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Abstract

Unlike many single-celled organisms, the growth of fission yeast cells within a cell
cycle is not exponential. It is rather characterized by three distinct phases (elongation,
septation and fission), each with a different growth rate. Experiments also show that the
distribution of cell size in a lineage is often bimodal, unlike the unimodal distributions
measured for the bacterium FEscherichia coli. Here we construct a detailed stochastic
model of cell size dynamics in fission yeast. The theory leads to analytic expressions
for the cell size and the birth size distributions, and explains the origin of bimodality
seen in experiments. In particular our theory shows that the left peak in the bimodal
distribution is associated with cells in the elongation phase while the right peak is due
to cells in the septation and fission phases. We show that the size control strategy,
the variability in the added size during a cell cycle and the fraction of time spent in
each of the three cell growth phases have a strong bearing on the shape of the cell size
distribution. Furthermore we infer all the parameters of our model by matching the
theoretical cell size and birth size distributions to those from experimental single cell
time-course data for seven different growth conditions. Our method provides a much
more accurate means of determining the cell size control strategy (timer, adder or sizer)
than the standard method based on the slope of the best linear fit between the birth
and division sizes. We also show that the variability in added size and the strength of
cell size control of fission yeast depend weakly on the temperature but strongly on the

culture medium.
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Author summary

Advances in microscopy enable us to follow single cells over long timescales from
which we can understand how their size varies with time and the nature of innate
strategies developed to control cell size. This data shows that in many cell types growth
is exponential and the distribution of cell sizes has one peak, namely there is a single
characteristic cell size. However data for fission yeast shows remarkable differences:
growth is non-exponential and the distribution of cell sizes has two peaks, meaning two
characteristic cell sizes exist. Here we construct the first mathematical model of this
organism; by solving the model analytically we show that it is able to predict the two
peaked distributions of cell size seen in data and provides an explanation for each peak
in terms of the various growth phases of the single-celled organism. Furthermore by
fitting the model to the data, we infer values for the rates of all microscopic processes in
our model. This method is shown to provide a much more reliable inference than current
methods and sheds light on how the strategy used by fission yeast cells to control their

size varies with external conditions.

Introduction

Fission yeast cells are shaped as regular cylinders with hemispherical ends [I]. The
cylinder has a fixed cross-sectional area and a variable length; hence both the length
of the cylinder (cell length) and the area of the longitudinal section (cell area) are
approximately proportional to cell volume. In experiments, length, area, and volume
have all been used to characterize cell size. It has been reported that individual cell size
grows exponentially in many cell types such as various bacterial strains and budding
yeast [2H9]. However, fission yeast undergoes a complex non-exponential growth pattern
within each cell cycle [10, [I1], as illustrated by the time-course data of cell area along
a typical cell lineage (Fig. [I{a)). Another remarkable feature of such lineage data is
the bimodal shape of the cell size distribution (Fig. [I{b)). Recent studies have shown
that if cell size grows exponentially in each generation, then the distribution of cell size
must be unimodal [12] [13]. The main aim of the present paper is to propose a detailed
model of cell size dynamics in fission yeast that can characterize its non-exponential
growth, cell division, and size homeostasis, as well as develop an analytical theory that
can account for the bimodal shape of the cell size distribution.

In the study of cell size dynamics, a core issue is to understand the size homeostasis
strategies in various cell types, especially in fission yeast [I4HI7]. There are three popular
phenomenological models of cell size control leading to size homeostasis [18]: (i) the
timer strategy which implies a constant time between successive divisions; (ii) the sizer

strategy which implies cell division upon attainment of a critical size, and (iii) the adder

>/


https://doi.org/10.1101/2021.06.10.447927
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.10.447927; this version posted June 10, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

strategy which implies a constant size addition between consecutive generations. A
conventional method of inferring the size control strategy is to use the information of
cell sizes at birth and at division [19) 20]. This approach assumes that the birth size V},

and the division size V; in each generation are related linearly by
Vd26%+7+6a (1)

where 0 < 8 < 2 and v > 0 are two constants and e is Gaussian white noise. Here
characterizes the strength of size control with 8 =0, 8 =1, and 8 = 2 corresponding to
the sizer, adder, and timer strategies, respectively. Using the data of birth and division
sizes across different generations, the parameter 3 can be determined as the slope of the
regression line of the division size on the birth size. However, in fission yeast, the linear
relationship between birth and division sizes are actually very weak with numerous
outliers and an exceptionally low R? around 0.1 (Fig. c)) This makes the inference of
the parameter § highly unreliable. Hence another aim of the present paper is to develop
a more reliable technique that can be used to accurately infer the size homeostasis

strategy in fission yeast using a dynamic approach.
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Fig 1. Cell size dynamics in fission yeast. (a) Single-cell time course data of cell area
along a typical cell lineage cultured at 34°C in the yeast extract medium. The data shown are
published in [II]. The green dots show cell sizes at birth. (b) Histogram of cell sizes along all
cell lineages. The cell size distribution of lineage measurements has a bimodal shape. (c) Scatter
plot of the birth size versus the division size and the regression line. When plotting (b),(c), we
use the data of all 1500 cell lineages cultured at 34°C in the yeast extract medium, each of which
is recorded every 3 minutes and is typically composed of 50 — 70 generations. The length of each
generation is 114 £ 15 minutes.
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Results

Model specification

Here we consider a detailed model of cell size dynamics in fission yeast across many
generations, including a complex three-stage growth pattern, asymmetric and stochastic
cell division, and size homeostasis (see Fig. [2b) for an illustration). The model is based
on a number of assumptions that are closely related to experimental data obtained using
microfluidic devices. The assumptions are as follows and the specific meaning of all
model parameters is listed in Table
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Fig 2. A detailed model of cell size dynamics in fission yeast. (a) Three-stage growth
pattern of fission yeast: an elongation phase where cell size grows exponentially with rate go,
followed by a septation phase during which the septum is formed and cell size remains constant,
and then followed by a fission phase where cell size increases abruptly with a higher growth rate
g1 > go. Here V}, is the size at birth, V; is the size in the septation phase, and Vj is the size at
division. (b) Schematic illustrating a detailed model of cell size dynamics describing cell growth,
multiple effective cell cycle stages, cell-size control, and symmetric or asymmetric partitioning at
cell division (see inset graph). Each cell can exist in N effective cell cycle stages. The transition
rate from one stage to the next at a particular time ¢ is proportional to the ath power of the cell
size V (t) with a > 0 being the strength of cell-size control and a > 0 being the proportionality
constant. This guarantees that larger cells at birth divide faster than smaller ones to achieve size
homeostasis. At stage IV, a mother cell divides into two daughters that are typically different in

size via asymmetric cell division. Symmetric division is the special case where daughters are
equisized.

1) The growth of cell size of fission yeast within a cell cycle is very different from
the exponential growth observed in many other cell types [2]. Actually, fission yeast
undergoes a non-exponential three-stage growth pattern: an elongation phase followed
by a septation phase and a fission phase (Fig. (a)) [10]. During the elongation phase,

12


https://doi.org/10.1101/2021.06.10.447927
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.10.447927; this version posted June 10, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

model parameters meaning
g0 exponential growth rate in the elongation phase
g1 exponential growth rate in the fission phase
N total number of effective cell cycle stages
Ny number of cell cycle stages in the elongation phase
Ny number of cell cycle stages in the fission phase
70 proportion of cell cycle stages in the elongation phase
1 proportion of cell cycle stages in the fission phase
a proportionality constant for the transition rate between stages
@ strength of size control
My mean generalized added size in the elongation phase
M,y mean generalized added size in the fission phase
P mean partition ratio of cell size at division

Table 1. Model parameters and their meaning.

the size of each cell grows exponentially in each generation with growth rate gy. Note
that in some previous papers [10], the growth in the elongation phase is assumed to
be linear. However, numerous single-cell time-course measurements of cell size under
different growth conditions support the assumption of exponential elongation used in the
present paper [I1]. After the elongation phase, the size of the cell remains constant for
a period during which the septum is formed (see Fig. 4A in [I0]). From the lineage data
in Fig. [[|(a), it seems also reasonable to assume that there is a small non-zero growth
rate in the septation phase. However, according to the principle of parsimony, we choose
not to introduce an extra parameter and assume zero growth rate during septation. At
the end of the septation phase, there is a sharp increase in cell size for a short period
prior to division; this period is called the fission phase. During the fission phase, we

assume that cell size grows exponentially with a higher rate g1 > go.

2) Each cell can exist in NV effective cell cycle stages, denoted by 1,2,..., N. We assume
that the cell stays in the elongation phase in the first Ny stages, stays in the fission phase
in the last N; stages, and stays in the septation phase in the intermediate N — Ny — Ny
stages (Fig. . The transition rate from one stage to the next at a particular time
is proportional to the ath power of cell size at that time [I3] 21]. In other words, the
transition rate between stages at time ¢ is equal to aV (¢)®, where V (¢) is the cell size
at that time, a > 0 is the strength of cell size control, and a > 0 is a proportionality
constant. Under this assumption, larger cells at birth, on average, have shorter cell cycle

duration and lesser volume change than smaller ones; in the way size homeostasis is
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achieved.

Recent investigations have suggested that the accumulation of some cyclin (Cdc13),
phosphatase (Cdc25), or kinase (Cdr2) up to a critical threshold as a possible mechanism
for fission yeast cell division [I4H16]. Biophysically, the N effective cell cycle stages in
our model can be understood as different levels of the division protein (Cdcl3, Cdc25,
or Cdr2). The power law form for the rate of cell cycle progression may come from
cooperation of the division protein, as explained in detail in [13, 2I]. This power law
not only coincides with certain biophysical mechanisms, but also results in a natural
scaling transformation among the timer, sizer, and adder, as will be explained later.

Let V}, and V; denote cell sizes at birth and at division in a particular generation,
respectively, and let V; denote cell size in the septation phase, which is assumed to be
a constant. Then the increment in the ath power of cell size, which is referred to as
generalized added size, in the elongation phase, Ag = V*—V,*, has an Erlang distribution
with shape parameter Ny and mean My = Nyogoa/a (see Supplementary Section 1 for the
proof). Similarly, the generalized added size in the fission phase, Ay = V¥ — V%, also has
an Erlang distribution with shape parameter N7 and mean M; = Njgia/a. Therefore,
the total generalized added size across the cell cycle, A = Ag + Ay = Vi — V,*, is the
sum of two independent Erlang distributed random variables and has a hypoexponential

distribution (also called generalized Erlang distribution) whose Laplace transform is

(e8) = <1 + Aﬁj) o <1 + Aﬁj‘) - = b(\). (2)

Note that (e=*2) — e~ (Mo+M)A 35 N o0, This means that the generalized added

size A = My + My becomes deterministic when N is large. However, when N is small,

given by

the variability in A is much larger. Hence, our model allows the investigation of the
influence of added size variability on cell size dynamics.

Three special cases deserve special attention. When o — 0, the transition rate
between stages is a constant and thus the doubling time has an Erlang distribution that
is independent of the birth size; this corresponds to the timer strategy. When o = 1, the
added size V; — V, has an hypoexponential distribution that is independent of the birth
size; this corresponds to the adder strategy. When o — oo, the ath power of the division
size, V¥, has a hypoexponential distribution that is independent of the birth size; this
corresponds to the sizer strategy. Intermediate strategies are naturally obtained for
intermediate values of «; timer-like control is obtained when 0 < « < 1 and sizer-like

control is obtained when 1 < a < oo [21].

3) Cell division occurs when the cell transitions from stage N to the next stage 1. At
division, most previous papers assume that the mother cell divides into two daughters
that are exactly the same in size via symmetric partitioning [22H25]. Experimentally,

fission yeast in general do not divide perfectly in half. Here we follow the methodology
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that we devised in [I3], 26] and extend previous models by considering asymmetric
partitioning at division: the mother cell divides into two daughters with different sizes.

If the partitioning of cell size is symmetric, we track one of the two daughters
randomly after division [27, 28]; if the partitioning is asymmetric, we either track the
smaller or the larger daughter after division [29, 30]. Let V; and V} denote cell sizes at
division and just after division, respectively. If the partitioning is deterministic, then we
have V! = pVj, where 0 < p < 1 is a constant with p = 0.5 corresponding to symmetric
division, p < 0.5 corresponding to smaller daughter tracking, and p > 0.5 corresponding
to larger daughter tracking. The value of p can be inferred from experiments. However,
in fission yeast, the partitioning of cell size is appreciably stochastic. In this case, we
assume that the partition ratio R = V}//Vy has a beta distribution with mean p [31],

whose probability density function is given by

1

" =3 (pv, qv)

P 1 =) 0<r < 1, (3)
where B is the beta function, ¢ = 1 — p, and v > 0 is referred to as the sample size
parameter. When v — 0o, the variance of the beta distribution tends to zero and thus
stochastic partitioning reduces to deterministic partitioning, i.e. f(r) = d(r — p).

We next describe our stochastic model of cell size dynamics. The microstate of the
cell can be represented by an ordered pair (k,xz), where k is the effective cell cycle stage
which is a discrete variable and x is the cell size which is a continuous variable. Note
that the cell undergoes deterministic growth in each stage (exponential growth in the
first Ny and the last N; stages and no growth in the remaining N — Ny — N; stages),
and the system can hop between successive stages stochastically. Let py(z) denote the
probability density function of cell size when the cell is in stage k. Then the evolution of
cell size dynamics in fission yeast can be described by a piecewise deterministic Markov

process whose master equation is given by
La rz\e T o
Omi(@) = =Oulgoapi@)] + [ = (2) pw (5) h(r)dr — az®p(a),
o T \T r
Oipk(z) = —0z[goxpr ()] + ax“pr_1(z) — axp(x), 2 <k < Ny, (4)
Apr(z) = azxpp—1(z) — ax®pr(x), No+1<k <N — Ny,
Owr(x) = —0:x[grapr(2)] + az®pp—1(x) — az®pe(z), N —-Ni+1<k<N.

where h(r) is the function given in Eq. (3). In the first, second, and fourth equations,
the first term on the right-hand side describe cell growth and the remaining two terms
describe transitions between cell cycle stages. In the third equation, the two terms on
the right-hand side describe cell cycle stage transitions. In the first equation, the middle

term on the right-hand side describes the partitioning of cell size at division.
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Analytical distribution of cell size of lineage measurements

Let p(z) = Z,iv:l pr(x) denote the probability density function of cell size V' (here
we use V' to represent a random variable and use z to represent a realization of V). In
our model, we assume that the rate of cell cycle progression has a power law dependence
on cell size. This assumption implies an important scaling property of our model: if the
dynamics for cell size V' has a control strength o (with o < 1 corresponding to timer-like
and a > 1 corresponding to sizer-like strategies), then the dynamics for the ath power
of cell size, V¢, has an adder strategy. This scaling property serves as the key to our
analytical theory.

Recall that the probability distribution of any random variable with nonnegative
values is fully determined by its Laplace transform. To obtain the analytical distribution
of cell size along a cell lineage, we introduce F(\) = (e™ V") = I p(z)e **" dz, which
is nothing but the Laplace transform for the ath power of cell size. For simplicity, we
first focus on the case of deterministic partitioning. Despite the biological complexity
described by our model, the Laplace transform can still be solved exactly in steady-state

conditions as (see Supplementary Section 2 for the proof)
[e's) [ee]
FO) =K [ [T b6 (5)
k=0

where b()) is the function given in Eq. (2),

(1—|—A0)\)N0—1+N—N0—N1 (1—|—A1/\)N1—1 (6)
NAgA N NAA

is another function with Ay = My/Ny and A; = M;/N;, and

= - U 1 aky, u_l
K[/O st [T o0 >d]

is a normalization constant. From the definition of f(A) in Eq. (6)), it is clear that f(\)
tends to infinity as A — oo. However, from the definition of b(\) in Eq. (2)), the infinite
product []22, b(p®*)\) decays to zero as A — oo at a faster exponential speed. Hence
the integral in Eq. is always well defined.

In principle, taking the inverse Laplace transform gives the probability density

FO) = (14 AN [

function of V¢, from which the distribution of cell size V' can be obtained. Next we
introduce how to compute the cell size distribution more effectively using our analytical
results. Taking the derivative with respect to A on both sides of Eq. , using the
change of variables formula, and finally replacing A by i\ yield (see Supplementary
Section 2 for the proof)

/0 T ypw)e ™ = K0 T b*iN) = GOV, (7)
k=0
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where
1 1 1

py) =~y p(ye),
is the probability density function of V. This shows that the Fourier transform of yp(y)
is exactly G(\). Since the Fourier transform and inverse Fourier transform are inverses
of each other, we only need to take the inverse Fourier transform of G(X) so that we can

obtain yp(y). Finally, the cell size distribution p(z) can be recovered from p(y) as

p(x) = az®"'p(z®). (8)

In general, the cell size distribution along a cell lineage can also be numerically
computed by carrying out stochastic simulations of the piecewise deterministic Markovian
model. However, under the complex three-stage growth pattern of fission yeast, according
to our simulations, over 107 stochastic trajectories must be generated in order to obtain
an accurate computation of the size distribution (Supplementary Fig. 1) — this turns out
to be very slow. The analytical solution is thus important since it allows a fast exploration
of large swathes of parameter space without performing stochastic simulations.

To gain deeper insights into the cell size distribution, we next consider two important
special cases. For the case of exponential growth of cell size, there is only the elongation
phase and the remaining two phases vanish. In this case, we have Ny = 0 and N = Npy;
the cell size distribution is still determined by Eq. with the functions b(\) and f(A)
being simplified greatly as

(1+ AN —1

) = (L+ AoX) N, F) = S ©)

In fact, the analytical cell size distribution for exponentially growing cell lineages has
been studied previously in [13], where the distribution of the logarithmic cell size, instead
of the original cell size, is obtained. We emphasize that the analytical expression given
here is not only much simpler, but also numerically more accurate than the one given in
that paper, which includes the integral of an infinite product term which is very difficult
to compute accurately.

The second case occurs when N — oo, while keeping 9 = No/N and 1 = Ny /n as
constants, where g and r1 represent the proportions of cell cycle stages in the elongation
and fission phases, respectively. In this case, the generalized added size A becomes
deterministic and the system does not involve any stochasticity. As N — oo, the Laplace
transform given in Eq. can be simplified to a large extent as (see Supplementary

Section 2 for the proof)
7o @ @ (1_T0_T1) —v% A
FO) = E{JEIB) = B )] 4+ e

3 B — B
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where E(z) = [° ©-du is the exponential integral,

1 1 1
o Mo+ My \ « - Mo + Mip™\ @ o — Mo+ My \ «
b =D l_pa ) m — 1_pa ; d — l_pa
are the birth size, septation size, and division size, respectively, and K = (Ty +To+T3) !

is a normalization constant with

aro Um 1—rg—m71
ThN=—1log—, Th=——— 1T3=—1log—
1 MO 0og 'Ub, 2 ’U% ) 3 og

being the durations in the elongation, septation, and fission phases, respectively. Note
that in [I0], the septation size (size in the septation phase) is called the division size and
the division size (size just before division) is called the fission size. Here the terminology
is slightly different. Taking the inverse Laplace transform finally gives the cell size
distribution:

w1 w3

(log vg — log vy, )x

p(z) = ( Ty o) (T) + w26 (T — ) + Ty 0q (), (11)

log vy, — logvy)x
where I4(x) is the indicator function which takes the value of 1 when x € A and takes
the value of 0 otherwise, d(x) is Dirac’s delta function, and

Ty T 13

W=—-— Wy=——————— W3= ————
YT+ T M+ 13 0 T+ Do+ T

are the proportions of subpopulations in the three phases, respectively. This indicates
that when added size variability is small, cell size has a distribution that is concentrated
on a finite interval between v, and vy.

To validate our theory, we compare the analytical cell size distribution with the one
obtained from stochastic simulations under different choices of N (Fig. [3(a)). Clearly,
they coincide perfectly with each other. It can be seen that as added size variability
become smaller (N increases), the analytical distribution given in Eq. converges
to the limit distribution given in Eq. . When N is small, the size distribution is
unimodal. As N increases, the size distribution becomes bimodal with the right peak
becoming higher and narrower. The bimodality of the size distribution can be attributed
to cells in different phases: the left peak corresponds to cells in the elongation phase and
the right peak corresponds to cells in the septation and fission phases. Since the size in
the elongation phase is smaller than that in the fission or septation phase, the left peak
is associated with elongation and the right peak with the other two phases. When N is
very large, the size distribution is the superposition of three terms, corresponding to the
three phases of cell growth.

To gain a deeper insight, we illustrate the cell size distribution as a function of
the parameters «, 79, 1, and g1 when N is relatively large (Fig. [3(b)-(e)). It can be

seen that as size control becomes stronger (« increases), the size distribution changes
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Fig 3. Influence of model parameters on the cell size distribution. (a) Cell size
distribution as N varies. The blue curve shows the analytical distribution obtained by taking the
inverse Laplace transform of Eq. (e.g. by using the technique described by Egs. and ()
and the red circles show the distribution obtained using stochastic simulations. The parameters
are chosen as rg = 0.6,71 = 0.1,91 = 2gp,« = 2. (b) Cell size distribution as « varies. The
parameters are chosen as N = 30,79 = 0.6,71 = 0.1,91 = 2go. (c) Cell size distribution as 7
varies. The parameters are chosen as N = 30,71 = 0.1, g1 = 290, @ = 2. (d) Cell size distribution
as r; varies. The parameters are chosen as N = 30,79 = 0.6,91 = 2gp,« = 2. (e) Cell size
distribution as g1 /go varies. The parameters are chosen as N = 30,79 = 0.6,7; =0.1,a =2. In
(a)-(e), the parameters gy and p are chosen as go = 0.01, p = 0.5 and the parameters a, My, M;
are chosen so that the mean cell size (V) = 3.

from the unimodal to the bimodal shape (Fig. [3|(b)). The size distribution is generally
unimodal for timer-like strategies and bimodal for sizer-like strategies. The dependence
of the size distribution on rq is expected — a small rg results in a small fraction of cells
in the elongation phase and thus the left peak is much lower than the right peak, while
a large r( gives rise to the opposite effect (Fig. c)) Bimodality is the most apparent
when rq is neither too large nor too small.

The influence of r; on the cell size distribution is more complicated. Recall that a
larger 71 means a larger fraction of cells in the fission phase and a smaller fraction of
cells in the septation phase. Here since we fix ry to be a constant and tune rq, there
is little change in the fraction of cells in the elongation phase. As the septation phase
becomes shorter (r; increases), the size distribution changes from being bimodal to
being unimodal and becomes more concentrated (Fig. [3(d)). In particular, bimodality is
apparent when the septation phase is relatively long, while a very short septation phase
may even destroy bimodality.

Finally, we examine the dependence of the cell size distribution on the ratio of
the growth rate in the fission phase to the one in the elongation phase, g1/go, which

characterizes the sharpness of the size increase in the fission phase. As the size addition
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in the fission phase becomes sharper (g1/go increases), the size distribution changes from
being bimodal to being unimodal and becomes more concentrated (Fig. [(d)). Here we
fix the mean cell size to be a constant by tuning the parameter a and thus the increase
in g1 does not make the right peak shift more to the right. To our surprise, we find
that bimodality is the most apparent when the growth rates in the two phases are close
to each other, while a very abrupt size addition in the fission phase may even destroy
bimodality.

To summarize, we find that small added size variability, strong size control, moderate
length in the elongation phase, long septation phase, short fission phase, and mild size

addition in the fission phase are capable of producing more apparent bimodality.

Analytical distribution of the birth size

In our model, the distribution of the birth size V4 can also be derived analytically in
steady-state conditions. In fact, the Laplace transform for the ath power of the birth

size, V,, is given by (see Supplementary Section 3 for the proof)

- o Mopem A\~ Myper ) M
AV, an. \ __ op 1p
(e b>—£[1b(p U)—H<1+NO ) (1+N1 ) . (12)

n=1

Taking the inverse Laplace transform gives the probability density function of V}*, from
which is the distribution of V}, can be obtained. A special case takes place when « is
large (strong cell-size control) or when p is small (smaller daughter tracking). Under the
large o or small p approximation, the term p®" is negligible for n > 2 and it suffices
to keep only the first term in the infinite product given in Eq. (12)). In this case, the

laplace transform of V;* reduces to

. Mpe )\ Vo Mypea\ M
“AVEY 1 op 1 1p '
(M) (+ ! + 27

Taking the inverse Laplace transform gives the birth size distribution

No oaN-
04600511

P(%:$) - (N0+N1 — 1)'

g NotN)=Le=hor® 1y (N, No + N1, (Bo — Br)z®), (13)
where 1 F} is the confluent hypergeometric function, 5y = No/Mop®, and By = N1 /Mp®.

Actually, the birth size distribution has also been computed analytically in some
simpler models. It has been shown that the birth size in those models approximately
has a log-normal distribution [22] or a gamma distribution [32]. Therefore it is natural
to ask whether the birth size in our model shares the same property. To see this, we
illustrate the birth size distribution and its approximation by the log-normal and gamma
distributions as N and « vary (Fig. [fa),(b))). We find that under a wide range of

model parameters, the true distribution is in excellent agreement with its log-normal
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approximation. However, when N and « are both small, the true distribution is severely
right-skewed and deviates significantly from its gamma approximation. When N and «
are both large, the true distribution becomes more symmetric and the three distributions

become almost indistinguishable.

a b c
0.6 2 0.6
—— analytical solution 7 —— analytical solpition —— model Il (arjalytical)
3 uuuuu numerical simulatipn [\ eeeee numerical simulaton | [} eceeo model Il (nymerical)
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©
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o J
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0 1 2 3 4 5 1.2 1.8 24 3 0 2 4 6
birth size birth size cell size

Fig 4. Further properties of the birth size and cell size distributions. (a) Comparison
of the birth size distribution (blue curve and red circles) with its log-normal (solid grey region)
and gamma (dashed green curve) approximations when N and « are small. The blue curve
shows the analytical distribution obtained by taking the inverse Laplace transform of Eq. (|12))
and the red circles show the distribution obtained from stochastic simulations. (b) Same as (a)
but when N and « are large. In (a),(b), the parameters are chosen as ro = 0.6, = 0.1, gp =
0.01,¢91 = 4go,p = 0.5. The parameters N and « are chosen as N = 10,« = 0.5 in (a) and
N =30,a =2 in (b). (c) Comparison between the cell size distributions for the model with
deterministic partitioning (solid grey region) and the model with stochastic partitioning (blue
curve and red circles). The blue curve shows the analytical distribution obtained by taking the
inverse Laplace transform of Eq. and the red circles show the distribution obtained from
stochastic simulations. The parameters are chosen as N = 30,79 = 0.6, = 0.1,g9 = 0.01,g; =
4909, = 2,p = 0.5. For the model with stochastic partitioning, the parameter v is chosen as
v =200. In (a)-(c), the parameters a, My, M; are chosen so that the mean cell size (V') = 3 for

the model with deterministic partitioning.

Influence of stochastic partitioning on the cell size distribution

Thus far, the analytical distribution of cell size is derived when the partitioning at
division is deterministic. In the presence of noise in partitioning, we can also obtain an
explicit expression for the cell size distribution, whose Laplace transform is given by (see

Supplementary Section 2 for the proof)
F(\) = (e = K/ f(u) Z anu”du, (14)
A n=0

where f()) is the function given in Eq. (6],

-1

K = /0 f(u)nz:()anu"du

13/[24


https://doi.org/10.1101/2021.06.10.447927
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.10.447927; this version posted June 10, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

is a normalization constant, and a,, is a sequence that can be determined by the following

recursive relations:
n—1

Z AmCmbpn—m, ag= 1. (15)

m=0

1
1—oc,

Ay =

Here b,, and ¢, are two other sequences that are defined by

B(an + pv, qv)

_ (71)7I . m An—m _
b = m'(n — m)' mz::O(NO)m(Nl)n—on Al y Cn = B(pV, qV)

with (), = z(x+1)--- (z+m—1) being the Pochhammer symbol. For the special case
of exponential growth of cell size, there is only the elongation phase and the remaining
two phases vanish. In this case, we have N1 = 0 and N = Np; the cell size distribution
is still determined by Eq. with the sequence b, and the function f(\) being greatly
simplified as

(1+ AN -1

NAgA
Clearly, fluctuations in partitioning at division lead to a much more complicated

by = DA ) =

n!

analytical expression of the cell size distribution. Actually, when partitioning is stochastic,
the analytical cell size distribution for exponentially growing cell lineages has been
obtained approximately in [13] under the assumption that noise in partitioning is very
small. Here we have removed this assumption and obtained a closed-form solution of
the size distribution for general non-exponentially growing cell lineages even if noise in
partitioning is very large. Recent cell lineage measurements suggest that the coefficient
of variation of the partition ratio R = V}/ /V; in fission yeast is 6% - 8% under different
growth conditions [11].

To see the effect of stochastic partitioning, we illustrate the cell size distributions
under deterministic and stochastic partitioning in Fig. [4fc) with the standard deviation
of the partition ratio R being 7% of the mean for the latter. Clearly, the analytical
solution given in Eq. matches the simulation results very well. In addition, it can be
seen that noise in partitioning gives rise to larger fluctuations in cell size, characterized
by a smaller slope of the left shoulder, an apparent decrease in the height of the left
peak, and a slight decrease in the height of the right peak. The valley between the two

peaks and the right shoulder are almost the same for the two models.

Correlation between sizes at birth and sizes at division

In [22], it has been shown that the correlation between cell sizes at birth and at
division can be used to infer the size control strategy. For the case of deterministic
partitioning, since the generalized added size A = Vi — V,* is hypoexponentially
distributed, it is easy to obtain (see Supplementary Section 4 for the proof)

p(‘/baa Vda) = pa’ (16)
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where p(X,Y') denotes the correlation coefficient between X and Y. This characterizes
the correlation between sizes at birth and sizes at division in fission yeast, which only
depends on the asymmetry of partitioning (p) and the strength of size control («). In
particular, we find that if partitioning is deterministic, the correlation between birth
and division sizes is independent of the growth pattern of the cell — both exponentially
and non-exponentially growing cells share the same correlation coefficient whenever they
are the same parameters p and «.

In the presence of noise in partitioning, the formula for the correlation coefficient

should be modified as (see Supplementary Section 4 for the proof)

M?2 M?
(0K + 1) — K] (Mo + Mo+ I [ 3+ 2]

p(‘/ba7 Vda) g 2 2 * (17)
(K1 + 1)Ky — K7] (Mo + M1)? + (Ko + 1) []MTQ + %]
where
B(a + pv, qu) B(2a + pv, qv)
Ky — . Koy = . 18
' Blpv,qv) — B(a + pv, qv) *~ B(pv,qv) — B(2a+ pv, qv) 1)

In this case, p(V,*, V,*) is generally lower than p* due to partitioning noise. Interestingly,
if partitioning is stochastic, the correlation between birth and division sizes not only
depends on p and «, but also depends on the parameters Ny, My, N1, M1, which describe
the growth pattern of fission yeast. This is very different from the case of deterministic

partitioning.

Experimental validation of the theory

To test our theory, we apply it to lineage data of cell size in fission yeast that
are published in [IT]. In this data set, the single-cell time-course data of cell size
were recorded every three minutes using microfluidic devices. The experiments were
performed under seven growth conditions with different media (Edinburgh minimal
medium (EMM) and yeast extract medium (YE)) and different temperatures. For EMM,
cells were cultured at four different temperatures (28°C, 30°C, 32°C, and 34°C), while
for YE, three different temperatures (28°C, 30°C, and 34°C) were used. For each growth
condition, 1500 cell lineages were tracked and each lineage is typically composed of 50-70
generations. Note that for a particular cell lineage, it may occur that the cell was dead
or disappeared from the channel during the measurement [I1], [33]. Such lineages are
removed from the data set and thus the number of lineages used for data analysis for
each growth condition is actually less than 1500.

Based on such data, it is possible to estimate all the parameters involved in our
model for the seven growth conditions. Parameter inference is crucial since it provides

insights into the size control strategy, added size variability, and complex growth pattern
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in fission yeast. We perform parameter inference by fitting the noisy data to two models:

the model with deterministic partitioning (model I) and the model with stochastic
partitioning (model II). The estimated values of all parameters for the two models are
listed in Table [2l Compared with model II, model I gives rise to a lower estimate of «
and 71, as well as a higher estimate of IV, a, and g¢;; the estimates of other parameters

are very similar for the two models. In the following, we briefly describe our parameter

estimation method.

model I EMM 28°C EMM 30°C EMM 32°C EMM 34°C YE 28°C YE 30°C YE 34°C
D 0.459 £ 0.003 0.459 £ 0.002 0.468 £ 0.003 0.470 £ 0.004 0.466 £ 0.003 0.468 = 0.003 0.475 £+ 0.004
@ 1.767 £ 0.093 1.695 + 0.089 1.726 £ 0.102 1.692 £ 0.097 1.139 £ 0.058 1.371 £ 0.072 1.245 £ 0.066
N 17.463 £ 0.803 | 20.727 £0.899 | 20.002 £0.886 | 21.010 £ 0.900 | 32.369 +1.375 | 45.713 £1.846 | 55.315 £ 2.126
To 0.645 + 0.011 0.658 £ 0.015 0.654 +0.012 0.696 + 0.018 0.709 £ 0.018 0.651 +0.012 0.634 £ 0.010
1 0.070 & 0.006 0.039 £ 0.004 0.045 £ 0.004 0.034 £ 0.003 0.038 &= 0.004 0.041 £ 0.005 0.034 £ 0.004
a 0.012 £ 0.001 0.022 £ 0.003 0.019 £ 0.002 0.022 £ 0.003 0.301 £ 0.035 0.210 £ 0.029 0.420 £ 0.051
go 0.216 £ 0.001 0.277 £ 0.002 0.279 £ 0.002 0.245 £ 0.002 0.333 £ 0.003 0.400 £ 0.003 0.470 £ 0.005
g1 0.414 £0.021 0.735 £ 0.034 0.764 £ 0.030 0.701 £0.031 0.628 £ 0.026 1.250 + 0.056 1.682 £ 0.078
model IT EMM 28°C EMM 30°C EMM 32°C EMM 34°C YE 28°C YE 30°C YE 34°C
@ 2.068 £0.152 1.936 + 0.136 2.068 £ 0.146 1.990 + 0.139 1.419 £ 0.082 1.622 + 0.099 1.518 £ 0.090
16.387 £ 0.800 | 19.051 £0.925 | 18.609 £ 0.898 | 19.499 +0.907 | 30.137 £1.382 | 43.905 £1.921 | 50.067 £ 2.037
To 0.635 £+ 0.010 0.643 £ 0.012 0.644 +0.014 0.685 £ 0.017 0.702 £ 0.020 0.640 £ 0.011 0.614 4 0.009
1 0.089 £ 0.008 0.059 £ 0.006 0.054 £ 0.006 0.049 £ 0.005 0.072 £+ 0.007 0.072 £ 0.006 0.068 £ 0.007
a 0.004 £ 0.001 0.009 £ 0.002 0.006 £+ 0.001 0.008 £ 0.001 0.117 £ 0.017 0.089 £ 0.012 0.151 £ 0.022
g1 0.380 £ 0.017 0.526 £ 0.030 0.710 £ 0.037 0.543 £ 0.028 0.444 £ 0.017 0.803 £ 0.041 0.936 £+ 0.046
v 22597 £8.68 | 257.01 £10.26 | 201.98 + 7.56 206.33 + 7.84 198.97 £6.99 | 272.09 £11.18 | 270.18 £10.85

Table 2. Parameters estimated using lineage data of cell size in fission yeast under
seven growth conditions. Two theoretical models are used: the model with deterministic
partitioning (model I) and the model with stochastic partitioning (model II). The estimation
error for each parameter was computed using bootstrap. Specifically, we performed parameter
inference 50 times; for each estimation, the theoretical model was fitted to the data of 50 randomly
selected cell lineages. The estimation error was then calculated as the standard deviation over
50 repeated samplings.

1) Estimation of p and v. Note that the data of cell sizes just before division and
just after division, V; and V}/, across different generations can be easily extracted from
the lineage data and thus for model I, the parameter p can be estimated as the mean
partition ratio (V}//Vy). For model II, the parameters p and v can be inferred by fitting
the partition ratio data to a beta distribution. Typically, a mother cell divides into

two daughters that are different in size due to stochasticity in partitioning and possible
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asymmetric cell division [31]. An interesting characteristic implied by the fission yeast
data is that at division, the smaller daughter is always tracked with the mean partition
ratio p being 0.46 — 0.47 for all the seven growth conditions (Table [2)).

2) Estimation of a.. Note that the data of cell sizes at birth and at division, V;, and Vg,
across different generations can be easily extracted from the lineage data. For model I,
since the parameter p has been determined, the strength « of cell size control can be
estimated by finding the unique value of « satisfying the equality p(V,*, V) = p®. The
inference of the control strength « for model II is much more complicated. Note that
once « is determined, both K; and Ks can be computed via Eq. . For model II, the
mean and variance for the ath power of the birth size are given by (see Supplementary

Section 4 for the proof)
(Vy") = K1(Mo + M),

M2 M?
Var(V7) = (266 + )R - K] (Mo + My + Iy [0 4 208,
0 1

Since K7 and K9 have been determined (assuming « is known), it is possible to estimate
both My + M7 and Mg/No + M} /N; using the data of birth sizes. Finally, the control
strength o can be estimated by finding the unique value of « satisfying Eq. (17).

3) Estimation of gp/a and g1 /a. For model I, the mean and variance for the ath power

of the birth size are given by (see Supplementary Section 4 for the proof)

(0]

Vi) = - fpa (Mo + My),

2c 2 2

N My M
Var(m‘l—pza[zvo Nl]'

Since the parameters p and a have been determined, using the data of birth sizes, we

are able to estimate the following two quantities:

Mo + My = Noago + Niag,
Mg M 2-2 2-2
VO‘FFi :N()Od gO+N1a 91>
where gy = go/a and g1 = g1/a. Once Ny and Nj are known, both gy and §; can be
solved from the above two equations and thus can be inferred. For model II, we have

shown how to estimate My + M; and MZ/No + M%/N; in step 2).
4) Estimation of a, gg, and g;. For each generation, say, the kth generation, we fit the
time-course data of cell size to a three-stage growth model: an exponential growth in

the elongation phase, followed by a constant size in the septation phase and another
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round of exponential growth in the fission phase:

%ego(k)t’ Tk’ S t S tOv
V(t) =< Vs, to <t <ty,
Vet Bty <t < Thoq,

where T}, and Ty are two successive division times, go(k) and gy (k) are the growth
rates in the elongation and fission phases for the kth generation, respectively, and tg
and t; are the initial and end times of the septation phase, respectively. By carrying out
least-squares optimal fitting, we can estimate the growth rate go(k) in the elongation
phase and the growth rate g1 (k) in the fission phase for the kth generation. Fig. (a)
illustrates the fitting of the time-course data to the three-stage growth model for three
typical cell lineages, from which we can see that the model matches the data reasonably
well. Then the parameter gy can be determined as the mean of go(k) across different
generations. Since the time that the cell stays in the fission phase is very short, the
estimate of g1 (k) in general is not accurate. Therefore, we do not adopt this method
to estimate the parameter g;. Since both gp and Jo = go/a have been determined, the
parameter a can also be inferred. Since both a and §; = ¢g1/a have been estimated, the

parameter g; can be determined.

5) Estimation of N, Ny, and Nj. Note that once the parameters N, Ny, and N; are
known, all other parameters can be inferred by carrying out steps 1) - 4). Finally, we

determine these three parameters by solving the following optimization problem:

M

min ; Ip(:) — pla:)[, (19)
where p(x) is the theoretical cell size distribution, p(z) is the sample cell size distribution
obtained from lineage data, x; are some reference points, and M is the number of bins
chosen. In other words, we estimate the three parameters by matching the theoretical
and experimental cell size distributions. For model I, the theoretical distribution is
determined using Eq. , while for model II, the theoretical distribution is determined
using Eq. . Thus far, all model parameters have been determined.

To test our parameter inference method, we compare the experimental cell size and
birth size distributions obtained from lineage data (blue bars) with the theoretical ones
based on the estimated parameters (red curves) under the seven growth conditions for
both model I (Fig. [5b),(c)) and model II (Fig. [6|(a),(b)). It can be seen that the
cell size distributions of lineage measurements for the seven growth conditions are all
bimodal, while the birth size distributions are all unimodal. For the latter model, we
also compare the distribution of the partition ratio with its approximation using the

beta distribution (Fig. [6]c)). Clearly, the theory reproduces the experimental data
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Fig 5. Fitting the experimental cell size and birth size distributions to theory based
on the model with deterministic partitioning (model I). (a) Fitting the time-course data
of cell size (grey curve) to a three-stage growth model (red curve) for three typical cell linages
cultured in YE at 34°C. (b) Experimental cell size distributions (blue bars) and their optimal
fitting to model I (red curve) for seven growth conditions. Here the theoretical distributions are
computed using Eq. (§). (c) Same as (b) but for the birth size distributions. Here the theoretical
distributions are computed using Eq. (12)).

of fission yeast excellently. Interestingly, while our inference method only involves the
matching the theoretical and experimental cell size distribution, the theoretical birth
size distribution also matches the experimental one reasonably well. The perfect match
between theory and experiments supports the main assumptions of the three-stage
growth model and the choice of the rate of moving from one cell cycle stage to the next
to be a power law of cell size.

Our data analysis also reveals some significant differences between the two media
used. From Table [2] it can be seen that cells cultured in EMM have a relatively strong
size control (large «) and a relatively large added size variability (small N), while cells
cultured in YE have a relatively weak size control (small o) and a relatively small added
size variability (large V). Furthermore, we find that the size control strategy of fission
yeast is sizer-like for all the seven growth conditions: for model II, the strength « of size
control is typically 2.0 for EMM and is typically 1.5 for YE. This is in sharp contrast to
the adder strategy found in E. coli, where « is estimated to be 0.8 — 1.2 for different
growth conditions [13]. In addition, our data analysis predicts that the proportion of
cell cycle stages in the elongation phase is about 60% — 70% and the proportion in the

fission phase is about 5% — 10% for all growth conditions.
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Fig 6. Fitting the experimental cell size, birth size, and partition ratio distributions

to theory based on the model with stochastic partitioning (model IT). (a) Experimental
cell size distributions (blue bars) and their optimal fitting to model IT (red curve) for seven
growth conditions. Here the theoretical distributions are computed using Eq. . (b) Same
as (b) but for the birth size distributions. Here the theoretical distributions are computed
using stochastic simulations. (c) Same as (b) but for the partition ratio distributions. Here the

theoretical distributions are computed using Eq. .

To further evaluate the performance of our model, we examine the correlation
between cell sizes at birth and at division. Based on the lineage data, the correlation
coefficients between birth and division sizes for the seven growth conditions are listed
in the first row of Table [3] The theoretical predictions of the correlation coefficients
based on stochastic simulations of model I and model II with the estimated parameters
are listed in the second and third rows of Table 3| respectively. Clearly, both models

capture the birth and division size correlations very well.

EMM 28°C | EMM 30°C | EMM 32°C | EMM 34°C | YE 28°C | YE 30°C | YE 34°C
experiment 0.2599 0.2834 0.2885 0.2753 0.4232 0.3534 0.3999
model I 0.2576 0.2704 0.2734 0.2844 0.4201 0.3544 0.3959
model II 0.2432 0.2604 0.2573 0.2740 0.4182 0.3669 0.4051

Table 3. Correlation coefficients between birth and division sizes for seven growth
conditions. The experimental correlation coefficients are computed using the lineage data,
while the theoretical correlation coefficients are computed using stochastic simulations based on
model I and model II.
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Discussion

In this work, we have proposed two detailed models of cell size dynamics in fission
yeast across many generations and analytically derived the cell size and birth size
distributions of measurements obtained from a cell lineage. The main feature of cell size
dynamics in fission yeast is its three-stage non-exponential growth pattern: a slow growth
in the elongation phase, an arrest of growth in the septation phase, and a rapid growth
in the fission phase. The first model assumes that (i) the cell undergoes deterministic
exponential growth in the elongation and fission phases with the growth rate in the
latter phase being greater than that in the former phase; (ii) the size remains constant
in the septation phase; (iii) the size just after division is a fixed fraction of the one just
before division; (iv) the cell cycle is divided into multiple effective cell cycle stages which
correspond to different levels of the division protein (Cdcl3, Cdc25, or Cdr2); (v) the
rate of moving from one stage to the next has a power law dependence on cell size. A
second model was also solved which relaxes assumption (iii) by allowing the size just
after division to be a stochastic fraction of the one just before division with the fraction
being distributed according to a beta distribution. Under assumptions (iv) and (v), the
three typical strategies of size homeostasis (timer, adder, and sizer) are unified.

Experimentally, the cell size distribution of lineage data in fission yeast is typically
bimodal under various growth conditions. This is very different from the unimodal size
distribution obtained in many other cell types [13]. Interestingly, the bimodal cell size
distribution of fission yeast can be excellently reproduced by the analytical solutions
of both models. The origin of bimodality is further investigated and clarified in detail;
we find that bimodality becomes apparent when (i) the variability in added size is not
too large, (ii) the strength of size control is not too weak, which implies that adder or
sizer-like strategies enforce size homeostasis, (iii) the proportion of the elongation phase
in the cell cycle is neither too large nor too small, (iv) the proportion of the septation
phase is large, (v) the proportion of the fission phase is small, and (vi) the size addition
in the fission phase is not too sharp. We also find that fluctuations in partitioning
at division has a considerable influence on the shape of the cell size distribution by
declining the slope of the left shoulder, as well as lowering the heights of the two peaks.

Furthermore, we have developed an effective method of inferring all the parameters
involved in both models using single-cell lineage measurements of fission yeast based on
the information of (i) the partition ratio, namely, the ratio of the size just after division
to the size just before division, across different generations, (ii) the mean and variance of
the birth size across different generations, (iii) the correlation of cell sizes at birth and at
division, and (iv) the cell size distribution. Specifically, we infer the parameters except
the numbers of cell cycle stages in different phases using the information (i)-(iii) and

then determine the remaining parameters by matching the theoretical and experimental
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cell size distributions.

We have shown that the theoretical cell size and birth size distributions provide an
excellent fit to the experimental ones of fission yeast reported in [11] under seven different
growth conditions. This match provides support for two implicit important assumptions
of our model: (i) the cell undergoes a complex three-stage growth pattern and (ii) the
speed of the cell cycle progression (the transition rate between cell cycle stages) has a
power law dependence on cell size. Finally, based on matching the experimental to the
theoretical cell size distributions, we have estimated all model parameters from lineage
data of fission yeast and found that the variability in added size and the strength of
size control are remarkably different when cells are cultured in different media — EMM
has a large added size variability and a strong size control, while YE has a small added
size variability and a weak size control. The estimated values of the strength « of size
homeostasis is typically 2.0 for EMM and 1.5 for YE, confirming the previous results
that fission yeast uses the sizer-like strategy to achieve size homeostasis [16]. Simulations
with the inferred parameters using distribution matching also captured the correlation
between birth and division sizes — this provides further evidence of the accuracy of our
detailed model.

Data Availability

All data needed to evaluate the conclusions in the paper are present in the paper
and in [11].

Author contributions

R. G. conceived the original idea. C. J. performed the theoretical derivations and
numerical simulations. C. J, A. S, and R. G interpreted the theoretical results. C. J and

R. G jointly wrote the manuscript with input from A. S.

Acknowledgments

C. J. acknowledges support from the NSAF grant in National Natural Science
Foundation of China with grant No. U1930402. A. S. is supported by the National
Institute of Health Grant 1R01GM126557. R. G. acknowledges support from the
Leverhulme Trust (RPG-2018-423).

22 /24


https://doi.org/10.1101/2021.06.10.447927
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.10.447927; this version posted June 10, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

References

[1] Baumgértner, S. & Tolié-Ngrrelykke, I. M. Growth pattern of single fission yeast cells is
bilinear and depends on temperature and DNA synthesis. Biophys. J. 96, 4336-4347 (2009).

[2] Godin, M. et al. Using buoyant mass to measure the growth of single cells. Nat. Methods 7,
387-390 (2010).

[3] Wang, P. et al. Robust growth of Escherichia coli. Curr. Biol. 20, 1099-1103 (2010).

[4] Mir, M. et al. Optical measurement of cycle-dependent cell growth. Proc. Natl. Acad. Sci.
USA 108, 13124-13129 (2011).

[5] Campos, M. et al. A constant size extension drives bacterial cell size homeostasis. Cell 159,
1433-1446 (2014).

[6] Taheri-Araghi, S. et al. Cell-size control and homeostasis in bacteria. Curr. Biol. 25,
385-391 (2015).

[7] Soifer, I., Robert, L. & Amir, A. Single-cell analysis of growth in budding yeast and bacteria
reveals a common size regulation strategy. Curr. Biol. 26, 356-361 (2016).

[8] Priestman, M., Thomas, P., Robertson, B. D. & Shahrezaei, V. Mycobacteria modify their
cell size control under sub-optimal carbon sources. Frontiers in cell and developmental
biology 5, 64 (2017).

[9] Cao, Z. & Grima, R. Analytical distributions for detailed models of stochastic gene expression
in eukaryotic cells. Proc. Natl. Acad. Sci. USA 117, 4682-4692 (2020).

[10] Nobs, J.-B. & Maerkl, S. J. Long-term single cell analysis of S. pombe on a microfluidic
microchemostat array. PloS one 9, ¢93466 (2014).

[11] Nakaoka, H. & Wakamoto, Y. Aging, mortality, and the fast growth trade-off of Schizosac-
charomyces pombe. PLoS biology 15, €2001109 (2017).

[12] Thomas, P. Analysis of cell size homeostasis at the single-cell and population level. Frontiers
in Physics 6, 64 (2018).

[13] Jia, C., Singh, A. & Grima, R. Cell size distribution of lineage data: analytic results and
parameter inference. iScience 24, 102220 (2021).

[14] Keifenheim, D. et al. Size-dependent expression of the mitotic activator Cde25 suggests a
mechanism of size control in fission yeast. Curr. Biol. 27, 1491-1497 (2017).

[15] Facchetti, G., Knapp, B., Flor-Parra, I., Chang, F. & Howard, M. Reprogramming Cdr2-
dependent geometry-based cell size control in fission yeast. Curr. Biol. 29, 350-358 (2019).

[16] Patterson, J. O., Rees, P. & Nurse, P. Noisy cell-size-correlated expression of cyclin b drives
probabilistic cell-size homeostasis in fission yeast. Curr. Biol. 29, 1379-1386 (2019).

[17] Saint, M. et al. Single-cell imaging and RNA sequencing reveal patterns of gene expression
heterogeneity during fission yeast growth and adaptation. Nature microbiology 4, 480-491
(2019).

[18] Vargas-Garcia, C. A., Ghusinga, K. R. & Singh, A. Cell size control and gene expression
homeostasis in single-cells. Curr. Opin. Syst. Biol. 8, 109-116 (2018).

[19] Tanouchi, Y. et al. A noisy linear map underlies oscillations in cell size and gene expression
in bacteria. Nature 523, 357-360 (2015).

2324


https://doi.org/10.1101/2021.06.10.447927
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.10.447927; this version posted June 10, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

[20] Modi, S., Vargas-Garcia, C. A., Ghusinga, K. R. & Singh, A. Analysis of noise mechanisms
in cell-size control. Biophysical journal 112, 2408-2418 (2017).

[21] Nieto, C., Arias-Castro, J., Sdnchez, C., Vargas-Garcfa, C. & Pedraza, J. M. Unification of
cell division control strategies through continuous rate models. Phys. Rev. E 101, 022401
(2020).

[22] Amir, A. Cell size regulation in bacteria. Phys. Rev. Lett. 112, 208102 (2014).

[23] Vargas-Garcia, C. A. & Singh, A. Elucidating cell size control mechanisms with stochastic
hybrid systems. In 2018 IEEE Conference on Decision and Control (CDC), 4366-4371
(IEEE, 2018).

[24] Nieto-Acuna, C. A., Vargas-Garcia, C. A., Singh, A. & Pedraza, J. M. Efficient computation
of stochastic cell-size transient dynamics. BMC Bioinformatics 20, 1-6 (2019).

[25] Totis, N. et al. A population-based approach to study the effects of growth and division
rates on the dynamics of cell size statistics. IEEE Control Systems Letters 5, 725730
(2020).

[26] Jia, C. & Grima, R. Frequency domain analysis of fluctuations of mRNA and protein copy
numbers within a cell lineage: theory and experimental validation. Phys. Rev. X 11, 021032
(2021).

[27] Brenner, N. et al. Single-cell protein dynamics reproduce universal fluctuations in cell
populations. Furopean Physical Journal E 38, 102 (2015).

[28] Robert, L. et al. Mutation dynamics and fitness effects followed in single cells. Science 359,
1283-1286 (2018).

[29] Zopf, C., Quinn, K., Zeidman, J. & Maheshri, N. Cell-cycle dependence of transcription
dominates noise in gene expression. PLoS Comput. Biol. 9, €1003161 (2013).

[30] Crane, M. M., Clark, I. B., Bakker, E., Smith, S. & Swain, P. S. A microfluidic system for
studying ageing and dynamic single-cell responses in budding yeast. PloS one 9, e100042
(2014).

[31] Nieto-Acuna, C., Arias-Castro, J. C., Vargas-Garcia, C., Sdnchez, C. & Pedraza, J. M.
Correlation between protein concentration and bacterial cell size can reveal mechanisms of
gene expression. Phys. Biol. 17, 045002 (2020).

[32] Iyer-Biswas, S., Crooks, G. E., Scherer, N. F. & Dinner, A. R. Universality in stochastic
exponential growth. Phys. Rev. Lett. 113, 028101 (2014).

[33] Kamimura, A. & Kobayashi, T. J. Representation and inference of size control laws by

neural network aided point processes. bioRziv (2021).

2424


https://doi.org/10.1101/2021.06.10.447927
http://creativecommons.org/licenses/by-nc-nd/4.0/

