Example

All transition parameters with the exception of the cure rate, \;, are independent if 7. We assume
a maximum number of treatments, IV, that is, we set ty = oc.

N
Vi(z, %) Z < p, k) —0b(p+¢, k)Zk> —(wtp)Ti 4 Z < —alp+¢, k?)Zk+1> o~ (@) Tht1
k=i

(14)
The components in are as follows: We denote by ¢ the time of delay before treatment
round k with £y = oo. The series T}, denotes the times at which the patient’s toxicity increases
as a result of the kth round of treatment, which takes place time #; after the patient enters 2.
T; is taken to be 0, while for £ > ¢ we have

k—1 k
Tk = Z Tk + Z tA],
j=t j=t

with 7, being the random variable denoting the length of the kth round of therapy from its
initiation (i.e. when toxicity increases) to its termination, conditional on the fact that the patient
proceeds to state 2(A+1),

To get an approximation, we replace T} in by its expected value, T}, leading to an
unbiased estimate of it. Given the patient’s strategy, the waiting times fj are fixed, while the
expected value of 7, is given by

1 L
MNe+B4+v+p 0(B+7)
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of which the first component is the expected time spent in state 2(*) while waiting for the
kth round to take effect and the second is the expected time spent in state 1*+1) waiting for
progression to state 2(-t1) leading to Tj,1 = ;

~ k—1 1 6 k .
Tk:Z(Ay‘+ﬁ+7+u+5(ﬂ+v)> +;tj'

j=i

The estimate Z; denotes the approximation of the patient’s toxicity at the time of receiving
the kth therapy, i.e. at time T};. For simplicity and computational ease, we approximate the
patient’s toxicity level at the time of entering state 2(*) by substituting the expected time into
the toxicity equation @, giving a slightly biased estimate of the patient’s toxicityﬂ

The two major components in ((14)) are

e ) = (H%fo)) (Hle(fj%—p)) (gﬁpﬂ)k (13)

o= 0= (g ) Gt ) -

j=1

and

To get a visual intuition in deriving , from Figure , imagine that we fix the maximum
number of treatments at IV, reducing the model to a finite series of states. We descend N layers
in the figure, then calculate all the possibilities to arrive at either state 0 or state 3 after at most
N treatments by simply counting the number of paths. Each new layer can be reached one of
two ways, either a direct transition from state 29 to 20+1) with rate 7, or an indirect one from
20 to 10+ at rate 3, then from 10+ to 20+D at rate §.

The approximations of Table [7] are therefore results of numerically maximizing (in Wolfram
Mathematica) equations of the form , subject to ¢, > 0, and entering Ay = A\* into .
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