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. Abstract

> Very high risk neuroblastoma is characterised by increased MAPK signalling, and targeting
3 MAPK signalling is a promising therapeutic strategy. We used a deeply characterised panel
+ of neuroblastoma cell lines and found that the sensitivity to MEK inhibitors varied drastically
s between these cell lines. By generating quantitative perturbation data and mathematical
¢ modelling, we determined potential resistance mechanisms. We found that negative feedbacks
7 within MAPK signalling and to the IGF receptor mediate re-activation of MAPK signalling
s upon treatment in resistant cell lines. By using cell-line specific models, we predict that
o combinations of MEK inhibitors with RAF or IGFR inhibitors can overcome resistance, and
10 tested these predictions experimentally. In addition, phospo-proteomics profiles confirm the
11 cell-specific feedback effects and synergy of MEK and IGFR targeted treatements. Our study
12 shows that a quantitative understanding of signalling and feedback mechanisms facilitated by
13 models can help to develop and optimise therapeutic strategies, and our findings should be
1« considered for the planning of future clinical trials introducing MEKi in the treatment of
15 neuroblastoma.
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.« Introduction

1z Neuroblastoma is the most common and devastating extracranial childhood solid tumour, accounting for
15 15% of all childhood cancer deaths. The 5-year survival rate is 75% overall, but it is below 45% for so-called
1o high-risk neuroblastoma that represent about 40% of patients (De Bernardi et all [2003; Maris et all, |2007;
20 [Kyo et al, 2011). Telomere maintenance is a central hallmark of high-risk neuroblastoma (Peifer et al)
21 [2015), and approximately 50% of high-risk neuroblastoma harbour amplification of the MYCN oncogene
22 (Barone et al, [2013). Mutations activating the RAS/MAPK signalling pathway are frequent in high-risk and
23 relapsed neuroblastoma (Ackermann et all [2018; [Eleveld et all |2015), with relapsed neuroblastoma being
2a  almost always fatal. Most recently, mutations in the p53/MDM2 or RAS/MAPK pathway in the presence of
2s telomere maintenance mechanisms were shown to define a subgroup of ultra-high risk neuroblastoma with a
26 H-year survival below 20%. Therefore, development of novel therapies for patients with high risk or relapsed
2z neuroblastoma is an urgent clinical need. Mutations of anaplastic lymphoma kinase (ALK), present in 8% of
2s  all patients at diagnosis (Bresler et al, [2014; [Hallberg and Palmer} 2016, are the most common mutations
20 activating the RAS/MAPK pathway in neuroblastoma. In addition, mutations in PTPN11, NF1, Ras and
30 other RAS/MAPK pathway signalling elements occur in neuroblastoma (Pugh et all [2013; Eleveld et al,
s [2015)).

32 This makes RAS/MAPK pathway inhibition a promising treatment option for neuroblastoma, and ALK
;3 and MEK inhibitors are already being tested in early clinical trials (Johnsen et al, [2018). However, tumour
s  responses to targeted inhibitors were inconsistent, and early progression pointed towards development of
s resistance, giving a strong incentive to understand mechanisms of primary and secondary resistance and how
3s to overcome these mechanisms.

37 Resistance to targeted therapies of signalling pathways are often mediated by feedbacks that re-wire or re-
ss  activate signalling. For example, resistance to PI3K/mTOR inhibition in breast cancer is often mediated by
3o feedbacks that lead to activation of JAK/STAT signalling (Britschgi et al, 2012). Similarly, in colon cancer,
a0 MAPK-directed therapy is counteracted by a negative feedback that leads to hyper-sensitisation of the EGF
a1 receptor and ultimately reactivation of MAPK and AKT signalling (Klinger et al, [2013; Prahallad et all,
2 [2012). Additionally, a very strong feedback from ERK to RAF leads to re-activation of MAPK signalling
a3 upon MEK inhibition in many cancer types (Friday et all 2008} [Fritsche-Guenther et al, [2011; [Sturm et al,
as [2010). One approach to overcome feedback-mediated resistance is by combinatorial therapy that co-targets
a5 the feedback (Klinger and Blithgen, [2014)).

46 We report here how a more quantitative understanding of feedback mechanisms might help to optimise
a7 combinatorial treatment. We used a neuroblastoma cell line panel representing the class of very high-risk
ss neuroblastoma, which we profiled for drug sensitivity, genomic and transcriptomic alterations. We observed
s strong differences in the sensitivity to MEK inhibition. To arrive at a mechanistic understanding of resistance
so to MEK inhibition, we generated systematic perturbation data and quantified signalling using data-driven
52 models. By this we described qualitative and quantitative differences in feedback structures that might
s2 confer the observed robustness to MEK inhibition. We then identified potential combinations capable of
53 sensitising highly resistant cell lines to MEK inhibition, and tested these combinations systematically.

=« Results

ss Drug sensitivity in a panel of very-high-risk neuroblastoma cell lines

ss  We collected a panel of 9 neuroblastoma cell lines (CHP212, LAN6, NBEBC1, SKNAS, NGP, SKNSH,
sz N206, KELLY and IMR32) and performed molecular profiling of these cells (RNA-sequencing and exome
ss  sequencing, see ) We noticed that all cell lines harbour a mutation in at least one of the RAS
so pathway genes with all cell lines having a mutation in either KRAS, NRAS, NF1, BRAF or ALK. One cell line
s (IMR32) had two mutations in the pathway: a mutation in KRAS and an atypical BRAF mutation. Most
s1 cell lines also have a mutation in one of the p53 pathway genes: ATRX, ATM, ATR, PRKDC, CDKN2A
2 and TP53. Additionally, all express telomerase as seen by TERT expression, except for LAN6 which is
es known to have an alternative mechanism to lengthen the telomeres (ALT) (Peifer et all [2015). We saw
s strong variability in the expression of MYCN, with 4 cell lines expressing low levels of MYCN, and 5 cell
es lines displaying high levels of MYCN. When considering mutations of individual genes, we found a strong
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Figure 1: Mutations are insufficient to explain sensitivity variations to RAS/PISK drugs in neuroblastoma
cell line panel A. Oncoprint of 9 neuroblastoma cell lines for RAS/p53/PI3K related genes along with MYCN
and TERT mRNA expression. B. Relative IC50 of the same 9 neuroblastoma cell lines as in A for drugs
targeting the PI3K and MAPK pathways (n=2). C. Viability concentration curves for the MEK inhibitor
AZD6244 on the neuroblastoma cell line panel along with the calculated IC50 (intersection with dotted line).
Points represent measurements (n=2).

es heterogeneity within our panel, but overall the frequency of mutations in individual genes reflects that of
ez high risk tumours (Ackermann et al, [2018)). Taken together, those data indicate that the chosen cell line
es panel can be seen as representative for the group of very-high risk neuroblastoma.

o0 To further characterise the cell line panel, we measured drug sensitivity for 6 inhibitors that target
70 components of the pathways shown to be affected by mutations (MAPK/PI3K/mTOR), using live cell
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7 imaging and computing growth rates from confluency measurements (Figure 1|B) In this panel of cell lines,
72 there was no notable difference in the sensitivity to the AKT inhibitor MK2206 or to the RAF /pan-tyrosine
73 kinase-inhibitor Sorafenib. In contrast, pronounced variation in IC50 across the panel can be seen for
7z mMTORCI inhibitor Rapamycin and MEK inhibitor AZD6244. When comparing to published drug sensitivity
75 data, the IC50 for AZD6244 largely correlate with those derived for a different MEK inhibitor (binimetinib)
ze  (Woodfield et all [2016]). All 6 NRAS wild type cell lines showed similar sensitivity to Rapamycin while the
7z 3 NRAS mutant cell lines exhibited either strong resistance (SKNSH and SKNAS) or sensitivity (CHP212).
ze  This is only partly in agreement with previous literature that described CHP212 but also SKNAS as sensitive
7o to sub-nanomolar concentrations of Everolimus, a Rapamycin analog (Kiessling et al, 2016). AZD6244 is
so the drug with the most variable drug response, with a subset of 6 cell lines cell lines being very resistant
a1 to AZD6244 (IC50 >10uM, , Supplementary Figure 1) and another subset of 3 cell lines showing
s2 extreme sensitivity (IC50 ~ 10-100 nM). When correlating inhibitor sensitivity with mutations, we found
ss 1o notable correlation for AZD6244 and Rapamycin (Supplementary Figure 2). Drug sensitivities also did
ss 1m0t correlate significantly with selected expression data (adjusted p>0.93 for the 1000 most variable genes
ss and adjusted p>0.94 for GO signal transduction genes, Supplementary Figure 3). Also a PCA analysis
ss could not separate cells according to MEKi sensitivity for those two expression groups (Supplementary
sz Figure 4 and 5). For instance, previous reports showed that NF1 expression is linked to sensitivity to
ss  MEK inhibitors (Woodfield et all [2016)), however we only found a weak and non-significant correlation with
s AZD6244 sensitivity (R? = 0.34,p = 0.10, Supplementary Figure 6). Taken together, this data establishes
oo that this cell line panel represents a heterogeneous group of very high risk neuroblastoma that differ in drug
o1 sensitivity, most prominently against MEK inhibitors. Furthermore, it suggests that the difference cannot
o2 be explained by single mutations or expression of marker genes alone.

s Perturbation-response data unveils heterogeneity in signalling

oa To get insights into the underlying mechanisms of resistance to the MEK inhibitor AZD6244, we selected 6
os neuroblastoma cells lines that represented the spectrum of sensitivity to MEK inhibition (sensitive: CHP212,
os LANG; resistant: SKNAS, SKNSH, KELLY and IMR32) Using these cell lines, we performed perturbation
o7 experiments, in which we stimulated the cells by growth factors for 30 minutes, and additionally inhibited
os specific pathways for 90 minutes ) After perturbation, we then monitored pathway activity by
oo measuring phospho-proteins.

100 We designed the experiments such that they probe the AKT/mTOR and MAPK signalling pathways
101 (Figure 2B). Specifically, we selected ligands that might activate those pathways based on the expression of
102 growth factor receptors in the cell lines. As expression of receptors was heterogeneous (Supplementary Figure
103 7 and 8), we chose a set of growth factors such that each cell line had robust expression of receptors for at least
10a  two provided ligands. Inhibitors were chosen such that they block key steps of the pathway. The position
15 of perturbations and readouts in the signalling network is shown in [Figure 2]B. We perturbed the 6 cell lines
e with 4 ligands (PDGF, EGF, IGF1 and NGF, shown in blue) and 7 inhibitors (GS4997 (ASK1i), MK2206
17 (AKTi), Rapamycin (mTORC1i), AZD6244/Selumetinib (MEKi), Sorafenib (RAFi), TAE684 (ALKi) and
1s  GDC0941 (PI3Ki), shown in red) alone or in combinations. Subsequently, we measured 6 phosphoproteins
10 (MEK, ERK, AKT, S6K, p38 and cJUN, yellow background) for each perturbation using a sandwich ELISA
120 where a first bead-bound antibody captures the protein and a second recognises the phosphosite of interest.
11 All experiments were performed in two biological replicates.

112 Overall, the perturbation experiments yielded 240 data points per cell line, which are visualised in a
11z heatmap in [Figure 2IC. Inspection of the heatmap shows that the perturbation-response data has similar
1a  patterns in different cell lines, but there are also clear differences. For instance, inhibition of mTOR leads to
15 down-regulation of phospho-S6K across all cell lines, but inhibition of AKT and PI3K has diverging effects
16 on S6K. Similarly, application of MEKi leads to an increase of phospho-MEK across all cell lines, but ALK
117 inhibition had varying effects in different cell lines.

118 To get further insights into this high-dimensional data set, we performed principal component analysis
e (PCA) on the perturbation data top, Supplementary Figure 9). The PCA highlights 3 groups of
120 cell lines. The first component (42% of variance) separates the cell lines according to the effect of Sorafenib
122 and TAE684 on AKT and S6K. The second component (26%) separates IMR32 and KELLY based mainly
122 on the MEK response to MEK inhibition. The third component (18%) contains the effects of IGF1, GS4997
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Figure 2:  Neuroblastoma cell lines show heterogeneous responses to signalling perturbations A. Outline
of the perturbation experiments. A panel of cell lines was treated with growth factors and small molecule
inhibitors, and the resulting effect on selected phosphoproteins was measured using multiplexed bead-based
ELISAs. B. Graphical representation of the perturbation scheme on a literature signalling network. Blue
and red contour highlights ligand stimulation and kinase inhibition, respectively; yellow filling shows mea-
sured phosphoproteins. C. Perturbation data obtained from applying all combinations of 4 ligands or BSA
control and 7 inhibitors or DMSO control to 6 neuroblastoma cell lines. Each measurement is normalised
by the BSA-+DMSO control of the corresponding cell line and represents at least 2 biological replicates.
Readouts are phospho-proteins p-MEK15217/8221 1, ,38T180/Y182 ', ERK1T202/Y204 1, ¢ JUNSO3 p AKTS473
and p-S6KT38%. D. Global non-mechanistic analysis of the perturbation data presented in C: TOP first two
components of a principal component analysis and BOTTOM hierarchical clustering. Colour scale corresponds

to the IC50 for AZD6244 treatment (see also ).

and Rapamycin on AKT and S6K and mainly separates KELLY and IMR32 (Supplementary Figure 10 and
Supplementary Table 1)

When we applied hierarchical clustering on the cell line panel, SKNSH was clustered separately, suggesting
that it has a very atypical response to the perturbations, with a generally very high response to all ligands,
and an especially strong response to PDGF bottom). This atypical status of SKNSH is also
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128 present in the mRNA expression, with a PCA on the most variables genes or on the genes in the GO
120 term "signal transduction" separating it from the other cell lines. Interestingly, CHP212 also separated
130 from the other cell line in a PCA based on gene expression data, but not when considering the response to
131 the perturbations. When grouping cells by MEK inhibitor sensitivity, we noticed that simple multivariate
132 analysis by PCA does not separate cells into groups that correspond to sensitive or resistant cells
133 top and Supplementary figure 9), and also hierarchical clustering does not separate sensitive from resistance

3¢ cell lines (Figure 2D bottom).

s Signalling models highlight differential feedback regulation of MEK

13¢ 10 get further, more mechanistic, insights into potential resistance mechanisms, we used the perturbation
137 data to parameterise signalling models. We applied our previously developed method that has been derived
138 from Modular Response Analysis (MRA, implemented as R package STASNet, Dorel et al (2018)) to fit
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Figure 3:  Receptor expression and topology variations explain the heterogeneity in perturbation response
A. Starting from a literature-derived network, a model was fitted for each cell line (Initial model fit) and
extended following suggestions from the model (Model extensions and refit). Those models with different
network structures were then harmonised by fixing the inhibition parameters to a consensus value (Fixed
inhibitor parameters) to make the parameters directly comparable (Parameter comparison). B. Model
residuals before and after model extension and harmonisation. The black line represents the number of data
points, which is equal to the expected mean of the error if the model explains all the data. C. Cell-line-
specific network extensions (dashed arrows) relative to the literature network. Colour of the extended link
was matched to cell line colour if required in only one cell line model and black otherwise. D. Model paths
from the receptors to the first measured downstream node and correlation with the corresponding receptor
expression. The colours correspond to the value of the path scaled by the maximum absolute value of that
path between all cell lines. E. Model paths between non-receptor perturbed nodes and measured nodes
for routes present in at least 2 cell lines. Colour scale is the same as in D. Cells are ordered from left to
right from most sensitive to most resistant to the MEK inhibitor AZD6244. Due to the absence of ASK1
basal activity in IMR32 ASK1->p38 and ASK1->MEK represent in this cell line NGF->ASK1->p38 and
NGF->ASK1->MEK respectively.
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130 signalling network models to each cell line. This modelling procedure requires a literature network and the
1o perturbation data as input, and then estimates response coefficients corresponding to link strengths using a
12 maximum likelihood estimate (see[Figure 3A, first step). By using the statistical framework of the likelihood
a2 ratio test, the modelling procedure then allows to test if any extension of the literature network is required
13 to describe the data (see , second step). To compare parameters between cell lines, it is essential
1aa  to harmonise parameters between all cells that can practically not be identified alone, i.e. parameters for
15 inhibitors (see , third step). This finally yields a parameter map that allows to compare signalling
1 strength between cell lines (see [Figure 3JA, final step).

147 When starting with a canonical literature network (see Materials and Methods), we obtained reason-
us able fits for 4 of the 6 cell lines, as judged by the sum of weighted squared residuals that is in the
1o order of number of data points , red bars), and the normal distribution of residuals (Sup-
10 plementary Figure 11). When we systematically tested if extensions of the network improve the fit us-
151 ing a likelihood ratio test, we found that significant improvements were still possible for most cell lines.
12 We therefore performed successive rounds of extensions for each cell line independently and
153 Supp_data_ fig3_perturbation_ data.zip). While SKNSH required no extension of the literature network,
1. CHP212, LANG6, SKNAS required two or three extensions. KELLY and IMR32, the two cell lines that
15 initially had the poorest fit, required four extensions C). After the extension the sum of weighted
156 squared residuals was in the order of the number of data points for all cell lines except KELLY
157 green bar). The high residuals still exhibited by KELLY could be narrowed down to uncertainties in individ-
1ss  ual data points (see Supp data_fig3 perturbation_ data.zip). Two network extensions (ASK1—MEK and
10 p38—S6K) were significant in at least 3 cell lines and correspond to an effect of the ASK1 inhibitor GS4997
10 on the MEK/ERK MAPK pathway and S6K. Both links are negative which suggests an antagonism between
16 the p38 MAPK and the MEK/ERK MAPK pathways in neuroblastoma cell lines. This negative crosstalk
12 from p38 to MEK/ERK has also been described in other cell systems, e.g. after p38 knockdown in HeLa
163 cells (Finch et all [2012).

164 All extended models had similar, but different, parameters for the inhibitor strength. However, there is
165 a strong interdependence of the inhibitor strength and link strength downstream of the inhibitor which render
166 comparison between those link strengths in different cells difficult (see Supp data_ fig8 perturbation_ data.zip).
16z As all cell lines received the same inhibitor concentration we therefore harmonised the inhibitor parameters
1s by fixing them to the mean value between all models (Figure 3JA, fixed inhibitor parameters). The resulting
160 harmonised models maintained a good agreement with the data , blue bars) and were used for
170 inter-model comparisons and E).

171 When inspecting the parameters for ligand-induced pathway activation, we noticed that they reflected
172 a strong heterogeneity in ligand response between the cell lines. Reassuringly, they matched the expression
173 of the corresponding receptors in many cases , Supplementary Figure 12). The parameters for
17a  pathways downstream of NGF correlated mostly with NTRK1 expression and not with NGFR expression,
1zs which might indicate that NGF signalling is mediated mostly via NTRK1 in those cell lines. The parameters
17e  for IGF-induced signals correlated with IGF1R or IGF2R for MEK and AKT, respectively, indicating that
17z both receptors mediate IGF1 signalling independently. Interestingly, the parameters for the pathway from
1zs  EGF to MEK did not correlate with EGFR expression, but they do for EGF to AKT, which might suggest
7o that differences in adaptor protein expression shape routing into downstream signalling in the various cell
10 lines. Indeed, the expressions of GAB2 and SRC are very different between the cell lines and could explain
1:2 that IMR32 and LANG are activated by EGF as strongly as SKNAS and SKNSH despite their lower EGFR
182 expression , Supplementary Figure 6). Another potential cause for the attenuated activation of
183 MEK/ERK is that in NRAS mutant cell lines (CHP212, SKNAS and SKNSH), MEK/ERK activity is less
1sa inducible by receptors, as also parameter values of the routes from PDGF, EGF, NGF and IGF into MAPK
15 signalling are lower in those cell lines. Conversely, these cell line models display a slightly more inducible
1ss  PI3K pathway. This observation is in agreement with a recent comparative study of G12V-mutated RAS
17 isoforms in colorectal SW48 cells, where the NRAS mutated cell line showed a weaker coupling of receptors
1s to MEK and a stronger coupling to PI3K than in the parental cell line (Hood et al, [2019). This would
180 suggest that an activation of the MEK/ERK pathway is relayed predominantly by NRAS while the PI3K
10 pathway activation is mediated by other proteins (Yang et al, |2012). Taken together, this shows that the
101 wiring and routing of ligand induced signalling in these cell lines is varying and is mostly explainable by the
102 expression of the corresponding receptor and RAS mutation status.
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103 In contrast to the receptor-associated parameters, the strength of intra-cellular kinase paths are less
10a  variable, and most paths are comparable between cell lines ) The most prominent exception
105 1S the negative feedback in MAPK signalling from ERK to RAF. When compared to the other cell lines,
106 this feedback appears to be 3 to 4 times stronger in KELLY and IMR32, which are two cell lines that are
107 highly resistant to AZD6244. A strong RAF-mediated feedback is a known resistance mechanism against
1s  MEK inhibitors (Friday et all, | 2008; [Fritsche-Guenther et al, [2011), where relieve of inhibition of upstream
100 components post inhibition can partially reactivate signalling. This suggests that AZD6244 resistance could
200 be mediated by a differential regulation of this feedback.

201 Apart from the RAF-mediated feedback, MAPK signalling is also controlled by receptor-mediated feed-
202 backs. In the KELLY cell line, our modelling procedure extended the model by a negative feedback from S6K
20 to IGFR that could then explain the strong accumulation of pMEK by IGF following AZD6244 treatment
20a  (Figure 3C and Supp data_fig3 perturbation data.zip). Receptor-mediated feedbacks are also known to
205 mediate resistance, notably to MAPK inhibitions (Corcoran et al, [2012; Klinger et all, 2013} Klinger and
206 |Bliithgen, [2014; Rozengurt et all |2014; Lake et al, 2016), by reactivating the pathway and other parallel
207 pathways.

208 In summary, the signalling parameters derived from the perturbation data by our models show that cell
200 lines diverge in receptor expression and feedback regulation, with strong multi-layered feedbacks for some of
210 the resistant cell lines.

- Differential quantitative wiring of resistant cell lines

212 A hallmark of negative feedbacks is that they lead to re-activation of the pathway after pathway inhibition. In
213 agreement with this, we observe an increase of phosphorylated MEK upon MEKi treatment (AZD6244) that
212 is more pronounced in the cell lines IMR32 and KELLY compared to the other cell lines modelled, including
215 the most sensitive cell lines CHP212 and LANG , Supplementary Figure 13). We also tested
216 the most resistant cell line in our panel, N206, which also showed a strong feedback response (Figure 4JA).
217z 'To more precisely dissect the feedback wiring, we generated additional focused perturbation data for those
as cells with high feedback (KELLY, IMR32 and N206) to MEK inhibition. We stimulated cells with different
210 growth factors (IGF and NGF or EGF), and blocked MAPK signalling with MEK and RAF inhibitors, and
220 subsequently monitored six phosphoproteins (Figure 4B). Subsequently, we used this data to parameterise a
221 focused MRA model that additionally either contained or did not contain the only receptor-mediated feedback
222 found in the first modelling round from S6K—IGF1 and[Figure 4A). Inclusion of the IGF receptor-
223 mediated feedback led to a significantly better fit of the data for N206 and KELLY (x? p<0.05), but did
224 not improve the IMR32 model and D). Interestingly, the SCK—IGF1—-RAF—MEK feedback is
225 stronger in the N206 models, but the pathway-intrinsic feedback (ERK—RAF—MEK) is stronger in KELLY
226 (Figure 4D). This highlights that all these cells display negative feedback regulation, but the strengths of
227 the two layers of feedbacks are different between cell lines.

2s  Parallel inhibition of MEK and IGFR leads to synergistic effects on the phos-
220 phoproteome

230 To gain a more systematic understanding of the effect of MEK and IGFR inhibition on the signalling states
231 of the cells, we generated deep (phospho-)proteomics profiles using tandem mass-tag (TMT) based mass
232 spectrometry (??). We measured the phospho- and total protein levels in IMR32 and N206 cells after 4h
233 treatment with MEK and/or IGFR inhibitors and control cells. Although a similar number of phosphosites
23 were dis-regulated in both cell lines (448 in IMR32, 615 in N206, FDR < 0.05), there was little overlap in the
235 phospho-peptides differentially regulated between the two cell lines ), and this overlap was mostly
236 limited to phospho-peptides affected by MEK inhibition (Supplementary Figure 16). In IMR32, IGFR
237 inhibition had little effect, while the presence of MEK inhibition strongly affected the phosphoproteome
238 left). Moreover the effect of the combination of MEK and IGFR inhibitors was dominated by
230 the effect of the MEK inhibition, with about two thirds of the differential phosphopeptides (96/149) being
2e0  also regulated by MEK inhibitor alone. Accordingly, differentially phosphorylated peptides in IMR32 are
2a1  enriched in MAPK targets (Supplementary Figure 17). In contrast, both MEK as well as IGFR inhibition
2a2  induce strong alterations in the phosphoproteome in N206 (Supplementary Figure 16), affecting both mTOR
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Figure 4: AZD6244 resistant cell lines have strong feedback control of MAPK signalling A. Mean pMEK
log2-fold change relative to control after AZD6244 treatment in 7 neuroblastoma cell lines measured with
bead-based ELISAS. Error bars represent 95% confidence interval. B. Measurement of 6 phosphoproteins
(columns) after perturbation of N206, IMR32 and KELLY by either EGF (KELLY, N206) or NGF (IMR32)
(together referred to as GF), IGF1, or control BSA in combination with Sorafenib (RAFi), AZD6244 (MEKi)
or control DMSO. Values are expressed in log2-fold change to BSA-+DMSO control. C. Starting model and
S6K—IGF1 receptor extension for the high pMEK responder cell lines. D. (top panel) Model residuals for
N206, IMR32 and KELLY models with (black) or without (blue) an S6BK—IGF1 receptor feedback link and
corresponding p-value(y? test with df=1). (bottom panel) Parameter values of the high pMEK responder
models including the S6GK—IGF1 receptor link.

and MAPK signalling targets (Supplementary Figure 17), and the combination exhibits a synergistic effect
(Figure 5B right). Owverall, 25 differentially phosphorylated sites in N206 show synergistic regulation, as
defined by a significant deviation of the combination from the sum of the individual treatment effects. Of
these, 18 phosphosites were synergistically down-regulated, and 7 sites showed up-regulation. In contrast,
only two sites showed synergy in IMR32 ) Among the synergistically downregulated phospho-
sites in N206 was S425 of the Eukaryotic translation initiation factor 4B (EIF4B), a protein involved in
regulation of translation and a known nexus between AKT and MAPK signalling (Shahbazian et all 2006]).
We performed a kinase substrate enrichment analysis (?) to explore how the signalling networks were
affected by the inhibitions ) For IMR32 cells, this analysis showed a decreased phosphorylation
of MEK and JAK targets and an increased phosphorylation of ARAF and BRAF targets in response to
MEK inhibition. Interestingly, in combination with IGFR inhibition the RAF activation is partially reversed
whereas other kinase targets seem rather unaffected. Overall this indicates a feedback activation of RAF
that does not totally compensate the loss of MEK activity. In N206 cells, the response to MEK inhibition
and the attenuation of the activation of RAF targets following double inhibitor treatment is similar to the
response in IMR32. However, in IMR32 cells IGFR inhibitor treatment had little impact on the kinome
whereas in a massive down-regulation of targets of a range of kinases occurred in N206 cells, covering the
PI3K/AKT/mTOR pathway (SGK1-3,AKT1,p70S6K), MAPK pathway (p90RSK) and many members of
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260 the Protein Kinase C Family. This suggests a central role of IGFR signalling on central growth and survival
261 pathways.

262 When we investigated the phosphorylation of components of the MAPK pathway more closely, we found
263 many RAF negative feedback/crosstalk sites to be down-regulated after MEK inhibition (BRAF: T401, S750,
200 T753; RAF1: $29, 5642, $259) in both cell lines (Figure 5[E). MEK1 $222/S226 phosphorylation is increased
26s  and pERK S204 decreased in both cell lines after MEK inhibition, in line with corresponding measurements
266 using bead-based ELISAs. Among those down-regulated phosphosites that were only significant in the
267 combination in N206 we detected many MY CN-phosphosites, notably MYCN S62, which is regulated by
2es  MAPK via CDK1 (7). Interestingly, this loss of S62 phosphorylated MYCN is associated with reduced
260 MYCN levels ). This downregulation was observed in IMR32 and N206 cells upon single inhibition
2o (IGFRI for N206 and MEKi for both cell lines), but only in N206 cells an even stronger downregulation could
2z1 be observed upon double inhibition ). We confirmed these effects in Western blots for IMR32 and
272 N206 cells ), and also found downregulation of MYCN upon IGFRi as well as MEKi treatment
273 but no synergetic decrease after the combination treatment (Figure 5G). Another interesting protein that is
a7a regulated synergistically in N206 is Cyclin D1 (Figure 5H), a protein that is involved in cell cycle progression
ars and whose loss likely mediates MYCN loss. It should be noted that only 5 proteins (PHGDH, DERLI,
aze - AMPD3, ARHGEF16 and CCND1) were found differentially affected with an FDR < 10%, highlighting that
277 on this time scale phospho-protein changes dominated.

278 Taken together, the proteomics data is coherent with the model that MAPK signalling in N206 is con-
a7e  trolled by a dual feedback structure involving RAF and IGFR, whereas it is mainly controlled by a RAF-
20 mediated feedback in IMR32. It furthermore supports the notion that treatment with MEK and IGFR
261 inhibitors would show synergy in N206.

22 Vertical inhibition can break feedback-mediated resistance

283 Feedback regulation is often a central aspect for drug resistance that could be overcome by a vertical inhibition
2sa  strategy, where an inhibition of an upstream node prevents pathway reactivation. Based on our models, we
a5 tested if the additional application of an inhibitor targeting the feedback nodes (RAF and IGFR) would
286 sensitise resistant cells toward MEK inhibition ) We quantified growth reduction after inhibiting
2z IMR32, KELLY and N206 with different dose combinations of inhibitors against MEK (AZD6244), IGFR
ass (AEW541) and RAF (LY3009120). As expected from the observed synergy of MEK and IGFR on MYCN
2s0  levels (Figure 4F), and in agreement with our model predictions of strong IGFR-mediated feedback in N206
200 e was a strong synergistic effect of the combination of MEK and IGFR inhibitions on growth
201 in N206 but little in KELLY or IMR32 (Figure 6[B).

202 When trying to overcome the model-derived strong ERK-RAF feedback found in all three cell lines with
203 a combination of MEK and RAF inhibition we only found a synergistic effect for two of the three cell lines
20 (N206 and KELLY), whereas IMR32 remained resistant and no synergy could be detected. We hypothesised
205 that this observed resistance in IMR32 might be either because the vertical inhibition by MEKi and RAFi was
2006 1molecularly not effective or that IMR32 might no longer depend on ERK signalling for survival and growth.
207 To distinguish the former from the latter we decided to compare model simulation and measurements for
20s  perturbation effects of selected inhibitor combinations on pMEK and pERK in IMR32 and KELLY cells.
200 Based on the model simulations, in both cell lines the vertical inhibition of MEK + RAF inhibitor was
s00  predicted to suppress MAPK signalling much stronger than MEK inhibitor alone or in combination with an
so1  ERK inhibitor. Moreover, the suppressive effect was predicted to be even more profound in IMR32 than in
302 KELLY top). We then measured the effect on pMEK and pERK of MEK inhibitor alone and
503 in combination with the RAF inhibitor LY3009120 or ERK inhibitor SCH772984 bottom). The
304 measurements qualitatively supported the model simulations showing that RAF inhibitor suppressed MEK
sos feedback activation by AZD6244, and that this suppression is stronger in IMR32. Addition of the ERK
306 inhibitor neither suppressed this feedback activation nor could it decrease ERK phosphorylation more than
30z RAF inhibition, as also predicted by the model. This suggests that in agreement with the model simulations
s the combination of RAFi and MEKi is most effective in IMR32 to effectively suppress ERK activation and
300 feedback-mediated re-activation. However, since the growth is least affected by this combination IMR32
s10  seems not to depend on ERK activity.

311 In the end, we identified 2 combinations effective at low drug concentrations against the MEK-inhibitor
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Figure 5:  Phosphoproteomics analysis reveals important variations in the response to combination treatment
Venn diagram showing the overlap in differentially regulated phosphosites A between IMR32 and N206
or B between treatments for each cell line. C Phoshpopeptides synergistically altered by MEK+IGFR
combination. Black outline highlights where the change in the combination is significantly different to
the sum of the individual changes (limma moderated t-test, FDR<5%). D Kinase substrate enrichment
score using phosphositeplus annotations ; black outline highlights significant changes in activity for a given
condition (limma moderated t-test, FDR<5%) E Log-fold change to DMSO for RAF/MAPK and MYCN
phosphopeptides ; black outline shows significantly altered phosphosites per condition (limma moderated
t-test, FDR<5%). F-H Relative levels compared to control of the total proteins levels, MYCN measured

with mass spectrometry (F), Western blot (G), and CCND1 measured with mass spectrometry (H).
11


https://doi.org/10.1101/2021.06.14.448322
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.14.448322; this version posted June 14, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

;12 resistant cell lines KELLY and N206. As both KELLY and N206 have strong multi-layered feedbacks (Fig-]
), we reasoned that a combination of IGFRi, RAFi and MEKi might be even more efficient as it
s1a targets both feedbacks, irrespective of their individual strength. We thus tested the effect of a combination
s1is of AEW541, AZD6244 and LY 3009120 and observed a >80% reduction in viability of both KELLY and N206
a6 already at moderate concentration of all three drugs (300nM of AEW541, 50nM of LY3009120 and 500nM of
sz AZD6244) making it a potential therapeutic option and Supp_data_figl drug_sensitivity figh synergies.zip).
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Figure 6: AZD624 resistant cell lines can be sensitised with combined inhibition with the IGFR inhibitor
AEWS5/1 or the RAF inhibitor LY3009120 A. Model-inferred targeting strategy of dual inhibition assessment
by model simulations on pERK activity of 3 AZD6244 resistant neuroblastoma cell lines under various levels
of MEK inhibition and IGFR or RAF inhibition B. Corresponding growth inhibition measurements using
the specified inhibitors. n=2. C. ToP: Model predictions of pERK and pMEK activity for MEK inhibition
alone and in combination with inhibition of upstream kinase RAF or downstream kinase ERK for KELLY
and IMR32. Values are log-fold changes to IGF1 condition with inhibitor strength set to -1. C. BOTTOM:
pERK and pMEK plex measurements in KELLY and IMR32 after 90min treatment of the MEK inhibitor
AZD6244 in combination with either DMSO, SCH772984 (ERKi, 10xM) or LY3009120 (RAFi, 5uM) in cells
grown with 10% FCS. Values are log-fold change to FCS medium condition. D. Viability of the cell lines for
selected concentrations of dual and triple inhibitor treatments targeting MEK, RAF and IGFR.
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=s  Discussion

s1e  Neuroblastoma is a complex disease with distinct subtypes that display radically different outcomes, ranging
320 from spontaneous regression in low-risk groups to only 50% survival of patients in the high risk neuroblastoma
321 group. Mutations in RAS/MAPK signalling are a hallmark of high risk neuroblastoma, and also define a
322 subgroup of patients with ultra-high-risk neuroblastoma and an even worse survival. Therefore targeted
323 treatment might be a valid strategy to treat those patients. However, response to MEK inhibitors are very
324 variable, and it is thus important to understand mechanisms of resistance and how to circumvent these.

325 In this work, we explored how a more quantitative understanding of signalling can be used to design
32 combinatorial treatments to counteract drug resistance. We used a panel of deeply profiled cell lines rep-
sz resenting high risk neuroblastoma and showed that the response to MEK inhibitors is variable, with some
328 cell lines responding at low doses in the nM range, whereas others are highly resistant. By using signalling
320 perturbation-response data, we characterised the signalling network surrounding MAPK. Analysis of that
330 perturbation data with the modelling framework of modular response analysis unveiled that MAPK signalling
a1 is controlled by a multi-layered feedback with variable strength. A central finding was that MEK-inhibitor
332 sensitive cells are controlled by low feedbacks within the MAPK cascade, whereas a subset of resistant cell
333 lines shows strong multi-layered feedbacks that may be causal for resistance. Simulation of cell-line spe-
s3a  cific models suggested that different combinations of inhibitors can be used to overcome resistance, and
335 experiments could confirm these predictions in two out of three cell lines.

336 Our work highlights that systematic perturbation data are a powerful source to probe intracellular sig-
337 nalling pathways. The connectivity of signalling pathways implies that minor quantitative alterations of the
s3s  network can lead to many changes in response, not all of which alter the phenotype. In this work, we saw
330 that multivariate analysis of the perturbation data alone was not fruitful to separate cell lines with respect
30 to their drug sensitivity. In contrast, integration of data by models highlighted that variations of only a few
sa1 links is enough to explain the differences between those cell lines. Modelling was therefore key to integrate
sz the data and to unveil feedback loops as potential sources of resistance.

343 In our work we used a maximum likelihood version of MRA, but there are multiple other methods
saa  that might be suited to reconstruct semi-quantitative signalling networks from perturbation data. [Oates
sas  |et al| (2012) proposed a bayesian variant which overcomes the linearity assumption of MRA using chemical
ass  kinetics to guide the inference and fuzzy-logic models such as used by |Terfve et al| (2015) also show good
sz performance to reconstruct network topology from signalling data. However getting quantitative values for
sas  the interactions between components of a signalling networks from a small set of perturbations requires MRA
sa0  variants (Santra et al, [2013; [Dorel et al, [2018) or necessitates time-resolved perturbation data which limits
30 the number of perturbations that can be studied simultaneously (Invergo and Beltrao, 2018]). While boolean
52 models are very good strategies to model large signalling networks and complex synergies (Niederdorfer et al,
sz |2020), they would be unable to capture quantitative differences in feedback regulation, which are the key
ss3  resistance mechanisms uncovered in this work.

354 Drug resistance to targeted therapies have been attributed to negative feedback loops in multiple tumours.
sss  Most importantly, sensitivity to MEK inhibitors is strongly influenced by a pathway-intrinsic feedback, where
s ELRK phosphorylates RAF at multiple sites (Sturm et al, [2010; [Fritsche-Guenther et al, 2011} [Friday et al,
ss7 2008). This feedback has been shown to be very strong in epithelial cells leading to pathway robustness
sss  (Fritsche-Guenther et all 2011), which can be overcome by vertical inhibition of RAF (Sturm et al, [2010)).
5o Another mode of feedback regulation is the inhibition of receptors by pathways. An example is the inhibitory
se0  regulation of EGFR by the MAPK pathway (Prahallad et all 2012; Klinger et al, 2013). When inhibiting
se1  MAPK signalling by MEK or RAF inhibitors, this feedback leads to hyper-sensitisation of EGFR, which in
sz turn reactivates MAPK signalling and additionally activates other downstream pathways such as PI3K/AKT
ses  signalling. Also in this case vertical inhibition can help to overcome this mode of resistance, by co-targeting
ssa  the MAPK pathway and the upstream receptor.

365 In this work, we showed that some neuroblastoma cell lines possess two major layers of feedback in
sss  MAPK signalling. One of these feedbacks is pathway-intrinsic (from ERK to RAF) and one is a feedback to
se7  the IGF receptor. Interestingly, different cell lines show different relative strength of feedbacks from ERK
ses  to RAF and IGFR, and simulations show that those require different strategies for vertical inhibition. For
seo  the cell line KELLY, modelling unveiled an extremely strong negative feedback from ERK to RAF. This
370 suggests that a combination of MEK and RAF inhibitor will be more potent than a combination of MEK
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sn and IGFR inhibitor. In contrast, in the cell line N206, both feedbacks have similar strength, suggesting
372 that both combinations might be potent. In line with these predictions, experiments showed that in KELLY
sz indeed the combination of MEK and RAF inhibitors is much more potent to reduce growth compared to the
sza  combination of MEK and IGFR. In contrast, in N206 both combinations reduce growth.

375 Our phospho-proteomics analysis shows that the combination of MEK and IFGR also has different effects
sze  in the two cell lines: Whereas it shows clearly synergistic effects of the combination in N206, there is no
377 sign of synergy in IMR32. By aggregating the phosphoproteome to kinase activities using kinase enrichment
s7s  scores, one can also get insight into the re-wireing of signalling after perturbation. In our case, it clearly
szo  shows how the re-activation of RAF after MEK inhibition is inhibited by the treatment with IGFR inhibitors.
sso ' The phosphoproteome also showed that the dual treatment of IGFR and MEK manifests itself in synergistic
ss1  downregulation of important proteins that are regulated by convergent signalling of MEK and AKT, such
322 as MYCN and EIF4B.

383 Interestingly, a third resistant cell line, IMR32, showed no response in growth to MEK inhibitor in vertical
ssa combination with either RAF and/or IGFR inhibitor on growth, even though it’s cellular ERK signalling was
sss  strongly responsive. This highlights that cancer cells might lose ERK-mediated cell cycle control, suggesting
sse  that coupling of cellular phenotype to signalling pathways is not necessarily strict (Cerezo et al, [2009; |Castro
sez et all, [2012)). To more directly model changes on cellular phenotypes such as growth or viability, models of
sss  signalling would need to be connected to phenotypic readouts (Korkut et all, |2015). In addition, it might
ssos  be beneficial to include downstream readouts such as cyclin levels or CDK activation that are more directly
30 involved in cell cycle progression and can be deregulated in cancer (Keyomarsi and Pardee], [1993; [Sung et al,
se1 2014). It should be also pointed out that our measurements only encompass one time point and that later
3.2 dynamics of the MAPK pathway, such as transcriptional feedbacks, could also explain IMR32 resistance to
303 vertical inhibition.

304 In summary, our results show that a quantitative understanding of differences in signalling networks can
35 be very helpful to understand resistance, and to derive effective treatments. Future work should investigate
ses if those feedback mechanisms exist in tumours in vivo and whether they could explain relapses. Our descrip-
307 tion of the wiring of the RAS/MAPK pathway in neuroblastoma will support the design of clinical trials
ses  uSing combinatorial treatments to prevent or overcome therapy resistance. In addition, the framework de-
30 scribed here could be used to analyse signalling in tumours of individual patients While it will be technically
a0 challenging to assess signalling network responses in tumour patients, ex vivo cultures - so-called avatars
201 - could be an option (Brandt et al, 2019; Saez-Rodriguez and Bliithgen) [2020). We envision that learning
a2 features of robustness and vulnerability of tumours from signalling models on cell line panels might greatly
w03 reduce the required set of perturbations in those avatars that are sufficient to inform a model, and allow
wa reliable stratification and prediction of treatment options.

«s Materials and Methods

s Cell lines

207 The neuroblastoma cell lines were obtained by courtesy of the Deubzer lab (Charité, Berlin) as part of the
s0s  Terminate-NB consortium. The identity of the cell lines was confirmed with STR profiling (see Supplemen-
200 tary Table TNB STR_Results.xlsx), which were generated by Eurofins Cell Line Authentification Test and
a0 matched with the Cellosaurus STR similarity research tool (Robin et all [2019). All cell lines were grown in
an DMEM (Gibco, Life Technologies) with 3.5 g/L glucose (Sigma), 5 mM glutamine (Gibco, Life Technologies)
a2 and 10% FCS (Pan Biotech).

s Whole exome sequencing

aa DNA was extracted from the human neuroblastoma cell lines (see above), using the Nucleospin Tissue kit
a5 (Macherey-Nagel) according to the manufacturer’s protocol. From the DNA, libraries for whole-exome se-
a6 quencing were prepared using the SureSelect Human All Exon V7 kit (Agilent) and the Illumina TruSeq
a1z Exome kit. The libraries were sequenced on Illumina HiSeq 4000 and Illumina NovaSeq 6000 sequencers.
as The read sequences and base quality scores were demultiplexed and stored in Fastq format using the Illu-
a1 mina bcl2fastq software v2.20. Adapter remnants and low-quality read ends were trimmed off using custom
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a20  scripts. The quality of the sequence reads was assessed using the FastQC software. Reads were aligned to the
421 human genome, assembly GRCh38, using the bwa mem software version 0.7.10 (Li, [2013)), and duplicate read
422 alignments were removed using samblaster version 0.1.24 (Faust and Hall, [2014). Copy-number alterations
«23 were determined using cnvkit version 0.1.24 (Talevich et all 2016)). Single-nucleotide variants (SNVs) were
424 identified using strelka version 2.9.10 (Kim et al, [2018]). Afterwards, potential germline variants were filtered
a5 out by excluding all SN'Vs that had also been observed in at least 1% of samples in cohorts of healthy individ-
426 uals, namely the 1000 Genomes Project (Auton et al,[2015)) and the NHLBI GO Exome Sequencing Project
27 (Fu et all [2013)) cohorts. The raw data are available on ENA under the accession number PRJEB40670.

2 RINA sequencing

420 The cell lines were sequenced in 3 separate batches. The IMR32, KELLY, SKNAS, LAN6, NBEBCI1 cell
a0 lines were prepared in triplicate, using a paired-end stranded protocol with 2x75 cycles per fragment and 2
«2n more cell lines (NGP, SKNSH) were prepared in duplicate, using a paired-end stranded protocol with 2x150
a2 cycles. Two more libraries (CHP212 and N206) were prepared using a paired-end stranded protocol with
433 2X7H cycles per fragment.

43a Raw sequencing data were rigorously checked for quality using FastQC. The reads were aligned to the
a5 human genome GRCh38 (without patches or haplotypes) and the GENCODE transcript annotation set
436 using the STAR aligner software (Dobin et al, [2013). The read counts per gene were obtained using the
437 featurecounts (Liao et all 2014) method from the subread software package. The raw data are available on
438 ENA under the accession number PRJEB40670.

s Drug sensitivity assay

Cells grown for 1 day in full medium were treated with the indicated drugs in 4 different concentrations
(0.1, 1, 10 and 100 uM ) along with the corresponding DMSO controls on the same plate. The
growth of the cells was tracked by phase contrast imaging for 72h with 4 images per well taken every 2h using
the Incucyte Zoom instrument (Essen BioScience) and the confluency estimated using the Incucyte Zoom
Analysis software (Essen BioScience). The growth rate was estimated with a linear fit on the log-transformed
confluency, and the IC50 was determined by fitting a sigmoid of the form:

1
V= 1+ exp(—log(C) + IC50) x S

20 to normalised growth rates (implemented in https://github.com/MathurinD/drugResistance)). V is the

a1 growth rate relative to DMSO control, C' is the concentration and the parameters 1C'50 and slope S are fitted.

sz See supplement Supp data figl-4 TNB ic50.csv for the fitted parameters and Supp data figl drug sensitivity figs syn
a3 for the raw data and analysis scripts.

s Synergy estimation

a5 For the synergy assay, cells seeded the day before were treated with different concentrations of AZD6244
ws (0.1, 1, 10, 30 and 50 uM, Selleck Chemicals) in combination with NVP-AEW541 (0.1, 0.3, 1, 3 and 10 uM,
4z Cayman Chemical) or LY3009120 (0.1, 0.3, 1, 3 and 15 uM, Selleckchem). The synergy scores were deter-
«s  mined using the R package synergyfinder (lanevski et al| (2017)),) with the relative growth rates thresholded
a0 between 0 and 1 as input (0 meaning no growth or cell death and 1 meaning growth as fast as the DMSO
450 COIltrOl).

= Perturbation assay

a2 Cells were seeded in 24 well plates and grown for 2 days in full medium followed by 24h in FCS-free medium
a3 before treatment with the same concentrations of ligands and inhibitors.

asa  All inhibitors were dissolved in DMSO and cells were treated for 90 minutes at the following concentrations:
s GDC0941 (1 puM, Selleck Chemicals), AZD6244/Selumetinib (10 uM, Selleck Chemicals), MK2206 2HCI
a6 (10 pM, Selleck Chemicals), Rapamycin (10 uM, Selleck Chemicals), Sorafenib (10 uM, Selleck Chemicals),
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a7 GS-4997 (10 uM, Selleck Chemicals) and TAE684 (10 uM, Selleck Chemicals).

ass The cells were treated for 30 minutes (60 minutes after inhibitor treatment) with ligands in a 0,1% PBS/BSA
a0 carrier solution at the following concentrations: EGF (25 ng/mL, Peprotech), PDGF (10 ng/mL, Peprotech),
w0 NGF (50 ng/mL, Peprotech) and IGF1 (100 ng/mL, Peprotech).

a1 The cells were then lysed using BioRad Bio-Plex Cell Lysis Kit and measured using the Bio-Plex MAGPIX
1.2 Multiplex Reader with a custom kit from ProtAtOnce with analytes p-cJUN (S63), p-p38 (T180/Y182), p-
w63 AKT (S473), p-ERK1/2 (T202/Y204,T185/Y187), p-MEK1 (S217,/S221), p-S6K (T389) and p-RSK1 (S380).
s6a  The p-RSK1 (S380) readout was discarded because of a low dynamic range.

465 The same procedure and analytes were used for the other perturbation assays in this paper. Refer to the
s main text for the exact inhibitors and concentrations used for each experiment.

sz Signalling models

The model for each cell line was fitted separately from the corresponding perturbation data with the cre-
ateModel function from the R package STASNet ((Dorel et all [2018]), https://github.com/molsysbio/
STASNet/releases/tag/Dorel2020). STASNet implements the variation of Modular Response Analysis
(MRA) described in Klinger et al| (2013) and [Dorel et al| (2018) that implements a dual effect of inhibitors as
both a negative stimulus and a disruption of signal propagation. Under the hypothesis of pseudo-steady-state
and locally linear dependencies between nodes, MRA models the response to a perturbation as

R= %8 (1)

ss  where R;; is the global response of node j after perturbation of node 7, ﬁkj is the local response of node j
w0 after perturbation of node i taking into account the effect of inhibition of node k, and S; is the sensitivity
470 of node 7 to perturbation k. The pAKT readout was systematically removed if AKT inhibition was present
arn because the AKT inhibitor MK2206 blocks AKT autophosphorylation (Yan, [2009), i.e acts upstream of the
422 AKT node, while STASNet expect inhibitors to act downstream of their annotated target.

473 We designed a literature network consisting of the MAPK and PI3K/AKT signalling pathway as anno-
a7 tated in KEGG (https://wuw.genome. jp/kegg/pathway/hsa/hsa04010.html and https://www.genome.
a5 |jp/kegg-bin/show_pathway?hsa04151) with intermediate nodes suppressed, the addition of the well doc-
a7e  umented ERK->RAF feedback and all receptors corresponding to RTK. Each cell line was fitted first on
477 the literature network then extended independently of the others. Those models with final topology yielded
478 similar values for the inhibition parameters so we generated new models with those parameters fixed to the
a7o mean value across all 6 models and re-fitted each cell line with inhibitor values fixed. With this fitting strat-
a0 egy the links between models became directly comparable as the non identifiability induced by the inhibitor
as1  parameters was removed ) The high pMEK responder cell line models were fitted using the same
a2 procedure.

s Western Blot

ssa Cells were grown to confluency for 3 days in full medium and treated with AEW541 10pM and /or AZD6244 10uM
ass or control DMSO for 4h then lysed using BioRad Bio-Plex Cell Lysis Kit. The lysates were run for 3h at

ase a constant 45 mA in 10% acrylamid gels and blotted for 45 minutes at 400 mA on nitrocellulose. The
sz membrane were stained for total protein using PierceT™ Reversible Protein Stain (Thermofischer 24580) and

ass blocked for 30 minutes in 1:1 PBS:Odyssey blocking buffer. The primary antibodies were incubated overnight

a0 at 4C one at a time and the corresponding secondary during the following day for 2h at room temperature in

o 1:1 PBST/Odyssey. We used the following primary antibodies: pIGF1R betaY!135/Y1136 1.1000 (CST 3024),

sr pAKT 5473 1:2000 (CST 4060), total MYCN 1:200 (Santa Cruz sc-53993) and pMEKS217/5221 1:1000 (CST

a2 9154).

ws TMT (phospho-)proteomics

awa For the proteomics and phosphoproteomics cells were grown to confluency for 3 days in full medium and
205 treated with AEW541 10uM and/or AZD6244 10uM or control DMSO for 4h.
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496 We used an adapted version of the TMT workflow (?): samples were reduced, alkylated and digested with
207 a combination of LysC (Wako) and Trypsin (Promega) using the the single-pot, solid-phase-enhanced sample
ws preparation (?). For each sample, an equal amount of peptide was then chemically labelled with TMTpro
w00 reagents (7). Samples were randomly assigned to one of the first 15 TMT channels, while the 16th channel was
soo composed of a superset of all the samples to allow multi-plex normalisation. Equal amounts of the labelling
so1 reactions were combined in two TMT16 plexes, desalted via SepPak columns (Waters) and fractionated via
soz= high-pH fractionation (?) on a 96 minutes gradient from 3 to 55% acetonitrile in 5 mM ammonium formate,
sos each fraction collected for 1 minute then combined into 24 fractions. From each fraction, an aliquot was
soa used to measure the total proteome while the remaining peptides were combined into 12 fractions and used
sos as input for an immobilised metal affinity chromatography using an Agilent Bravo system. For the total
s0s proteome analysis, peptides were on-line fractionated on a multi-step gradient from 0 to 55% acetonitrile in
sz 0.1% formic acid prior injection in a QExactive HF-x mass spectrometer. Samples were acquired using a data
sos dependent acquisition strategy with MS1 scans from 350 to 1500 m/z at a resolution of 60 000 (measured
soe  at 200 m/z), maximum injection time (IT) of 10 ms and an automatic gain control (AGC) target value of
s10 3 x 10%. The top 20 most intense precursor ions with charges from +2 to +6 were selected for fragmentation
s with an isolation window of 0.7 m/z. Fragmentation was done in an HCD cell with a normalised collision
s12 energy of 30% and analysed in the detector with a resolution of 45 000 (200 m/z), AGC target value of 10°,
s13 maximum IT of 86 ms. We used the same parameters for phosphoproteome analysis with the exception of
s1a MS2 maximum IT that was set to 240 ms.

515 The acquired raw files were analysed using MaxQuant v1.6.10.43 (?), with TMTpro tags manually added
s16  as fixed modifications and used for quantitation The correction factors for purity of isotopic labels was set
s17 - according to vendor specification and minimum reporter precursor intensity fraction was set to 0.5. The
s1s  resulting protein groups were filtered for potential protein contaminants, protein groups only identified via
s10  peptides decorated with modification or hits in the pseudo-reverse database used for FDR control. The
s20 resulting intensities of each sample channel were normalised to the intensity of the 16th reference channel,
s21 then median-centered and normalised according to the median-absolute deviation. Identified phosphopep-
s22  tides were similarly filtered, with the exception of filtering based on modified sites, and normalised using the
s23  same strategy.

524 Differentially expressed phosphopeptides were called using the limma package (?7) with a false discovery
s2s  rate of 0.05 on treatment minus control constrasts. Synergies were computed using a contrast fit of the
s2 combination minus the sum of single treatments. Kinase substrate activity was implemented in R using the
s27  ratio of the mean z-score as described in ? and computed for kinase-substrate sets from PhosphoSitePlus (7).
s2s  'he normalised intensities and scripts used for the analysis can be found at https://itbgit.biologie.
s20 hu-berlin.de/dorel/phosphoproteomics_tnb_perturbations.

= Data availability

s The datasets produced in this study are available in the following databases:
532 e RNA-Seq data: ENA PRJEB40670 (https://www.ebi.ac.uk/ena/browser/view/PRJEB40670)
533 e STASNet package: GitHub (https://github.com/molsysbio/STASNet /releases/tag/Dorel2020)

534 e Phosphoproteomics: https://itbgit.biologie.hu-berlin.de/dorel /phosphoproteomics _tnb _perturbations
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