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Abstract

Neurodegenerative diseases (NDDs), including Alzheimer's (AD) and Parkinson's
diseases (PD), are complex heterogeneous diseases with highly variable patient responses to
treatment. Due to the growing evidence for ageing-related clinical and pathological
commonalities between AD and PD, these diseases have recently been studied in tandem. In
this study, we analyse transcriptomic data from AD and PD patients, and stratify these
patients into three subclasses with distinct gene expression and metabolic profiles. Through
integrating transcriptomic data with a genome-scale metabolic model and validating our
findings by network exploration and co-analysis using a zebrafish ageing model, we identify
retinoids as a key ageing-related feature in al subclasses of AD and PD. We also demonstrate
that the dysregulation of androgen metabolism by three different independent mechanisms is
a source of heterogeneity in AD and PD. Taken together, our work highlights the need for
stratification of AD/PD patients and development of personalised and precision medicine

approaches based on the detailed characterisation of these subclasses.
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Introduction

Neurodegenerative diseases (NDDs), including Alzheimer's (AD) and Parkinson's
diseases (PD), cause years of a healthy life to be lost. Much previous AD and PD research
has focused on the causative neurotoxicity agents, namely amyloid f and a-synuclein,
respectively. The current front-line therapies for AD and PD are cholinesterase inhibition and
dopamine repletion, respectively, which are considered gold standards. Unfortunately, these
therapies are not capable of reversing neurodegeneration (Liberini et a., 1996; Wijemanne
and Jankovic, 2015), thus necessitating potentially lifelong dependence on the drug and
risking drug-associated complications. Moreover, AD and PD are complex diseases with
heterogeneous underlying molecular mechanisms involved in their progression (Greenland et
al., 2019; Long and Holtzman, 2019). This variability can explain the differences in patient
response to other treatments such as oestrogen replacement therapy (Baum, 2005; Meoni et
a., 2020) and statin treatment (Shepardson et a., 2011; Jeong et al., 2019). Hence, we
observed that there are distinct disease classes affecting specific cellular processes. Therefore,

there is a need for the development of personalised treatment regimens.

In this study, we propose a holistic view of the mechanisms underlying the
development of NDDs rather than focusing on amyloid § and a-Synuclein (Lam et a., 2020).
To date, complex diseases including liver disorders and certain cancers have been well
studied through the use of metabolic modelling. This enabled the integration of multiple
omics data for stratification of patients, discovery of diagnostic markers, identification of
drug targets, and proposing of personalised or class-specific treatment strategies (Mardinoglu
et al., 2018; Altay et al., 2019; Joshi et al., 2020; Lam et al., 2021). A similar approach may
be applied for AD and PD since there is already a wealth of data from AD and PD patients

from postmortem brain tissues and blood transcriptomics.


https://doi.org/10.1101/2021.06.10.447367
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.10.447367; this version posted June 10, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

AD and PD share multiple clinical and pathological similarities, including
comorbidities (Stampfer, 2006; De La Monte and Wands, 2008), inverse associations with
cancer (Bajg et a., 2010; Driver et al., 2012), and ageing as a risk factor (Hindle, 2010;
Sengoku, 2020). One type of ageing is telomeric ageing, which is associated with the loss of
telomeres, protein/nucleic acid structures that protect chromosome ends from degradation
(Chakravarti et a., 2021). The enzyme telomerase is necessary for the maintenance of
telomeres. In adults, telomerase activity is mostly limited to progenitor tissues such as in the
ovaries, testes, and bone marrow. Loss of telomerase activity leads to telomere shortening,
loss of sequences due to end-replication, and eventual degradation of sequences within
coding regions, leading to telomeric ageing. Considering NDDs as a product of ageing, we
can use an ageing model organism to study its effects on the brain. In our study, we used
zebrafish (Danio rerio) as model organism since it has been used extensively used to study
vertebrate ageing (Carneiro et a., 2016). For example, a zebrafish ageing model can harbour
a nonsense mutation in the tert gene, which encodes the catalytic subunit of telomerase, and

exhibit faster-than-normal ageing (Anchelin et al., 2013; Henriques et a., 2013).

In our study, we first analysed postmortem brain gene expression data and protein-
protein interaction data from the Genotype-Tissue Expression (GTEx) database (GTEx
Consortium, 2013), Functional Annotation of the Mammalian Genome 5 (FANTOMD)
database (Forrest et al., 2014; Lizio et a., 2015, 2019; Marbach et d., 2016), Human
Reference Protein Interactome (HURI) database (Luck et a., 2019) and Human Protein Atlas
(HPA) [http://lwww.proteinatlas.org, accessed 2021-03-09] (Uhlén et al., 2015) for
characterization of normal brain tissue (Figure 1A). Secondly, we analysed transcriptomic
data from the Religious Orders Study and Rush Memory Aging Project (ROSMAP) (Myers
et a., 2007; Webster et al., 2009; Mostafavi et al., 2018) with published expression data from

anterior cingulate cortices and dorsolateral prefrontal cortices of PD and Lewy body
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dementia patients, hereafter referred to as the Rajkumar dataset (Rajkumar et al., 2020), and
from putamina, substantiae nigrae, and prefrontal cortices from patients with PD, hereafter
referred to as the Zhang/Zheng dataset (Zhang et al., 2005; Zheng et al., 2010). On these data,
we conducted differential gene expression and functional analysis, and then constructed
biological networks to further explore coordinated patterns of gene expression. Next, we
performed global metabolic analyses using genome-scale metabolic modelling. Alongside
these analyses, we also leveraged zebrafish tert mutants to test the hypothesis that the
identified changes may be associated with an ageing mechanism. Finaly, based on our
integrative systems analysis, we define three distinct disease subclasses within AD and PD
and identified retinoids as a common feature of all three subclasses and likely to be perturbed
through ageing. We reveal subclass-specific perturbations at three separate processes in the
androgen biosynthesis and metabolism pathway, namely oestradiol metabolism, cholesterol

biosynthesis, and testosterone metabolism.

Results
Stratification of patients reveals three distinct disease classes

We retrieved gene expression and protein-protein interaction data from GTEX,
FANTOMS5, HuRIl, HPA, and ROSMAP databases and integrated these data with the
published datasets by Rajkumar and Zhang/Zheng. After performing quality control and
normalisation (Materials and Methods), a total of 629 AD samples, 54 PD samples, and 889
control samples were included in the analysis (Table 1). To revea transcriptomic differences
between AD/PD samples compared to healthy controls, we identified differentialy expressed
genes (DEGs) and performed gene set enrichment (GSE) analyses. However, since AD and
PD are complex diseases with no single cure, it is likely that multiple gene expression

profiling exist, manifesting in numerous disease classes requiring distinct treatment strategies.
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We therefore used unsupervised clustering to elucidate these expression profiles and stratify
the AD and PD patients based on the underlying molecular mechanisms involved in the

disease occurrence.

Following unsupervised clustering with ConsensusClusterPlus (Wilkerson and Hayes,
2010), AD and PD samples separated into three clusters (Figure 1B, Supplementary figure
1). Clusters 1 and 2 contained samples from Zhang/Zheng and Rakumar datasets,
respectively, in addition to samples in the ROSMAP dataset. Cluster 3 contained only
ROSMAP samples. Clusters did not form firmly along lines of sex, age, or brain tissues or
brain subregion (Supplementary figure 2). Samples from non-diseased individuals were

artificially added as a fourth, control cluster.

By differential expression analysis using DESeg2 (Love et al., 2014), we then
characterised the distinct transcriptomic profiles within our disease clusters (Figure 2A).
Cluster 1 showed mixed up- and downregulation of genes compared to control, whereas
cluster 2 showed more downregulation and cluster 3 showed vast downregulation of genes

compared to control.

To infer the functional differences between the subclasses, we performed GSE
analysis using piano (Véaremo et al., 2013) (Figure 2B, Supplementary data 1). Globally,
DEGs in any cluster 1-3 were enriched in upregulated Gene Ontology (GO) terms for
immune response, olfaction, retinoid function, and apoptosis, but downregulated for copper
ion transport and telomere organisation, compared to the control cluster. Considering
individual clusters, cluster 1 DEGs were enriched in upregulated GO terms associated with
immune signalling, cell signalling, and visual perception. We also found downregulation of
GO terms associated with olfactory signalling and cytoskeleton. DEGs in cluster 2 were
found to be enriched in downregulated GO terms associated with the cytoskeleton, organ

development, cell differentiation, retinoid metabolism and response, DNA damage repair,
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inflammatory response, telomere maintenance, unfolded protein response, and acetylcholine
biosynthesis and binding. On the other hand, we did not find any significantly enriched
upregulated GO terms. In cluster 3, we found that DEGs were enriched in upregulated GO
terms associated with neuron function, olfaction, cell motility, and immune system. DEGs in
cluster 3 were found to be enriched in downregulated GO terms associated with DNA

damage response, ageing, and retinoid metabolism and response.

The difference in expression profiles illustrate highly heterogeneous transcriptomics
in AD and PD and that there are notable commonalities and differences between the
subclasses of AD or PD samples. Interestingly, we found retinoid metabolism or function to
be a common atered GO term in all subclasses. This was upregulated in cluster 1 but
downregulated in clusters 2 and 3. We therefore observed that retinoid dysregulation appears

to be acommon ageing-related hallmark of NDD.

Metabolic analysis reveals retinoids and sex hormones as significantly dysregulated in AD

and PD

Based on clustering and GSE analysis, we identified distinct expression profiles but
these alone could not offer insights into metabolic activities of brain in AD and PD. To
determine metabolic changes in the clusters compared to controls, we performed constraint-
based genome-scale metabolic modelling. We reconstructed a brain-specific genome-scale
metabolic model (GEM) based on the well-studied HMR2.0 (Mardinoglu et al., 2013)
reference GEM by overlaying transcriptomic data from each cluster and applying brain-
specific constraints as described previously (Baloni et al., 2020) using the tINIT algorithm
(Agren et a., 2012, 2014) within the RAVEN Toolbox 2.0 (Wang et a., 2018). We generated
abrain-specific GEM (iBrain2845) (Supplementary file 1) and used it as the reference GEM
for reconstruction of cluster-specific GEMs in turn. We constructed the resulting context-

specific IADPD series GEMs iADPD1, iADPD2, iADPD3, and iADPDControl,
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corresponding to cluster 1, cluster 2, cluster 3, and the control cluster, respectively

(Supplementary file 2).

We conducted flux balance analysis (FBA) by defining maximisation of ATP
synthesis as the objective function. iIADPD1 and iADPD2 both showed upregulation of fluxes
in reactions involved in cholesterol biosynthesis and downregulation in O-glycan metabolism,
with reaction flux changes being more pronounced in iADPD2 than in iADPD1 (Table 2,
Supplementary data 2). We found that the fluxes in iIADPD1 were uniquely upregulated in
oestrogen metabolism and the Kandustch-Russell pathway. iADPD2 was uniquely
upregulated in cholesterol metabolism, whereas iADPD3 uniquely displayed roughly equal
parts upregulation and downregulation in several pathways, including aminoacyl-tRNA
biosynthesis, androgen metabolism, arginine and proline metabolism, cholesterol
biosynthesis, galactose metabolism, glycine, serine, and threonine metabolism, and N-glycan

metabolism.

In particular, we observed increased positive fluxes through reactions HMR_2055 and
HMR_2059 in iADPD1, which convert oestrone to 2-hydroxyoestrone and then to 2-
methoxyoestrone (Figur e 3). In iADPDControl, these reactions carried zero flux. IniADPD2,
we observed increased positive fluxes through HMR_1457 and HMR_1533, which produce
geranyl pyrophosphate and lathosterol, respectively. Both of these molecules are precursors
to cholesterol, and while we did not see a proportionate increase in the production of other
molecules along the pathway (namely, farnesyl pyrophosphate and squalene), we did observe
a genera increase in fluxes through the androgen biosynthesis and metabolism pathway.
Finally, we observed that iIADPD3 displayed a decreased production of testosterone from 4-
androstene-3,17-dione via HMR_1974 despite an increase in production of 4-androstene-

3,17-dioneviaHMR_1971.
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Taken together, the obtained results indicate the existence of three distinct metabolic
dysregulation profiles in AD and PD, with dysregulation being most pronounced in cluster 2
patients and least pronounced in cluster 3 patients. Furthermore, we found that all three
feature dysregulations in or associated with sex hormone biosynthesis and metabolism, which
might explain the heterogeneity in responses to sex hormone replacement therapy in AD and
PD patients as extensively reported previously (Baum, 2005; Wahjoepramono et a., 2016;
Resnick et al., 2017; Rajsombath et a., 2019). We also confirmed that dysregulations through
sex hormone pathways in the iADPD series GEMs were not due to differences in relative

frequencies between sexes in the main clusters 1-3 (Fisher’s exact test, p = 0.4700).

In addition to metabolic inference and FBA, we performed reporter metabolite
analysis (Patil and Nielsen, 2005) by overlaying DEG analysis results onto the reference
GEM to identify hotspots of metabolism (Table 3, Supplementary data 3). In short, we
uniquely identified oestrone as a reporter metabolite in cluster 1, and lipids such as
acylglycerol and dolichol in cluster 2. No notable reporter metabolites were identified as
significantly changed in cluster 3 only. In common to all clusters 1-3, retinoids and sex
hormones such as androsterone and pregnanediol were identified as significantly changed

reporter metabolites, which are generally in line with GSE and FBA results.

Network analysis supports retinoid and androgen dysregulation and suggests transcriptomic

similarity between AD and PD

To further explore the gene expression patterns shown across AD and PD patients, we
took expression data and constructed a weighted gene co-expression network for both groups
(Spearman p > 0.9, FDR < 10°, Materials and Methods). Each network was compared
against equivalent randomly-generated networks as null models. After quality control, the
AD network contained 4861 nodes (genes) and ~397,000 edges (significant correlations), and

the PD network contained 5857 nodes and ~394,000 edges (Figure 4A, Figure 4B, Table 4).
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A community analysis to identify modules of highly co-expressed genes (Traag et a., 2019)
highlighted nine and fifteen communities with significant functional enrichment in AD and
PD respectively.

In the AD network, gene module C3 was enriched for genes involved with neuron and
synapse development, similar to patient cluster 3, C4 for genes involved with mRNA splicing,
similar to patient cluster 2, and C5 for genes involved with the mitochondrial electron
transport chain (Figure 4C, Supplementary data 4). C1 and C2 were the gene modules with
the largest number of genes. C1 was enriched for gene expression quality control genes and
development and morphogenesis genes, mirroring patient cluster 2, whereas C2 contained
cytoskeleton-related genes, similar to patient cluster 1.

In the PD network, C1 was enriched for genes involved with retinoid metabolism,
glucuronidation, and cytokine signalling. Since androgens are major targets of
glucuronidation (Grosse et al., 2013), these results are in line with our main findings. Further,
C2 contained DNA damage response and gene regulation genes, similar to patient cluster 2,
C3 contained nuclear protein regulation genes, and C4 contained mRNA splicing genes,
again similar to patient cluster 2.

Further, the two networks share a large number of enriched terms in common, and
there is high similarity between the major gene modules, highlighting the similarity between
AD and PD. In addition to this, enrichment analysis for KEGG terms was unable to assign
“Alzheimer disease” and “Parkinson disease” to the correct gene modules from the respective
networks, and additional neurological disease terms such as “Huntington disease” and
“Amyotrophic lateral sclerosis’ were also identified by the analysis, further suggesting the
transcriptomic similarity between neurological diseases. We found that AD C1 and PD C2

were frequently annotated with these disease terms, and these gene modules are aso highly
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similar. Therefore, this gene module could constitute a core set of dysregulated genes in
neurodegeneration.

Taken together, the network analysis supports our GSE findings. The functional
consequences of differential expression in the patient clusters could be explained by
differential modulation of gene modules identified in our network analysis together with
dysregulation of a core set of genesimplicated in both AD and PD.

Zebrafish transcriptomic and metabolic investigations suggest an association between brain

ageing and retinoid dysregulation

To further validate our findings regarding the differences between clusters of human
AD and PD samples, we analysed transcriptomic data from tert mutant zebrafish and
reconstructed tissue-specific GEMs (Figure 5A). To ascertain that these effects of ageing
were limited to the brain, we analysed the brain, liver, muscle, and skin of zebrafish as well

as the whole animal.

We first repeated DEG and GSE analyses in the tert mutants using brain
transcriptomic data. We found significant enrichment of GO terms associated with retinoid
metabolism as well as eye development and light sensing, in which retinoids act as signalling
molecules (Blomhoff and Blomhoff, 2006) (Figure 5B, Supplementary figure 3,
Supplementary data 5). To further support our findings, we then reconstructed mutant- and
genotype-specific GEMs by overlaying zebrafish tert mutant transcriptomic data onto a
modified generic ZebraGEM2 GEM (Van Steijn et a., 2019). We designated the modified
GEM ZebraGEM2.1 (Supplementary file 3) and used it as the reference GEM. We aso
generated zebrafish organ-specific GEMs and provide them to the interested reader

(Supplementary file 4).

We then repeated reporter metabolite analysis using the transcriptomic data from

zebrafish tissue-specific GEMs and found that retinoids were identified as significant reporter
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metabolites in tert™ zebrafish (p = 0.045) but not in tert”, where evidence was marginal (p =
0.084) (Figure 5C, Table 5, Supplementary data 6). We aso observed this result in the
skin of tert” mutants, where evidence was significant (p = 0.017). This result can be
explained due to the susceptibility of skin as an organ to photoageing, for which topical
application of retinol is a widely-used treatment (Riahi et al., 2016). However, we did not
find evidence for significant changes in pregnanediol, and androsterone was significant only
in the skin of tert” zebrafish (p = 0.017). This would suggest that either change in sex
hormones are not ageing-related with regards AD and PD, or the changes were outside the

scope of the zebrafish model that we used.

Taken together, these results indicated that ageing can largely explain alterations in
retinoid metabolism in the brain but not alterations in sex hormone metabolism. These results
also suggested that ageing has a differential effect on different organs, implying that

metabolic changes due to ageing in the brain are associated with neurological disorders.
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Discussion

In this work, we integrated gene expression data across diverse sources into context-
specific GEMs and sought to identify and characterise disease subclasses of AD and PD. We
used unsupervised clustering to identify AD/PD subclasses and employed DEG and GSE
analysis to functionally characterise them. We used network exploration, constraint-based
metabolic modelling, and reporter metabolite analysis to characterise flux and metabolic
perturbations within basal metabolic functions and pathways. We then leveraged expression
data from zebrafish ageing mutants to validate our findings that these perturbations might be
explained by ageing. Our analysis concluded with the identification and characterisation of
three AD/PD subclasses, each with distinct functional characteristics and metabolic profiles.
All three subclasses showed depletion of retinoids by an ageing-related mechanism as a

common characteristic.

We believe that a combined analysis that integrates AD and PD data is necessary to
elucidate common attributes between the two diseases. However, we realised that such an
analysis will likely obscure AD- and PD-specific factors, such as amyloid § and a-synuclein,
but should aid the discovery of any factors in common. Since AD and PD share numerous
risk factors and comorbidities such as old age, diabetes, and cancer risk, we believe that an
AD/PD combined analysis can identify factors in common to both diseases and prove
valuable for the identification of treatment strategies which might be effective in the

treatment of both diseases.

GSE analysis highlighted significant changes related to retinoid function or visual
system function, in which retinol and retinal act as signalling molecules (Blomhoff and
Blomhoff, 2006), in all clusters (Figure 2, Supplementary data 1). Together with the
identification of multiple retinol derivatives as significant reporter metabolites in iBrain2845

(Table 3, Supplementary data 3), we hypothesised that retinoids are a commonly
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dysregulated class of molecules in both AD and PD, and that this may be due to an ageing
mechanism. Indeed, in our investigation with zebrafish telomerase mutants, we again found
aterations in retinoid and visual system function in GSE analysis (Figure 5B,
Supplementary figure 3, Supplementary data 5) and reporter metabolite analysis (Figure

5C, Table 5, Supplementary data 6).

Retinoids were identified as a reporter metabolite in all three clusters of patients in
this study, and we believe that retinoid therapy is a potentially viable treatment for both AD
and PD patients. Further, our zebrafish analysis highlighted the importance of retinoids in
ageing of the brain and the skin (Figure 5C, Table 5, Supplementary data 6). Retinal, its
derivatives, and its analogues are aready used as topical anti-ageing therapies for aged skin
(Riahi et al., 2016), and there is a growing body of evidence suggesting its efficacy for the
treatment of AD (Shudo et al., 2009; Fukasawa et al., 2012; Das et al., 2019; Fitz et a., 2019).
We add to the body of evidence with this in silico investigation involving zebrafish
telomerase mutants, suggesting that the source of retinoid depletion in AD and PD is ageing-
related. Interestingly, regarding our finding for skin ageing in zebrafish, lipid biomarkers
have been proposed in arecent skin sebum metabolomics study in PD patients (Sinclair et al.,
2021). This could be interpreted as co-ageing in brain and skin tissues, possibly allowing for

cheap, non-invasive prognostic testing for PD.

In addition to retinoids, we found evidence for subclass-specific dysregulation within
the androgen metabolism pathway in each of the three clusters in FBA (Table 2,
Supplementary data 2) and reporter metabolite analysis (Table 3, Supplementary data 3).
We found that iADPD1 displayed increased oestrone conversion to the less potent (Martucci,
1983) 2-methoxyoestrone, iADPD2 displayed increased production of the cholesterol
precursor molecules geranyl pyrophosphate and lathosterol and increased androgen

biosynthesis, and iADPD3 displayed decreased conversion of 4-androstene-3,17-dione to
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testosterone. However, there was no definitive evidence to suggest an ageing-related basis for
these observations based on our zebrafish study, but this may be due to the diverse functional
roles that sex hormones have, limitations within the ZebraGEM2.1 model, or absence of an
actual biological link between sex hormones and ageing of the brain. Despite this, given the
widely reported variability in responses to sex hormone replacement therapy in AD and PD
(Baum, 2005; Shepardson et al., 2011; Wahjoepramono et al., 2016; Resnick et al., 2017), we
believe that this observation represents a possible explanation for the heterogeneity. Our
observation regarding the dysregulation of the androgen pathway at three separate points
suggests that dysregulation at other points might also be linked to AD and PD, thus implying
that androgen metabolism dysregulation in general might be important for the development
of AD and PD. Our finding via network community analysis of a gene module associated
with glucuronidation activity points to a possible therapeutic strategy to combat androgen
dysregulation. More work is needed to elucidate the importance of sex hormones and

glucuronidation regarding AD and PD.

Identification of subclasses is desirable to address the heterogeneity in disease with
regards transcriptomic profile and treatment response, but patients must be stratified in order
to be diagnosed with the correct disease subclass and therefore administer the appropriate
treatment. To this end, we used GSE analysis to functionally characterise the AD/PD
subclasses (Figure 2, Supplementary data 1). Cluster 2, which was associated with a
decreased immune and stress response, appeared to be most severe disease subclass, whereas
cluster 3, which was associated with an increased sensory perception of smell, reduced
haemostasis, and reduced immune and DNA damage response, seemed to be the least severe.
Meanwhile, cluster 1 was associated with an increased immune and inflammatory responses
and reduced sensory perception of smell. The functional terms are supported by community

analysis of our AD and PD gene co-expression networks, which identified gene modules that
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roughly aign with the GSE results (Figure 4, Supplementary data 4). The proposed
severity ratings are supported by FBA findings, which show iADPD2 as having the highest
total flux dysregulation compared to control, and iADPD3 as having the least (Table 2,
Supplementary data 2). Although we did not attempt to characterise for stratifying and
diagnosing patients in our study, our findings clearly showed that such stratification is
possible. Given the differing nature of the proposed therapeutic strategies that we outline

above, stratification of patients into distinct disease subclassesis desirable.

In conclusion, we report three distinct subclasses of AD and PD. The first subclass
was identified as being associated with increased immune response, inflammatory response,
and reduced sensory perception of smell, according to GSE results. We observed that this
subclass exhibited increased oestradiol turnover, according to FBA results. We therefore
propose that subjects consistent with the first subclass may be treatable with combined
retinoid and oestradiol therapy. The second subclass was linked with increased cholesterol
biosynthesis and genera increased flux through the androgen biosynthesis and metabolism
pathway. This subclass was characterised by reduced immune response. We therefore suggest
that subjects consistent with the second subclass be studied further with combined retinoid
and statin therapy. The third subclass was characterised by enrichment of GO terms
indicating increased sensory perception of smell, reduced haemostasis, and reduced immune
and DNA damage response. This subclass also exhibited reduced testosterone biosynthesis
from androstenedione, as determined by FBA. We therefore hypothesise that subjects
consistent with the third subclass may benefit from combined retinoid and testosterone
therapy. For all subclasses of AD and PD, more investigation is required to verify the
effectiveness of these stratification methods and precision therapies. To our knowledge thisis
the first meta-analysis at this scale highlighting the potential significance of NDD therapy

using retinoids, oestradiol, and testosterone by studying AD and PD in combination. We
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observed that the existence of disease subclasses demands precision or personalised medicine

and explains the heterogeneity in NDD response to single-factor treatments.


https://doi.org/10.1101/2021.06.10.447367
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.10.447367; this version posted June 10, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Materials and methods
Data acquisition and processing

Gene expression values of protein-coding genes from the ROSMAP dataset were
determined using kallisto (Bray et al., 2016) by aligning raw RNA sequencing reads to the
Homo sapiens genome in Ensembl release 96 (Yates et a., 2020). Raw single-cell RNA
sequencing reads from ROSMAP were converted to counts in Cell Ranger 4.0 (10X

Genomics, https://support.10xgenomics.com/single-cell-gene-

expressi on/software/pipelines/latest/installation) and aligned to the Cell Ranger Homo

sapiens reference transcriptome version 2020-A. Single-cell expression values were compiled

into pseudo-bulk expression profiles for each sample.

AD, PD, and control brain expression values of protein-coding genes from the
ROSMAP dataset (Myers et al., 2007; Webster et al., 2009; Mostafavi et al., 2018), GTEX
database version 8 (GTEx Consortium, 2013), FANTOMS5 database (Forrest et al., 2014;
Lizio et a., 2015, 2019) via Regulatory Circuits Network Compendium 1.0 (Marbach et al.,
2016), HPA database (Uhlén et al., 2015), Rajkumar dataset (Rajkumar et a., 2020), and
Zhang/Zheng dataset (Zhang et al., 2005; Zheng et a., 2010) were then combined. Genes
from GTEx and FANTOMS5 brain samples were filtered such that only genes whose products
are known to participate in a protein-protein interaction described in the HURI database (Luck
et a., 2019) were included. Expression values were scaled and TMM normalised per sample,
Pareto scaled per gene, and batch effects removed with the removeBatchEffects function from
the limma (Ritchie et al., 2015) R package. After quality control and normalisation, atotal of
64794 genes and 2055 samples resulted, of which 1572 samples corresponding to AD, PD, or

control were accepted for analysis.
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Projections onto 2-D space by PCA, t-SNE (Van Der Maaten and Hinton, 2008), and
UMAP (Mclnnes et a., 2018) methods were generated on data after missing value imputation
with data diffusion (van Dijk et al., 2018). t-SNE projections were generated with perplexity
20 and 1000 iterations. All other parameters were kept default. PCA and UMAP projections

were generated using all default parameters.
Transcriptome analysis

Using normalised, imputed expression values, AD and PD samples were then
arranged into clusters without supervision using ConsensusClusterPlus (Wilkerson and Hayes,
2010) with maxK = 20 and rep = 1000. All other parameters were kept default. Clustering by
k = 3 clusters was selected for downstream analysis. A fourth cluster containing only control

samples was artificially added to the analysis.

For differential gene expression analysis, normalised, non-imputed counts were used.
Genes were removed if expression values were missing in 40% or more of samples or were
zero in all samples. Differential expression was then performed using DESeqg2 (Love et d.,
2014) with uniform size factors and all other parameters set to default. Genes with a
Benjamini-Hochberg adjusted p-value at or below a cut-off of 1x10™° were determined

significantly differentially expressed genes.

Gene set enrichment analysis was performed using piano (Véremo et al., 2013) using
all default parameters. GO term lists were obtained from Ensembl Biomart
[https://www.ensembl.org/biomart/martview, accessed 2021-03-09] and were used as gene
set collections. Enrichment of GO terms was determined by analysing GO terms of genes
differentially expressed genes detected by DESeq2 as well as the parents of those GO terms.
GO terms with an adjusted p-value at or below 0.05 for distinct-directional and/or mixed-

directional methods were determined statistically significant.
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Metabolic analysis

For each cluster, consensus gene expression values were determined by taking the

geometric mean of normalised expression counts across all samples within each cluster.

A reference GEM was created by modifying the gene associations of all reactions
within the adipocyte-specific GEM iAdipocytes1850 (Mardinoglu et al., 2013) to match those
within the generic human GEM HMR3 (Mardinoglu et al., 2014). The resulting GEM was
designated iBrain2845. Cluster-specific GEMs were reconstructed using the RAVEN
Toolbox 2.0 (Wang et a., 2018) tINIT algorithm (Agren et a., 2012, 2014) with iBrain2845

as the reference GEM.

FBA was conducted on each cluster-specific GEM using the solveLP function from
the RAVEN Toolbox 2.0 with previously reported constraints (Baloni et al., 2020) and
defining ATP synthesis (iBrain2845: HMR_6916) as the objective function. All constraints
were applied with the exception of the following reaction IDs, which were excluded:

EX_ac[€] (iBrain2845: HMR_9086) and EX_etoh[€] (iBrain2845: HMR_9099).

Reporter metabolite analysis was conducted using the reporter Metabolites function
(Patil and Nielsen, 2005) from the RAVEN Toolbox 2.0, using iBrain2845 as the reference

model.
Network analysis

To generate gene networks, normalised, non-imputed expression values from AD and
PD samples were taken. Control samples and samples from blood were excluded. One
network was generated each for AD and PD. For the AD model, all male samples were
included and 171 female samples were chosen at random and included. For the PD model, all
samples were included. Genes with any missing values were dropped. Genes with the 15%

lowest expression or 15% lowest variance were disregarded from further analysis. Spearman
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correlations were calculated for each pair of genes and the top 1% of significant correlations
were used to generate gene co-expression networks. Random Erdés-Rényi models were
created for the AD and PD models with the same numbers of nodes and edges to act as null
models, and compared against their respective networks in terms of centrality distributions.
Community analyses were performed through the Leiden agorithm (Traag et a., 2019) by
optimizing CPMV ertexPartition, after a resolution scan of 10,000 points between 10 and 10.
The scan showed global maxima at resolutions = 0.077526 and 0.089074 for AD and PD
networks, which were used for optimization. Enrichment analysis was performed on modules
with >30 nodes using enrichr (Chen et al., 2013; Kuleshov et al., 2016) using GO Biological
Process, KEGG, and Online Mendelian Inheritance in Man libraries and was explored using

Revigo (Supek et a., 2011).
Zebrafish data acquisition and analysis

The tert mutant zebrafish line (tert™***°) was obtained from Miguel Godhino Ferreira
(Henriques et al., 2013). Fish maintenance, RNA isolation, processing, and sequencing were

conducted as described previously (Aramillo Irizar et a., 2018).

From n = 5 wildtype (tert”™), n = 5 heterozygous mutant (tert™), and n = 3
homozygous mutant (tert”), expression values were determined from RNA sequencing reads
using kallisto by aligning to the Danio rerio genome in Ensembl release 96 (Yates et al.,
2020). Expression values were generated for each extracted tissue as well as ‘ psuedo—whole

animal’, containing combined values across all tissues.

A reference zebrafish GEM was manually curated by modifying the existing

ZebraGEM2 model and was designated ZebraGEM2.1.

Differential expression analysis, gene set enrichment analysis, GEM reconstruction,

FBA, and reporter metabolite analysis were conducted on tert” and tert” animals against a
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tert”* reference using DESeq2, piano, and RAVEN Toolbox 2.0 with default parameters.

Reporter metabolite analysis was conducted with ZebraGEM2.1 as the reference GEM.

FBA was attempted as described for the human GEMs with the exception that the
following metabolic constraints were excluded: r1391, HMR_0482 (ZebraGEM2.1: G3PDm),
EX_ile L[e] (ZebraGEM2.1: EX_ile e), EX_ val_L[e] (ZebraGEM2.1: EX_va_e),
EX_lys L[e] (ZebraGEM2.1: EX lys €), EX phe L[e] (ZebraGEM2.1: EX_phe e),
GLCtlr, EX_thr_L[e] (ZebraGEM2.1: EX_thr_e), EX_met_L[e] (ZebraGEM2.1:
EX_met_L_e), EX_arg_L[e] (ZebraGEM2.1: EX_arg €), EX_his L[e] (ZebraGEM2.1:
EX_his L _e), EX_leu L[e] (ZebraGEM2.1: EX_leu €), and EX_o02[€] (ZebraGEM2.1:
EX_02_e). The objective function was defined as ATP synthesis (ZebraGEM2.1: ATPS4m).

FBA results for zebrafish are not presented.
Data and code accessibility

All origina computer code, models, and author-curated data files have been released
under a Creative Commons Attribution ShareAlike 4.0 International Licence

(https://creativecommons.org/licenses/by-sa/4.0/) and are freely available for download from

<https://github.com/SimonLammmm/ad-pd-retinoid>.

Zebrafish tert mutant sequencing data have been deposited in the NCBI Gene
Expression Omnibus (GEO) and are accessible through GEO Series accession numbers

GSE102426, GSE102429, GSE102431, and GSE102434.
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Figure and table legends

Figure 1. Overview and exploratory data analysis. A) Workflow for the analysis of human
AD and PD samples. B) AD and PD samples were clustered into k clusters without
supervision on the basis of normalised expression counts. Results are shown k = 3 and 1000

bootstrap replicates. Colour bars indicate cluster identity for each sample. For 2 <k < 7, refer

to Supplementary figure 1. C) Normalised expression data from AD, PD, and control samples
were projected onto 2-D space using t-distributed stochastic neighbour embedding (t-SNE).
Points are coloured according to cluster assignment by unsupervised clustering. For further

data visualisation, refer to Supplementary figure 2.

Figure 2. Transcriptomic and functional characterisation of AD and PD subclasses.
Differentially expressed gene (DEG) analysis and gene set enrichment (GSE) analysis were
performed for AD and PD and control samples for each disease cluster, using the control
cluster as reference. A) DEG results. Significant DEGs were determined as those with a
Benjamini-Hochberg adjusted p-value at or below a cut-off of 1x10™°. Upregulated
significant DEGs are coloured red. Downregulated significant DEGs are coloured blue. Non-
significant DEGs are coloured grey. B) Selected significantly enriched GO terms by number
of genes as determined by GSE analysis. Red bars indicate upregulated GO terms. Blue bars

indicate downregulated GO terms. For full data, refer to Supplementary data 1.

Figure 3. Metabolic characterisation of AD and PD subclasses. Flux balance analysis
(FBA) was performed on iADPD1-3 genome-scale metabolic models (GEMs) and flux values
were compared with those of iIADPDControl. Key metabolites and reactions within the
androgen metabolism pathway are shown and key dysregulations are displayed as coloured
arrows: red indicates increased flux compared to iADPDControl; blue indicates decreased

flux compared to iADPDControl. Dysregulations associated to each GEM are shown in
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coloured boxes. The dashed line indicates multiple reactions are involved. Human Metabolic
Reactions (HMR) identifiers are shown for androgen metabolism reactions with dysregulated

fluxes. For full data, refer to Supplementary data 2.

Figure 4. Network analysis of AD and PD gene co-expression modules. A) Gene co-
expression networks were constructed from transcriptomic data from AD and PD samples.
Community analysis was used to identify gene modules (Methods). M odules with at least 30
genes are shown as nodes. Node size indicates number of genes. Nodes are coloured by
network of origin and numbered in descending order of module size. Shared genes between
modules are shown as edges. Edge weight indicates number of shared genes. B) Degree
distribution of AD, PD, and random networks. C) Enrichment analysis was performed on
gene modules containing at least 30 genes using the KEGG database (Methods). Significantly
enriched gene modules are shown as coloured, numbered blocks. Colour and number keys are

asin (A).

Figure 5. Summary of zebrafish tert mutant analysis. A) Workflow for the analysis of
zebrafish tert mutants. B) Differentially expressed gene (DEG) (left panels) and gene set
enrichment (GSE) analysis (right panels) of zebrafish brain samples. DEG and GSE analyses

were performed on zebrafish tert mutant brain expression data for tert”” (upper panels) and

++

tert™” (lower panels), using tert™ " as areference. Methods and colour keys are asin Figure 2.

For muscle, liver, skin, and pseudo-whole animal analyses, refer to Supplementary figure 3.
For full data, refer to Supplementary data 5. C) Reporter metabolite analysis of zebrafish
samples. DEG data were overlaid on ZebraGEM2.1 to determine reporter metabolites. Shown

are reporter metabolites with p < 0.1 within the retinoic acid metabolic pathway. Red

+/+

numbers indicate p-values in tert”” compared to tert”’*. Blue numbers indicate p-valuesin

++

tert"” compared to tert”*. Green numbers indicate p-valuesin tert”” compared to tert™".

Tissues areindicated with icons. For full data, refer to Supplementary data 6.
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Table 1. Summary of expression data sour ces. Expression data from AD and PD samples
were obtained from the Genotype-Tissue Expression (GTEX) database, Functional
Annotation of the Mammalian Genome 5 (FANTOMY5) database, Human Protein Atlas
(HPA), Religious Orders Study and Rush Memory Aging Project (ROSMAP), Raj kumar

dataset, and Zhang/Zheng dataset.

Table 2. Flux balance analysis of iADPD1, iADPD2, and iADPD3 versusiADPDControl.
Flux balance analysis was performed for each iADPD-series GEM and the predicted fluxes
for the three disease cluster GEMs were compared against the predicted fluxes for the control
cluster GEM. Reactions are grouped by subsystem and flux difference values are expressed
as mean flux difference between disease clusters and the control cluster across all changed

reactions within a subsystem. For full results, refer to Supplementary data 2.

Table 3. Reporter metabolite analysis of AD and PD subclasses. Reporter metabolite
analysis was performed for each AD/PD subclass by overlaying differential expression
results onto iBrain2845. Top 10 unique reporter metabolites by p-value for each cluster
compared to the control cluster are shown. For full results, refer to Supplementary data 3.
Table4. AD and PD network properties. Gene co-expression networks were generated for

AD and PD samples. AD, PD, and random networks are shown.

Tableb. Reporter metabolite analysis of zebrafish tert mutants. Reporter metabolite
analysis was performed for the brains of zebrafish tert mutant by overlaying differential
expression results onto ZebraGEM2.1. Top 20 unique reporter metabolites by p-value for

+/+

each cluster compared to wildtypetert™ zebrafish are shown. For full results, refer to

Supplementary data 6.


https://doi.org/10.1101/2021.06.10.447367
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.10.447367; this version posted June 10, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Supplementary figure legends

Supplementary figure 1. Unsupervised clustering of AD and PD samples. AD and PD
samples were clustered into k clusters without supervision on the basis of normalised

expression counts. Clustering was performed with 2 < k < 20. Consensus matrices for 2 < k <

7 are shown. Parameters and colour keys are asin Figure 1b.

Supplementary figure 2. Visualisation of AD and PD samples. Expression data from AD
and PD and control samples were integrated, normalised, and projected onto 2-D space using
principal component analysis (PCA), t-distributed stochastic neighbour embedding (t-SNE),
and uniform manifold approximation and projection (UMAP). Points are coloured according
to A) organ of sample origin, B) brain subregion of sample origin, C) brain tissue of sample
origin, D) dataset, E) sex, F) age, or G) cluster assignment by unsupervised clustering. Points

with no data available are shown in grey.

Supplementary figure 3. Transcriptomic and functional characterisation of zebrafish
tert mutants. Differentially expressed gene (DEG) and gene set enrichment (GSE) analyses
were performed on zebrafish tert mutant expression data for tert” and tert*”, using tert”* as a
reference. M ethods and colour keys are asin Figure 2. A) DEG analyses. B) GSE analyses.

+/+

Left panels, tert” vstert+/+. Right panels, tert”” vs tert™*. Panels top to bottom: pseudo—
whole animal, liver, muscle, skin. For the brain, refer to Figure 5. For full results, refer to

Supplementary data 5.
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Supplementary files and data

Supplementary file 1. iBrain2845 genome-scale metabolic model.

Supplementary file 2. iIADPD-series context-specific genome-scale metabolic models.
Supplementary file 3. ZebraGEM 2.1 genome-scale metabolic model.

Supplementary file 4. Zebrafish context-specific genome-scale metabolic models.
Supplementary data 1. Gene set enrichment analysisresultsfor AD and PD subclasses.

Supplementary data 2. Flux balance analysis results for iADPD-series genome-scale

metabolic models.

Supplementary data 3. Reporter metabolite analysis results for AD and PD subclasses.
Supplementary data 4. Networ k analysisresultsfor AD and PD samples.
Supplementary data 5. Gene set enrichment analysisresultsfor zebrafish tert mutants.

Supplementary data 6. Reporter metabolite analysisresultsfor zebrafish tert mutants.
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Table 1. Summary of expression data sources.

Sour ce AD samples PD samples Control samples
GTEX/FANTOM5 0 0 67

HPA 0 0 52

Rajkumar 0 14 13

ROSMAP 629 0 704
Zhang/Zheng 0 40 53

Total 629 54 889
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Table 2. Flux balance analysis of iIADPD1, iADPD2, and iADPD3 versus iADPDControl.

Subsystem iADPD1 | iADPD2 | iADPD3
Acyl-CoA hydrolysis -0.001 | 0.001 0.000
Alanine, aspartate and glutamate metabolism -0.148 | 0.014 0.000
Aminoacyl-tRNA biosynthesis 4.698 4.698 0.000
Androgen metabolism -1.426 | -0.399 | -0.001
Arachidonic acid metabolism -0.098 | 0.010 0.000
Arginine and proline metabolism -0.182 | -0.327 | 0.000
Beta oxidation of branched-chain fatty acids (mitochondrial) | -0.049 | -0.049 | -0.049
Beta oxidation of di-unsaturated fatty acids (n-6)

(mitochondrial) -0.636 | 0.002 -0.001
Beta oxidation of odd-chain fatty acids (mitochondrial) 0.001 -0.002 | -0.002
Beta oxidation of poly-unsaturated fatty acids

(mitochondrial) 0.709 0.024 0.000
Beta oxidation of unsaturated fatty acids (n-7)

(mitochondrial) -0.016 | 0.001 -0.003
Beta oxidation of unsaturated fatty acids (n-9)

(mitochondrial) 0.011 0.000 0.007
Carnitine shuttle (cytosolic) 0.012 0.000 -0.001
Carnitine shuttle (mitochondrial) 0.003 0.000 0.002
Cholesterol biosynthesis 1 (Bloch pathway) 0.076 -0.983 | 0.001
Cholesterol biosynthesis 2 2.501 4.472 0.000
Cholesterol biosynthesis 3 (Kandustch-Russell pathway) 1.699 0.000 0.000
Cholesterol metabolism 0.067 4.482 0.000
Estrogen metabolism 2.085 0.000 0.000
Fatty acid activation (endoplasmic reticular) 0.000 0.000 0.000
Fatty acid biosynthesis (even-chain) 0.000 0.000 0.000
Fatty acid desaturation (even-chain) 0.785 0.000 0.000
Fatty acid elongation (odd-chain) -0.042 | -0.024 | 0.000
Formation and hydrolysis of cholesterol esters -0.382 | 0.004 0.000
Fructose and mannose metabolism -0.211 | -0.007 | 0.000
Galactose metabolism -0.008 | 0.035 0.000
Glycine, serine and threonine metabolism 0.276 0.557 0.000
Glycolysis/ Gluconeogenesis -0.213 | 0.022 0.033
Histidine metabolism 0.000 0.000 0.000
L eukotriene metabolism -0.032 | 0.000 0.000
Lysine metabolism 0.000 0.000 0.000
N-glycan metabolism -0.784 | 0.016 0.000
Nitrogen metabolism 0.000 0.000 0.000
Nucleotide metabolism 0.027 -0.028 | 0.000
O-glycan metabolism -2.346 | -4.738 | 0.000
Pentose phosphate pathway 0.127 0.000 0.000
Propanoate metabolism -0.116 | 0.020 0.091
Protein degradation 0.000 0.000 0.000
Purine metabolism 0.112 -0.013 | 0.000
Pyrimidine metabolism -0.071 | -0.010 | -0.001
Pyruvate metabolism -0.183 | -0.004 | -0.077
Starch and sucrose metabolism 0.000 0.000 0.000
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Steroid metabolism -0.097 | -0.295 | 0.003
Terpenoid backbone biosynthesis 0.398 0.187 0.020
Valine, leucine and isoleucine degradation 0.127 0.000 0.000
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Table 3. Reporter metabolite analysis of AD and PD subclasses.

Reporter metabolite | Z-score | p-value
Cluster 1
02 6.111 4.95E-10
estrone 5.4557 2.44E-08
retinoate 5.3943 3.44E-08
NADP+ 5.3667 4.01E-08
arachidonate 5.2822 6.38E-08
2-hydroxyestradiol-17beta 5.0999 1.70E-07
linoleate 5.0622 2.07E-07
10-HETE 5.0454 2.26E-07
11,12,15-THETA 5.0454 2.26E-07
11,14,15-theta 5.0454 2.26E-07
Cluster 2
1-acylglycerol-3P-L D-PC pool 4.3322 7.38E-06
acyl-CoA-LD-PI pool 4.143 1.71E-05
phaosphatidate-CL pool 4.0973 2.09E-05
thymidine 3.5852 0.00016843
uridine 3.5852 0.00016843
prostaglandin D2 3.2144 0.00065348
G10596 3.13%4 0.0008581
G10597 3.1354 0.0008581
D-myo-inositol-1,4,5-trisphosphate 2.9988 0.0013552
dolichyl-phosphate 2.9655 0.001511
Cluster 3
D-myo-inositol-1,4,5-trisphosphate 2.6543 0.0039734
13-cis-retind 2.6537 0.0039806
heparan sulfate, precursor 9 2.5915 0.0047772
sn-glycerol-3-phosphate 2.578 0.0049682
DHAP 2.5353 0.0056173
porphobilinogen 2.4987 0.0062333
ATP 2.4838 0.0064998
L -glutamate 5-semialdehyde 2.4576 0.006994
prostaglandin D2 2451 0.0071221
ribose 24133 0.0079045
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Table4. AD and PD network properties. Gene co-expression networks were generated for
AD and PD samples. AD, PD, and random networks are shown.

Average . .
Nodes | Edges Diameter | path Density cl uf?t.er Ing Conneclzgd Minimum
Iength coefficient networ K7 cut
AD 4861 | 396985 | 11 3.004 0.034 0.443 No -
PD 5857 | 394405 | 18 3.508 0.023 0.397 No -
Random
D 4861 | 396985 | 3 1.970 0.034 0.034 Yes 114
Eg”dom 5857 | 394405 |3 2021 0.023 0.023 Yes 89
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Table 5. Reporter metabolite analysis of zebrafish tert mutants.

Reporter metabolite | Z-score | p-value
tert”
H+ 3.911 4.60E-05
H20 3.0672 0.0010804
L-Lysine 2.8564 0.0021424
Biocyt ¢ 2.8564 0.0021424
Ubiquinone 2.5742 0.0050241
Ni cotinamide adenine dinucleotide - reduced 2.3946 0.0083183
Phosphate 2.0562 0.019883
Superoxide anion 2.0365 0.020851
Sodium 1.9228 0.027254
TRNA (Glu) 1.8752 0.030381
Thiosulfate 1.7684 0.038493
Selenate 1.7684 0.038493
Reduced glutathione 1.7184 0.042862
ADP 1.6716 0.047305
L-Lysine 1.6625 0.04821
Benzo[a]pyrene-4,5-oxide 1.6042 0.054333
Formaldehyde 1.5955 0.055302
L-Glutamate 1.4622 0.071837
(1R,2S)-Naphthalene epoxide 1.4518 0.073276
Aflatoxin B1 exo-8,9-epozide 1.4518 0.073276
tert™”
H+ 4.9585 3.55E-07
Ubiquinol 3.9938 3.25E-05
H20 3.2078 0.00066883
Ni cotinamide adenine dinucleotide - reduced 3.029 0.0012268
Superoxide anion 2.0908 0.018274
L-Lactate 2.0752 0.018983
02 1.9958 0.022976
Lnlncgcoac 1.9628 0.024834
Succinate 1.9449 0.025895
Ferricytochrome ¢ 1.8352 0.033237
Phosphatidylinositol-3,4,5-trisphosphate 1.7494 0.040109
9-cis-Retinoic acid 17 0.044567
[(Gal)2 (GIcNACc)4 (LFuc)l (Man)3 (Asn)1] 1.6672 0.047739
O-Phospho-L-serine 1.6601 0.048451
[(Glc)3 (GIcNAC)2 (Man)9 (Asn)11] 1.6276 0.051802
Protein serine 1.6078 0.053937
[(GIcNAC)1 (Ser/Thr)1] 1.6078 0.053937
Geranyl diphosphate 1.5912 0.055785
CTP 1.5625 0.059088
[(Gal)2 (GIcNAC)4 (LFuc)l (Man)3 (NeuSAc)2 (Asn)1 1.5367 0.062179
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