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Key Points

e We combined neuroimaging (i.e. MEG) and non-invasive brain stimulation (i.e. TMS)
to examine the properties of y activity sub-bands in the primary motor cortex.

e Two distinct y sub-bands (slow-y, mid-y) show a movement-related increase in
activity during finger movements and are characterised by distinct temporal-spectral-
spatial profiles.

e We found strong evidence for a positive relationship between slow-y (~¥30-60Hz)
peak frequency and endogenous GABA signalling during movement preparation (as
assessed using the TMS-metric short interval intracortical inhibition).

Abstract

Gamma activity (y, >30 Hz) is universally demonstrated across brain regions and species.
However, the physiological basis and functional role of y sub-bands (slow-y, mid-y, fast-y) have
been predominantly studied in rodent hippocampus; y activity in the human neocortex is
much less well understood.

Here we combined neuroimaging and non-invasive brain stimulation to examine the
properties of y activity sub-bands in the primary motor cortex (M1), and their relationship to
both local GABAergic activity and to motor learning. In 33 healthy individuals, we quantified
movement-related y activity in M1 using magnetoencephalography, assessed GABAergic
signaling using transcranial magnetic stimulation (TMS), and estimated motor learning via a
serial reaction time task.

We characterised two distinct y sub-bands (slow-y, mid-y) which show movement-related
increase in activity during unilateral index finger movements and are characterised by distinct
temporal-spectral-spatial profiles. Bayesian correlation analysis revealed strong evidence for
a positive relationship between slow-y (~¥30-60Hz) peak frequency and endogenous GABA
signalling during movement preparation (as assessed using the TMS-metric short interval
intracortical inhibition). There was also moderate evidence for a relationship between power
of the movement-related mid-y activity (60-90Hz) and motor learning. These relationships
were neurochemically- and frequency-specific.

These data provide new insights into the neurophysiological basis and functional roles of y
activity in human M1 and allow the development of a new theoretical framework for y activity

in the human neocortex.
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Significance Statement

Gamma (y) activity is ubiquitous in the brain, yet our understanding of the mechanisms and
function of y activity in the human neocortex, and particularly in the human motor cortex, is
limited. Using a multimodal approach, we characterised two patterns of movement-related y
activity in the human motor cortex (slow-y and mid-y), with different spatial, temporal and
spectral properties. Slow-y peak frequency was correlated to local GABA-A activity, whereas
mid-gamma power predicted performance in a subsequent motor learning task. Based on
these findings and previous research, we propose a theoretical framework to explain how
human motor cortical y activities may arise and their potential role in plasticity and motor

learning, providing new hypotheses to be tested in future studies.
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1 Introduction

Activity within the gamma band (y, >30 Hz) is ubiquitous across the mammalian brain. This
broad frequency band is commonly divided into three sub-bands: slow-y (human: ~30-60Hz:
rodent: ~¥30-50Hz), mid-y (human: ~60-90Hz; rodent: ~50-100 Hz) and fast-y (human: >90 Hz;
rodent: >100 Hz). To date, y activity has been mainly explored in rodent hippocampus, where
the sub-bands of this activity arise from separate locations (Schomburg et al., 2014; Lasztdczi
and Klausberger, 2016), reflect distinct microcircuits (Bragin et al., 1995; Colgin et al., 2009;
Fernandez-Ruiz et al., 2017), and have different functional roles (Carr and Frank, 2012; Colgin,
2015). Considerably less is known about the neurophysiological bases and functional roles of

the y sub-bands in the human neocortex.

In the human motor system, a movement-related increase in y power (y event-related
synchronization [y ERS]) has been described (Crone et al., 1998; Pfurtscheller and Lopes da
Silva, 1999; Canolty et al.,, 2006; Cheyne et al., 2008; Muthukumaraswamy, 2010, 2011;
Cheyne, 2013). This has been most frequently reported for the mid-y band (i.e. mid-y ERS),
which occurs only during actual rather than imagined movement (Muthukumaraswamy,
2011), shows spatial specificity to the primary motor cortex (M1, (Crone et al., 2006)) and
temporal specificity to the time of the movement. Mid-y has been suggested to play a role in
afferent proprioceptive feedback or relate to more active motor control processes (Miller et
al., 2010; Muthukumaraswamy, 2010), and its pro-kinetic role has been demonstrated in a
number of studies (Joundi et al., 2012; Swann et al., 2016, 2018). In humans, slow-y has been
considerably less well characterised. Only few studies have reported movement-related slow-
y activity in the M1 (Crone et al., 1998; Szurhaj et al., 2006). Their data suggested that slow-y
has a distinct spatio-temporal profile and plays a functional role in synchronising activity of

neuronal populations involved in movement.

Slow-y and mid-y likely share some physiological similarities. Empirical animal studies and
computational modelling have demonstrated that GABAergic interneuron-mediated
inhibition of pyramidal cell activity generates y activity in M1 (Gonzalez-Burgos and Lewis,
2008; Sohal et al., 2009; Buzsaki and Wang, 2012). Despite initial findings in humans relating
y activity in M1 to GABA (Gaetz et al., 2011) it remains to be determined how closely these

data, which arise from in vitro and invasive in vivo recordings, translate into the y ERS seen in

4


https://doi.org/10.1101/2021.06.16.448658
http://creativecommons.org/licenses/by-nd/4.0/

O o0 N o u B W N R

e S
A W N L, O

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.16.448658; this version posted June 16, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

made available under aCC-BY-ND 4.0 International license.

Gamma and GABA in Human Motor Cortex Zich & Nowak et al.

human electrophysiological recordings. However, given the wealth of data implicating
changes in M1 GABAergic activity during motor learning (Stagg et al., 2011), y activity may
reflect a mechanism by which decreases in local GABAergic signalling mediates behavioural
improvements. In line with this hypothesis, our group recently demonstrated that 75 Hz tACS
applied to M1 leads to a significant reduction in local GABA-A activity, as assessed by
transcranial magnetic stimulation (TMS, (Nowak et al., 2017)). Moreover, this 75 Hz tACS-
induced change in GABA-A activity was closely correlated with an individual’s motor learning

ability.

The present study aims to investigate the relationship between M1 GABAergic signalling, M1
y activity and motor learning in humans. We characterized M1 y activity in 33 young healthy
individuals during unilateral index finger movement using magnetoencephalography (MEG),
to address the hypotheses that an individual’s M1 movement-related y activity is related to

TMS measure of local GABA-A activity and the ability to learn a motor task.
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2 Methods

2.1 Participants
33 individuals (age 24.9 years, range: 21-30 years; 14 male) gave their informed consent to
participate in the study in accordance with Central University Research Ethics Committee
approval (University of Oxford; MSD-IDREC-C2—-2014-026 and MSD-IDREC-C1-2015-010). All
participants were right-handed as assessed by the Edinburgh Handedness Inventory (Oldfield,
1971), had no history of neurological or psychiatric disorders, no metal implants, and reported
no other contraindications to TMS or MEG. A subset of these data formed part of a previous

publication (Nowak et al., 2017).

2.2 Experimental Design
All individuals completed all parts of the study on the same day in the following order: MEG
data recording during rest and during a Go/NoGo task, a motor learning task (ML) and a

response time task (RT) outside the MEG, and TMS during rest and RT task (Fig. 1a).

MEG data acquisition
MEG data were acquired with a whole-head 306-channel Elekta Neuromag system (204 planar
gradiometers, 102 magnetometers). Concurrent surface electromyography (EMG) of the right
extensor digitorum communis and first dorsal interosseous (FDI) muscle were recorded using
bipolar surface electrodes. Both MEG and EMG data were sampled at 1000 Hz with a band-
pass filter of 0.03-330 Hz. Head position was continuously monitored with respect to the MEG
sensors using four head-position (HPI) coils. The locations of HPI coils and of three anatomical
fiducials (the nasion and two preauricular points) were digitized using a 3D tracking system
(Polhemus, EastTrach 3D) to define the subject-specific cartesian head coordinate system. In
addition, vertical and horizontal electrooculogram electrodes were used to allow for detection
and removal of eye-blink artefacts. MEG data were acquired during a Go/NoGo task. A blue
circle cue, presented for 200 ms, instructed participants to prepare for an abduction of the
index finger of their right hand. The cue was then replaced by a fixation cross for 1000 ms (cue
- stimulus interval). A subsequent visual stimulus presented for 200 ms (coloured circle: green
for Go or red for NoGo) indicated whether they should perform (Go) or withhold (NoGo) the
prepared response. Participants were instructed to respond as quickly as possible on the Go

trials. The stimulus was then replaced by a fixation cross for a duration that varied randomly
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between 2000 and 4000 ms (inter-trial interval). The task consisted of a total of 70 trials and
lasted ~5 min. NoGo trials (20% of all trials) were introduced to encourage participants’
attention to the task. Stimuli were generated using the MATLAB Psychophysics Toolbox
version 3.0 package (Brainard, 1997) and back-projected (Panasonic DLP Projector, PT
D7700E) onto a screen at a viewing distance of 120 cm with a spatial resolution of 1024 by

768 pixels and a refresh rate of 60 Hz.

Motor learning task
Outside the MEG, individuals performed a visually cued motor sequence learning task which
has been described previously (Nowak et al., 2017). Briefly, individuals were presented with
four horizontal bars on a screen, each of which corresponded to a key on the keyboard. When
a bar changed into an asterisk, individuals were instructed to press the corresponding key as
quickly and accurately as possible. The task included sequence blocks consisting of three
repeats of a 10-item sequence. The first and 15th blocks consisted of 30 visual cues presented

in a random order.

Response time task
Individuals performed also a simple RT task consisting of 20 trials to characterize their
individual RT for the subsequent TMS measurement. Individuals were instructed to respond
to a visual Go signal (coloured green circle) by performing an index finger abduction of the
right hand as quickly as possible. Visual stimuli appeared at random intervals (5-7 s) and the
individuals were instructed to avoid anticipation of the Go signal and to relax their hand while
the fixation cross was displayed on the screen. Stimuli were generated using the MATLAB
Psychophysics Toolbox version 3.0 package (Brainard, 1997). Surface EMG was recorded via
disposable neonatal ECG electrodes (Henley’s Medical) from the FDI of the right hand using a
belly-tendon montage with a ground electrode over the ulnar styloid process. Signals were
sampled at 5 kHz, amplified, filtered (10-1000 Hz), and recorded using a CED 1902 amplifier, a
CED micro1401 A/D converter, and Signal software version 3.13 (Cambridge Electronic

Design).
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TMS data acquisition
All TMS data were acquired using a monophasic BiStim machine connected to a 70 mm figure-
of-eight coil (Magstim). The left M1 FDI motor hotspot, i.e. the position where single-pulse
motor evoked potentials (spMEPs) could be elicited in the in the right FDI muscle at the lowest
stimulator intensity, was targeted. The TMS coil was held at 45° to the midsagittal line with
the handle pointing posteriorly. The hotspot was marked on a tight-fitting cap to ensure
reproducible coil positioning. Surface EMG data were recorded in the same manner as during

the RT task.

First, resting motor threshold (rMT) and active motor threshold (aMT) were determined. rMT
was defined as the minimum stimulus intensity required for eliciting spMEPs of ~1 mV peak-
to-peak amplitude in at least 5/10 trials in the relaxed FDI muscle. aMT was defined as the
minimum stimulus intensity necessary to evoke spMEPs of ~200 uV peak-to-peak amplitude
in at least 5/10 trials while individuals maintained ~30% of the maximum contraction of the

FDI.

Local GABA-A synaptic activity was assessed using short interval intracortical inhibition (SICI)
with an interstimulus interval of 2.5 ms (Kujirai et al., 1993; Di Lazzaro et al., 2005). The
conditioning stimulus was set at 70% of aMT and the test stimulus at rMT. spMEP and SICI
were measured in pseudorandomized order with fifteen trials per condition, both at rest and
during the pre-movement period of the simple RT task (same RT task as performed prior to
TMS). TMS measures were collected at two different times during movement preparation: an
early time point (25% of mean RT) and a late time point (65% of mean RT), resulting in four
different pre-movement protocols: SpMEPearly, SPMEPIate, SIClearly and SICliate. The 25% and 65%
RT were adjusted to each individual’s mean RT according to a previously described procedure
(Murase et al., 2004; Hummel et al., 2009). Fifteen trials per condition and time point were

recorded.

2.3 Data analysis
MEG data analysis
External noise was reduced from MEG data by means of spatio-temporal signal-space

separation (TSSS) and head movements (detected using HPI coils) corrected, both using
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MaxMove software as implemented in MaxFilter version 2.1 (Elekta Neromag, Elekta,
Stockholm, Sweden). Further MEG data analyses were performed using the in-house OHBA
Software Library (OSL: https://ohba-analysis.github.io/osl-docs/) version 2.2.0. Registration
between a structural MRI template, i.e. MNI152 standard-space T1-weighted average
structural template image, and MEG data was performed with RHINO (Registration of
Headshapes Including Nose in OSL) using nose and fiducial landmarks for coregistration and a

single shell as forward model.

Continuous data were down-sampled to 500 Hz. Further, a band-pass filter (5-245 Hz) and
several notch filters were applied (49-55 Hz, 99-101 Hz, 149-151 Hz, 199-201 Hz). A wider
notch filter around 50 Hz was used to supress 50 Hz line noise and a 53 Hz artefact present in
this dataset caused by the HPI coils. Time segments containing artefacts were identified by
using generalized extreme studentized deviate method (GESD (Rosner, 1983)) at a significance
level of 0.05 with @ maximum number of outliers limited to 20% of the data on the standard
deviation of the signal across all sensors in 1 s non-overlapping windows. The windows
corresponding to outliers were excluded from all further analysis. Further denoising was
applied using independent component analysis (ICA) using temporal FastICA across sensors
(Hyvarinen, 1999). 62 independent components were estimated and components
representing stereotypical artefacts such as eye blinks, eye movements, and electrical
heartbeat activity were manually identified and regressed out of the data. Data then were
filtered into three frequency bands (B 13-30 Hz, slow-y 30-60 Hz, mid-y 60-90 Hz) and the

following processing steps were performed separately for the three frequency bands.

Magnetometers and Planar-Gradiometers were normalized by computing the eigenvalue
decomposition across sensors within each coil type and dividing the data by the smallest
eigenvalue within each (Woolrich et al., 2011). Data were projected onto an 8 mm grid in
source space (resulting in 3559 virtual sensors) using a Linearly Constrained Minimum
Variance (LCMV) vector beamformer (Van Veen and Buckley, 1988; Woolrich et al., 2011).
Beamformer weights were estimated across an 8 mm grid cast within the inner-skull of the
MNI152 brain. A covariance matrix was computed across the whole time-course and was
regularized to 50 dimensions using principal component analysis (PCA) rank reduction (Quinn

et al., 2018).
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Epochs were defined relative to the movement onset (movement offset for B ERS) as
identified by surface EMG. To identify movement onset and offset EMG data were first high-
pass filtered at 10 Hz. EMG data were then segmented from -1 s to 3 s relative to the Go
stimuli, and the envelope (root mean square, window = 80 ms), computed. Using a non-
overlapping moving standard deviation (movement onset: window = 24 ms, direction =
forward; movement offset: window = 120 ms, direction = backwards) movement onset and
offset were defined as the first window exceeding the threshold (three standard deviations of
the EMG activity between -600 ms to -200 ms relative to Go stimuli). Trials were excluded
when the envelope, the reaction time (i.e. time between Go stimuli and movement onset), or
the movement time (i.e. time between movement onset and offset) were identified as outliers
using GESD at a significance level of 0.05. This approach results in 45.59 (SD = 4.88) out of 56
epochs per individual. MEG data were segmented from -2 s to 2 s relative to movement onset

(movement offset for § ERD).

Time-frequency analysis was applied to single trials and virtual sensors using dpss-based
multitaper (window = 1.6 s, steps = 200 ms) with a frequency resolution of 1 Hz. Segments
were baseline corrected (-1sto-0.5s, [-1.5sto -1 s for B ERD]) using the mean baseline across
all trials. This procedure results in trial-by-trial time-frequency decomposition for each of the
3559 virtual sensors. To detect the individual peak frequency within each frequency band only
the virtual sensors within M1, following the Desikan-Killiany atlas, (N = 92) were considered.
Trial-wise movement-related power was obtained by averaging across time, i.e. from
movement onset to movement offset (from movement offset to movement offset + 1 s for B
ERS) and then averaged across trials. The maximum (minimum for B ERD) of the resulting two-
dimensional matrix containing the power between movement on- and offset across trials at
each frequency within the frequency band at each virtual sensor was defined as an individual’s

power and defined the individual’s peak frequency and virtual sensor (Fig. 1b).

To illustrate the spatial properties of movement-related responses we computed the
movement-related power (as above, first averaging across time, i.e. from movement onset to
movement offset [from movement offset to movement offset + 1 s for B ERS] and then

averaged across trials) at the individual’s peak frequency for each of the 3559 virtual sensors.

10
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Fig.1 (a) Experimental timeline. MEG data were recorded while individuals performed a
Go/NoGo task (70 trials). Each trial started with a preparation cue (blue circle, for 200 ms),
followed by a cue-stimulus interval (fixation cross, 1000 ms) and the Go (green circle, 80% of
the trials) or NoGo (red circle) cue. After the MEG participants performed a visually cued
motor sequence learning (ML) task (4 fingers, 10-item sequence, 3 repeats per block, 15
blocks). Individuals also performed a simple response time (RT) task (20 trials) to determine
their individual RT. Each trial started with a green circle indicating to perform an index finger
abduction followed by a fixation cross indicating the inter-trial interval. TMS measures (single-
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pulse MEP [spMEP] and short interval intracortical inhibition [SICI]) were performed at rest
and during the RT task. During the RT task, spMEP and SICI were obtained at two different
timings during movement preparation: an early time point (25% of mean RT, spMEPecary,
SIClearty) and a late time point (65% of mean RT, SpMEPiate, SICliate). (b) Pipeline used to identify
the individuals’ peak frequency for B ERD, B ERS, slow-y ERS, mid-y ERS, exemplary for one
individual for slow-y ERS. For each individual trial the power from movement onset to
movement offset (movement offset to movement offset + 1 s for B ERS), as determined by
EMG and indicated by the black vertical lines, was averaged for each frequency band and
virtual sensors within the M1 separately (top left). This resulted in movement-related power
(post-movement-related power for B ERS) for each frequency, M1 virtual sensor and trial
(bottom left). The maximum (minimum for B ERD) of the average across trials (right) indicates
the individuals’ power, peak frequency (dashed horizontal line) and virtual sensor within M1
(dashed vertical line). Virtual sensors are ordered based on MNI z-coordinates and color-
coded accordingly (e.g. small index = yellow = inferior).

Motor learning data analysis
To derive an accurate motor learning score, individual RTs (i.e. time from cue onset to the
correct button press) were first evaluated. Anticipatory responses (i.e. those that occurred
before the cue) and outliers (i.e. RTs outside of the mean value + 2 SD per each block) were
discarded. A motor learning score was calculated for each individual as a percentage change
from the RT in the first sequence block (block 2) to blocks 10-14, when the learning plateaued
(Stagg et al., 2011). Thus, more negative motor learning scores represent better performance.

One individual was excluded from this analysis due to noncompliance with instructions.

Response time task data analysis
EMG data were analysed online using Signal software version 3.13 (Cambridge Electronic
Design). RT was identified for each trial as the time interval between the Go signal and the
onset of EMG activity recorded above the FDI muscle (i.e. mV first data point where EMG
amplitude >0.1 mV). The mean RT was then used in the remainder of that experimental

session to calculate the timing of the pre-movement TMS pulses.

MEP data analysis
Trials were excluded if the test pulse alone failed to elicit a reliable MEP (amplitude <0.1 mV),
there was precontraction in the target FDI muscle (EMG amplitude >0.1 mV in the 80 ms
preceding the pulse), or, for the pre-movement TMS measures, EMG onset coincided with
TMS pulse or no response was made. The peak-to-peak amplitude for each MEP was then

calculated. Any MEPs outside of the mean value * 2 SD for each condition for each block were
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excluded. Next, a single iteration of Grubbs’ test with a significance level of 0.05 was
performed for each TMS condition separately and any significant outliers excluded.
Collectively, these rejection criteria resulted in the exclusion of <5 trials per individual in any
condition. SICl and ICF were expressed as a ratio of the mean conditioned MEP amplitude to
the mean unconditioned MEP amplitude. For the pre-movement data, the TMS measures

were analysed separately for each pre-movement time point (25% and 65% RT).

2.4  Statistical analysis
All Frequentist statistics were conducted as implemented in SPSS version 25 (SPSS Inc,
Chicago, IL, USA). As Bayesian inference allows multiple hypotheses to be tested and can
calculate the probability that one hypothesis is true relative to another hypothesis, correlation
analysis was performed using Bayesian inference (JASP, JASP Team 2019, version 0.11.1) with
default priors after outlier removal. The Bayes factors (BFs) is the ratio of the likelihood of one
particular hypothesis to the likelihood of another. We categorise BFs based using the heuristic
classification scheme for BFio (Lee and Wagenmakers, 2013, p.105; adjusted from Jeffreys,
1961). Thus, for example, BFip = 10-30 denotes strong evidence, BFio = 3-10 moderate, and
BF10 = 1-3 anecdotal evidence for Hi, while BF1p = 1/3-1 denotes anecdotal, BF10 = 1/10-1/3
moderate, and BFip = 1/30-1/10 strong evidence for Ho. Outliers were identified for each
correlation separately by bootstrapping the Mahalanobis distance (Schwarzkopf et al., 2012).
To statistically compare correlations, Fisher’s z-transformation was applied to each correlation

coefficient, resulting in normally distributed values r’ with standard errors sr. The null

hypotheses (r'1—r'2=0) were tested in R(psych) (Revelle, 2015) using Student t test (Howell,

2011). Reported p-values are 2-tailed.
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3 Results

3.1 MEG reveals expected ERD and ERS in the beta band
Clear movement-related changes in power were observed in all three frequency bands (B,
slow-y, mid-y), characterized by different spectra-temporal-spatial properties. We observed a
clear B ERD during movement and a B ERS after movement termination. In line with previous
studies, the B ERD started before movement onset, plateaued between movement onset and
offset, and terminated after movement offset (Fig. 2a, bottom left). The mean B ERD peak
frequency was 19.33 Hz (range 15-26 Hz). There was moderate evidence for a lack of
relationship between peak frequency and power (r = 0.011, BF10 = 0.22) across individuals.
Again, consistent with prior observations, the B ERS started after movement offset and lasted
for roughly 1 s (Fig. 2a, bottom right). The mean B ERS peak was 18.21 Hz (range 14-25 Hz).
There was anecdotal evidence for a lack of relationship between peak frequency and power

(r=-0.284, BF1 = 0.74).

3.2 Two distinct patterns of movement-related y activity
We then wanted to investigate movement-related activity in the y bands. In the slow-y band
we observed a strong ERS, which started after movement onset, reached its peak at the time
of movement offset, and decreased after movement offset, suggesting that the slow-y ERS
was temporally aligned with movement offset (Fig. 2a, center left). The mean slow-y peak
frequency was 43.06 Hz (range 35-57 Hz), and moderate evidence for a lack of relationship
between peak frequency and power was found (r = -0.034, BF10 = 0.22). In the mid-y band we
also observed an ERS. This ERS started at movement onset, reached its peak between
movement onset and offset, and terminated around movement offset (Fig. 2a, top left),
therefore showing a temporal alighment with movement, unlike the slow-y ERS. The mean
mid-y peak frequency was at 71.36 Hz (range 63-80 Hz), and there was anecdotal evidence for

a lack of relationship between peak frequency and power (r = 0.249, BF1o = 0.55).

To our knowledge, while movement-related slow-y has been reported previously (Crone et al.,
1998; Szurhaj et al., 2006), its properties have not been fully characterised. We therefore
sought to investigate whether this pattern of neural activity was distinct from the movement-
related B ERS and mid-y ERS. We performed four Bayesian pairwise correlations to test

whether the peak frequency or power of the slow-y ERS was related to these measures
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derived from the B ERS or mid-y ERS (Fig. 2b). We found moderate evidence for a lack of
relationship between slow-y ERS and B ERS peak frequency (r = -0.196, BFio = 0.38) and
anecdotal evidence for a lack of relationship between slow-y ERS and mid-y ERS peak
frequency (r = 0.088, BF1o = 0.26). In terms of power, there was moderate evidence for a lack
of a relationship between slow-y ERS and B ERS (r =-0.019, BF10 = 0.22), but strong evidence
for a relationship between slow-y ERS and mid-y ERS (r = 0.514, BF1p = 12.61).
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Fig.2 Temporal and spectral properties of movement-related responses. (a) Changes in power
relative to baseline (-1 to -0.5 s relative to movement onset [-1.5 to -1 s relative to movement
offset for B ERS], as indicated by the grey vertical lines). Data are locked to movement onset
(movement offset for B ERS, as identified by EMG and highlighted by the black vertical line).
Black line represents the distribution of movement offsets (movement onsets for B ERS) of
trials included in the analysis. Side panel histograms illustrate the distribution of individual
peak frequency (bin size = 1 Hz). (b) Correlations for peak frequency (left) and power (right)
between slow-y ERS and B ERS (bottom) as well as slow-y ERS and mid-y ERS (top). Dashed
lines represent the 95% confidence intervals.

Next, we examined the spatial properties of the movement-related slow-y ERS compared with

the B ERD, B ERS and mid-y ERS. We considered the group-heatmaps of the peak virtual
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sensors and power maps. In line with previous findings, the group-heatmaps of the peak
virtual sensors for B ERD and B ERS were relatively focal with the hotspot posterior and
relatively central on the superior-inferior axis within the M1 (Fig. 3a). In contrast, the hotspot
for the slow-y was more superior and central on the anterior-posterior axis. Finally, the
heatmap for the mid-y was less focal, encompassing the hotspot of the B and the slow-y

frequency range.

The spatial pattern of the power maps was qualitatively comparable for B ERD, B ERS and mid-
v with peaks in central on the superior-inferior axis and the anterior-posterior axis within M1
(Fig. 3b). In contrast, the spatial map of the slow-y was qualitatively more anterior within the

M1 and extended to frontal areas.

Power (db)

Fig.3 Spatial properties of movement-related responses. (a) Heatmap of the number of
selected virtual sensors within M1. For visualisation data are interpolated. (b) Power maps,
i.e. power averaged from movement onset to movement offset (movement offset to
movement offset + 1 s) at each of the of the 3559 virtual sensors at the individuals’ peak
frequency (i.e. frequency with strongest positive [negative for B ERD] power change from
baseline within M1).

3.3 Slow-y ERS peak frequency is related to individuals’ GABA-A activity during
movement preparation
Next, we investigated the neurophysiological underpinnings of the movement-related activity
we observed. In line with our hypothesis that movement-related activity in the y band is
related to movement-related GABA-A activity, we found strong evidence for a positive
relationship between pre-movement SICI amplitude and slow-y peak frequency (r = 0.677,

BF10 =18.13). There was moderate evidence for a lack of relationship between pre-movement
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SICI amplitude and peak frequency in other bands (B ERD: r = -0.010, BF10 = 0.29; B ERS: r =
0.061, BF10=0.29; mid-y: r=0.07, BF1po = 0.295, Fig. 4, left). The observed relationship between
pre-movement SIClI and slow-y peak frequency was significantly different from the

relationships observed in other bands (SICI and slow-y peak frequency vs SICl and B ERD peak

frequency: z = -2.26, p = 0.024; SICI and slow-y peak frequency vs SICI and B ERS peak

frequency: z = -2.10, p = 0.036; SICI and slow-y peak frequency vs SICI and mid-y peak

frequency: z =-2.07, p = 0.039).

Having demonstrated a significant relationship between pre-movement SICI and slow-y peak
frequency, we then wished to explore the temporal specificity of this effect. Therefore, we
investigated the relationship between pre-movement SICI and slow-y peak frequency, for
SIClearly and SICliate Separately, in post-hoc analyses. There was anecdotal evidence for a
positive relationship between slow-y peak frequency and GABA-A activity early in movement
preparation (SICleary, r = 0.433, BF1o = 1.78) and strong evidence for a positive relationship
between slow-y peak frequency and GABA-A activity late in movement preparation (SICliate, r
= 0.641, BF10 = 10.41). There was no significant different between these two correlations (z =
-0.84, p = 0.401). There were no significant correlations between the peak frequency of any

band and subsequent motor learning.

3.4 Mid-y power correlates with subsequent motor learning
Finally, we wished to investigate the behavioural importance of these movement-related

signals.

Firstly, it was important to determine whether participants were able to learn the task. As
expected, RT decreased significantly across successive sequence blocks (F(1a,336) = 9.015; p <
0.001). In contrast, there was no significant difference in mean RT between the two random
blocks (t(32) = 0.885; p = 0.383), whereas there was a significant difference between block 14
(the final learning block) and block 15 (the second random block) (t;2s) = -6.899; p < 0.001),
suggesting that improvements in RT occurred via learning of a specific sequence and not
generic skill learning. There was also no significant difference between the RT from blocks 10-

14, which were on the plateau of the learning curve (F,108) =0.440; p = 0.780).
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In line with our hypothesis, we found moderate evidence for a negative relationship between
motor learning score and mid-y power (r = -0.481, BF1 = 7.13, Fig. 4 right), such that higher
mid-y power was related to greater motor learning. There was moderate evidence for a lack
of relationship between motor learning score and power in other bands (B ERD: r=0.166, BF1o
=0.33; BERS: r=-0.056, BF10=0.23; slow-y: r=-0.281, BF10 = 0.684). The observed relationship
between motor learning score and mid-y power was different from the relationship between
motor learning score and B ERD power (z =-2.55, p = 0.011) and B ERS power (z=-1.72,p =

0.085). There were no significant relationships between the power in any band and SICI.
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Fig.4 Relationship between MEG peak frequency and SICl amplitude (left) and MEG power and
motor learning score (right) for B ERD (bottom blue),  ERD (bottom pink), slow-y (middle) and
mid-y (top). Dashed lines represent the 95% confidence intervals. ° p < 0.1, * p < 0.5.
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4 Discussion

This work aimed to examine the physiological basis and functional significance of movement-
related M1 y activity. We identified two distinct patterns of movement-related y activity in
M1, characterised by different temporal-spectral-spatial properties. We went on to
investigate the physiological correlates of these, and identified a correlation between M1
slow-y peak frequency and pre-movement SICI amplitude in M1, such that individuals with a
higher slow-y peak frequency showed less GABA-A activity. Finally, in line with previous work
we found that a higher M1 mid-y power was related to better individual performance in a

motor learning task.

4.1 Two distinct movement-related patterns of y activity
Animal studies and human direct cortical recordings have suggested the presence of two
distinct patterns of activity within the y band in M1, but until now it has proved difficult to
robustly separate them with transcranial approaches. By optimising our MEG analysis, i.e.
separate beamformer for each sub-band and high-precision peak frequency/spatial location
estimation, we have demonstrated the presence of two movement-related y activity patterns

within M1.

Given the paucity of previous transcranial studies focussing on slow-y movement-related
activity, we first examined whether the slow-y activity seen here represented a distinct neural
activity pattern, or was merely an extension of either post-movement B ERS or movement
mid-y ERS. We then reasoned that if the slow-y ERS reflected activity within the same local
microcircuits as either the post-movement 3 ERS or movement mid-y ERS we would expect to
observe systematic relationships on a subject-by-subject basis between slow-y and B or mid-
v. We only found a relationship between slow-y ERS power and mid-y ERS power. The absence
of other relationships add weight to the hypothesis that the slow-y ERS is a distinct movement-
related activity pattern but is in itself not conclusive. We therefore went on to investigate both
the temporal and spatial domain of the slow-y ERS, demonstrating that it is dissociable from
both the post-movement $ ERS and movement mid-y ERS in both of these domains. Slow-y
ERS appeared to be temporally aligned with the movement offset, rather than movement
onset, like the mid-y ERS, or post-movement, like B ERS, and has a spatial distribution that is

more frontal than either the mid-y ERS, which is more localised to M1 or the beta-ERS.
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Taken together, the data suggest that two distinct patterns of movement-related y activity are
seen in the human M1. The next question we aimed to address is the likely cellular basis of

these two distinct y activity patterns.

4.2 Slow-y activity likely arises from superficial cortical layers
A commonly held hypothesis states that activity in the lower cortical layers is predominantly
slower than that in the more superficial layers (i.e. frequency-layer gradient), reflecting the
different functional roles of superficial and deep layers. This is supported by animal studies in
primary sensory areas (e.g. (Roopun et al., 2006; Buffalo et al., 2011; Spaak et al., 2012;
Haegens et al., 2015)). Moreover, human laminar MEG showed that visual a activity and
sensorimotor B activity localise more to the white matter surface approximating infragranular
origin than to the pial surface, while visual and sensorimotor y activity localise more to the
pial surface approximating supragranular origin than to the white matter surface (Bonaiuto et
al., 2018). However, there is also evidence challenging the frequency-layer gradient by
suggesting deeper cortical layers as origin for y activity. For example, in the visual cortex of
behaving mice, y activity has been linked to parvalbumin (PV)-positive GABAergic
interneurons (Chen et al., 2017), which are most densely populated in layer V (Fagiolini et al.,
2004; Sohal et al., 2009). Further, auditory in vitro work revealed two distinct y activities, 30-
45 and 50-80 Hz, originating in layer II/1ll and layer IV, respectively (Ainsworth et al., 2011).
The precise neural basis of y activity in the primary M1, as opposed to primary sensory regions,
has yet to be determined (Whittington et al., 2011). Translating the findings directly from
studies performed in the sensory areas to M1 must be done with care, as the circuit
organisation of M1 differs fundamentally from that of sensory areas, not least in that it is

agranular, lacking a distinct layer IV (Shipp, 2005; Shipp et al., 2013).

To explore whether M1 movement-related B and/or y activity arises from superficial cortical
layers, we tested the relationship between B, slow-y and mid-y and SICI amplitude, a direct
measure of local cortical GABA-A activity, quantified via TMS. TMS preferentially stimulates
more superficial neurons, particularly at the intensities used here (Siebner et al., 2009).
Further, computational modelling studies have demonstrated that TMS effects can be

explained by activity within the canonical microcircuit, which includes layer 1I/1ll and layer V
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excitatory pyramidal cells, inhibitory interneurons, and cortico-cortical and thalamo-cortical
inputs (Di Lazzaro and Ziemann, 2013). We demonstrated a specific relationship between local
GABA-A activity and slow-y activity, which was not observed for either the B or mid-y activity.
Importantly, different microcircuits within M1 have distinct patterns of GABA-A receptor
morphology in terms of their a subunits. SICI has been demonstrated to primarily represent
activity within cortical microcircuits involving interneurons that express GABA-A receptors
with a-2 and a-3 subunits, rather than a-1 (Di Lazzaro et al., 2007). a-1 subunits are found at
highest density in layer V of the healthy human M1, whereas a-2 subunits are more common
in the superficial layers, and a-3 are fairly equally distributed across the cortical layers (Freund,

2003; Petri et al., 2003).

In summary, the data presented here suggest that movement-related slow-y activity arises
from neuronal circuits containing layer II/1ll interneurons. The functional role of movement-
related slow-y activity is less clear. Previous work has postulated that it may directly reflect

motor output (Crone et al., 1998).

4.3 Mid-y activity may reflect activity in learning-related microcircuits

In light of the significant correlation between slow-y and SICI amplitude the absence of the
same relationship for mid-y could be interpreted in at least two ways. First, in human M1 slow-
vy and mid-y steam both from superficial layers, but from different populations or
microcircuits, with the one underlying slow-y, but not mid-y, being GABAergic as measured
using SICI. This would be in line with the frequency-layer gradient reported in sensory areas
(Roopun et al., 2006; Buffalo et al., 2011; Spaak et al., 2012; Haegens et al., 2015; Bonaiuto et
al., 2018).

Second, while slow-y arises superficially mid-y arises from deeper layers, such as layer V. This
is in conformity with other animal work in sensory areas (Sohal et al., 2009; Ainsworth et al.,
2011; Chen et al.,, 2017) and the supported by the functional role of M1 mid-y. We
demonstrated that the power of mid-y activity elicited by a simple movement predicted the
ability to learn a motor skill on a subject-by-subject basis. This is in line with previous work.
For example, we have shown that an individual’s response to 75 Hz tACS relates to their ability

to learn a subsequent motor skill (Nowak et al., 2017), and further, when amplitude
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modulated by an underlying theta pattern, improves motor learning in healthy adults (Akkad
et al., 2019). The finding of a specific relationship between mid-y activity and plasticity is
consistent with data from animal recordings suggesting that microcircuits containing a-1
GABA-A synapses, predominantly found in the PV-rich layer V in M1, are a major neural
substrate for plasticity, at least in the visual cortex (Fagiolini et al., 2004). Together, the origin
of mid-y activity is not completely understood, but mid-y activity seems to play a role in motor

learning.

4.4 Limitations
This study used non-invasive recordings to indirectly study changes in movement-related
activity in the motor cortex. While this approach provides an unrivalled ability to understand
activity in the healthy human system, it has inherent limitations in terms of the conclusions
we can draw. Specifically, here, it was difficult to accurately quantify activity around 50 Hz due
to power line noise. In addition, due to an artefact caused by the HPI coils at 53 and 54 Hz, we
had to widen the standardly-employed line noise notch filter to 49-55 Hz. This had direct

implications on our assessment of the peak frequency of slow-y ERS.

4.5 Conclusions
The findings presented here allow us to create a theoretical framework for y activity in the
human M1, as follows: there are two patterns of movement-related y activity in the human
motor cortex (slow-y and mid-y), with differential temporal, spectral and spatial properties.
The frequency of movement-related slow-y activity is related to our neurophysiological
measure of GABA-A activity, but does not play a direct role in motor plasticity in vivo. We
conclude that slow-y arises from alpha-2 and alpha-3 GABA-A microcircuits in layer 1I/11l. Mid-
y activity predicts motor learning, but weather it originates layer /11l or V is not yet clear. This
framework draws together findings from this paper and the literature, and provides a number

of hypotheses that can be directly tested.
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