

1 **Cross-species metabolomic analysis of DDT and Alzheimer's disease-
2 associated tau toxicity**

3 Vrinda Kalia¹, Megan M. Niedzwiecki², Joshua M. Bradner¹, Fion K. Lau¹, Meghan L.
4 Bucher¹, Katherine E. Manz³, Zoe Coates Fuentes², Kurt D. Pennell³, Martin Picard⁴,
5 Douglas I. Walker², William T. Hu⁵, Dean P. Jones⁶, Gary W. Miller¹

6

7 ¹ Department of Environmental Health Sciences, Mailman School of Public Health,
8 Columbia University, New York, NY, USA

9 ² Department of Environmental Medicine and Public Health, Icahn School of Medicine at
10 Mount Sinai, New York, NY, USA

11 ³ School of Engineering, Brown University, Providence, RI, USA

12 ⁴ Department of Neurology, Department of Psychiatry, Columbia University Irving Medical
13 Center, New York, NY, USA

14 ⁵ Department of Neurology, Rutgers Biomedical and Health Sciences, New Brunswick,
15 NJ, USA

16 ⁶ Division of Pulmonary, Allergy and Critical Medicine, Department of Medicine, School of
17 Medicine, Emory University, Atlanta, GA, USA

18 Corresponding authors:

19 Gary W. Miller: gm2815@columbia.edu or Vrinda Kalia: vk2316@columbia.edu

20 722 W 168th street, New York, NY 10032

21

22

23 **Abstract**

24 **Background.** The formation of hyperphosphorylated tau (p-tau) protein tangles in
25 neurons is a pathological marker of Alzheimer's disease (AD). Exposure to the pesticide
26 dichlorodiphenyltrichloroethane (DDT) has been associated with increased risk of AD.

27 **Objectives.** To determine if there was a connection between DDT exposure and tau
28 toxicity we investigated whether exposure to DDT can exacerbate tau protein toxicity in
29 *C. elegans*. In addition, we examined the association between p-tau protein and
30 metabolism in a human population study and in a transgenic *C. elegans* strain neuronally
31 expressing a mutant tau protein fragment that is prone to aggregation.

32 **Methods.** In the human population study, we used a metabolome-wide association
33 framework to determine the association between p-tau measured in the cerebrospinal
34 fluid (CSF) and metabolomic features measured in both plasma (n = 142) and CSF (n =
35 78) using high-resolution metabolomics (HRM). Using the same HRM method, we
36 determined changes in metabolomic features in the transgenic *C. elegans* strain
37 compared to its control strain. Metabolites associated with p-tau in both species were
38 analyzed for overlap. We also examined the effect of DDT and aggregating tau protein
39 on growth, swim behavior, mitochondrial function, metabolism, learning, and lifespan in
40 *C. elegans*.

41 **Results.** Plasma and CSF-derived features associated with p-tau level were related to
42 drug, amino acid, fatty acid and mitochondrial metabolism pathways. Five metabolites
43 overlapped between plasma and *C. elegans*, and 4 between CSF and *C. elegans*. DDT
44 exacerbated the inhibitory effect of aggregating tau protein on growth and basal
45 respiration. In the presence of aggregating tau protein, DDT induced more curling and

46 was associated with reduced levels of amino acids but increased levels of uric acid and
47 adenosylselenohomocysteine. Developmental exposure to DDT blunted the lifespan
48 reduction caused by aggregating tau protein.

49 **Conclusion.** The model organism *C. elegans* can complement human studies by
50 providing a means to study mechanisms of environmental toxicants. Specifically, our *C.*
51 *elegans* data show that DDT exposure and tau protein aggregation both inhibit
52 mitochondrial function and DDT exposure can exacerbate the mitochondrial inhibitory
53 effects of tau protein aggregation providing a plausible explanation for the observed
54 human associations.

55

56 **Main text**

57 **Introduction**

58 In 2014, 5 million people in the US were living with Alzheimer's disease (AD). By 2060,
59 this number is projected to grow to 13.9 million (Matthews et al. 2019). Clinically, AD
60 manifests as dementia, a progressive deterioration of memory and cognitive function (Van
61 Cauwenbergh et al. 2016). Pathologically, AD is characterized by severe neuronal loss,
62 aggregation of amyloid- β (A β) in extracellular senile plaques, and formation of
63 intraneuronal neurofibrillary tangles consisting of hyperphosphorylated tau (p-tau)
64 protein. There is evidence that AD may be a metabolic neurodegenerative disease (de la
65 Monte and Wands 2008) as it has been associated with altered local and peripheral
66 metabolism in several studies. Through *in vitro*, animal model, and epidemiological
67 studies, investigators have found associations between tau neurofibrillary tangles and
68 impaired glucose metabolism (Bischof and Park 2015; Ossenkoppele et al. 2015, 2016),
69 altered mitochondrial trafficking, morphology and bioenergetics, and reduced ATP
70 production (Pérez et al. 2018). While aging is the strongest risk factor of AD, evidence of
71 risk factors for dementias show that lifestyle choices and the environment may modify
72 disease onset and alter the projected prevalence (Nichols et al. 2019). Indeed, using
73 untargeted high-resolution metabolomics (HRM), our group has uncovered plasma
74 derived metabolites from endogenous and exogenous sources associated with the
75 disease (Niedzwiecki et al. 2020; Vardarajan et al. 2020). If causally associated with the
76 disease, these metabolites may be modified or targeted to alter disease prevalence or
77 progression.

78 The role of the environment in AD pathogenesis has a controversial history (DeKosky and
79 Gandy 2014) but recent studies provide evidence of environmental chemical exposures
80 influencing disease risk. In a cross-sectional, case-control study, Richardson and
81 colleagues found that cases of AD had higher levels of a metabolite of the pesticide DDT
82 (1,1,1-trichloro-2,2-bis(p-chloro-phenyl) ethane) in their serum (Richardson et al. 2014).
83 DDT is a highly persistent, synthetic organochlorine pesticide used for pest control in
84 agricultural settings and to control vectors that can cause diseases like malaria and
85 typhus. It was widely used in the USA from 1939 to 1972, until its use was banned by the
86 US Environmental Protection Agency (EPA) (Turusov et al. 2002). Despite its regulation,
87 DDT and its metabolites remain persistent and can be detected in the blood of most of
88 the US population (National Report on Human Exposure to Environmental Chemicals |
89 CDC 2020). Additionally, DDT can be passed through breastmilk to infants, exposing
90 generations that have been born after its ban (Needham et al. 2011). DDT is still used for
91 vector control in some African and south Asian countries (van den Berg et al. 2017) and
92 can travel long distances through evaporation, distillation, and transport via winds and
93 ocean currents (Wania and Mackay 1996). Therefore, DDT poses a threat to the health
94 of populations living in countries where it is still produced and in countries that are further
95 away.

96 *Caenorhabditis elegans* (*C. elegans* or worms) is a non-parasitic nematode that has long
97 been used in neuroscience and developmental research; more recently it has been
98 gaining popularity as an *in vitro* model in toxicity testing. Studies in *C. elegans* show that
99 the toxicity ranking of several toxicants, including, but not limited to, metals,
100 organophosphate pesticides, ~ 60% of chemicals in the EPA's ToxCast™ Phase I and

101 Phase II libraries, known or suspected developmental toxicants, and metabolic toxicants,
102 is predictive of rat LD₅₀ values (Boyd et al. 2016; Cole et al. 2004; Harlow et al. 2016;
103 Hunt 2017; Hunt et al. 2012; Middendorf and Dusenbery 1993; Williams and Dusenbery
104 1988). The model is inexpensive and requires minimal laboratory expertise to maintain.
105 Several fundamental aspects of biology were discovered in *C. elegans* including
106 apoptosis, RNAi, and miRNA. Furthermore, *C. elegans* are the first complex organism
107 to have their genome sequenced (*C. elegans* Sequencing Consortium 1998), allowing
108 access to a large library of genetic mutant strains. The long history of its use in biology
109 and the conservation of several genes and pathways between worms and humans
110 (Kaletta and Hengartner 2006) makes the nematode model valuable for biological insight
111 (Brenner 1974; Corsi et al. 2015), particularly to study gene-environment interactions.
112 In this study, we use untargeted liquid chromatography (LC) with high-resolution mass
113 spectrometry to identify plasma and cerebrospinal fluid (CSF) derived metabolites
114 associated with p-tau levels measured in the CSF of individuals from a clinical study of
115 AD. We then compared metabolites associated with p-tau to the metabolic profile of a
116 transgenic strain of *C. elegans* that is a model of AD-related pathology which expresses
117 a mutant fragment of tau protein in all neurons (Fatouros et al. 2012). Using the same
118 mutant tau transgenic strain of *C. elegans* (Fatouros et al. 2012), we then tested the
119 effect of exposure to DDT on growth, behavior, metabolism, learning, and survival.

120

121 **Methods**

122 **1. Chemicals.** BD Bacto dehydrated agar, salts to make M9 buffer (monobasic potassium
123 phosphate, dibasic sodium phosphate, sodium chloride, magnesium sulfate), 1N sodium

124 hydroxide, p,p'-DDT (>95%), dimethyl sulfoxide (DMSO, 99.9%), acetone (99.8%, HPLC
125 grade), n-hexane (>=99%), dichloromethane (99.8%, HPLC grade), sodium azide (99%),
126 and 2-butanone (\geq 99.0%) were purchased from Fisher Scientific (Waltham, MA).
127 Carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP, > 98%) was purchased
128 from Sigma-Aldrich (St. Louis, MO). Certified reference standards for GC-HRMS
129 quantification were purchased from Accustandard (New Haven, CT), including o,p'-DDT,
130 p,p'-DDT, o,p'-DDE, p,p'-DDE, $^{13}\text{C}_{12}$ labeled p,p'-DDE, D₈ labeled p,p'-DDT,
131 phenanthrene D-10, and chrysene D-12. The hypochlorite solution used for
132 synchronization was prepared using household bleach (Clorox, 8% sodium hypochlorite),
133 water, and 1N sodium hydroxide.

134

135 **2. Human: participants and sample collection.** This study was approved by the Emory
136 University Institutional Review Board and the methods have been previously described
137 (Niedzwiecki et al. 2020). Briefly, subjects were recruited from the Emory Cognitive
138 Neurology Clinic and the Emory Alzheimer's Disease Research Center. Each subject
139 underwent a detailed neurological and neuropsychological evaluation. Subjects were
140 classified as having normal cognition (NC) if there was no subjective cognitive complaint
141 and neuropsychological analysis showed normal cognitive functioning for their age,
142 gender, education, and race; mild cognitive impairment (MCI) (Albert et al. 2011), or AD
143 dementia (McKhann et al. 2011) according to NIA-AA criteria (Niedzwiecki et al. 2020).
144 Plasma and CSF samples were collected and processed as described previously (Hu et
145 al. 2015; Niedzwiecki et al. 2020). CSF AD biomarker analysis was performed as

146 previously described using a Luminex 200 platform to determine levels of total tau (t-Tau),
147 and tau phosphorylated at threonine 181 (p-Tau₁₈₁) (Howell et al. 2017).

148

149 **3. *C. elegans* methods**

150 **3.1. *C. elegans*: growth and maintenance.** Standard methods of culture, including the
151 use of normal or high growth media (NGM/HGM) plates, culture temperature of 20 °C and
152 the OP50 *E. coli* strain as a food source, were followed as described (Brenner 1974)
153 unless noted otherwise. *C. elegans* strains used included the wild type N2 Bristol strain,
154 BR5271 (*byIs162* [$P_{rab-3}::F3(\delta)K280\ I277P\ I380P + P_{myo-2}::mCherry$]; referred to as
155 the “non-aggregating/non-agg” strain), and BR5270 (*byIs161* [$P_{rab-3}::F3(\delta)K280 + P_{myo-2}::mCherry$]; referred to as the “aggregating/agg” strain). All strains were provided by
156 the Caenorhabditis Genetics Center, which is funded by NIH Office of Research
157 Infrastructure Programs (P40 OD010440).

159

160 **3.2. *C. elegans*: exposure to DDT.** Worms were exposed to the pesticide p,p'-DDT or
161 the solvent control, DMSO, on NGM plates. DDT exposure plates were created using
162 methods previously described (Hunt et al. 2011). Briefly, a 20 mM stock of DDT, made by
163 dissolving in 100% DMSO, was diluted to 150 µM with sterile water and then applied on
164 the surface of NGM plates spotted with OP50 *E. coli* to obtain the appropriate final
165 concentration of DDT on the plate. The solvent control plates were created following the
166 same dilution but without DDT to achieve a final concentration of 0.015% DMSO. DDT
167 was allowed to diffuse and the plates were allowed to equilibrate for 2 hours before worms

168 were introduced. All worms were exposed to a final concentration of 3 μ M DDT unless
169 otherwise stated.

170
171 **3.3. *C. elegans*: DDT uptake experiments.** A synchronized population of wildtype
172 worms, created using hypochlorite treatment, were grown on 10 cm NGM plates with 0.3,
173 3, or 30 μ M DDT, and the DMSO control. The non-aggregating and aggregating worms
174 were similarly synchronized and exposed to 3 μ M DDT or DMSO. All strains were
175 collected after 72 hours of exposure, at the young adult stage. They were washed in M9
176 buffer 4x and sorted into aliquots of 1000-1200 worms using the COPAS FP-250. The
177 volume of M9 buffer in each sample was reduced to 100 μ L and each sample was snap
178 frozen in liquid nitrogen. To extract DDT and its metabolites, the worm cuticle was
179 disrupted by bead beating (6.5 m/s for 1 minute) and the samples were analyzed for levels
180 of DDT.

181
182 **3.4. *C. elegans*: growth determined through size measured on COPAS Biosorter.**
183 The COPAS Flow Pilot (FP) 250 is an instrument used for high-throughput manipulation
184 of *C. elegans*. For each worm that passes through the flow cell, the COPAS FP-250
185 determines its time-of-flight (TOF), which represents the length of the worm passing
186 through the flow cell, and the extinction, which represents the optical density or thickness
187 of the worm passing through the flow cell. After hypochlorite synchronization, eggs from
188 all three strains were allowed to hatch and develop on 10 cm NGM plates with 3 μ M DDT
189 or DMSO. Worms were sorted through the COPAS FP 250 to measure TOF and
190 extinction 46-50 hours after synchronization (around the L4 stage, $n = 1000-4000$ per

191 group, object inclusion criteria: Log(TOF) > 6 and Log(extinction) > 5) and at 70-72 hours
192 post synchronization (young adults, $n = 1000$ -4000 per group, object inclusion criteria:
193 Log(extinction) between 5.5 and 9). We used inclusion criteria that have been previously
194 estimated for the L4 larval and adult stage on the COPAS FP-250 (Boyd et al. 2016).
195 Measures of TOF and extinction were compared across the strains and treatment groups
196 using a one-way analysis of variance at the two time points.

197

198 **3.5. *C. elegans*: swim behavior.** The celeST software package was used to determine
199 aspects of swim behavior for the different strains exposed to DDT or the solvent control
200 (Restif et al. 2014). Briefly, 3-4 worms at the young adult stage were placed in 60 μ L of
201 M9 buffer in a 15 mm ring preprinted on a microscope slide (Fisherbrand microscope
202 slides with two 15 mm diameter circles, catalog #22-339-408). Recordings of swim
203 behavior were made as a series of jpeg images using a chameleon 3 camera (FLIR,
204 Wilsonville, OR) for 30 s at a frame rate of 18 f/s. Data were collected from four-five trials
205 representing different experiments, with a total of 50-100 worms recorded per group.

206

207 **3.6. *C. elegans*: seahorse XFe96 extracellular flux analysis.** The three strains exposed
208 to DDT or solvent control were collected at the young adult stage and washed in M9 buffer
209 4x for analysis using the Seahorse XFe96 extracellular flux analyzer (Koopman et al.
210 2016). Briefly, 3-30 worms in M9 buffer were plated into the wells of a Seahorse utility
211 plate and the volume of M9 buffer in each well was made up to 200 μ L. M9 buffer without
212 any worms was used as the blank for background correction. Baseline respiration was
213 measured (measurement numbers 1-5), followed by injection of FCCP (10 μ M, final

214 concentration) to elicit maximal respiration (measurement number 6-14), followed by
215 sodium azide (40 mM, final concentration) to measure non-mitochondrial respiration
216 (measurement number 15-18). Data were normalized to the number of worms in each
217 well to determine the rate of oxygen consumption (pmol O₂/min) per worm. Basal
218 respiration was determined as the difference between non-mitochondrial respiration and
219 the average oxygen consumption rate at measurements 2 through 5; maximal respiration
220 was determined as the difference between non-mitochondrial respiration and the average
221 oxygen consumption rate measured after the FCCP injection; and spare respiratory
222 capacity was measured as the difference between basal and maximal respiration.

223

224 **3.7. *C. elegans*: associative learning assay.** The associative learning assay was
225 carried out as previously described (Kauffman et al. 2011) with some modifications. The
226 assay relies on an associative memory paradigm where worms are trained by pairing the
227 presence of food with the odor of 10% butanone. Briefly, worms were hypochlorite synced
228 and allowed to grow on DDT or solvent control plates for about 72 hours, until they
229 reached the young adult stage. Worms were collected off plates and washed 3x in M9
230 buffer. After the last wash, the naïve attraction toward butanone was assessed. Worms
231 were then starved for an hour, after which the conditioned training was performed to pair
232 the odor with the presence of food. The attraction toward butanone was determined just
233 after conditioning, representing their ability to learn and form an associative memory. To
234 count the number of worms attracted to the butanone spot or the control (95% ethanol)
235 spot, images of the entire assay plates were taken on a Basler GigE camera, and the

236 images were analyzed using a MATLAB algorithm created by the Murphy lab (Kauffman
237 et al. 2011).

238

239 **3.8. *C. elegans*: survival analysis.** Wildtype worms and the transgenic strains were
240 exposed to DDT or DMSO until the young adult stage, around 72 hours. After exposure,
241 worms were collected off plates and washed in M9 buffer 4 times. We created 4 replicates
242 per treatment group per strain with 25-35 worms each. Adult worms were counted and
243 transferred everyday onto new 6 cm NGM plates until they stopped producing progeny (~
244 adult day 6). At this point, worms were transferred onto 6 cm NGM plates with nystatin
245 and ampicillin. Worms were then counted every other day and scored as dead if they did
246 not respond to the gentle touch of a platinum wire. A worm was censored from the plate
247 if it was missing, showed internal hatching, or was damaged during transfer. Worms were
248 followed until they were all dead. Data was analyzed using Kaplan Meier survival
249 calculations and the log-rank test using the R package survival.

250

251 **4. High-resolution mass spectrometry methods.**

252 **4.1. Gas chromatography with high- resolution mass spectrometry (GC-HRMS) for**
253 ***C. elegans* DDT uptake.** Worm tissue concentrations of p,p'-DDT, p,p'-DDE, p,p'-DDD,
254 o,p'-DDT, o,p'-DDE and o,p'-DDD were measured using methods previously described
255 (Elmore et al. 2020). Prior to extraction, each sample was spiked with labeled isotope
256 internal standards to assess analyte recovery. Each sample was extracted using
257 QuEChERS (Quick, Easy, Cheap, Effective, Rugged, Safe). The samples were first
258 vortex mixed in centrifuge tubes with 1 mL 1:1:1 hexane:acetone:dichloromethane and

259 sonicated for 30 minutes. The entire sample and the supernatant were transferred to a
260 centrifuge tube containing 150 g MgSO₄ and 50 mg C18 (United Chemical Technologies,
261 Bristol, PA), vortexed for 30 seconds, and centrifuged for 5 minutes at 1,105 x g. This
262 extraction was repeated 2 more times and the final 3 mL extract was evaporated to 150
263 µL under nitrogen (Organomation 30 position Multivap Nitrogen Evaporator), transferred
264 to a low-volume (300 µL) GC vial, and spiked with phenanthrene-D10 and chrysene-D12
265 as volumetric internal standards to ensure injection consistency during GC-HRMS
266 analysis. Extracts were analyzed on a GC Q-Exactive Orbitrap MS (Thermo Scientific)
267 equipped with a Thermo Trace 1300 gas chromatograph and TriPlus RSH Autosampler
268 using chromatographic methods described previously (Elmore et al. 2020). The MS was
269 operated in full scan mode, with a scan range of 50 to 750 m/z. Analytes were quantified
270 using the most abundant fragment and identity was confirmed using the ratio of two
271 confirming ions and retention times (Supplemental Table 1).

272

273 **4.2. Sample preparation for liquid chromatography coupled high resolution mass
274 spectrometry (LC-HRMS).**

275 Human sample preparation: Samples were prepared for HRM using methods detailed
276 elsewhere (Go et al. 2015; Niedzwiecki et al. 2020; Park et al. 2012; Soltow et al. 2013).
277 Briefly, aliquots of plasma or CSF were removed from -80 °C storage and thawed on ice.
278 65 µL of each biofluid was added to 130 µL of acetonitrile containing a mixture of stable
279 isotopic standards, vortexed, and allowed to equilibrate for 30 min. Proteins were
280 precipitated by centrifuge (16,100 x g at 4 °C for 10 min) and the supernatant was
281 transferred to a low-volume vial for analysis.

282

283 *C. elegans* sample preparation: two different experiments were conducted and prepared:
284 1. To determine the metabolic effects of aggregating tau protein, a synchronized
285 population of worm eggs of the non-aggregating and aggregating strain were allowed to
286 hatch and grow on NGM plates. 2. To determine the effect of DDT on metabolism in all
287 strains, a synchronized population of all strains, wildtype, non-aggregating and
288 aggregating worms, were placed on NGM plates coated with DDT or DMSO. In both
289 experiments, worms were allowed to grow until larval stage 4. For collection, worms were
290 washed 4x in M9 buffer and sorted into four-to-six replicates containing 500 worms using
291 a COPAS FP-250. The final volume was reduced to 100 μ L by centrifuge and each
292 sample was snap frozen in liquid nitrogen and stored at -80 °C until needed for
293 processing. Metabolites were extracted using methods described previously (Bradner et
294 al. 2021; Mor et al. 2020). Briefly, two volumes of acetonitrile (200 μ L) containing a mixture
295 of internal standards was added to the 100 μ L worm suspension, and samples were
296 homogenized by bead-beating. A spatula-full of zirconium oxide beads (~10 beads, 0.5
297 mm diameter, Yttria stabilized) from Next Advance (Troy, NY) was added to each worm
298 sample, and placed in a bead beater (Next Advance Bullet Blender Storm, Troy, NY) set
299 at 6.5 m/s for 30 seconds. Extracts were then allowed to equilibrate on ice for one minute,
300 and placed in the beater for another 30 seconds at the same speed. After equilibration on
301 ice for 30 minutes, proteins were removed by centrifuge (15,000 x g at 4 °C for 10 min).
302 All sample processing was performed on ice or in a cold room when necessary.

303

304 **4.3. High-resolution metabolomic analyses.** Human sample extracts were analyzed by
305 reverse-phase C18 liquid chromatography (Dionex Ultimate 3000) and Fourier transform
306 mass spectrometry in positive electrospray ionization mode, resolution (FWHM) of 70,000
307 (Niedzwiecki et al. 2020). Sample extracts from *C. elegans* were analyzed on an LC-
308 HRMS platform in two ways: 1. For determination of the effect of aggregating tau protein
309 on metabolism, sample extracts were analyzed using untargeted LC-HRMS using
310 methods described previously (Liu et al. 2020). Mass spectral data were generated under
311 positive electron spray ionization in full scan mode. 2. Due to changes in LC-HRMS
312 technologies, analysis of DDT exposure studies used slightly different analytical
313 conditions; however, detection of endogenous metabolites across the two platforms is
314 consistent. For determination of the effect of DDT on metabolism in all strains, after
315 processing, the supernatant was diluted 1:1 in HPLC-grade water and analyzed using a
316 HILIC column (positive and negative ESI mode) and C18 column (positive and negative
317 ESI mode). Separation was similar to conditions described above, except an acetonitrile
318 gradient with 10 mM ammonium acetate was used for HILIC, and acetonitrile gradient
319 with 0.5% acetic acid for C₁₈. For both methods, 10 µL of the sample extract was injected
320 in triplicate. All mass spectral data were generated on an orbitrap mass spectrometer in
321 full scan mode (1: Thermo Scientific Q-Exactive HF and 2: Thermo Scientific HFX),
322 scanning for mass range 85 to 1250 Da. All raw mass spectral data were extracted using
323 the R packages apLCMS (Yu et al. 2009) and xMSAnalyzer (Uppal et al. 2013). Due to
324 the need for multiple batches in the human study, batch correction was performed using
325 ComBat (Leek et al. 2012). No batch effects were observed for *C. elegans* studies and

326 detected intensities were used as is for statistical analyses. Intensities were generalized
327 log transformed prior to analysis.

328

329 **5. High-resolution metabolomic data analyses.**

330 **5.1. Human: analysis of LC-HRMS data.** Association of metabolite peaks with p-tau
331 levels were assessed using linear regression for metabolites detected in >80% of study
332 samples while controlling for sex, age and analysis batch.

333 Features associated with p-tau levels ($p < 0.05$) were analyzed for metabolic pathway
334 enrichment using mummichog (version 2.0.6) in Python (version 2.7) (Li et al. 2013).

335 In a sensitivity analysis, features associated with AD dementia vs. NC were examined
336 using the subset of features present in >20% of samples, reflecting a markedly lower
337 threshold for feature filtering compared to our previous analysis of AD (Niedzwiecki et al.
338 2020). Statistical analyses were conducted as previously described (Niedzwiecki et al.
339 2020).

340

341 **5.2. *C. elegans*: analysis of LC-HRMS data and overlap.** All feature tables were
342 processed as follows: first, the intensity of a metabolite peak in the samples was
343 compared to its intensity in the medium blank (M9 buffer). If the intensity was ≥ 1.5 times
344 the intensity in the blank in all samples, it was retained for subsequent analysis. Second,
345 if a metabolite peak was missing from fewer than 50% of the samples, it was replaced
346 with half the value of the minimum intensity measured in the samples. Features missing
347 from more than 50% of the samples were removed from downstream analysis. Third, the
348 filtered and imputed feature table was imported into MetaboAnalyst (Pang et al. 2020)

349 and normalized by generalized log transformation. Three different analyses were
350 conducted using the processed *C. elegans* data:

351 1. Metabolic effects of aggregating tau protein. The filtered feature table was used to
352 determine the metabolites associated with the aggregating worms by comparing
353 aggregating to non-aggregating worms using multiple t-tests. Metabolites with $p < 0.05$
354 were analyzed for pathway analysis using mummichog hosted on MetaboAnalyst (Chong
355 et al. 2018) using the *C. elegans* KEGG reference map.

356 2. Analysis of metabolites common to humans and *C. elegans* that are associated with
357 tau protein. Plasma and CSF derived metabolites that were associated with CSF p-tau (p
358 < 0.05) or neuronal expression in *C. elegans* ($p < 0.05$) were compared using KEGG ID
359 annotations from pathway analysis. A metabolite was considered overlapping if it was
360 significantly associated with tau protein in both species, was annotated with a KEGG ID,
361 and the direction of association was concordant between worms and humans.

362 3. The metabolic effect of DDT in all three strains. The filtered feature table was used to
363 determine: the metabolomic profile of DDT exposure in wildtype worms, the metabolomic
364 profile of DDT exposure in the aggregating worms, and the metabolomic profile
365 associated with the aggregating worms by comparing metabolite peaks from the
366 aggregating and non-aggregating worms exposed to the vehicle control. For all analyses,
367 we used t-tests to compare differences in mean intensities. Significant metabolite peaks
368 were tested for pathway enrichment using mummichog on MetaboAnalyst and the *C.*
369 *elegans* KEGG reference map.

370

371 **6. Statistical analyses.** Tests for significance were determined through one-way ANOVA
372 and post-hoc Tukey's HSD test, unless stated otherwise. All data were analyzed in R
373 (version 4.0.2) using RStudio (v1.1.456) unless otherwise stated. Code and data
374 associated with worm assays can be found at:
375 https://github.com/vrindakalia/DDT_tau_Celegans

376

377 **Results**

378 **CSF and plasma metabolism associated with CSF p-tau levels.** There were no
379 significant differences in the distribution of age or gender between the three different
380 diagnoses. Patients with AD and MCI had higher levels of p-tau measured in their CSF
381 compared to controls (Table 1). Following data extraction and filtering, 6,028 metabolite
382 peaks were detected and measured in the CSF of patients and 7,249 m/z features in
383 plasma. After controlling for the age, sex, and batch of analysis, we found 225 metabolites
384 in CSF (Figure 1 A) and 391 in plasma (Figure 1 C) that were associated with CSF levels
385 of p-tau at $p < 0.05$. Pathway analysis of the CSF metabolites found pathways associated
386 with glutamate metabolism, carnitine metabolism, lysine metabolism, saturated fatty acid
387 metabolism, as well as metabolism of several amino acids (Figure 1 B), while pathways
388 in plasma-derived were consistent with drug metabolism, carnitine metabolism, lysine
389 metabolism, and pathways associated with energy production (Figure 1 D).

390

391 **Changes in global metabolism associated with aggregating tau protein expression**
392 **in *C. elegans*.** HRM detected 19,380 metabolite peaks in *C. elegans* using the HILIC
393 column with positive ionization mode. After blank filtration and imputation, 8,860 were

394 retained for further analysis. Metabolome wide association analysis found more than 900
395 m/z features that were significantly different ($p < 0.05$) between the aggregating and non-
396 aggregating strain (Figure 1 E). Metabolites were tested for pathway enrichment using
397 the KEGG *C. elegans* reference map, which identified changes in the tryptophan and
398 arginine pathway, glycerophospholipid metabolism, lysine degradation, glutathione
399 metabolism, as well as glutamate and glutamine metabolism implicating altered amino
400 acid metabolism (Figure 1 F).

401

402 **Metabolites associated with aggregating tau protein in both species.** The analysis
403 to determine metabolites associated with p-tau in both humans and *C. elegans* was
404 conducted separately for CSF and plasma. Metabolite annotations from mummichog
405 (Schymanksi level 3 confidence (Schymanksi et al. 2014)) were then used to test for
406 overlap with unique KEGG ID annotation. We identified 4 CSF-derived metabolites and 5
407 plasma-derived metabolites overlapping with metabolites from the aggregating tau *C.*
408 *elegans* strain associated with CSF p-tau levels in the same direction (Figure 1 G - J).

409

410 **Metabolites associated with AD dementia versus normal controls.** Since common
411 thresholds for feature filtering in metabolomics pre-processing pipelines may remove low-
412 abundance exogenous chemicals of interest, we conducted a sensitivity analysis to
413 identify plasma metabolites associated with AD (vs. NC) using a lower threshold for
414 missingness (removal of features missing in >80% of samples) compared to our original
415 study (>20%) (Supplemental Table 2). One feature elevated in AD, m/z 386.8946, could
416 not be identified with MS/MS due to low abundance but had a unique match in the

417 METLIN database to 1,1-dichloro-2-(dihydroxy-4'-chlorophenyl)-2-(4'-
418 chlorophenyl)ethylene, a metabolite of DDT.

419
420 **DDT uptake in *C. elegans*.** The *C. elegans* cuticle is known to be a barrier against
421 absorption of toxicants (Hunt 2017). The nematode is known to possess CYP 450
422 enzymes, although their repertoire is not as extensive as in mammals (Harlow et al. 2018).
423 We evaluated if *C. elegans* can absorb and metabolize DDT by measuring the levels of
424 p,p'-DDT, p,p'-DDE, p,p'-DDD, o,p'-DDT, o,p'-DDE, and o,p'-DDD in worms using GC-
425 HRMS. In wildtype worms, exposure to 0.3, 3, and 30 μ M DDT led to internal levels of
426 0.27, 0.49 and 1.3 picogram of p,p'-DDT in each worm, respectively (Figure 2 A). All
427 metabolites of p,p'-DDT were also detectable and measured in the transgenic strain. In
428 all strains exposed to 3 μ M DDT, the levels of p,p'-DDE were about 5-10 times lower than
429 p,p'-DDT.

430
431 **Effect of DDT exposure on *C. elegans* size.** Assessment of TOF (length) and extinction
432 (optical density) at 46-50 hours post synchronization (~larval stage 4) revealed that the
433 aggregating strain were smaller and with lower density compared to the non-aggregating
434 and wildtype worms. Exposure to DDT reduced the size and density in all strains
435 assessed (Figure 2 B & C). Measurement at 70-72 hours post synchronization (young
436 adulthood) showed that both tau transgenic strains are smaller ($p < 0.0001$) than wildtype
437 worms, with the aggregating strains more severely affected. Exposure to DDT reduced
438 the size of all strains in a graded manner, with the aggregating strain exposed to DDT
439 being the smallest (Figure 2 D & E).

440

441 **Effect of tau protein and DDT on swim behavior of *C. elegans*.** The aggregating strain
442 showed differences in wave initiation rate and travel speed compared to the wildtype
443 worms (Figure 3 A & B). Exposure to DDT in the aggregating strain almost doubled the
444 percentage of time the worms spent curling when swimming (average percentage of time
445 spent curling in aggregating worms + solvent control was 1.13%, and in aggregating
446 worms + DDT: 1.83%, $p < 0.001$, Figure 3 C). The aggregating strain showed a lower
447 activity index (average activity index in non-aggregating strain was 388.6 and in
448 aggregating strain was 286.6, $p < 0.01$ Figure 3 D), and a difference in time spent
449 reversing and brushstroke ($p < 0.05$ Supplemental Figure 1) compared to wildtype worms.
450 Exposure to DDT did not significantly alter any swim behavior in the wildtype or non-
451 aggregating strain.

452

453 **Effect of tau and DDT on mitochondrial respiration.** Wildtype worms and the non-
454 aggregating strain showed similar oxygen consumption profiles (Figure 4 A). The
455 aggregating strain showed reduced rates of basal, maximal, spare, and non-mitochondrial
456 oxygen consumption rate (OCR) when compared to the non-aggregating strain (Figure 4
457 B - E). Exposure to 3 μ M DDT in the N2 and non-aggregating strain reduced OCR at all
458 four states (Figure 4 A - E). Exposure to DDT in the aggregating strain significantly
459 reduced basal OCR ($p < 0.05$, Figure 4 B). Other measures of respiration were also
460 reduced due to DDT exposure in the aggregating strain however, none were significantly
461 different at $p < 0.05$ (Figure 4 C - E).

462

463 **Metabolic response to DDT and tau protein.** All strains exposed to DDT showed lower
464 metabolite intensities using HILIC with positive ionization (Figure 5 A) and the other
465 modes: HILIC column under negative ESI and the C18 column under positive and
466 negative ESI (Supplemental Figure 2 - 4). A biplot of principal component (PC) 1 against
467 PC2 shows that the wildtype and non-aggregating strain cluster together while the strains
468 exposed to DDT clustered differently from the unexposed wildtype and non-aggregating
469 strain along PC1 (Figure 5 B). Levels of uric acid and adenosylselenohomocysteine were
470 elevated in all strains exposed to DDT (Figure 5 C). In wildtype worms, exposure to DDT
471 altered amino acids pathways (Figure 6). DDT exposure in the aggregating strain resulted
472 in altered amino acid pathways, TCA cycle metabolism and glyoxylate and dicarboxylate
473 metabolism (Figure 6).

474

475 **Effect of DDT exposure on learning.** There was no difference in learning determined
476 through the associative learning paradigm among the three strains. Further, exposure to
477 DDT did not show an effect on learning (Figure 7 A & B).

478

479 **Effect of DDT exposure on survival.** The non-aggregating and aggregating strains
480 exhibited a shorter lifespan compared to the wildtype worms (average lifespan in wildtype
481 worms was 24 days, in non-aggregating worms was 19.4 days, and in aggregating worms
482 was 8 days, $p < 0.0001$, Figure 7 C). Exposure to DDT does not alter the lifespan in
483 wildtype or the non-aggregating strain. In the aggregating strain, exposure to DDT slightly
484 rescued the reduction in lifespan in the strain (mean lifespan was 11.8 days), however,

485 the lifespan was still shorter than that of the non-aggregating and wildtype strain (Figure
486 7 C & D).

487

488 **Discussion**

489 Model organisms are a useful tool to understand age-related changes in biology
490 and pathology. A number of signaling pathways that act as master regulators of lifespan
491 are conserved in yeast, nematodes, flies, and mammals (Bishop et al. 2010). The use of
492 model systems has uncovered evolutionarily conserved pathways that regulate both
493 longevity and age-related changes in learning and memory (Bishop et al. 2010; Friedman
494 and Johnson 1988; Grotewiel et al. 2005; Kauffman et al. 2010; Kenyon et al. 1993; Klass
495 1977; Silva et al. 1998). We used the nematode *C. elegans* to study environmental
496 determinants of aging and cognitive function. The organism's short lifespan (2-3 weeks)
497 makes it ideal to study the process of aging and diseases associated with age, such as
498 AD (Ardiel and Rankin 2010; Arey and Murphy 2017; Jonsson et al. 2013; Link 2006). In
499 addition, *C. elegans* mitochondria show close structural and functional conservation to
500 mammalian mitochondria (Murfitt et al. 1976) and pathways of intermediary metabolism
501 are also highly conserved (O'Riordan and Burnell 1990). Thus, we attempted to find
502 similarities in systemic biochemistry associated with aggregating tau protein toxicity,
503 which is a pathological hallmark of AD, in humans and *C. elegans*.

504 Our group has previously reported plasma metabolites associated with AD in the
505 cohort studied herein (Niedzwiecki et al. 2020). The most significant (lowest p-value)
506 metabolite associated with CSF p-tau was a metabolite of the drug Rivastigmine, an
507 acetylcholinesterase inhibitor. This was also the top metabolite associated with AD in the

508 previous study. The plasma levels of glutamine were positively associated with levels of
509 CSF p-tau. Metabolomic profiling of the CSF showed a negative association between
510 CSF levels of p-tau and glutamine, contrary to the direction of the association found in
511 plasma. This could be the result of differential changes in the glutamate/glutamine cycle
512 in the central nervous system and the periphery. The CSF-derived metabolites associated
513 with p-tau levels are related to butanoate metabolism and carnitine shuttle pathways, both
514 of which are associated with mitochondrial function (Pettegrew et al. 2000; Rose et al.
515 2018).

516 Using a transgenic strain of *C. elegans* that expresses a mutant form of human tau
517 protein in all neurons, we observed changes in several metabolite peaks that were
518 associated with aggregating tau protein. Pathway analysis using these features revealed
519 changes in metabolic pathways that have previously been associated with
520 neurodegeneration and AD, including the glycerophospholipid pathway, and glyoxylate
521 and dicarboxylate metabolism (Frisardi et al. 2011; Yan et al. 2020)

522 The 4 metabolites associated with p-tau and overlapping between CSF
523 metabolites and worm metabolites were tyrosine, carnitine, cystine and N, N-
524 dimethylaniline N oxide. While we did not find information on the relationship between N,
525 N-dimethylaniline N oxide and neurodegeneration or AD, all three of the other metabolites
526 have been previously associated with AD. Several studies have reported lower levels of
527 tyrosine measured in the CSF of AD patients (Basun et al. 1990; Martinez et al. 1993).
528 An untargeted HRM analysis of CSF samples from MCI patients showed altered tyrosine
529 metabolism (Hajjar et al. 2020). A study of CSF from non-*APOE4* carriers in the early
530 stage of AD reported lower levels of carnitine in the CSF (Lodeiro et al. 2014). Another

531 study of CSF from AD patients found lower levels of free carnitine but increased levels of
532 acylcarnitine suggesting impaired energy production through anaplerotic pathways (van
533 der Velpen et al. 2019). We detected decreased levels of cystine in plasma, CSF, and
534 worms. Cystine is the dimer form of cysteine, a sulfur containing amino acid that functions
535 to reduce redox stress. Several studies have reported increased levels of cysteine in the
536 brain, plasma, and CSF of AD patients (Czech et al. 2012; Mahajan et al. 2020; Trushina
537 et al. 2013). This could be a result of increased conversion of cystine to cysteine to
538 ameliorate oxidative stress.

539 Apart from cystine, the other metabolites associated with p-tau found to be
540 overlapping between plasma and worms were lipoamide, diethylthiophosphoric acid,
541 11,12-dihydroxy-5Z,8Z,14Z-eicosatrienoic acid (11,12-DHET), and N-acetyl lysine.
542 Lipoamide is the amide form of lipoic acid which is a naturally occurring disulfide
543 compound that functions as a co-factor for mitochondrial bioenergetic enzymes. It has
544 been proposed as a novel treatment for AD owing to the many functions it performs
545 (Holmquist et al. 2007). Lipoic acid can increase acetylcholine production (Haugaard et
546 al. 2000) and glucose uptake (Holmquist et al. 2007) and it is reported to improve
547 peripheral insulin resistance and impaired glucose metabolism (Bitar et al. 2004; Lee et
548 al. 2005; Thirunavukkarasu et al. 2004). Diethylthiophosphoric acid is a part of the
549 aminobenzoate degradation pathway. Derivatives of aminobenzoic acid may have
550 potential as drugs to inhibit acetylcholinesterase, thereby ameliorating the acetylcholine
551 deficit present in AD (Shrivastava et al. 2019). 11,12-DHET derives from oxidation of
552 arachidonic acid, a well-known precursor activated during inflammatory response. A study
553 using strains of mice expressing A β and tau in the brain found increased levels of several

554 eicosanoids in the brain and in plasma of these mice (Tajima et al. 2013). In both human
555 plasma and worms we found higher levels of DHET, in line with previous findings. Finally,
556 altered lysine metabolism has been previously reported in cases of MCI compared to
557 cognitively normal individuals (Trushina et al. 2013) and lysine supplementation has been
558 proposed as a treatment strategy for AD (Kumar and Kumar 2019).

559 Neither the human nor *C. elegans* metabolome is fully curated, and non-targeted
560 metabolomics data includes many dietary, microbiome and environmental chemicals in
561 addition to those associated with endogenous metabolic pathways as presented here.
562 Although the results from this cross-species analysis should be interpreted with caution,
563 the concordance between several metabolites that have been previously associated with
564 AD provides support for using *C. elegans* as a model to study biochemical changes
565 associated with AD-related pathology. Further, the disruptions in evolutionarily conserved
566 pathways that are associated with AD-related related pathology offer great power for
567 mechanistic interpretation. Correlation between metabolites observed across species
568 could provide a means to identify overlapping central networks and interacting sub-
569 networks associated with AD-related pathology (Kalia et al. 2019). In the future, we plan
570 to use mutant strains and appropriate exposures to determine the role of these
571 metabolites in the aggregating tau protein related toxicity in *C. elegans*.

572 Untargeted HRM approaches allow us to study the effect of the exposome on
573 human health (Vermeulen et al. 2020). However, in untargeted HRM analyses, the
574 abundance of exogenously-derived parent compounds and their metabolites tend to be
575 orders of magnitude lower than endogenous chemicals (Rappaport et al. 2014) and may
576 not be present in all study participants. Thus, statistical approaches and thresholds need

577 to be adjusted to account for this lower abundance and prevalence of exogenous
578 chemicals in population studies. Therefore, we conducted a sensitivity analysis by
579 applying a lower threshold for feature filtering in our previous analysis of plasma-derived
580 features associated with AD. The analysis found higher levels of a halogenated
581 metabolite in the plasma of AD patients, which was putatively identified as a derivative of
582 the persistent pesticide DDT (Supplemental Table 2).

583 To investigate whether exposure to DDT can exacerbate tau protein toxicity, we
584 used a transgenic *C. elegans* strain that expresses human tau protein and a mutated tau
585 protein sequence that has a propensity to form tau protein aggregates. We also used a
586 transgenic strain to serve as control for the aggregating strain that expresses the same
587 human tau protein but the mutated tau protein sequence is not prone to aggregation.
588 These transgenes are expressed in all neurons of the worm driven through the *rab-3*
589 promotor (Fatouros et al. 2012).

590 The targeted GC-HRMS assay detected and measured several metabolites of p,p'-
591 DDT in worms exposed to the pesticide, suggesting that the pesticide is not only absorbed
592 but also biotransformed in the nematode, supporting the use of this model to study the
593 toxic effects of DDT. Previously, Mahmood (2016) found that exposure to 1 μ g/mL of DDT
594 (\sim 2.8 μ M) had a mild inhibitory effect on pharyngeal pumping, while this dose had no
595 effect on brood size. A survey of serum samples analyzed for levels of p,p'-DDT
596 conducted by NHANES showed a wide range of the pesticide in the blood of the American
597 population, and levels of p,p'-DDT measured increased with increasing age. Among those
598 aged 12-19 years in the survey, the geometric mean of lipid adjusted serum p,p'-DDT
599 level was less than 5 ng/g lipid (CDC 2020). Assuming the wet mass of a single worm is

600 1 μ g (Muschiol et al. 2009), exposure to 3 μ M DDT using our paradigm resulted in a mean
601 level of ~0.5 ng/g wet weight of *C. elegans*. Thus, we exposed the wildtype, aggregating,
602 and non-aggregating strains to 3 μ M DDT during development and measured the effect
603 of exposure on swim behavior, respiration, growth, metabolism, learning, and lifespan.

604 Similar to previous findings (Fatouros et al. 2012), we observed that the
605 aggregating strain travels slower than the wildtype worms. The aggregating strain also
606 showed a reduced wave initiation rate, which is akin to a swimming stroke rate (Restif et
607 al. 2014), compared with the non-aggregating and wildtype strain. Additionally, the
608 aggregating strain had a lower overall activity index compared with the non-aggregating
609 and wildtype strain. Exposure to DDT significantly increased the amount of time the
610 aggregating strain spent curling. The curling phenotype has been used to screen for
611 motility defects in worms. A recent screen for curling identified the *bcat-1* gene to be
612 associated with a Parkinson's-like phenotype and knockdown of the gene transcript
613 showed altered mitochondrial function (Mor et al. 2020). The curling phenotype has also
614 been used to ascertain dopaminergic toxicity due to the complex I inhibitor, MPP⁺
615 (Braungart et al. 2004; Richardson et al. 2005).

616 We observed that the aggregating strain has severely impaired mitochondrial
617 respiration, with diminished basal and maximal respiration compared with the non-
618 aggregating strain. Several *in vitro* and *in vivo* studies have shown that aggregating tau
619 protein can inhibit complex I and V of the mitochondria (David et al. 2005; Kim and Chan
620 2001; Lasagna-Reeves et al. 2011). Tau protein can alter the mitochondrial membrane
621 potential, cause activation of the apoptotic-related caspase-9, and impede energy
622 production (Lasagna-Reeves et al. 2011; Shafiei et al. 2017). Furthermore, disintegration

623 of tau protein can lead to disturbed transport of mitochondria across microtubules and
624 mitochondrial fission-fusion dynamics (Eckert et al. 2014; Fatouros et al. 2012).

625 Exposure to DDT in the wildtype and non-aggregating strain severely impaired
626 mitochondrial respiration at baseline and in the uncoupled state (FCCP). Several *in vitro*
627 and *in vivo* studies have reported an inhibitory effect of DDT on mitochondrial function
628 and ATP production, but none have reported this in *C. elegans*. DDT is known to inhibit
629 complex II, III, and V of the electron transport chain and it depresses the mitochondrial
630 membrane potential (Elmore and La Merrill 2019; Moreno and Madeira 1991). In rats,
631 exposure to DDT reduced the number of mitochondria measured in the liver and altered
632 fatty acid metabolism (Liu et al. 2017), an effect that would be consistent with the overall
633 decrease in OCR under all states measured. We note that this overall decrease in
634 oxidative phosphorylation activity is also unlikely to be attributable to decreased motility
635 since exposure to DDT did not affect the swimming behavior of wildtype worms,
636 reinforcing the interpretation that DDT may directly affect either mitochondrial content
637 and/or respiratory chain activity.

638 We found that the aggregating strain was smaller in size at larval stage 4 and in
639 adulthood compared to the non-aggregating strain. This could be attributed to reduced
640 energy production and biomass accumulation due to mitochondrial inhibition. When
641 exposed to DDT, there was no difference in size between the aggregating and non-
642 aggregating strains at larval stage 4; however, in adulthood, DDT reduced the size of the
643 aggregating strain more than in the non-aggregating strain. It is likely that the additional
644 insult on the mitochondria by DDT restricts growth which was only detectable following
645 the initiation of reproductive capacity.

646 HRM found several metabolites to be altered in worms following DDT exposure.
647 Levels of several amino acids were reduced along with intermediates of the TCA cycle
648 and branched chain amino acid metabolism. Uric acid was increased in all strains
649 exposed to DDT (Figure 6 A). Uric acid is the end product of purine metabolism and has
650 anti-oxidant properties since it can scavenge free radicals and prevent lipid peroxidation
651 (Hooper et al. 1998). High levels of uric acid have been reported to induce stress
652 response pathways in *C. elegans* by increasing levels of the DAF-16/FOXO and SKN-
653 1/NRF-2 transcripts (Wan et al. 2020). Levels of adenosylselenohomocysteine were also
654 found to be increased in all strains exposed to DDT and in the aggregating strain (Figure
655 6 B). Thioredoxin reductase-1 (TrxR-1) is the only selenium containing protein in *C.*
656 *elegans* (Rohn et al. 2018). An elevated seleno-metabolite suggests increased levels of
657 TrxR-1 in response to oxidative stress induced by DDT exposure and tau protein
658 aggregation.

659 The aggregating strain did not show any difference in their ability to learn following
660 an associative training paradigm, compared to the non-aggregating or wildtype strain.
661 These findings are similar to those made by Wang and colleagues (2018). Exposure to
662 DDT did not affect this ability to learn in either strain using the associative learning assay.
663 We found that the non-aggregating and aggregating strains have a reduced lifespan
664 compared to wildtype worms, replicating previous findings (Wang et al. 2018). The
665 proteotoxicity and reduced respiratory rate in the aggregating strain could explain this
666 observation (Zarse et al. 2007). Interestingly, exposure to DDT did not change the mean
667 lifespan in wildtype or non-aggregating worms but it slightly increased the mean lifespan
668 of the aggregating strain. This finding is surprising but given that the exposure occurred

669 developmentally, it hints to the activation of mitohormetic pathways which could turn on
670 lifespan extension pathways (Maglioni et al. 2019), like the mitochondrial unfolded protein
671 response (UPR^{mt}) pathway. However, the extension in lifespan was not large enough to
672 be as much or more than the lifespan of the non-aggregating or wildtype strain. It is also
673 possible that, while mitochondrial inhibition by aggregating tau protein alone does not
674 induce the UPR^{mt} pathways, the mitochondrial stress induced by DDT during
675 development produces an antagonistic effect which induces stress response pathways
676 (Wytock et al. 2020).

677 While we present evidence that supports the use of *C. elegans* as a model to study
678 whether DDT can exacerbate tau protein toxicity, our study has several limitations. In
679 insects and mammals, DDT inhibits voltage-gated sodium channel inactivation and
680 stabilizes the open state of sodium channels, causing prolonged channel opening
681 (Bloomquist 1996; Narahashi 2000). The *C. elegans* genome does not encode for
682 voltage-gated sodium channels (Hobert 2018), thus DDT does not produce neurotoxicity
683 through this mechanism in the nematode. Thus, we were unable to measure any
684 interaction tau protein aggregation may have with altered neuronal excitability elicited by
685 DDT in mammalian neurons. Furthermore, in the transgenic model we chose, we were
686 unable to control the level of tau protein aggregates expressed in the neurons. It is
687 possible that the severe tau protein aggregation toxicity obscured effects of DDT
688 exposure and its proteotoxic effects. The interactions between the two insults may
689 become more apparent when lower levels of the aggregates are expressed.
690 Despite these limitations, we provide evidence that support the use of *C. elegans* as a
691 model to study gene- environment interactions. We provide evidence that DDT is taken

692 up and biotransformed by *C. elegans*. In wildtype worms, DDT restricts growth, as
693 measured by size, and reduces mitochondrial respiration. DDT produces major changes
694 in global metabolism, including pathways related to neurotransmitter precursors and other
695 amino acid metabolism. In transgenic worms that express an aggregating form of human
696 tau protein in all neurons, DDT restricts growth even further and reduces the basal
697 respiration rate. Aggregating tau worms exposed to DDT spend more time curling when
698 swimming, a known mitochondrial toxicity phenotype. Further, DDT exposure affects the
699 metabolism of several amino acids, the TCA cycle, and the glyoxylate and dicarboxylate
700 metabolic pathway. Our data suggest that exposure to DDT likely exacerbates the
701 mitochondrial inhibitory effects of aggregating tau protein in *C. elegans*. Additionally, the
702 concordance between several metabolites that have been previously associated with AD
703 provides validity to using *C. elegans* as a model to study biochemical changes associated
704 with AD-related pathology. In the future, using transgenic *C. elegans* strains, we will
705 perform systematic analyses of the environmental drivers of AD that can lead to
706 interventional strategies aimed at preventing or treating the disease.

707 **Acknowledgements**

708 G.W.M is supported by NIH grants RF1AG066107, R01AG067501, U2C ES030163,

709 R01ES023839, M.L.B. is supported by NIEHS grant T32ES007732, D.I.W. is supported

710 by NIEHS grant U2C ES030859 and K.E.M. is supported by NEIHS grant T32ES007272.

711

712 References

713 Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, et al. 2011. The diagnosis of
714 mild cognitive impairment due to Alzheimer's disease: recommendations from the
715 National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines
716 for Alzheimer's disease. *Alzheimers Dement* 7:270–279; doi:10.1016/j.jalz.2011.03.008.

717 Ardiel EL, Rankin CH. 2010. An elegant mind: Learning and memory in *Caenorhabditis elegans*.
718 *Learn Mem* 17:191–201; doi:10.1101/lm.960510.

719 Arey RN, Murphy CT. 2017. Conserved regulators of cognitive aging: From Worms to Humans.
720 *Behav Brain Res* 322:299–310; doi:10.1016/j.bbr.2016.06.035.

721 Basun H, Forssell LG, Almkvist O, Cowburn RF, Eklöf R, Winblad B, et al. 1990. Amino acid
722 concentrations in cerebrospinal fluid and plasma in Alzheimer's disease and healthy
723 control subjects. *J Neural Transm Gen Sect* 2:295–304; doi:10.1007/BF02252924.

724 Bischof GN, Park DC. 2015. Obesity and Aging: Consequences for Cognition, Brain Structure, and
725 Brain Function. *Psychosom Med* 77:697–709; doi:10.1097/PSY.0000000000000212.

726 Bishop NA, Lu T, Yankner BA. 2010. Neural mechanisms of ageing and cognitive decline. *Nature*
727 464:529–535; doi:10.1038/nature08983.

728 Bitar MS, Wahid S, Pilcher CW, Al-Saleh E, Al-Mulla F. 2004. Alpha-lipoic acid mitigates insulin
729 resistance in Goto-Kakizaki rats. *Hormone and Metabolic Research* 36: 542–549.

730 Bloomquist JR. 1996. Ion channels as targets for insecticides. *Annu Rev Entomol* 41:163–190;
731 doi:10.1146/annurev.en.41.010196.001115.

732 Boyd WA, Smith MV, Co CA, Pirone JR, Rice JR, Shockley KR, et al. 2016. Developmental Effects
733 of the ToxCast™ Phase I and Phase II Chemicals in *Caenorhabditis elegans* and
734 Corresponding Responses in Zebrafish, Rats, and Rabbits. *Environ Health Perspect*
735 124:586–593; doi:10.1289/ehp.1409645.

736 Bradner JM, Kalia V, Lau FK, Sharma M, Bucher ML, Johnson M, et al. 2021. Genetic or Toxicant-
737 Induced Disruption of Vesicular Monoamine Storage and Global Metabolic Profiling in
738 *Caenorhabditis elegans*. *Toxicological Sciences*; doi:10.1093/toxsci/kfab011.

739 Braungart E, Gerlach M, Riederer P, Baumeister R, Hoener MC. 2004. *Caenorhabditis elegans*
740 MPP+ Model of Parkinson's Disease for High-Throughput Drug Screenings. *NDD* 1:175–
741 183; doi:10.1159/000080983.

742 Brenner S. 1974. The genetics of *Caenorhabditis elegans*. *Genetics* 77: 71–94.

743 C. elegans Sequencing Consortium. 1998. Genome sequence of the nematode *C. elegans*: a
744 platform for investigating biology. *Science* 282:2012–2018;
745 doi:10.1126/science.282.5396.2012.

746 Chong J, Soufan O, Li C, Caraus I, Li S, Bourque G, et al. 2018. MetaboAnalyst 4.0: towards more
747 transparent and integrative metabolomics analysis. *Nucleic Acids Research* 46:W486–
748 W494; doi:10.1093/nar/gky310.

749 Cole RD, Anderson GL, Williams PL. 2004. The nematode *Caenorhabditis elegans* as a model of
750 organophosphate-induced mammalian neurotoxicity. *Toxicol Appl Pharmacol* 194:248–
751 256; doi:10.1016/j.taap.2003.09.013.

752 Corsi AK, Wightman B, Chalfie M. 2015. A Transparent window into biology: A primer on
753 *Caenorhabditis elegans*. *WormBook* 1–31; doi:10.1895/wormbook.1.177.1.

754 Czech C, Berndt P, Busch K, Schmitz O, Wiemer J, Most V, et al. 2012. Metabolite profiling of
755 Alzheimer's disease cerebrospinal fluid. *PloS one* 7: e31501.

756 David DC, Hauptmann S, Scherping I, Schuessel K, Keil U, Rizzu P, et al. 2005. Proteomic and
757 Functional Analyses Reveal a Mitochondrial Dysfunction in P301L Tau Transgenic Mice. *J
758 Biol Chem* 280:23802–23814; doi:10.1074/jbc.M500356200.

759 de la Monte SM, Wands JR. 2008. Alzheimer's disease is type 3 diabetes-evidence reviewed. *J
760 Diabetes Sci Technol* 2:1101–1113; doi:10.1177/193229680800200619.

761 DeKosky ST, Gandy S. 2014. Environmental Exposures and the Risk for Alzheimer Disease: Can
762 We Identify the Smoking Guns? *JAMA Neurol* 71:273–275;
763 doi:10.1001/jamaneurol.2013.6031.

764 Eckert A, Nisbet R, Grimm A, Götz J. 2014. March separate, strike together--role of
765 phosphorylated TAU in mitochondrial dysfunction in Alzheimer's disease. *Biochim
766 Biophys Acta* 1842:1258–1266; doi:10.1016/j.bbadis.2013.08.013.

767 Elmore SE, La Merrill MA. 2019. Oxidative Phosphorylation Impairment by DDT and DDE. *Front
768 Endocrinol* 10; doi:10.3389/fendo.2019.00122.

769 Fatouros C, Pir GJ, Biernat J, Koushika SP, Mandelkow E, Mandelkow E-M, et al. 2012. Inhibition
770 of tau aggregation in a novel *Caenorhabditis elegans* model of tauopathy mitigates
771 proteotoxicity. *Hum Mol Genet* 21:3587–3603; doi:10.1093/hmg/dds190.

772 Friedman DB, Johnson TE. 1988. A mutation in the age-1 gene in *Caenorhabditis elegans*
773 lengthens life and reduces hermaphrodite fertility. *Genetics* 118: 75–86.

774 Frisardi V, Panza F, Seripa D, Farooqui T, Farooqui AA. 2011. Glycerophospholipids and
775 glycerophospholipid-derived lipid mediators: a complex meshwork in Alzheimer's
776 disease pathology. *Prog Lipid Res* 50:313–330; doi:10.1016/j.plipres.2011.06.001.

777 Go Y-M, Walker DI, Liang Y, Uppal K, Soltow QA, Tran V, et al. 2015. Reference Standardization
778 for Mass Spectrometry and High-resolution Metabolomics Applications to Exposome
779 Research. *Toxicol Sci* 148:531–543; doi:10.1093/toxsci/kfv198.

780 Grotewiel MS, Martin I, Bhandari P, Cook-Wiens E. 2005. Functional senescence in *Drosophila*
781 *melanogaster*. *Ageing Res Rev* 4:372–397; doi:10.1016/j.arr.2005.04.001.

782 Hajjar I, Liu C, Jones DP, Uppal K. 2020. Untargeted metabolomics reveal dysregulations in
783 sugar, methionine, and tyrosine pathways in the prodromal state of AD. *Alzheimer's &*
784 *Dementia: Diagnosis, Assessment & Disease Monitoring* 12:e12064;
785 doi:<https://doi.org/10.1002/dad2.12064>.

786 Harlow PH, Perry SJ, Stevens AJ, Flemming AJ. 2018. Comparative metabolism of xenobiotic
787 chemicals by cytochrome P450s in the nematode *Caenorhabditis elegans*. *Scientific*
788 *Reports* 8:13333; doi:10.1038/s41598-018-31215-w.

789 Harlow PH, Perry SJ, Widdison S, Daniels S, Bondo E, Lamberth C, et al. 2016. The nematode
790 *Caenorhabditis elegans* as a tool to predict chemical activity on mammalian
791 development and identify mechanisms influencing toxicological outcome. *Sci Rep*
792 6:22965; doi:10.1038/srep22965.

793 Haugaard N, Levin RM, Surname F. 2000. Regulation of the activity of choline acetyl transferase
794 by lipoic acid. *Molecular and Cellular Biochemistry* 213: 61–63.

795 Hobert O. 2018. The neuronal genome of *Caenorhabditis elegans*. In: *WormBook: The Online*
796 *Review of C. elegans Biology [Internet]*. WormBook.

797 Holmquist L, Stuchbury G, Berbaum K, Muscat S, Young S, Hager K, et al. 2007. Lipoic acid as a
798 novel treatment for Alzheimer's disease and related dementias. *Pharmacology &*
799 *Therapeutics* 113:154–164; doi:10.1016/j.pharmthera.2006.07.001.

800 Hooper DC, Spitsin S, Kean RB, Champion JM, Dickson GM, Chaudhry I, et al. 1998. Uric acid, a
801 natural scavenger of peroxynitrite, in experimental allergic encephalomyelitis and
802 multiple sclerosis. *PNAS* 95:675–680; doi:10.1073/pnas.95.2.675.

803 Howell JC, Watts KD, Parker MW, Wu J, Kollhoff A, Wingo TS, et al. 2017. Race modifies the
804 relationship between cognition and Alzheimer's disease cerebrospinal fluid biomarkers.
805 *Alzheimers Res Ther* 9; doi:10.1186/s13195-017-0315-1.

806 Hu WT, Watts KD, Shaw LM, Howell JC, Trojanowski JQ, Basra S, et al. 2015. CSF beta-amyloid 1–
807 42 - what are we measuring in Alzheimer's disease? *Ann Clin Transl Neurol* 2:131–139;
808 doi:10.1002/acn3.160.

809 Hunt PR. 2017. The *C. elegans* model in toxicity testing. *J Appl Toxicol* 37:50–59;
810 doi:10.1002/jat.3357.

811 Hunt PR, Olejnik N, Sprando RL. 2012. Toxicity ranking of heavy metals with screening method
812 using adult *Caenorhabditis elegans* and propidium iodide replicates toxicity ranking in
813 rat. *Food Chem Toxicol* 50:3280–3290; doi:10.1016/j.fct.2012.06.051.

814 Hunt PR, Son TG, Wilson MA, Yu Q-S, Wood WH, Zhang Y, et al. 2011. Extension of Lifespan in *C.*
815 elegans by Naphthoquinones That Act through Stress Hormesis Mechanisms. *PLOS ONE*
816 6:e21922; doi:10.1371/journal.pone.0021922.

817 Jonsson T, Stefansson H, Steinberg S, Jonsdottir I, Jonsson PV, Snaedal J, et al. 2013. Variant of
818 TREM2 associated with the risk of Alzheimer’s disease. *N Engl J Med* 368:107–116;
819 doi:10.1056/NEJMoa1211103.

820 Kaletta T, Hengartner MO. 2006. Finding function in novel targets: *C. elegans* as a model
821 organism. *Nat Rev Drug Discov* 5:387–398; doi:10.1038/nrd2031.

822 Kalia V, Jones DP, Miller GW. 2019. Networks at the nexus of systems biology and the
823 exposome. *Current Opinion in Toxicology*; doi:10.1016/j.cotox.2019.03.008.

824 Kauffman A, Parsons L, Stein G, Wills A, Kaletsky R, Murphy C. 2011. *C. elegans* positive
825 butanone learning, short-term, and long-term associative memory assays. *J Vis Exp*;
826 doi:10.3791/2490.

827 Kauffman AL, Ashraf JM, Corces-Zimmerman MR, Landis JN, Murphy CT. 2010. Insulin Signaling
828 and Dietary Restriction Differentially Influence the Decline of Learning and Memory with
829 Age. *PLOS Biology* 8:e1000372; doi:10.1371/journal.pbio.1000372.

830 Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R. 1993. A *C. elegans* mutant that lives twice
831 as long as wild type. *Nature* 366:461–464; doi:10.1038/366461a0.

832 Kim GW, Chan PH. 2001. Oxidative Stress and Neuronal DNA Fragmentation Mediate Age-
833 Dependent Vulnerability to the Mitochondrial Toxin, 3-Nitropropionic Acid, in the
834 Mouse Striatum. *Neurobiology of Disease* 8:114–126; doi:10.1006/nbdi.2000.0327.

835 Klass MR. 1977. Aging in the nematode *Caenorhabditis elegans*: major biological and
836 environmental factors influencing life span. *Mech Ageing Dev* 6: 413–429.

837 Koopman M, Michels H, Dancy BM, Kamble R, Mouchiroud L, Auwerx J, et al. 2016. A screening-
838 based platform for the assessment of cellular respiration in *Caenorhabditis elegans*. *Nat*
839 *Protocols* 11:1798–1816; doi:10.1038/nprot.2016.106.

840 Kumar D, Kumar P. 2019. An In-Silico Investigation of Key Lysine Residues and Their Selection
841 for Clearing off A β and Holo-A β PP Through Ubiquitination. *Interdiscip Sci* 11:584–596;
842 doi:10.1007/s12539-018-0307-2.

843 Lasagna-Reeves CA, Castillo-Carranza DL, Sengupta U, Clos AL, Jackson GR, Kayed R. 2011. Tau
844 oligomers impair memory and induce synaptic and mitochondrial dysfunction in wild-
845 type mice. *Molecular Neurodegeneration* 6:39; doi:10.1186/1750-1326-6-39.

846 Lee WJ, Song K-H, Koh EH, Won JC, Kim HS, Park H-S, et al. 2005. α -Lipoic acid increases insulin
847 sensitivity by activating AMPK in skeletal muscle. *Biochemical and biophysical research*
848 *communications* 332: 885–891.

849 Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. 2012. The sva package for removing batch
850 effects and other unwanted variation in high-throughput experiments. *Bioinformatics*
851 28:882–883; doi:10.1093/bioinformatics/bts034.

852 Li S, Park Y, Duraisingham S, Strobel FH, Khan N, Soltow QA, et al. 2013. Predicting network
853 activity from high throughput metabolomics. *PLoS computational biology* 9: e1003123.

854 Link CD. 2006. *C. elegans* models of age-associated neurodegenerative diseases: Lessons from
855 transgenic worm models of Alzheimer's disease. *Experimental Gerontology* 41:1007–
856 1013; doi:10.1016/j.exger.2006.06.059.

857 Liu KH, Nellis M, Uppal K, Ma C, Tran V, Liang Y, et al. 2020. Reference Standardization for
858 Quantification and Harmonization of Large-Scale Metabolomics. *Anal Chem* 92:8836–
859 8844; doi:10.1021/acs.analchem.0c00338.

860 Liu Q, Wang Q, Xu C, Shao W, Zhang C, Liu H, et al. 2017. Organochloride pesticides impaired
861 mitochondrial function in hepatocytes and aggravated disorders of fatty acid
862 metabolism. *Scientific Reports* 7:46339; doi:10.1038/srep46339.

863 Lodeiro M, Ibáñez C, Cifuentes A, Simó C, Cedazo-Mínguez Á. 2014. Decreased cerebrospinal
864 fluid levels of L-carnitine in non-apolipoprotein E4 carriers at early stages of Alzheimer's
865 disease. *J Alzheimers Dis* 41:223–232; doi:10.3233/JAD-132063.

866 Maglioni S, Mello DF, Schiavi A, Meyer JN, Ventura N. 2019. Mitochondrial bioenergetic changes
867 during development as an indicator of *C. elegans* health-span. *Aging (Albany NY)*
868 11:6535–6554; doi:10.18632/aging.102208.

869 Mahajan UV, Varma VR, Griswold ME, Blackshear CT, An Y, Oommen AM, et al. 2020.
870 Correction: Dysregulation of multiple metabolic networks related to brain
871 transmethylation and polyamine pathways in Alzheimer disease: A targeted
872 metabolomic and transcriptomic study. *PLOS Medicine* 17:e1003439;
873 doi:10.1371/journal.pmed.1003439.

874 Mahmood SM. 2016. Toxicological and Physiological Effects of DDT on *Caenorhabditis elegans*.
875 Ibn AL- Haitham Journal For Pure and Applied Science 24.

876 Martinez M, Frank A, Diez-Tejedor E, Hernanz A. 1993. Amino acid concentrations in
877 cerebrospinal fluid and serum in Alzheimer's disease and vascular dementia. *J Neural*
878 *Transm Gen Sect* 6:1–9; doi:10.1007/BF02252617.

879 Matthews KA, Xu W, Gaglioti AH, Holt JB, Croft JB, Mack D, et al. 2019. Racial and ethnic
880 estimates of Alzheimer's disease and related dementias in the United States (2015–
881 2060) in adults aged \geq 65 years. *Alzheimer's & Dementia: The Journal of the Alzheimer's*
882 *Association* 15:17–24; doi:10.1016/j.jalz.2018.06.3063.

883 McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR, Kawas CH, et al. 2011. The
884 diagnosis of dementia due to Alzheimer's disease: recommendations from the National
885 Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for
886 Alzheimer's disease. *Alzheimers Dement* 7:263–269; doi:10.1016/j.jalz.2011.03.005.

887 Middendorf PJ, Dusenberry DB. 1993. Fluoroacetic Acid Is a Potent and Specific Inhibitor of
888 Reproduction in the Nematode *Caenorhabditis elegans*. *J Nematol* 25: 573–577.

889 Mor DE, Sohrabi S, Kaletsky R, Keyes W, Tartici A, Kalia V, et al. 2020. Metformin rescues
890 Parkinson's disease phenotypes caused by hyperactive mitochondria. *PNAS*;
891 doi:10.1073/pnas.2009838117.

892 Moreno AJ, Madeira VM. 1991. Mitochondrial bioenergetics as affected by DDT. *Biochimica et*
893 *Biophysica Acta (BBA)-Bioenergetics* 1060: 166–174.

894 Murfitt RR, Vogel K, Sanadi DR. 1976. Characterization of the mitochondria of the free-living
895 nematode, *caenorhabditis elegans*. *Comparative Biochemistry and Physiology Part B:*
896 *Comparative Biochemistry* 53:423–430; doi:10.1016/0305-0491(76)90191-7.

897 Muschiol D, Schroeder F, Traunspurger W. 2009. Life cycle and population growth rate of
898 *Caenorhabditis elegans* studied by a new method. *BMC Ecol* 9:14; doi:10.1186/1472-
899 6785-9-14.

900 Narahashi T. 2000. Neuroreceptors and ion channels as the basis for drug action: past, present,
901 and future. *J Pharmacol Exp Ther* 294: 1–26.

902 National Report on Human Exposure to Environmental Chemicals | CDC. 2020. Available:
903 <https://www.cdc.gov/exposurereport/index.html> [accessed 27 November 2020].

904 Needham LL, Grandjean P, Heinzow B, Jørgensen PJ, Nielsen F, Patterson DG, et al. 2011.
905 Partition of Environmental Chemicals between Maternal and Fetal Blood and Tissues.
906 *Environ Sci Technol* 45:1121–1126; doi:10.1021/es1019614.

907 Nichols E, Szoek CEI, Vollset SE, Abbasi N, Abd-Allah F, Abdela J, et al. 2019. Global, regional,
908 and national burden of Alzheimer's disease and other dementias, 1990–2016: a
909 systematic analysis for the Global Burden of Disease Study 2016. *The Lancet Neurology*
910 18:88–106; doi:10.1016/S1474-4422(18)30403-4.

911 Niedzwiecki MM, Walker DI, Howell JC, Watts KD, Jones DP, Miller GW, et al. 2020. High-
912 resolution metabolomic profiling of Alzheimer's disease in plasma. *Annals of Clinical and*
913 *Translational Neurology* 7:36–45; doi:10.1002/acn3.50956.

914 O'Riordan VB, Burnell AM. 1990. Intermediary metabolism in the dauer larva of the nematode
915 *Caenorhabditis elegans*—II. The glyoxylate cycle and fatty-acid oxidation. *Comparative*
916 *Biochemistry and Physiology Part B: Comparative Biochemistry* 95:125–130;
917 doi:10.1016/0305-0491(90)90258-U.

918 Ossenkoppele R, Schonhaut DR, Baker SL, O'Neil JP, Janabi M, Ghosh PM, et al. 2015. Tau,
919 amyloid, and hypometabolism in a patient with posterior cortical atrophy. *Ann Neurol*
920 77:338–342; doi:10.1002/ana.24321.

921 Ossenkoppele R, Schonhaut DR, Schöll M, Lockhart SN, Ayakta N, Baker SL, et al. 2016. Tau PET
922 patterns mirror clinical and neuroanatomical variability in Alzheimer's disease. *Brain*
923 139:1551–1567; doi:10.1093/brain/aww027.

924 Pang Z, Chong J, Li S, Xia J. 2020. MetaboAnalystR 3.0: Toward an Optimized Workflow for
925 Global Metabolomics. *Metabolites* 10:186; doi:10.3390/metabo10050186.

926 Park YH, Lee K, Soltow QA, Strobel FH, Brigham KL, Parker RE, et al. 2012. High-performance
927 metabolic profiling of plasma from seven mammalian species for simultaneous
928 environmental chemical surveillance and bioeffect monitoring. *Toxicology* 295:47–55;
929 doi:10.1016/j.tox.2012.02.007.

930 Pérez MJ, Jara C, Quintanilla RA. 2018. Contribution of Tau Pathology to Mitochondrial
931 Impairment in Neurodegeneration. *Front Neurosci* 12; doi:10.3389/fnins.2018.00441.

932 Pettegrew JW, Levine J, McClure RJ. 2000. Acetyl- L -carnitine physical-chemical, metabolic, and
933 therapeutic properties: relevance for its mode of action in Alzheimer's disease and
934 geriatric depression. *Molecular Psychiatry* 5:616–632; doi:10.1038/sj.mp.4000805.

935 Rappaport SM, Barupal DK, Wishart D, Vineis P, Scalbert A. 2014. The blood exposome and its
936 role in discovering causes of disease. *Environ Health Perspect* 122:769–774;
937 doi:10.1289/ehp.1308015.

938 Restif C, Ibanez-Ventoso C, Vora MM, Guo S, Metaxas D, Driscoll M. 2014. CeleST: computer
939 vision software for quantitative analysis of *C. elegans* swim behavior reveals novel
940 features of locomotion. *PLoS Comput Biol* 10:e1003702;
941 doi:10.1371/journal.pcbi.1003702.

942 Richardson JR, Quan Y, Sherer TB, Greenamyre JT, Miller GW. 2005. Paraquat neurotoxicity is
943 distinct from that of MPTP and rotenone. *Toxicol Sci* 88:193–201;
944 doi:10.1093/toxsci/kfi304.

945 Richardson JR, Roy A, Shalat SL, Stein RT von, Hossain MM, Buckley B, et al. 2014. Elevated
946 Serum Pesticide Levels and Risk for Alzheimer Disease. *JAMA Neurol* 71:284–290;
947 doi:10.1001/jamaneurol.2013.6030.

948 Rohn I, Marschall TA, Kroepfl N, Jensen KB, Aschner M, Tuck S, et al. 2018. Selenium species-
949 dependent toxicity, bioavailability and metabolic transformations in *Caenorhabditis*
950 *elegans*. *Metalomics* 10:818–827; doi:10.1039/c8mt00066b.

951 Rose S, Bennuri SC, Davis JE, Wynne R, Slattery JC, Tippett M, et al. 2018. Butyrate enhances
952 mitochondrial function during oxidative stress in cell lines from boys with autism.
953 *Translational Psychiatry* 8:1–17; doi:10.1038/s41398-017-0089-z.

954 Schymanski EL, Jeon J, Gulde R, Fenner K, Ruff M, Singer HP, et al. 2014. Identifying small
955 molecules via high resolution mass spectrometry: communicating confidence. *Environ*
956 *Sci Technol* 48:2097–8; doi:10.1021/es5002105.

957 Shafiei SS, Guerrero-Muñoz MJ, Castillo-Carranza DL. 2017. Tau Oligomers: Cytotoxicity,
958 Propagation, and Mitochondrial Damage. *Front Aging Neurosci* 9;
959 doi:10.3389/fnagi.2017.00083.

960 Shrivastava SK, Sinha SK, Srivastava P, Tripathi PN, Sharma P, Tripathi MK, et al. 2019. Design
961 and development of novel p-aminobenzoic acid derivatives as potential cholinesterase
962 inhibitors for the treatment of Alzheimer's disease. *Bioorg Chem* 82:211–223;
963 doi:10.1016/j.bioorg.2018.10.009.

964 Silva AJ, Kogan JH, Frankland PW, Kida S. 1998. Creb and Memory. *Annual Review of*
965 *Neuroscience* 21:127–148; doi:10.1146/annurev.neuro.21.1.127.

966 Soltow QA, Strobel FH, Mansfield KG, Wachtman L, Park Y, Jones DP. 2013. High-performance
967 metabolic profiling with dual chromatography-Fourier-transform mass spectrometry
968 (DC-FTMS) for study of the exposome. *Metabolomics* 9:S132–S143; doi:10.1007/s11306-
969 011-0332-1.

970 Tajima Y, Ishikawa M, Maekawa K, Murayama M, Senoo Y, Nishimaki-Mogami T, et al. 2013.
971 Lipidomic analysis of brain tissues and plasma in a mouse model expressing mutated
972 human amyloid precursor protein/tau for Alzheimer's disease. *Lipids Health Dis* 12:68;
973 doi:10.1186/1476-511X-12-68.

974 Thirunavukkarasu V, Nandhini AA, Anuradha CV. 2004. Lipoic acid attenuates hypertension and
975 improves insulin sensitivity, kallikrein activity and nitrite levels in high fructose-fed rats.
976 *Journal of Comparative Physiology B* 174: 587–592.

977 Trushina E, Dutta T, Persson X-MT, Mielke MM, Petersen RC. 2013. Identification of altered
978 metabolic pathways in plasma and CSF in mild cognitive impairment and Alzheimer's
979 disease using metabolomics. *PLoS One* 8:e63644; doi:10.1371/journal.pone.0063644.

980 Turusov V, Rakitsky V, Tomatis L. 2002. Dichlorodiphenyltrichloroethane (DDT): ubiquity,
981 persistence, and risks. *Environ Health Perspect* 110: 125–128.

982 Uppal K, Soltow QA, Strobel FH, Pittard WS, Gernert KM, Yu T, et al. 2013. xMS analyzer:
983 automated pipeline for improved feature detection and downstream analysis of large-
984 scale, non-targeted metabolomics data. *BMC Bioinformatics* 14:15; doi:10.1186/1471-
985 2105-14-15.

986 Van Cauwenbergh C, Van Broeckhoven C, Sleegers K. 2016. The genetic landscape of
987 Alzheimer disease: clinical implications and perspectives. *Genet Med* 18:421–430;
988 doi:10.1038/gim.2015.117.

989 van den Berg H, Manuweera G, Konradsen F. 2017. Global trends in the production and use of
990 DDT for control of malaria and other vector-borne diseases. *Malaria Journal* 16:401;
991 doi:10.1186/s12936-017-2050-2.

992 van der Velpen V, Teav T, Gallart-Ayala H, Mehl F, Konz I, Clark C, et al. 2019. Systemic and
993 central nervous system metabolic alterations in Alzheimer's disease. *Alzheimer's
994 Research & Therapy* 11:93; doi:10.1186/s13195-019-0551-7.

995 Vardarajan B, Kalia V, Manly J, Brickman A, Reyes-Dumeyer D, Lantigua R, et al. 2020.
996 Differences in plasma metabolites related to Alzheimer's disease, APOE ϵ 4 status, and
997 ethnicity. *Alzheimer's & Dementia: Translational Research & Clinical Interventions*
998 6:e12025; doi:<https://doi.org/10.1002/trc2.12025>.

999 Vermeulen R, Schymanski EL, Barabási A-L, Miller GW. 2020. The exposome and health: Where
1000 chemistry meets biology. *Science* 367:392–396; doi:10.1126/science.aay3164.

1001 Wan Q-L, Fu X, Dai W, Yang J, Luo Z, Meng X, et al. 2020. Uric acid induces stress resistance and
1002 extends the life span through activating the stress response factor DAF-16/FOXO and
1003 SKN-1/NRF2. *Aging (Albany NY)* 12:2840–2856; doi:10.18632/aging.102781.

1004 Wang C, Saar V, Leung KL, Chen L, Wong G. 2018. Human amyloid β peptide and tau co-
1005 expression impairs behavior and causes specific gene expression changes in
1006 *Caenorhabditis elegans*. *Neurobiol Dis* 109:88–101; doi:10.1016/j.nbd.2017.10.003.

1007 Wania F, Mackay D. 1996. Peer reviewed: tracking the distribution of persistent organic
1008 pollutants. *Environmental science & technology* 30: 390A-396A.

1009 Williams PL, Dusenberry DB. 1988. Using the nematode *Caenorhabditis elegans* to predict
1010 mammalian acute lethality to metallic salts. *Toxicol Ind Health* 4:469–478;
1011 doi:10.1177/074823378800400406.

1012 Wytock TP, Zhang M, Jinich A, Fiebig A, Crosson S, Motter AE. 2020. Extreme Antagonism
1013 Arising from Gene-Environment Interactions. *Biophysical Journal* 119:2074–2086;
1014 doi:10.1016/j.bpj.2020.09.038.

1015 Yan X, Hu Y, Wang B, Wang S, Zhang X. 2020. Metabolic Dysregulation Contributes to the
1016 Progression of Alzheimer's Disease. *Front Neurosci* 14; doi:10.3389/fnins.2020.530219.

1017 Yu T, Park Y, Johnson JM, Jones DP. 2009. apLCMS—adaptive processing of high-resolution
1018 LC/MS data. *Bioinformatics* 25:1930–1936; doi:10.1093/bioinformatics/btp291.

1019 Zarse K, Schulz TJ, Birringer M, Ristow M. 2007. Impaired respiration is positively correlated
1020 with decreased life span in *Caenorhabditis elegans* models of Friedreich Ataxia. *The
1021 FASEB Journal* 21:1271–1275; doi:<https://doi.org/10.1096/fj.06-6994com>.

1022

1023 **Data sharing**

1024 The patient related metabolomics data will be made available on metabolomics
1025 workbench. All data and code related to DDT exposure in *C. elegans* is available through
1026 a repository on VK's github account https://github.com/vrindakalia/DDT_tau_Celegans.

1027

1028 **Tables**

1029 **Table 1. Demographic data of patients.** Patients with a diagnosis of Alzheimer's
1030 disease (AD) or mild cognitive impairment (MCI) were included in the analysis. Of these
1031 patients, 142 plasma and 78 cerebrospinal fluid (CSF) samples were analyzed using the
1032 LC-HRMS method. t-Tau: total tau protein; p-Tau181: tau phosphorylated at threonine
1033 181.

	Control	AD	MCI
PLASMA (N)	46	51	45
% Male	30	35	48
Age (y, mean \pm SD)	66.5 \pm 8.7	65.9 \pm 8.9	69.4 \pm 6.6
CSF t-Tau (pg/ml, mean \pm SD)	44 \pm 23	120 \pm 66	76 \pm 70
CSF p-Tau181 (pg/ml, mean \pm SD)	32 \pm 14	74 \pm 30	51 \pm 25
CSF (N)	25	26	27
% Male	28	38	55
Age (y, mean \pm SD)	66.2 \pm 8.2	64.8 \pm 8.2	70.2 \pm 6.2
CSF t-Tau (pg/ml, mean \pm SD)	44 \pm 24	113 \pm 64	69 \pm 44
CSF p-Tau181 (pg/ml, mean \pm SD)	32 \pm 13	79 \pm 32	53 \pm 20

1034

1035

1036 **Figure captions**

1037 **Figure 1. Global metabolomic features associated with p-tau in humans and *C.***

1038 ***elegans*.** In A, a metabolome-wide association study found 225 CSF metabolites

1039 associated with CSF p-tau levels with $p < 0.05$. Enriched pathways corresponding to CSF

1040 p-tau associated metabolites are shown in B. In C, 391 plasma metabolites were found

1041 to be associated with CSF p-tau levels, with $p < 0.05$; enriched pathways are listed in D.

1042 The aggregating strain shows the greatest influence on the metabolome. In E, a

1043 metabolome wide association study found 900 metabolites significantly different between

1044 the aggregating and non-aggregating worms. These metabolites resulted in the enriched

1045 pathways shown in F. In G and I, Venn diagrams shows the overlap between annotated

1046 metabolites associated with p-tau in worms and the human matrix; H and J include the

1047 name and KEGG ID for the overlapping metabolites. The nature of the relationship

1048 between the metabolite and p-tau, whether positively associated (upward arrow) or

1049 negatively associated (downward arrow), is shown under the direction column in H and

1050 J.

1051

1052 **Figure 2. Uptake and metabolism of DDT and the effect of exposure on growth.** In
1053 wildtype worms, exposure to increasing levels of DDT shows increasing internal levels of
1054 p,p'-DDT and its metabolite, p,p'-DDE while levels of p,p'-DDD were near the limit of
1055 detection (A). Wildtype worms exposed to the three doses of DDT were collected in
1056 triplicate and the mean level of the parent and its metabolites is plotted with error bars
1057 representing the standard deviation. The aggregating strain is smaller in size at larval
1058 stage 4 (B, C) and in young adulthood (D, E) compared to the non-aggregating and
1059 wildtype strain. Exposure to DDT restricted the growth of all strains at both stages
1060 measured. The bars represent the mean measure and the error bars represent the
1061 standard deviation. *** Tukey HSD adjusted $p < 0.0001$.

1062

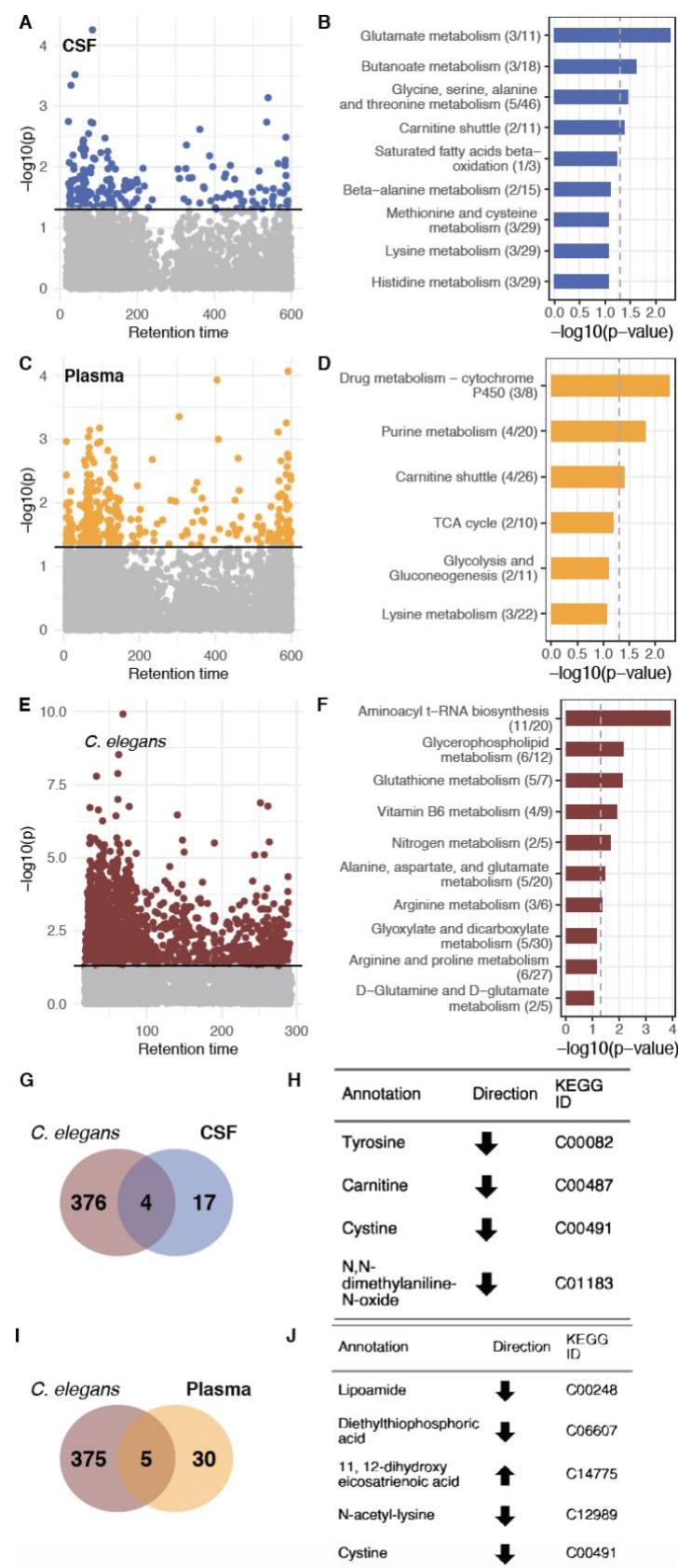
1063 **Figure 3. Aggregating tau and DDT affect swimming behavior.** The aggregating strain
1064 shows altered wave initiation rate (A) and travel speed (B) compared to the wildtype N2
1065 worm. The aggregating strain exposed to DDT spends more time curling while swimming
1066 (C). The overall activity index of the aggregating strain is reduced compared to the
1067 wildtype N2 strain (D). Each bar represents the mean measure taken from four-five
1068 different trials with a total of 50-100 worms per group. The error bars represent the
1069 standard error of the mean. * Tukey HSD adjusted $p < 0.05$.

1070

1071 **Figure 4. Aggregating tau and DDT inhibits mitochondrial function.** In A, a
1072 representative oxygen consumption rate (OCR) profile measured using the Seahorse
1073 respiratory flux analyzer. The wildtype and non-aggregating strain show a similar OCR
1074 however, exposure to DDT reduced the OCR in both strains (A). The aggregating strain
1075 shows a reduced OCR compared to the wildtype and non-aggregating strain (A) and
1076 exposure to DDT reduced basal respiration in the aggregating strain (B). Each bar
1077 represents the mean respiratory measure made across 3-5 experiments with 7-12 wells
1078 per run with 3-30 worms per well. The error bar represents the standard deviation. ***
1079 Tukey HSD adjusted $p < 0.0001$, * Tukey HSD adjusted $p < 0.05$, ns: not significant.
1080

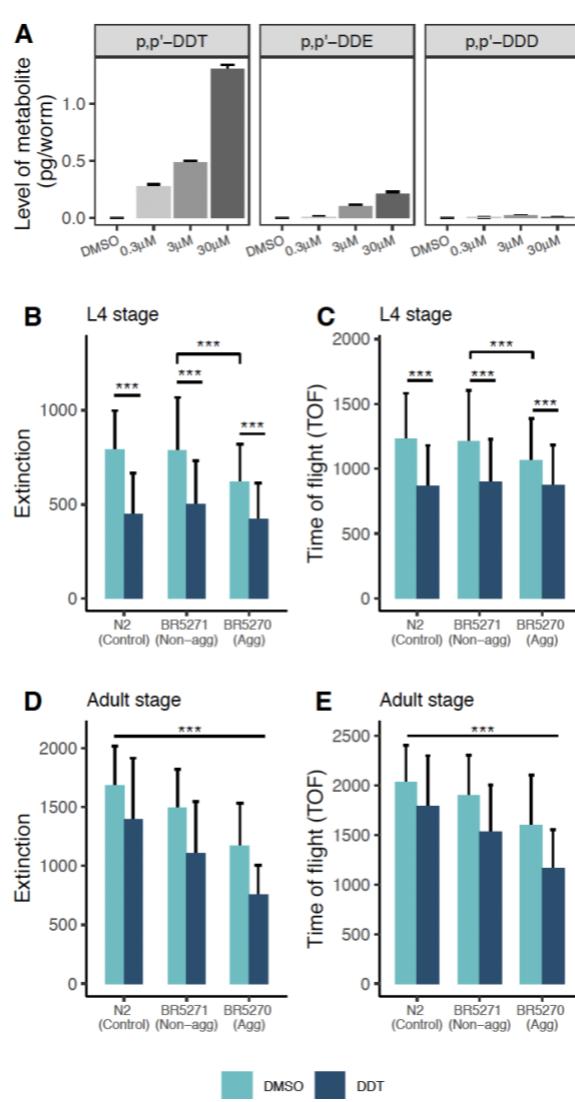
1081 **Figure 5. Metabolomic profile of DDT exposure.** In A, a heatmap of the top 25
1082 metabolites with the smallest *p-value* hierarchically clustered shows that in all strains,
1083 DDT decreases metabolite intensity. In B, a PCA biplot of PC1 plotted against PC2 shows
1084 that strains exposed to DDT cluster differently from the wildtype and non-aggregating
1085 control strains. The aggregating strain does not cluster with the wildtype and non-
1086 aggregating control groups, suggesting variation as a result of aggregating tau protein
1087 expression. In C, levels of uric acid are higher in all worms exposed to DDT and levels of
1088 adenosylselenohomocysteine are higher in both: worms exposed to DDT and in worms
1089 expressing aggregating tau protein. IMP: inosine monophosphate, FMN: flavin
1090 mononucleotide, Ala-Val: alanine-valine dipeptide.

1091


1092 **Figure 6. Pathway analysis.** The different metabolic pathways enriched in the three
1093 different comparison groups. Enrichment is calculated as the ratio of the number of
1094 significant hits to the total pathway size.

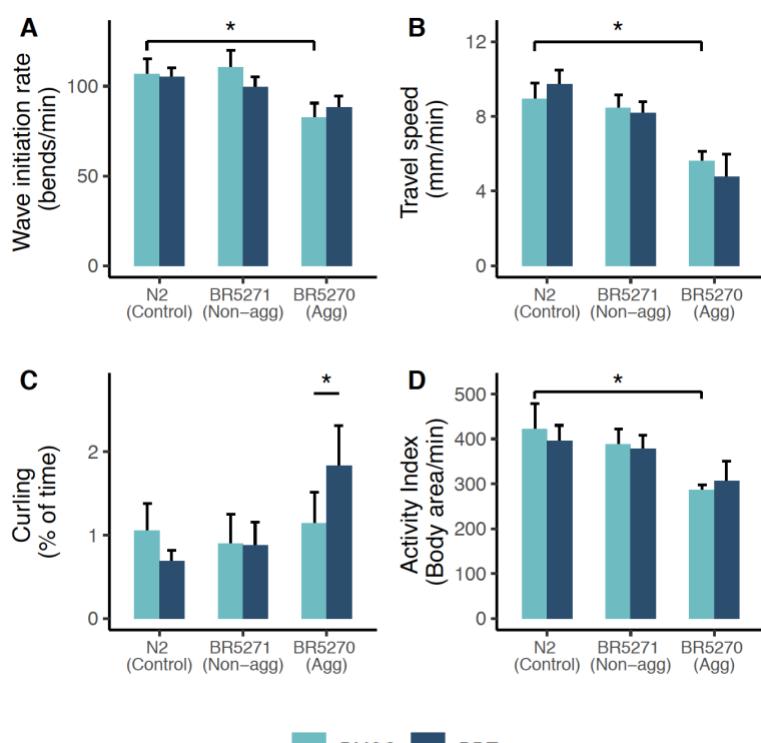
1095

1096 **Figure 7. Associative learning and survival.** Associative learning was not affected by
1097 exposure to DDT in any of the strains. The aggregating strain did not learn differently from
1098 the non-aggregating or wildtype worms. The dotted lines represent the chemotaxis index
1099 for each trial with the bold lines representing the mean (A). Each bar represents the
1100 learning index (B), calculated as the difference between the trained chemotaxis index,
1101 post-conditioning, and the naïve chemotaxis index for each trial (A). The error bars
1102 represent the standard error of the mean. The non-aggregating and aggregating strain
1103 live shorter than wildtype worms. Exposure to DDT did not affect the survival of the
1104 wildtype or non-aggregating strains however, exposure to DDT slightly rescued the
1105 reduced lifespan in the aggregating strain. The Kaplan Meier curves (C) are generated
1106 by following 60 – 120 worms in each group and the bars (D) represent the mean lifespan
1107 in days and the error bars represent the standard deviation. * Tukey HSD adjusted $p <$
1108 0.05.


1109

1110 **Figure 1**

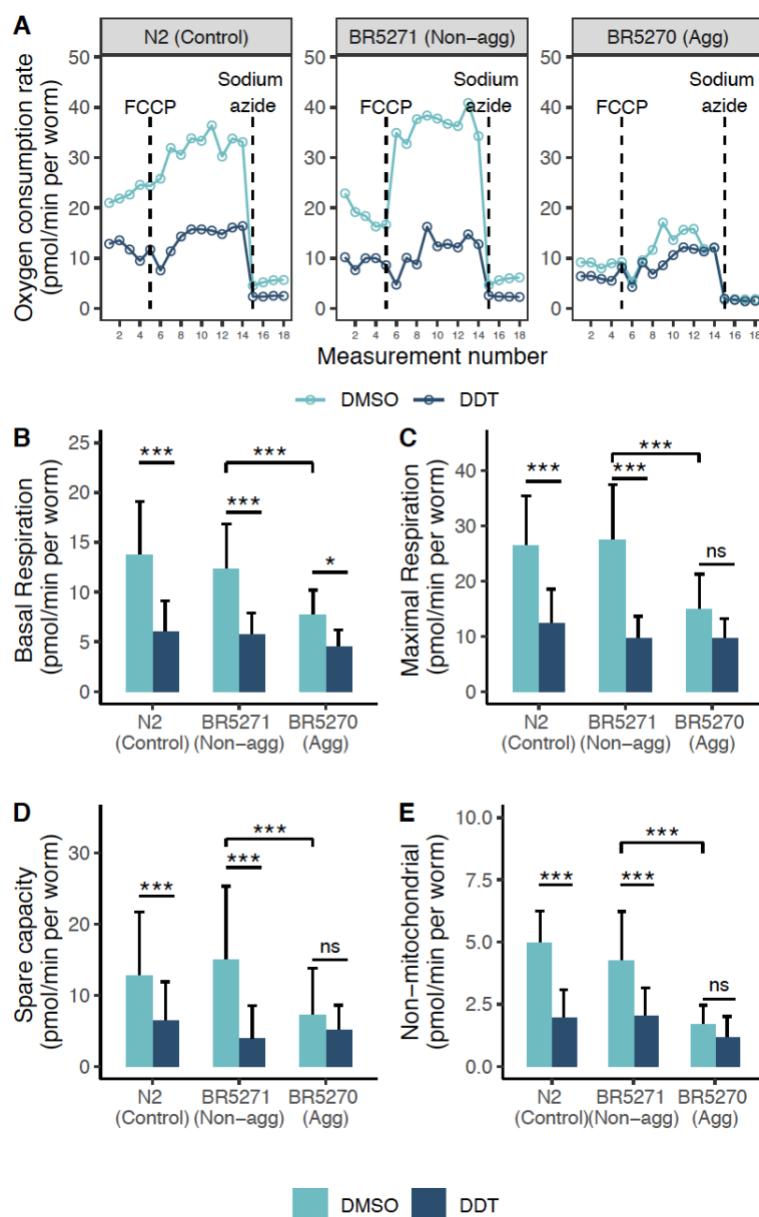
1112 **Figure 2**


1113

1114

1115

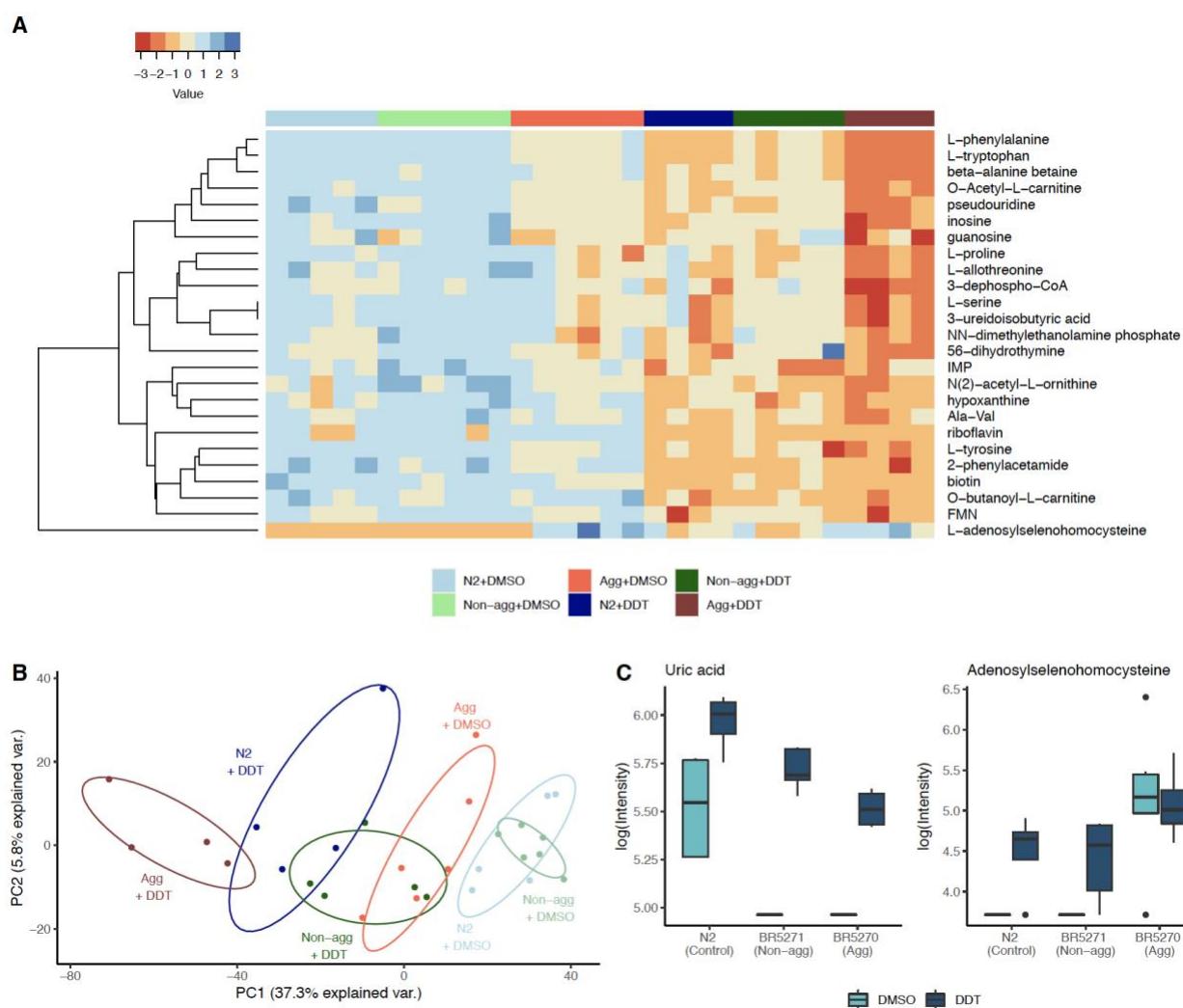
1116 **Figure 3**



1117

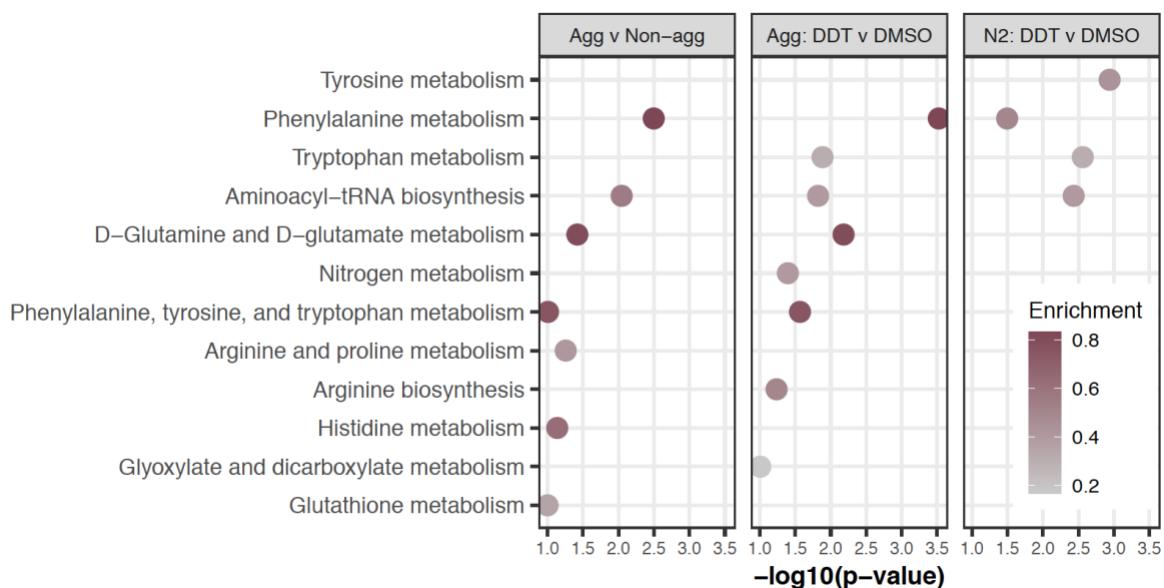
DMSO DDT

1118


1119 **Figure 4**

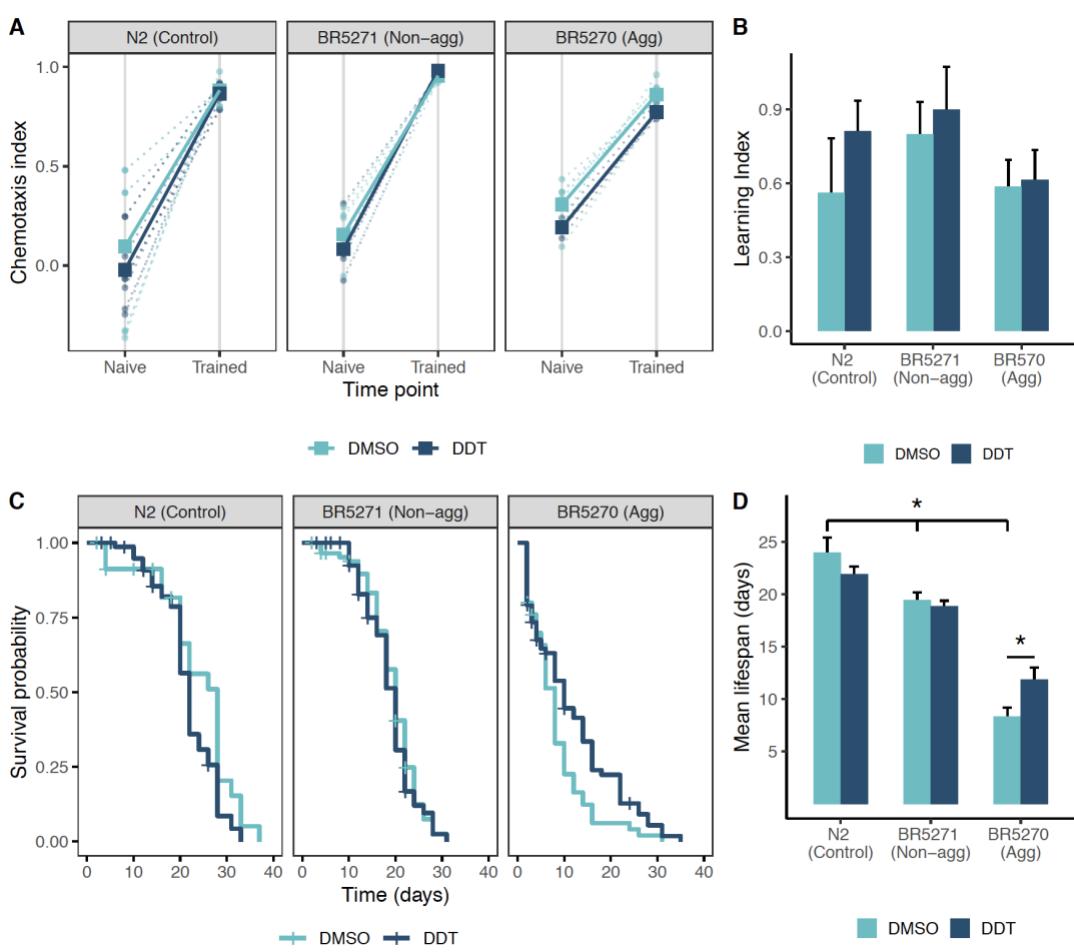
1120

1121


1122 **Figure 5**

1123

1124


1125 **Figure 6**

1126

1127

1128 **Figure 7**

1129

1130

1131