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Abstract1

Very high risk neuroblastoma is characterised by increased MAPK signalling, and targeting2

MAPK signalling is a promising therapeutic strategy. We used a deeply characterised panel3

of neuroblastoma cell lines and found that the sensitivity to MEK inhibitors varied drastically4

between these cell lines. By generating quantitative perturbation data and mathematical5

modelling, we determined potential resistance mechanisms. We found that negative feedbacks6

within MAPK signalling and to the IGF receptor mediate re-activation of MAPK signalling7

upon treatment in resistant cell lines. By using cell-line specific models, we predict that8

combinations of MEK inhibitors with RAF or IGFR inhibitors can overcome resistance, and9

tested these predictions experimentally. In addition, phospo-proteomics profiles confirm the10

cell-specific feedback effects and synergy of MEK and IGFR targeted treatements. Our study11

shows that a quantitative understanding of signalling and feedback mechanisms facilitated by12

models can help to develop and optimise therapeutic strategies, and our findings should be13

considered for the planning of future clinical trials introducing MEKi in the treatment of14

neuroblastoma.15
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Introduction16

Neuroblastoma is the most common and devastating extracranial childhood solid tumour, accounting for17

15% of all childhood cancer deaths. The 5-year survival rate is 75% overall, but it is below 45% for so-called18

high-risk neuroblastoma that represent about 40% of patients (De Bernardi et al , 2003; Maris et al , 2007;19

Kyo et al , 2011). Telomere maintenance is a central hallmark of high-risk neuroblastoma (Peifer et al ,20

2015), and approximately 50% of high-risk neuroblastoma harbour amplification of the MYCN oncogene21

(Barone et al , 2013). Mutations activating the RAS/MAPK signalling pathway are frequent in high-risk and22

relapsed neuroblastoma (Ackermann et al , 2018; Eleveld et al , 2015), with relapsed neuroblastoma being23

almost always fatal. Most recently, mutations in the p53/MDM2 or RAS/MAPK pathway in the presence of24

telomere maintenance mechanisms were shown to define a subgroup of ultra-high risk neuroblastoma with a25

5-year survival below 20%. Therefore, development of novel therapies for patients with high risk or relapsed26

neuroblastoma is an urgent clinical need. Mutations of anaplastic lymphoma kinase (ALK), present in 8% of27

all patients at diagnosis (Bresler et al , 2014; Hallberg and Palmer, 2016), are the most common mutations28

activating the RAS/MAPK pathway in neuroblastoma. In addition, mutations in PTPN11, NF1, Ras and29

other RAS/MAPK pathway signalling elements occur in neuroblastoma (Pugh et al , 2013; Eleveld et al ,30

2015).31

This makes RAS/MAPK pathway inhibition a promising treatment option for neuroblastoma, and ALK32

and MEK inhibitors are already being tested in early clinical trials (Johnsen et al , 2018). However, tumour33

responses to targeted inhibitors were inconsistent, and early progression pointed towards development of34

resistance, giving a strong incentive to understand mechanisms of primary and secondary resistance and how35

to overcome these mechanisms.36

Resistance to targeted therapies of signalling pathways are often mediated by feedbacks that re-wire or re-37

activate signalling. For example, resistance to PI3K/mTOR inhibition in breast cancer is often mediated by38

feedbacks that lead to activation of JAK/STAT signalling (Britschgi et al , 2012). Similarly, in colon cancer,39

MAPK-directed therapy is counteracted by a negative feedback that leads to hyper-sensitisation of the EGF40

receptor and ultimately reactivation of MAPK and AKT signalling (Klinger et al , 2013; Prahallad et al ,41

2012). Additionally, a very strong feedback from ERK to RAF leads to re-activation of MAPK signalling42

upon MEK inhibition in many cancer types (Friday et al , 2008; Fritsche-Guenther et al , 2011; Sturm et al ,43

2010). One approach to overcome feedback-mediated resistance is by combinatorial therapy that co-targets44

the feedback (Klinger and Blüthgen, 2014).45

We report here how a more quantitative understanding of feedback mechanisms might help to optimise46

combinatorial treatment. We used a neuroblastoma cell line panel representing the class of very high-risk47

neuroblastoma, which we profiled for drug sensitivity, genomic and transcriptomic alterations. We observed48

strong differences in the sensitivity to MEK inhibition. To arrive at a mechanistic understanding of resistance49

to MEK inhibition, we generated systematic perturbation data and quantified signalling using data-driven50

models. By this we described qualitative and quantitative differences in feedback structures that might51

confer the observed robustness to MEK inhibition. We then identified potential combinations capable of52

sensitising highly resistant cell lines to MEK inhibition, and tested these combinations systematically.53

Results54

Drug sensitivity in a panel of very-high-risk neuroblastoma cell lines55

We collected a panel of 9 neuroblastoma cell lines (CHP212, LAN6, NBEBC1, SKNAS, NGP, SKNSH,56

N206, KELLY and IMR32) and performed molecular profiling of these cells (RNA-sequencing and exome57

sequencing, see Figure 1A). We noticed that all cell lines harbour a mutation in at least one of the RAS58

pathway genes with all cell lines having a mutation in either KRAS, NRAS, NF1, BRAF or ALK. One cell line59

(IMR32) had two mutations in the pathway: a mutation in KRAS and an atypical BRAF mutation. Most60

cell lines also have a mutation in one of the p53 pathway genes: ATRX, ATM, ATR, PRKDC, CDKN2A61

and TP53. Additionally, all express telomerase as seen by TERT expression, except for LAN6 which is62

known to have an alternative mechanism to lengthen the telomeres (ALT) (Peifer et al , 2015). We saw63

strong variability in the expression of MYCN, with 4 cell lines expressing low levels of MYCN, and 5 cell64

lines displaying high levels of MYCN. When considering mutations of individual genes, we found a strong65
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Figure 1: Mutations are insufficient to explain sensitivity variations to RAS/PI3K drugs in neuroblastoma
cell line panel A. Oncoprint of 9 neuroblastoma cell lines for RAS/p53/PI3K related genes along with MYCN
and TERT mRNA expression. B. Relative IC50 of the same 9 neuroblastoma cell lines as in A for drugs
targeting the PI3K and MAPK pathways (n=2). C. Viability concentration curves for the MEK inhibitor
AZD6244 on the neuroblastoma cell line panel along with the calculated IC50 (intersection with dotted line).
Points represent measurements (n=2).

heterogeneity within our panel, but overall the frequency of mutations in individual genes reflects that of66

high risk tumours (Ackermann et al , 2018). Taken together, those data indicate that the chosen cell line67

panel can be seen as representative for the group of very-high risk neuroblastoma.68

To further characterise the cell line panel, we measured drug sensitivity for 6 inhibitors that target69

components of the pathways shown to be affected by mutations (MAPK/PI3K/mTOR), using live cell70
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imaging and computing growth rates from confluency measurements (Figure 1B) In this panel of cell lines,71

there was no notable difference in the sensitivity to the AKT inhibitor MK2206 or to the RAF/pan-tyrosine72

kinase-inhibitor Sorafenib. In contrast, pronounced variation in IC50 across the panel can be seen for73

mTORC1 inhibitor Rapamycin and MEK inhibitor AZD6244. When comparing to published drug sensitivity74

data, the IC50 for AZD6244 largely correlate with those derived for a different MEK inhibitor (binimetinib)75

(Woodfield et al , 2016). All 6 NRAS wild type cell lines showed similar sensitivity to Rapamycin while the76

3 NRAS mutant cell lines exhibited either strong resistance (SKNSH and SKNAS) or sensitivity (CHP212).77

This is only partly in agreement with previous literature that described CHP212 but also SKNAS as sensitive78

to sub-nanomolar concentrations of Everolimus, a Rapamycin analog (Kiessling et al , 2016). AZD6244 is79

the drug with the most variable drug response, with a subset of 6 cell lines cell lines being very resistant80

to AZD6244 (IC50 >10µM, Figure 1C, Supplementary Figure 1) and another subset of 3 cell lines showing81

extreme sensitivity (IC50 ≈ 10-100 nM). When correlating inhibitor sensitivity with mutations, we found82

no notable correlation for AZD6244 and Rapamycin (Supplementary Figure 2). Drug sensitivities also did83

not correlate significantly with selected expression data (adjusted p>0.93 for the 1000 most variable genes84

and adjusted p>0.94 for GO signal transduction genes, Supplementary Figure 3). Also a PCA analysis85

could not separate cells according to MEKi sensitivity for those two expression groups (Supplementary86

Figure 4 and 5). For instance, previous reports showed that NF1 expression is linked to sensitivity to87

MEK inhibitors (Woodfield et al , 2016), however we only found a weak and non-significant correlation with88

AZD6244 sensitivity (R2
= 0.34, p = 0.10, Supplementary Figure 6). Taken together, this data establishes89

that this cell line panel represents a heterogeneous group of very high risk neuroblastoma that differ in drug90

sensitivity, most prominently against MEK inhibitors. Furthermore, it suggests that the difference cannot91

be explained by single mutations or expression of marker genes alone.92

Perturbation-response data unveils heterogeneity in signalling93

To get insights into the underlying mechanisms of resistance to the MEK inhibitor AZD6244, we selected 694

neuroblastoma cells lines that represented the spectrum of sensitivity to MEK inhibition (sensitive: CHP212,95

LAN6; resistant: SKNAS, SKNSH, KELLY and IMR32) Using these cell lines, we performed perturbation96

experiments, in which we stimulated the cells by growth factors for 30 minutes, and additionally inhibited97

specific pathways for 90 minutes (Figure 2A). After perturbation, we then monitored pathway activity by98

measuring phospho-proteins.99

We designed the experiments such that they probe the AKT/mTOR and MAPK signalling pathways100

(Figure 2B). Specifically, we selected ligands that might activate those pathways based on the expression of101

growth factor receptors in the cell lines. As expression of receptors was heterogeneous (Supplementary Figure102

7 and 8), we chose a set of growth factors such that each cell line had robust expression of receptors for at least103

two provided ligands. Inhibitors were chosen such that they block key steps of the pathway. The position104

of perturbations and readouts in the signalling network is shown in Figure 2B. We perturbed the 6 cell lines105

with 4 ligands (PDGF, EGF, IGF1 and NGF, shown in blue) and 7 inhibitors (GS4997 (ASK1i), MK2206106

(AKTi), Rapamycin (mTORC1i), AZD6244/Selumetinib (MEKi), Sorafenib (RAFi), TAE684 (ALKi) and107

GDC0941 (PI3Ki), shown in red) alone or in combinations. Subsequently, we measured 6 phosphoproteins108

(MEK, ERK, AKT, S6K, p38 and cJUN, yellow background) for each perturbation using a sandwich ELISA109

where a first bead-bound antibody captures the protein and a second recognises the phosphosite of interest.110

All experiments were performed in two biological replicates.111

Overall, the perturbation experiments yielded 240 data points per cell line, which are visualised in a112

heatmap in Figure 2C. Inspection of the heatmap shows that the perturbation-response data has similar113

patterns in different cell lines, but there are also clear differences. For instance, inhibition of mTOR leads to114

down-regulation of phospho-S6K across all cell lines, but inhibition of AKT and PI3K has diverging effects115

on S6K. Similarly, application of MEKi leads to an increase of phospho-MEK across all cell lines, but ALK116

inhibition had varying effects in different cell lines.117

To get further insights into this high-dimensional data set, we performed principal component analysis118

(PCA) on the perturbation data (Figure 2D top, Supplementary Figure 9). The PCA highlights 3 groups of119

cell lines. The first component (42% of variance) separates the cell lines according to the effect of Sorafenib120

and TAE684 on AKT and S6K. The second component (26%) separates IMR32 and KELLY based mainly121

on the MEK response to MEK inhibition. The third component (18%) contains the effects of IGF1, GS4997122
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Figure 2: Neuroblastoma cell lines show heterogeneous responses to signalling perturbations A. Outline
of the perturbation experiments. A panel of cell lines was treated with growth factors and small molecule
inhibitors, and the resulting effect on selected phosphoproteins was measured using multiplexed bead-based
ELISAs. B. Graphical representation of the perturbation scheme on a literature signalling network. Blue
and red contour highlights ligand stimulation and kinase inhibition, respectively; yellow filling shows mea-
sured phosphoproteins. C. Perturbation data obtained from applying all combinations of 4 ligands or BSA
control and 7 inhibitors or DMSO control to 6 neuroblastoma cell lines. Each measurement is normalised
by the BSA+DMSO control of the corresponding cell line and represents at least 2 biological replicates.
Readouts are phospho-proteins p-MEK1S217/S221, p-p38T180/Y182, p-ERK1T202/Y204, p-cJUNS63, p-AKTS473

and p-S6KT389. D. Global non-mechanistic analysis of the perturbation data presented in C: top first two
components of a principal component analysis and bottom hierarchical clustering. Colour scale corresponds
to the IC50 for AZD6244 treatment (see also Figure 1C).

and Rapamycin on AKT and S6K and mainly separates KELLY and IMR32 (Supplementary Figure 10 and123

Supplementary Table 1)124

When we applied hierarchical clustering on the cell line panel, SKNSH was clustered separately, suggesting125

that it has a very atypical response to the perturbations, with a generally very high response to all ligands,126

and an especially strong response to PDGF (Figure 2D bottom). This atypical status of SKNSH is also127
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present in the mRNA expression, with a PCA on the most variables genes or on the genes in the GO128

term "signal transduction" separating it from the other cell lines. Interestingly, CHP212 also separated129

from the other cell line in a PCA based on gene expression data, but not when considering the response to130

the perturbations. When grouping cells by MEK inhibitor sensitivity, we noticed that simple multivariate131

analysis by PCA does not separate cells into groups that correspond to sensitive or resistant cells (Figure 2D132

top and Supplementary figure 9), and also hierarchical clustering does not separate sensitive from resistance133

cell lines (Figure 2D bottom).134

Signalling models highlight differential feedback regulation of MEK135

To get further, more mechanistic, insights into potential resistance mechanisms, we used the perturbation136

data to parameterise signalling models. We applied our previously developed method that has been derived137

from Modular Response Analysis (MRA, implemented as R package STASNet, Dorel et al (2018)) to fit138
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Figure 3: Receptor expression and topology variations explain the heterogeneity in perturbation response
A. Starting from a literature-derived network, a model was fitted for each cell line (Initial model fit) and
extended following suggestions from the model (Model extensions and refit). Those models with different
network structures were then harmonised by fixing the inhibition parameters to a consensus value (Fixed
inhibitor parameters) to make the parameters directly comparable (Parameter comparison). B. Model
residuals before and after model extension and harmonisation. The black line represents the number of data
points, which is equal to the expected mean of the error if the model explains all the data. C. Cell-line-
specific network extensions (dashed arrows) relative to the literature network. Colour of the extended link
was matched to cell line colour if required in only one cell line model and black otherwise. D. Model paths
from the receptors to the first measured downstream node and correlation with the corresponding receptor
expression. The colours correspond to the value of the path scaled by the maximum absolute value of that
path between all cell lines. E. Model paths between non-receptor perturbed nodes and measured nodes
for routes present in at least 2 cell lines. Colour scale is the same as in D. Cells are ordered from left to
right from most sensitive to most resistant to the MEK inhibitor AZD6244. Due to the absence of ASK1
basal activity in IMR32 ASK1->p38 and ASK1->MEK represent in this cell line NGF->ASK1->p38 and
NGF->ASK1->MEK respectively.
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signalling network models to each cell line. This modelling procedure requires a literature network and the139

perturbation data as input, and then estimates response coefficients corresponding to link strengths using a140

maximum likelihood estimate (see Figure 3A, first step). By using the statistical framework of the likelihood141

ratio test, the modelling procedure then allows to test if any extension of the literature network is required142

to describe the data (see Figure 3A, second step). To compare parameters between cell lines, it is essential143

to harmonise parameters between all cells that can practically not be identified alone, i.e. parameters for144

inhibitors (see Figure 3A, third step). This finally yields a parameter map that allows to compare signalling145

strength between cell lines (see Figure 3A, final step).146

When starting with a canonical literature network (see Materials and Methods), we obtained reason-147

able fits for 4 of the 6 cell lines, as judged by the sum of weighted squared residuals that is in the148

order of number of data points (Figure 3B, red bars), and the normal distribution of residuals (Sup-149

plementary Figure 11). When we systematically tested if extensions of the network improve the fit us-150

ing a likelihood ratio test, we found that significant improvements were still possible for most cell lines.151

We therefore performed successive rounds of extensions for each cell line independently (Figure 3A and152

Supp_data_fig3_perturbation_data.zip). While SKNSH required no extension of the literature network,153

CHP212, LAN6, SKNAS required two or three extensions. KELLY and IMR32, the two cell lines that154

initially had the poorest fit, required four extensions (Figure 3 C). After the extension the sum of weighted155

squared residuals was in the order of the number of data points for all cell lines except KELLY (Figure 3B156

green bar). The high residuals still exhibited by KELLY could be narrowed down to uncertainties in individ-157

ual data points (see Supp_data_fig3_perturbation_data.zip). Two network extensions (ASK1→MEK and158

p38→S6K) were significant in at least 3 cell lines and correspond to an effect of the ASK1 inhibitor GS4997159

on the MEK/ERK MAPK pathway and S6K. Both links are negative which suggests an antagonism between160

the p38 MAPK and the MEK/ERK MAPK pathways in neuroblastoma cell lines. This negative crosstalk161

from p38 to MEK/ERK has also been described in other cell systems, e.g. after p38 knockdown in HeLa162

cells (Finch et al , 2012).163

All extended models had similar, but different, parameters for the inhibitor strength. However, there is164

a strong interdependence of the inhibitor strength and link strength downstream of the inhibitor which render165

comparison between those link strengths in different cells difficult (see Supp_data_fig3_perturbation_data.zip).166

As all cell lines received the same inhibitor concentration we therefore harmonised the inhibitor parameters167

by fixing them to the mean value between all models (Figure 3A, fixed inhibitor parameters). The resulting168

harmonised models maintained a good agreement with the data (Figure 3B, blue bars) and were used for169

inter-model comparisons (Figure 3D and E).170

When inspecting the parameters for ligand-induced pathway activation, we noticed that they reflected171

a strong heterogeneity in ligand response between the cell lines. Reassuringly, they matched the expression172

of the corresponding receptors in many cases (Figure 3D, Supplementary Figure 12). The parameters for173

pathways downstream of NGF correlated mostly with NTRK1 expression and not with NGFR expression,174

which might indicate that NGF signalling is mediated mostly via NTRK1 in those cell lines. The parameters175

for IGF-induced signals correlated with IGF1R or IGF2R for MEK and AKT, respectively, indicating that176

both receptors mediate IGF1 signalling independently. Interestingly, the parameters for the pathway from177

EGF to MEK did not correlate with EGFR expression, but they do for EGF to AKT, which might suggest178

that differences in adaptor protein expression shape routing into downstream signalling in the various cell179

lines. Indeed, the expressions of GAB2 and SRC are very different between the cell lines and could explain180

that IMR32 and LAN6 are activated by EGF as strongly as SKNAS and SKNSH despite their lower EGFR181

expression (Figure 2C, Supplementary Figure 6). Another potential cause for the attenuated activation of182

MEK/ERK is that in NRAS mutant cell lines (CHP212, SKNAS and SKNSH), MEK/ERK activity is less183

inducible by receptors, as also parameter values of the routes from PDGF, EGF, NGF and IGF into MAPK184

signalling are lower in those cell lines. Conversely, these cell line models display a slightly more inducible185

PI3K pathway. This observation is in agreement with a recent comparative study of G12V-mutated RAS186

isoforms in colorectal SW48 cells, where the NRAS mutated cell line showed a weaker coupling of receptors187

to MEK and a stronger coupling to PI3K than in the parental cell line (Hood et al , 2019). This would188

suggest that an activation of the MEK/ERK pathway is relayed predominantly by NRAS while the PI3K189

pathway activation is mediated by other proteins (Yang et al , 2012). Taken together, this shows that the190

wiring and routing of ligand induced signalling in these cell lines is varying and is mostly explainable by the191

expression of the corresponding receptor and RAS mutation status.192
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In contrast to the receptor-associated parameters, the strength of intra-cellular kinase paths are less193

variable, and most paths are comparable between cell lines (Figure 3E). The most prominent exception194

is the negative feedback in MAPK signalling from ERK to RAF. When compared to the other cell lines,195

this feedback appears to be 3 to 4 times stronger in KELLY and IMR32, which are two cell lines that are196

highly resistant to AZD6244. A strong RAF-mediated feedback is a known resistance mechanism against197

MEK inhibitors (Friday et al , 2008; Fritsche-Guenther et al , 2011), where relieve of inhibition of upstream198

components post inhibition can partially reactivate signalling. This suggests that AZD6244 resistance could199

be mediated by a differential regulation of this feedback.200

Apart from the RAF-mediated feedback, MAPK signalling is also controlled by receptor-mediated feed-201

backs. In the KELLY cell line, our modelling procedure extended the model by a negative feedback from S6K202

to IGFR that could then explain the strong accumulation of pMEK by IGF following AZD6244 treatment203

(Figure 3C and Supp_data_fig3_perturbation_data.zip). Receptor-mediated feedbacks are also known to204

mediate resistance, notably to MAPK inhibitions (Corcoran et al , 2012; Klinger et al , 2013; Klinger and205

Blüthgen, 2014; Rozengurt et al , 2014; Lake et al , 2016), by reactivating the pathway and other parallel206

pathways.207

In summary, the signalling parameters derived from the perturbation data by our models show that cell208

lines diverge in receptor expression and feedback regulation, with strong multi-layered feedbacks for some of209

the resistant cell lines.210

Differential quantitative wiring of resistant cell lines211

A hallmark of negative feedbacks is that they lead to re-activation of the pathway after pathway inhibition. In212

agreement with this, we observe an increase of phosphorylated MEK upon MEKi treatment (AZD6244) that213

is more pronounced in the cell lines IMR32 and KELLY compared to the other cell lines modelled, including214

the most sensitive cell lines CHP212 and LAN6 (Figure 4A, Supplementary Figure 13). We also tested215

the most resistant cell line in our panel, N206, which also showed a strong feedback response (Figure 4A).216

To more precisely dissect the feedback wiring, we generated additional focused perturbation data for those217

cells with high feedback (KELLY, IMR32 and N206) to MEK inhibition. We stimulated cells with different218

growth factors (IGF and NGF or EGF), and blocked MAPK signalling with MEK and RAF inhibitors, and219

subsequently monitored six phosphoproteins (Figure 4B). Subsequently, we used this data to parameterise a220

focused MRA model that additionally either contained or did not contain the only receptor-mediated feedback221

found in the first modelling round from S6K→IGF1 (Figure 3C and Figure 4A). Inclusion of the IGF receptor-222

mediated feedback led to a significantly better fit of the data for N206 and KELLY (χ2 p<0.05), but did223

not improve the IMR32 model (Figure 4C and D). Interestingly, the S6K→IGF1→RAF→MEK feedback is224

stronger in the N206 models, but the pathway-intrinsic feedback (ERK→RAF→MEK) is stronger in KELLY225

(Figure 4D). This highlights that all these cells display negative feedback regulation, but the strengths of226

the two layers of feedbacks are different between cell lines.227

Parallel inhibition of MEK and IGFR leads to synergistic effects on the phos-228

phoproteome229

To gain a more systematic understanding of the effect of MEK and IGFR inhibition on the signalling states230

of the cells, we generated deep (phospho-)proteomics profiles using tandem mass-tag (TMT) based mass231

spectrometry (??). We measured the phospho- and total protein levels in IMR32 and N206 cells after 4h232

treatment with MEK and/or IGFR inhibitors and control cells. Although a similar number of phosphosites233

were dis-regulated in both cell lines (448 in IMR32, 615 in N206, FDR < 0.05), there was little overlap in the234

phospho-peptides differentially regulated between the two cell lines (Figure 5A), and this overlap was mostly235

limited to phospho-peptides affected by MEK inhibition (Supplementary Figure 16). In IMR32, IGFR236

inhibition had little effect, while the presence of MEK inhibition strongly affected the phosphoproteome237

(Figure 5B left). Moreover the effect of the combination of MEK and IGFR inhibitors was dominated by238

the effect of the MEK inhibition, with about two thirds of the differential phosphopeptides (96/149) being239

also regulated by MEK inhibitor alone. Accordingly, differentially phosphorylated peptides in IMR32 are240

enriched in MAPK targets (Supplementary Figure 17). In contrast, both MEK as well as IGFR inhibition241

induce strong alterations in the phosphoproteome in N206 (Supplementary Figure 16), affecting both mTOR242
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Figure 4: AZD6244 resistant cell lines have strong feedback control of MAPK signalling A. Mean pMEK
log2-fold change relative to control after AZD6244 treatment in 7 neuroblastoma cell lines measured with
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and MAPK signalling targets (Supplementary Figure 17), and the combination exhibits a synergistic effect243

(Figure 5B right). Overall, 25 differentially phosphorylated sites in N206 show synergistic regulation, as244

defined by a significant deviation of the combination from the sum of the individual treatment effects. Of245

these, 18 phosphosites were synergistically down-regulated, and 7 sites showed up-regulation. In contrast,246

only two sites showed synergy in IMR32 (Figure 5C). Among the synergistically downregulated phospho-247

sites in N206 was S425 of the Eukaryotic translation initiation factor 4B (EIF4B), a protein involved in248

regulation of translation and a known nexus between AKT and MAPK signalling (Shahbazian et al , 2006).249

We performed a kinase substrate enrichment analysis (?) to explore how the signalling networks were250

affected by the inhibitions (Figure 5D). For IMR32 cells, this analysis showed a decreased phosphorylation251

of MEK and JAK targets and an increased phosphorylation of ARAF and BRAF targets in response to252

MEK inhibition. Interestingly, in combination with IGFR inhibition the RAF activation is partially reversed253

whereas other kinase targets seem rather unaffected. Overall this indicates a feedback activation of RAF254

that does not totally compensate the loss of MEK activity. In N206 cells, the response to MEK inhibition255

and the attenuation of the activation of RAF targets following double inhibitor treatment is similar to the256

response in IMR32. However, in IMR32 cells IGFR inhibitor treatment had little impact on the kinome257

whereas in a massive down-regulation of targets of a range of kinases occurred in N206 cells, covering the258

PI3K/AKT/mTOR pathway (SGK1-3,AKT1,p70S6K), MAPK pathway (p90RSK) and many members of259
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the Protein Kinase C Family. This suggests a central role of IGFR signalling on central growth and survival260

pathways.261

When we investigated the phosphorylation of components of the MAPK pathway more closely, we found262

many RAF negative feedback/crosstalk sites to be down-regulated after MEK inhibition (BRAF: T401, S750,263

T753; RAF1: S29, S642, S259) in both cell lines (Figure 5E). MEK1 S222/S226 phosphorylation is increased264

and pERK S204 decreased in both cell lines after MEK inhibition, in line with corresponding measurements265

using bead-based ELISAs. Among those down-regulated phosphosites that were only significant in the266

combination in N206 we detected many MYCN-phosphosites, notably MYCN S62, which is regulated by267

MAPK via CDK1 (?). Interestingly, this loss of S62 phosphorylated MYCN is associated with reduced268

MYCN levels (Figure 5F). This downregulation was observed in IMR32 and N206 cells upon single inhibition269

(IGFRi for N206 and MEKi for both cell lines), but only in N206 cells an even stronger downregulation could270

be observed upon double inhibition (Figure 5F). We confirmed these effects in Western blots for IMR32 and271

N206 cells (Figure 5G), and also found downregulation of MYCN upon IGFRi as well as MEKi treatment272

but no synergetic decrease after the combination treatment (Figure 5G). Another interesting protein that is273

regulated synergistically in N206 is Cyclin D1 (Figure 5H), a protein that is involved in cell cycle progression274

and whose loss likely mediates MYCN loss. It should be noted that only 5 proteins (PHGDH, DERL1,275

AMPD3, ARHGEF16 and CCND1) were found differentially affected with an FDR < 10%, highlighting that276

on this time scale phospho-protein changes dominated.277

Taken together, the proteomics data is coherent with the model that MAPK signalling in N206 is con-278

trolled by a dual feedback structure involving RAF and IGFR, whereas it is mainly controlled by a RAF-279

mediated feedback in IMR32. It furthermore supports the notion that treatment with MEK and IGFR280

inhibitors would show synergy in N206.281

Vertical inhibition can break feedback-mediated resistance282

Feedback regulation is often a central aspect for drug resistance that could be overcome by a vertical inhibition283

strategy, where an inhibition of an upstream node prevents pathway reactivation. Based on our models, we284

tested if the additional application of an inhibitor targeting the feedback nodes (RAF and IGFR) would285

sensitise resistant cells toward MEK inhibition (Figure 6A). We quantified growth reduction after inhibiting286

IMR32, KELLY and N206 with different dose combinations of inhibitors against MEK (AZD6244), IGFR287

(AEW541) and RAF (LY3009120). As expected from the observed synergy of MEK and IGFR on MYCN288

levels (Figure 4F), and in agreement with our model predictions of strong IGFR-mediated feedback in N206289

(Figure 4D), there was a strong synergistic effect of the combination of MEK and IGFR inhibitions on growth290

in N206 but little in KELLY or IMR32 (Figure 6B).291

When trying to overcome the model-derived strong ERK-RAF feedback found in all three cell lines with292

a combination of MEK and RAF inhibition we only found a synergistic effect for two of the three cell lines293

(N206 and KELLY), whereas IMR32 remained resistant and no synergy could be detected. We hypothesised294

that this observed resistance in IMR32 might be either because the vertical inhibition by MEKi and RAFi was295

molecularly not effective or that IMR32 might no longer depend on ERK signalling for survival and growth.296

To distinguish the former from the latter we decided to compare model simulation and measurements for297

perturbation effects of selected inhibitor combinations on pMEK and pERK in IMR32 and KELLY cells.298

Based on the model simulations, in both cell lines the vertical inhibition of MEK + RAF inhibitor was299

predicted to suppress MAPK signalling much stronger than MEK inhibitor alone or in combination with an300

ERK inhibitor. Moreover, the suppressive effect was predicted to be even more profound in IMR32 than in301

KELLY (Figure 6C top). We then measured the effect on pMEK and pERK of MEK inhibitor alone and302

in combination with the RAF inhibitor LY3009120 or ERK inhibitor SCH772984 (Figure 6C bottom). The303

measurements qualitatively supported the model simulations showing that RAF inhibitor suppressed MEK304

feedback activation by AZD6244, and that this suppression is stronger in IMR32. Addition of the ERK305

inhibitor neither suppressed this feedback activation nor could it decrease ERK phosphorylation more than306

RAF inhibition, as also predicted by the model. This suggests that in agreement with the model simulations307

the combination of RAFi and MEKi is most effective in IMR32 to effectively suppress ERK activation and308

feedback-mediated re-activation. However, since the growth is least affected by this combination IMR32309

seems not to depend on ERK activity.310

In the end, we identified 2 combinations effective at low drug concentrations against the MEK-inhibitor311
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resistant cell lines KELLY and N206. As both KELLY and N206 have strong multi-layered feedbacks (Fig-312

ure 4D), we reasoned that a combination of IGFRi, RAFi and MEKi might be even more efficient as it313

targets both feedbacks, irrespective of their individual strength. We thus tested the effect of a combination314

of AEW541, AZD6244 and LY3009120 and observed a >80% reduction in viability of both KELLY and N206315

already at moderate concentration of all three drugs (300nM of AEW541, 50nM of LY3009120 and 500nM of316

AZD6244) making it a potential therapeutic option (Figure 6D and Supp_data_fig1_drug_sensitivity_fig5_synergies.zip).317
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AEW541 or the RAF inhibitor LY3009120 A. Model-inferred targeting strategy of dual inhibition assessment
by model simulations on pERK activity of 3 AZD6244 resistant neuroblastoma cell lines under various levels
of MEK inhibition and IGFR or RAF inhibition B. Corresponding growth inhibition measurements using
the specified inhibitors. n=2. C. top: Model predictions of pERK and pMEK activity for MEK inhibition
alone and in combination with inhibition of upstream kinase RAF or downstream kinase ERK for KELLY
and IMR32. Values are log-fold changes to IGF1 condition with inhibitor strength set to -1. C. bottom:
pERK and pMEK plex measurements in KELLY and IMR32 after 90min treatment of the MEK inhibitor
AZD6244 in combination with either DMSO, SCH772984 (ERKi, 10µM) or LY3009120 (RAFi, 5µM) in cells
grown with 10% FCS. Values are log-fold change to FCS medium condition. D. Viability of the cell lines for
selected concentrations of dual and triple inhibitor treatments targeting MEK, RAF and IGFR.
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Discussion318

Neuroblastoma is a complex disease with distinct subtypes that display radically different outcomes, ranging319

from spontaneous regression in low-risk groups to only 50% survival of patients in the high risk neuroblastoma320

group. Mutations in RAS/MAPK signalling are a hallmark of high risk neuroblastoma, and also define a321

subgroup of patients with ultra-high-risk neuroblastoma and an even worse survival. Therefore targeted322

treatment might be a valid strategy to treat those patients. However, response to MEK inhibitors are very323

variable, and it is thus important to understand mechanisms of resistance and how to circumvent these.324

In this work, we explored how a more quantitative understanding of signalling can be used to design325

combinatorial treatments to counteract drug resistance. We used a panel of deeply profiled cell lines rep-326

resenting high risk neuroblastoma and showed that the response to MEK inhibitors is variable, with some327

cell lines responding at low doses in the nM range, whereas others are highly resistant. By using signalling328

perturbation-response data, we characterised the signalling network surrounding MAPK. Analysis of that329

perturbation data with the modelling framework of modular response analysis unveiled that MAPK signalling330

is controlled by a multi-layered feedback with variable strength. A central finding was that MEK-inhibitor331

sensitive cells are controlled by low feedbacks within the MAPK cascade, whereas a subset of resistant cell332

lines shows strong multi-layered feedbacks that may be causal for resistance. Simulation of cell-line spe-333

cific models suggested that different combinations of inhibitors can be used to overcome resistance, and334

experiments could confirm these predictions in two out of three cell lines.335

Our work highlights that systematic perturbation data are a powerful source to probe intracellular sig-336

nalling pathways. The connectivity of signalling pathways implies that minor quantitative alterations of the337

network can lead to many changes in response, not all of which alter the phenotype. In this work, we saw338

that multivariate analysis of the perturbation data alone was not fruitful to separate cell lines with respect339

to their drug sensitivity. In contrast, integration of data by models highlighted that variations of only a few340

links is enough to explain the differences between those cell lines. Modelling was therefore key to integrate341

the data and to unveil feedback loops as potential sources of resistance.342

In our work we used a maximum likelihood version of MRA, but there are multiple other methods343

that might be suited to reconstruct semi-quantitative signalling networks from perturbation data. Oates344

et al (2012) proposed a bayesian variant which overcomes the linearity assumption of MRA using chemical345

kinetics to guide the inference and fuzzy-logic models such as used by Terfve et al (2015) also show good346

performance to reconstruct network topology from signalling data. However getting quantitative values for347

the interactions between components of a signalling networks from a small set of perturbations requires MRA348

variants (Santra et al , 2013; Dorel et al , 2018) or necessitates time-resolved perturbation data which limits349

the number of perturbations that can be studied simultaneously (Invergo and Beltrao, 2018). While boolean350

models are very good strategies to model large signalling networks and complex synergies (Niederdorfer et al ,351

2020), they would be unable to capture quantitative differences in feedback regulation, which are the key352

resistance mechanisms uncovered in this work.353

Drug resistance to targeted therapies have been attributed to negative feedback loops in multiple tumours.354

Most importantly, sensitivity to MEK inhibitors is strongly influenced by a pathway-intrinsic feedback, where355

ERK phosphorylates RAF at multiple sites (Sturm et al , 2010; Fritsche-Guenther et al , 2011; Friday et al ,356

2008). This feedback has been shown to be very strong in epithelial cells leading to pathway robustness357

(Fritsche-Guenther et al , 2011), which can be overcome by vertical inhibition of RAF (Sturm et al , 2010).358

Another mode of feedback regulation is the inhibition of receptors by pathways. An example is the inhibitory359

regulation of EGFR by the MAPK pathway (Prahallad et al , 2012; Klinger et al , 2013). When inhibiting360

MAPK signalling by MEK or RAF inhibitors, this feedback leads to hyper-sensitisation of EGFR, which in361

turn reactivates MAPK signalling and additionally activates other downstream pathways such as PI3K/AKT362

signalling. Also in this case vertical inhibition can help to overcome this mode of resistance, by co-targeting363

the MAPK pathway and the upstream receptor.364

In this work, we showed that some neuroblastoma cell lines possess two major layers of feedback in365

MAPK signalling. One of these feedbacks is pathway-intrinsic (from ERK to RAF) and one is a feedback to366

the IGF receptor. Interestingly, different cell lines show different relative strength of feedbacks from ERK367

to RAF and IGFR, and simulations show that those require different strategies for vertical inhibition. For368

the cell line KELLY, modelling unveiled an extremely strong negative feedback from ERK to RAF. This369

suggests that a combination of MEK and RAF inhibitor will be more potent than a combination of MEK370
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and IGFR inhibitor. In contrast, in the cell line N206, both feedbacks have similar strength, suggesting371

that both combinations might be potent. In line with these predictions, experiments showed that in KELLY372

indeed the combination of MEK and RAF inhibitors is much more potent to reduce growth compared to the373

combination of MEK and IGFR. In contrast, in N206 both combinations reduce growth.374

Our phospho-proteomics analysis shows that the combination of MEK and IFGR also has different effects375

in the two cell lines: Whereas it shows clearly synergistic effects of the combination in N206, there is no376

sign of synergy in IMR32. By aggregating the phosphoproteome to kinase activities using kinase enrichment377

scores, one can also get insight into the re-wireing of signalling after perturbation. In our case, it clearly378

shows how the re-activation of RAF after MEK inhibition is inhibited by the treatment with IGFR inhibitors.379

The phosphoproteome also showed that the dual treatment of IGFR and MEK manifests itself in synergistic380

downregulation of important proteins that are regulated by convergent signalling of MEK and AKT, such381

as MYCN and EIF4B.382

Interestingly, a third resistant cell line, IMR32, showed no response in growth to MEK inhibitor in vertical383

combination with either RAF and/or IGFR inhibitor on growth, even though it’s cellular ERK signalling was384

strongly responsive. This highlights that cancer cells might lose ERK-mediated cell cycle control, suggesting385

that coupling of cellular phenotype to signalling pathways is not necessarily strict (Cerezo et al , 2009; Castro386

et al , 2012). To more directly model changes on cellular phenotypes such as growth or viability, models of387

signalling would need to be connected to phenotypic readouts (Korkut et al , 2015). In addition, it might388

be beneficial to include downstream readouts such as cyclin levels or CDK activation that are more directly389

involved in cell cycle progression and can be deregulated in cancer (Keyomarsi and Pardee, 1993; Sung et al ,390

2014). It should be also pointed out that our measurements only encompass one time point and that later391

dynamics of the MAPK pathway, such as transcriptional feedbacks, could also explain IMR32 resistance to392

vertical inhibition.393

In summary, our results show that a quantitative understanding of differences in signalling networks can394

be very helpful to understand resistance, and to derive effective treatments. Future work should investigate395

if those feedback mechanisms exist in tumours in vivo and whether they could explain relapses. Our descrip-396

tion of the wiring of the RAS/MAPK pathway in neuroblastoma will support the design of clinical trials397

using combinatorial treatments to prevent or overcome therapy resistance. In addition, the framework de-398

scribed here could be used to analyse signalling in tumours of individual patients While it will be technically399

challenging to assess signalling network responses in tumour patients, ex vivo cultures - so-called avatars400

- could be an option (Brandt et al , 2019; Saez-Rodriguez and Blüthgen, 2020). We envision that learning401

features of robustness and vulnerability of tumours from signalling models on cell line panels might greatly402

reduce the required set of perturbations in those avatars that are sufficient to inform a model, and allow403

reliable stratification and prediction of treatment options.404

Materials and Methods405

Cell lines406

The neuroblastoma cell lines were obtained by courtesy of the Deubzer lab (Charité, Berlin) as part of the407

Terminate-NB consortium. The identity of the cell lines was confirmed with STR profiling (see Supplemen-408

tary Table TNB_STR_Results.xlsx), which were generated by Eurofins Cell Line Authentification Test and409

matched with the Cellosaurus STR similarity research tool (Robin et al , 2019). All cell lines were grown in410

DMEM (Gibco, Life Technologies) with 3.5 g/L glucose (Sigma), 5 mM glutamine (Gibco, Life Technologies)411

and 10% FCS (Pan Biotech).412

Whole exome sequencing413

DNA was extracted from the human neuroblastoma cell lines (see above), using the Nucleospin Tissue kit414

(Macherey-Nagel) according to the manufacturer’s protocol. From the DNA, libraries for whole-exome se-415

quencing were prepared using the SureSelect Human All Exon V7 kit (Agilent) and the Illumina TruSeq416

Exome kit. The libraries were sequenced on Illumina HiSeq 4000 and Illumina NovaSeq 6000 sequencers.417

The read sequences and base quality scores were demultiplexed and stored in Fastq format using the Illu-418

mina bcl2fastq software v2.20. Adapter remnants and low-quality read ends were trimmed off using custom419
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scripts. The quality of the sequence reads was assessed using the FastQC software. Reads were aligned to the420

human genome, assembly GRCh38, using the bwa mem software version 0.7.10 (Li, 2013), and duplicate read421

alignments were removed using samblaster version 0.1.24 (Faust and Hall, 2014). Copy-number alterations422

were determined using cnvkit version 0.1.24 (Talevich et al , 2016). Single-nucleotide variants (SNVs) were423

identified using strelka version 2.9.10 (Kim et al , 2018). Afterwards, potential germline variants were filtered424

out by excluding all SNVs that had also been observed in at least 1% of samples in cohorts of healthy individ-425

uals, namely the 1000 Genomes Project (Auton et al , 2015) and the NHLBI GO Exome Sequencing Project426

(Fu et al , 2013) cohorts. The raw data are available on ENA under the accession number PRJEB40670.427

RNA sequencing428

The cell lines were sequenced in 3 separate batches. The IMR32, KELLY, SKNAS, LAN6, NBEBC1 cell429

lines were prepared in triplicate, using a paired-end stranded protocol with 2x75 cycles per fragment and 2430

more cell lines (NGP, SKNSH) were prepared in duplicate, using a paired-end stranded protocol with 2x150431

cycles. Two more libraries (CHP212 and N206) were prepared using a paired-end stranded protocol with432

2x75 cycles per fragment.433

Raw sequencing data were rigorously checked for quality using FastQC. The reads were aligned to the434

human genome GRCh38 (without patches or haplotypes) and the GENCODE transcript annotation set435

using the STAR aligner software (Dobin et al , 2013). The read counts per gene were obtained using the436

featurecounts (Liao et al , 2014) method from the subread software package. The raw data are available on437

ENA under the accession number PRJEB40670.438

Drug sensitivity assay439

Cells grown for 1 day in full medium were treated with the indicated drugs in 4 different concentrations
(0.1, 1, 10 and 100 µM Figure 1B) along with the corresponding DMSO controls on the same plate. The
growth of the cells was tracked by phase contrast imaging for 72h with 4 images per well taken every 2h using
the Incucyte Zoom instrument (Essen BioScience) and the confluency estimated using the Incucyte Zoom
Analysis software (Essen BioScience). The growth rate was estimated with a linear fit on the log-transformed
confluency, and the IC50 was determined by fitting a sigmoid of the form:

V =
1

1 + exp(− log(C) + IC50)× S

to normalised growth rates (implemented in https://github.com/MathurinD/drugResistance). V is the440

growth rate relative to DMSO control, C is the concentration and the parameters IC50 and slope S are fitted.441

See supplement Supp_data_fig1-4_TNB_ic50.csv for the fitted parameters and Supp_data_fig1_drug_sensitivity_fig5_syner442

for the raw data and analysis scripts.443

Synergy estimation444

For the synergy assay, cells seeded the day before were treated with different concentrations of AZD6244445

(0.1, 1, 10, 30 and 50 µM, Selleck Chemicals) in combination with NVP-AEW541 (0.1, 0.3, 1, 3 and 10 µM,446

Cayman Chemical) or LY3009120 (0.1, 0.3, 1, 3 and 15 µM, Selleckchem). The synergy scores were deter-447

mined using the R package synergyfinder (Ianevski et al (2017),) with the relative growth rates thresholded448

between 0 and 1 as input (0 meaning no growth or cell death and 1 meaning growth as fast as the DMSO449

control).450

Perturbation assay451

Cells were seeded in 24 well plates and grown for 2 days in full medium followed by 24h in FCS-free medium452

before treatment with the same concentrations of ligands and inhibitors.453

All inhibitors were dissolved in DMSO and cells were treated for 90 minutes at the following concentrations:454

GDC0941 (1 µM, Selleck Chemicals), AZD6244/Selumetinib (10 µM, Selleck Chemicals), MK2206 2HCl455

(10 µM, Selleck Chemicals), Rapamycin (10 µM, Selleck Chemicals), Sorafenib (10 µM, Selleck Chemicals),456
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GS-4997 (10 µM, Selleck Chemicals) and TAE684 (10 µM, Selleck Chemicals).457

The cells were treated for 30 minutes (60 minutes after inhibitor treatment) with ligands in a 0,1% PBS/BSA458

carrier solution at the following concentrations: EGF (25 ng/mL, Peprotech), PDGF (10 ng/mL, Peprotech),459

NGF (50 ng/mL, Peprotech) and IGF1 (100 ng/mL, Peprotech).460

The cells were then lysed using BioRad Bio-Plex Cell Lysis Kit and measured using the Bio-Plex MAGPIX461

Multiplex Reader with a custom kit from ProtAtOnce with analytes p-cJUN (S63), p-p38 (T180/Y182), p-462

AKT (S473), p-ERK1/2 (T202/Y204,T185/Y187), p-MEK1 (S217/S221), p-S6K (T389) and p-RSK1 (S380).463

The p-RSK1 (S380) readout was discarded because of a low dynamic range.464

The same procedure and analytes were used for the other perturbation assays in this paper. Refer to the465

main text for the exact inhibitors and concentrations used for each experiment.466

Signalling models467

The model for each cell line was fitted separately from the corresponding perturbation data with the cre-

ateModel function from the R package STASNet ((Dorel et al , 2018), https://github.com/molsysbio/
STASNet/releases/tag/Dorel2020). STASNet implements the variation of Modular Response Analysis
(MRA) described in Klinger et al (2013) and Dorel et al (2018) that implements a dual effect of inhibitors as
both a negative stimulus and a disruption of signal propagation. Under the hypothesis of pseudo-steady-state
and locally linear dependencies between nodes, MRA models the response to a perturbation as

R = −r̃k ∗ S (1)

where Rij is the global response of node j after perturbation of node i, r̃kij is the local response of node j468

after perturbation of node i taking into account the effect of inhibition of node k, and Sik is the sensitivity469

of node i to perturbation k. The pAKT readout was systematically removed if AKT inhibition was present470

because the AKT inhibitor MK2206 blocks AKT autophosphorylation (Yan, 2009), i.e acts upstream of the471

AKT node, while STASNet expect inhibitors to act downstream of their annotated target.472

We designed a literature network consisting of the MAPK and PI3K/AKT signalling pathway as anno-473

tated in KEGG (https://www.genome.jp/kegg/pathway/hsa/hsa04010.html and https://www.genome.474

jp/kegg-bin/show_pathway?hsa04151) with intermediate nodes suppressed, the addition of the well doc-475

umented ERK->RAF feedback and all receptors corresponding to RTK. Each cell line was fitted first on476

the literature network then extended independently of the others. Those models with final topology yielded477

similar values for the inhibition parameters so we generated new models with those parameters fixed to the478

mean value across all 6 models and re-fitted each cell line with inhibitor values fixed. With this fitting strat-479

egy the links between models became directly comparable as the non identifiability induced by the inhibitor480

parameters was removed (Figure 3A). The high pMEK responder cell line models were fitted using the same481

procedure.482

Western Blot483

Cells were grown to confluency for 3 days in full medium and treated with AEW541 10µM and/or AZD6244 10µM484

or control DMSO for 4h then lysed using BioRad Bio-Plex Cell Lysis Kit. The lysates were run for 3h at485

a constant 45 mA in 10% acrylamid gels and blotted for 45 minutes at 400 mA on nitrocellulose. The486

membrane were stained for total protein using PierceTM Reversible Protein Stain (Thermofischer 24580) and487

blocked for 30 minutes in 1:1 PBS:Odyssey blocking buffer. The primary antibodies were incubated overnight488

at 4C one at a time and the corresponding secondary during the following day for 2h at room temperature in489

1:1 PBST/Odyssey. We used the following primary antibodies: pIGF1R betaY1135/Y1136 1:1000 (CST 3024),490

pAKT S473 1:2000 (CST 4060), total MYCN 1:200 (Santa Cruz sc-53993) and pMEKS217/S221 1:1000 (CST491

9154).492

TMT (phospho-)proteomics493

For the proteomics and phosphoproteomics cells were grown to confluency for 3 days in full medium and494

treated with AEW541 10µM and/or AZD6244 10µM or control DMSO for 4h.495
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We used an adapted version of the TMT workflow (?): samples were reduced, alkylated and digested with496

a combination of LysC (Wako) and Trypsin (Promega) using the the single-pot, solid-phase-enhanced sample497

preparation (?). For each sample, an equal amount of peptide was then chemically labelled with TMTpro498

reagents (?). Samples were randomly assigned to one of the first 15 TMT channels, while the 16th channel was499

composed of a superset of all the samples to allow multi-plex normalisation. Equal amounts of the labelling500

reactions were combined in two TMT16 plexes, desalted via SepPak columns (Waters) and fractionated via501

high-pH fractionation (?) on a 96 minutes gradient from 3 to 55% acetonitrile in 5 mM ammonium formate,502

each fraction collected for 1 minute then combined into 24 fractions. From each fraction, an aliquot was503

used to measure the total proteome while the remaining peptides were combined into 12 fractions and used504

as input for an immobilised metal affinity chromatography using an Agilent Bravo system. For the total505

proteome analysis, peptides were on-line fractionated on a multi-step gradient from 0 to 55% acetonitrile in506

0.1% formic acid prior injection in a QExactive HF-x mass spectrometer. Samples were acquired using a data507

dependent acquisition strategy with MS1 scans from 350 to 1500 m/z at a resolution of 60 000 (measured508

at 200 m/z), maximum injection time (IT) of 10 ms and an automatic gain control (AGC) target value of509

3× 106. The top 20 most intense precursor ions with charges from +2 to +6 were selected for fragmentation510

with an isolation window of 0.7 m/z. Fragmentation was done in an HCD cell with a normalised collision511

energy of 30% and analysed in the detector with a resolution of 45 000 (200 m/z), AGC target value of 105,512

maximum IT of 86 ms. We used the same parameters for phosphoproteome analysis with the exception of513

MS2 maximum IT that was set to 240 ms.514

The acquired raw files were analysed using MaxQuant v1.6.10.43 (?), with TMTpro tags manually added515

as fixed modifications and used for quantitation The correction factors for purity of isotopic labels was set516

according to vendor specification and minimum reporter precursor intensity fraction was set to 0.5. The517

resulting protein groups were filtered for potential protein contaminants, protein groups only identified via518

peptides decorated with modification or hits in the pseudo-reverse database used for FDR control. The519

resulting intensities of each sample channel were normalised to the intensity of the 16th reference channel,520

then median-centered and normalised according to the median-absolute deviation. Identified phosphopep-521

tides were similarly filtered, with the exception of filtering based on modified sites, and normalised using the522

same strategy.523

Differentially expressed phosphopeptides were called using the limma package (?) with a false discovery524

rate of 0.05 on treatment minus control constrasts. Synergies were computed using a contrast fit of the525

combination minus the sum of single treatments. Kinase substrate activity was implemented in R using the526

ratio of the mean z-score as described in ? and computed for kinase-substrate sets from PhosphoSitePlus (?).527

The normalised intensities and scripts used for the analysis can be found at https://itbgit.biologie.528

hu-berlin.de/dorel/phosphoproteomics_tnb_perturbations.529

Data availability530

The datasets produced in this study are available in the following databases:531

• RNA-Seq data: ENA PRJEB40670 (https://www.ebi.ac.uk/ena/browser/view/PRJEB40670)532

• STASNet package: GitHub (https://github.com/molsysbio/STASNet/releases/tag/Dorel2020)533

• Phosphoproteomics: https://itbgit.biologie.hu-berlin.de/dorel/phosphoproteomics_tnb_perturbations534
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