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Abstract 

Neurodegenerative diseases (NDDs), including Alzheimer's (AD) and Parkinson's 

diseases (PD), are complex heterogeneous diseases with highly variable patient responses to 

treatment. Due to the growing evidence for ageing-related clinical and pathological 

commonalities between AD and PD, these diseases have recently been studied in tandem. In 

this study, we analyse transcriptomic data from AD and PD patients, and stratify these 

patients into three subclasses with distinct gene expression and metabolic profiles. Through 

integrating transcriptomic data with a genome-scale metabolic model and validating our 

findings by network exploration and co-analysis using a zebrafish ageing model, we identify 

retinoids as a key ageing-related feature in all subclasses of AD and PD. We also demonstrate 

that the dysregulation of androgen metabolism by three different independent mechanisms is 

a source of heterogeneity in AD and PD. Taken together, our work highlights the need for 

stratification of AD/PD patients and development of personalised and precision medicine 

approaches based on the detailed characterisation of these subclasses. 
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Introduction 

Neurodegenerative diseases (NDDs), including Alzheimer's (AD) and Parkinson's 

diseases (PD), cause years of a healthy life to be lost. Much previous AD and PD research 

has focused on the causative neurotoxicity agents, namely amyloid β and α-synuclein, 

respectively. The current front-line therapies for AD and PD are cholinesterase inhibition and 

dopamine repletion, respectively, which are considered gold standards. Unfortunately, these 

therapies are not capable of reversing neurodegeneration (Liberini et al., 1996; Wijemanne 

and Jankovic, 2015), thus necessitating potentially lifelong dependence on the drug and 

risking drug-associated complications. Moreover, AD and PD are complex diseases with 

heterogeneous underlying molecular mechanisms involved in their progression (Greenland et 

al., 2019; Long and Holtzman, 2019). This variability can explain the differences in patient 

response to other treatments such as oestrogen replacement therapy (Baum, 2005; Meoni et 

al., 2020) and statin treatment (Shepardson et al., 2011; Jeong et al., 2019). Hence, we 

observed that there are distinct disease classes affecting specific cellular processes. Therefore, 

there is a need for the development of personalised treatment regimens. 

In this study, we propose a holistic view of the mechanisms underlying the 

development of NDDs rather than focusing on amyloid β and α-synuclein (Lam et al., 2020). 

To date, complex diseases including liver disorders and certain cancers have been well 

studied through the use of metabolic modelling. This enabled the integration of multiple 

omics data for stratification of patients, discovery of diagnostic markers, identification of 

drug targets, and proposing of personalised or class-specific treatment strategies (Mardinoglu 

et al., 2018; Altay et al., 2019; Joshi et al., 2020; Lam et al., 2021). A similar approach may 

be applied for AD and PD since there is already a wealth of data from AD and PD patients 

from postmortem brain tissues and blood transcriptomics. 
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AD and PD share multiple clinical and pathological similarities, including 

comorbidities (Stampfer, 2006; De La Monte and Wands, 2008), inverse associations with 

cancer (Bajaj et al., 2010; Driver et al., 2012), and ageing as a risk factor (Hindle, 2010; 

Sengoku, 2020). One type of ageing is telomeric ageing, which is associated with the loss of 

telomeres, protein/nucleic acid structures that protect chromosome ends from degradation 

(Chakravarti et al., 2021). The enzyme telomerase is necessary for the maintenance of 

telomeres. In adults, telomerase activity is mostly limited to progenitor tissues such as in the 

ovaries, testes, and bone marrow. Loss of telomerase activity leads to telomere shortening, 

loss of sequences due to end-replication, and eventual degradation of sequences within 

coding regions, leading to telomeric ageing. Considering NDDs as a product of ageing, we 

can use an ageing model organism to study its effects on the brain. In our study, we used 

zebrafish (Danio rerio) as model organism since it has been used extensively used to study 

vertebrate ageing (Carneiro et al., 2016). For example, a zebrafish ageing model can harbour 

a nonsense mutation in the tert gene, which encodes the catalytic subunit of telomerase, and 

exhibit faster-than-normal ageing (Anchelin et al., 2013; Henriques et al., 2013). 

In our study, we first analysed postmortem brain gene expression data and protein-

protein interaction data from the Genotype-Tissue Expression (GTEx) database (GTEx 

Consortium, 2013), Functional Annotation of the Mammalian Genome 5 (FANTOM5) 

database (Forrest et al., 2014; Lizio et al., 2015, 2019; Marbach et al., 2016), Human 

Reference Protein Interactome (HuRI) database (Luck et al., 2019) and Human Protein Atlas 

(HPA) [http://www.proteinatlas.org, accessed 2021-03-09] (Uhlén et al., 2015) for 

characterization of normal brain tissue  (Figure 1A). Secondly, we analysed transcriptomic 

data from the Religious Orders Study and Rush Memory Aging Project (ROSMAP) (Myers 

et al., 2007; Webster et al., 2009; Mostafavi et al., 2018) with published expression data from 

anterior cingulate cortices and dorsolateral prefrontal cortices of PD and Lewy body 
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dementia patients, hereafter referred to as the Rajkumar dataset (Rajkumar et al., 2020), and 

from putamina, substantiae nigrae, and prefrontal cortices from patients with PD, hereafter 

referred to as the Zhang/Zheng dataset (Zhang et al., 2005; Zheng et al., 2010). On these data, 

we conducted differential gene expression and functional analysis, and then constructed 

biological networks to further explore coordinated patterns of gene expression. Next, we 

performed global metabolic analyses using genome-scale metabolic modelling. Alongside 

these analyses, we also leveraged zebrafish tert mutants to test the hypothesis that the 

identified changes may be associated with an ageing mechanism. Finally, based on our 

integrative systems analysis, we define three distinct disease subclasses within AD and PD 

and identified retinoids as a common feature of all three subclasses and likely to be perturbed 

through ageing. We reveal subclass-specific perturbations at three separate processes in the 

androgen biosynthesis and metabolism pathway, namely oestradiol metabolism, cholesterol 

biosynthesis, and testosterone metabolism. 

Results 

Stratification of patients reveals three distinct disease classes 

We retrieved gene expression and protein-protein interaction data from GTEx, 

FANTOM5, HuRI, HPA, and ROSMAP databases and integrated these data with the 

published datasets by Rajkumar and Zhang/Zheng. After performing quality control and 

normalisation (Materials and Methods), a total of 629 AD samples, 54 PD samples, and 889 

control samples were included in the analysis (Table 1). To reveal transcriptomic differences 

between AD/PD samples compared to healthy controls, we identified differentially expressed 

genes (DEGs) and performed gene set enrichment (GSE) analyses. However, since AD and 

PD are complex diseases with no single cure, it is likely that multiple gene expression 

profiling exist, manifesting in numerous disease classes requiring distinct treatment strategies. 
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We therefore used unsupervised clustering to elucidate these expression profiles and stratify 

the AD and PD patients based on the underlying molecular mechanisms involved in the 

disease occurrence. 

Following unsupervised clustering with ConsensusClusterPlus (Wilkerson and Hayes, 

2010), AD and PD samples separated into three clusters (Figure 1B, Supplementary figure 

1). Clusters 1 and 2 contained samples from Zhang/Zheng and Rajkumar datasets, 

respectively, in addition to samples in the ROSMAP dataset. Cluster 3 contained only 

ROSMAP samples. Clusters did not form firmly along lines of sex, age, or brain tissues or 

brain subregion (Supplementary figure 2). Samples from non-diseased individuals were 

artificially added as a fourth, control cluster. 

By differential expression analysis using DESeq2 (Love et al., 2014), we then 

characterised the distinct transcriptomic profiles within our disease clusters (Figure 2A). 

Cluster 1 showed mixed up- and downregulation of genes compared to control, whereas 

cluster 2 showed more downregulation and cluster 3 showed vast downregulation of genes 

compared to control. 

To infer the functional differences between the subclasses, we performed GSE 

analysis using piano (Väremo et al., 2013) (Figure 2B, Supplementary data 1). Globally, 

DEGs in any cluster 1-3 were enriched in upregulated Gene Ontology (GO) terms for 

immune response, olfaction, retinoid function, and apoptosis, but downregulated for copper 

ion transport and telomere organisation, compared to the control cluster. Considering 

individual clusters, cluster 1 DEGs were enriched in upregulated GO terms associated with 

immune signalling, cell signalling, and visual perception. We also found downregulation of 

GO terms associated with olfactory signalling and cytoskeleton. DEGs in cluster 2 were 

found to be enriched in downregulated GO terms associated with the cytoskeleton, organ 

development, cell differentiation, retinoid metabolism and response, DNA damage repair, 
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inflammatory response, telomere maintenance, unfolded protein response, and acetylcholine 

biosynthesis and binding. On the other hand, we did not find any significantly enriched 

upregulated GO terms. In cluster 3, we found that DEGs were enriched in upregulated GO 

terms associated with neuron function, olfaction, cell motility, and immune system. DEGs in 

cluster 3 were found to be enriched in downregulated GO terms associated with DNA 

damage response, ageing, and retinoid metabolism and response.  

The difference in expression profiles illustrate highly heterogeneous transcriptomics 

in AD and PD and that there are notable commonalities and differences between the 

subclasses of AD or PD samples. Interestingly, we found retinoid metabolism or function to 

be a common altered GO term in all subclasses. This was upregulated in cluster 1 but 

downregulated in clusters 2 and 3. We therefore observed that retinoid dysregulation appears 

to be a common ageing-related hallmark of NDD. 

Metabolic analysis reveals retinoids and sex hormones as significantly dysregulated in AD 

and PD 

Based on clustering and GSE analysis, we identified distinct expression profiles but 

these alone could not offer insights into metabolic activities of brain in AD and PD. To 

determine metabolic changes in the clusters compared to controls, we performed constraint-

based genome-scale metabolic modelling. We reconstructed a brain-specific genome-scale 

metabolic model (GEM) based on the well-studied HMR2.0 (Mardinoglu et al., 2013) 

reference GEM by overlaying transcriptomic data from each cluster and applying brain-

specific constraints as described previously (Baloni et al., 2020) using the tINIT algorithm 

(Agren et al., 2012, 2014) within the RAVEN Toolbox 2.0 (Wang et al., 2018). We generated 

a brain-specific GEM (iBrain2845) (Supplementary file 1) and used it as the reference GEM 

for reconstruction of cluster-specific GEMs in turn. We constructed the resulting context-

specific iADPD series GEMs iADPD1, iADPD2, iADPD3, and iADPDControl, 
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corresponding to cluster 1, cluster 2, cluster 3, and the control cluster, respectively 

(Supplementary file 2). 

We conducted flux balance analysis (FBA) by defining maximisation of ATP 

synthesis as the objective function. iADPD1 and iADPD2 both showed upregulation of fluxes 

in reactions involved in cholesterol biosynthesis and downregulation in O-glycan metabolism, 

with reaction flux changes being more pronounced in iADPD2 than in iADPD1 (Table 2, 

Supplementary data 2). We found that the fluxes in iADPD1 were uniquely upregulated in 

oestrogen metabolism and the Kandustch-Russell pathway. iADPD2 was uniquely 

upregulated in cholesterol metabolism, whereas iADPD3 uniquely displayed roughly equal 

parts upregulation and downregulation in several pathways, including aminoacyl-tRNA 

biosynthesis, androgen metabolism, arginine and proline metabolism, cholesterol 

biosynthesis, galactose metabolism, glycine, serine, and threonine metabolism, and N-glycan 

metabolism. 

In particular, we observed increased positive fluxes through reactions HMR_2055 and 

HMR_2059 in iADPD1, which convert oestrone to 2-hydroxyoestrone and then to 2-

methoxyoestrone (Figure 3). In iADPDControl, these reactions carried zero flux. In iADPD2, 

we observed increased positive fluxes through HMR_1457 and HMR_1533, which produce 

geranyl pyrophosphate and lathosterol, respectively. Both of these molecules are precursors 

to cholesterol, and while we did not see a proportionate increase in the production of other 

molecules along the pathway (namely, farnesyl pyrophosphate and squalene), we did observe 

a general increase in fluxes through the androgen biosynthesis and metabolism pathway. 

Finally, we observed that iADPD3 displayed a decreased production of testosterone from 4-

androstene-3,17-dione via HMR_1974 despite an increase in production of 4-androstene-

3,17-dione via HMR_1971.  
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Taken together, the obtained results indicate the existence of three distinct metabolic 

dysregulation profiles in AD and PD, with dysregulation being most pronounced in cluster 2 

patients and least pronounced in cluster 3 patients. Furthermore, we found that all three 

feature dysregulations in or associated with sex hormone biosynthesis and metabolism, which 

might explain the heterogeneity in responses to sex hormone replacement therapy in AD and 

PD patients as extensively reported previously (Baum, 2005; Wahjoepramono et al., 2016; 

Resnick et al., 2017; Rajsombath et al., 2019). We also confirmed that dysregulations through 

sex hormone pathways in the iADPD series GEMs were not due to differences in relative 

frequencies between sexes in the main clusters 1-3 (Fisher’s exact test, p = 0.4700). 

In addition to metabolic inference and FBA, we performed reporter metabolite 

analysis (Patil and Nielsen, 2005) by overlaying DEG analysis results onto the reference 

GEM to identify hotspots of metabolism (Table 3, Supplementary data 3). In short, we 

uniquely identified oestrone as a reporter metabolite in cluster 1, and lipids such as 

acylglycerol and dolichol in cluster 2. No notable reporter metabolites were identified as 

significantly changed in cluster 3 only. In common to all clusters 1-3, retinoids and sex 

hormones such as androsterone and pregnanediol were identified as significantly changed 

reporter metabolites, which are generally in line with GSE and FBA results. 

Network analysis supports retinoid and androgen dysregulation and suggests transcriptomic 

similarity between AD and PD 

To further explore the gene expression patterns shown across AD and PD patients, we 

took expression data and constructed a weighted gene co-expression network for both groups 

(Spearman ρ > 0.9, FDR < 10-9, Materials and Methods). Each network was compared 

against equivalent randomly-generated networks as null models. After quality control, the 

AD network contained 4861 nodes (genes) and ~397,000 edges (significant correlations), and 

the PD network contained 5857 nodes and ~394,000 edges (Figure 4A, Figure 4B, Table 4). 
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A community analysis to identify modules of highly co-expressed genes (Traag et al., 2019) 

highlighted nine and fifteen communities with significant functional enrichment in AD and 

PD respectively. 

In the AD network, gene module C3 was enriched for genes involved with neuron and 

synapse development, similar to patient cluster 3, C4 for genes involved with mRNA splicing, 

similar to patient cluster 2, and C5 for genes involved with the mitochondrial electron 

transport chain (Figure 4C, Supplementary data 4). C1 and C2 were the gene modules with 

the largest number of genes. C1 was enriched for gene expression quality control genes and 

development and morphogenesis genes, mirroring patient cluster 2, whereas C2 contained 

cytoskeleton-related genes, similar to patient cluster 1. 

In the PD network, C1 was enriched for genes involved with retinoid metabolism, 

glucuronidation, and cytokine signalling. Since androgens are major targets of 

glucuronidation (Grosse et al., 2013), these results are in line with our main findings. Further, 

C2 contained DNA damage response and gene regulation genes, similar to patient cluster 2, 

C3 contained nuclear protein regulation genes, and C4 contained mRNA splicing genes, 

again similar to patient cluster 2. 

Further, the two networks share a large number of enriched terms in common, and 

there is high similarity between the major gene modules, highlighting the similarity between 

AD and PD. In addition to this, enrichment analysis for KEGG terms was unable to assign 

“Alzheimer disease” and “Parkinson disease” to the correct gene modules from the respective 

networks, and additional neurological disease terms such as “Huntington disease” and 

“Amyotrophic lateral sclerosis” were also identified by the analysis, further suggesting the 

transcriptomic similarity between neurological diseases. We found that AD C1 and PD C2 

were frequently annotated with these disease terms, and these gene modules are also highly 
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similar. Therefore, this gene module could constitute a core set of dysregulated genes in 

neurodegeneration. 

Taken together, the network analysis supports our GSE findings. The functional 

consequences of differential expression in the patient clusters could be explained by 

differential modulation of gene modules identified in our network analysis together with 

dysregulation of a core set of genes implicated in both AD and PD. 

Zebrafish transcriptomic and metabolic investigations suggest an association between brain 

ageing and retinoid dysregulation 

To further validate our findings regarding the differences between clusters of human 

AD and PD samples, we analysed transcriptomic data from tert mutant zebrafish and 

reconstructed tissue-specific GEMs (Figure 5A). To ascertain that these effects of ageing 

were limited to the brain, we analysed the brain, liver, muscle, and skin of zebrafish as well 

as the whole animal. 

We first repeated DEG and GSE analyses in the tert mutants using brain 

transcriptomic data. We found significant enrichment of GO terms associated with retinoid 

metabolism as well as eye development and light sensing, in which retinoids act as signalling 

molecules (Blomhoff and Blomhoff, 2006) (Figure 5B, Supplementary figure 3, 

Supplementary data 5). To further support our findings, we then reconstructed mutant- and 

genotype-specific GEMs by overlaying zebrafish tert mutant transcriptomic data onto a 

modified generic ZebraGEM2 GEM (Van Steijn et al., 2019). We designated the modified 

GEM ZebraGEM2.1 (Supplementary file 3) and used it as the reference GEM. We also 

generated zebrafish organ-specific GEMs and provide them to the interested reader 

(Supplementary file 4). 

We then repeated reporter metabolite analysis using the transcriptomic data from 

zebrafish tissue-specific GEMs and found that retinoids were identified as significant reporter 
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metabolites in tert+/- zebrafish (p = 0.045) but not in tert-/-, where evidence was marginal (p = 

0.084) (Figure 5C, Table 5, Supplementary data 6). We also observed this result in the 

skin of tert-/- mutants, where evidence was significant (p = 0.017). This result can be 

explained due to the susceptibility of skin as an organ to photoageing, for which topical 

application of retinol is a widely-used treatment (Riahi et al., 2016). However, we did not 

find evidence for significant changes in pregnanediol, and androsterone was significant only 

in the skin of tert-/- zebrafish (p = 0.017). This would suggest that either change in sex 

hormones are not ageing-related with regards AD and PD, or the changes were outside the 

scope of the zebrafish model that we used. 

Taken together, these results indicated that ageing can largely explain alterations in 

retinoid metabolism in the brain but not alterations in sex hormone metabolism. These results 

also suggested that ageing has a differential effect on different organs, implying that 

metabolic changes due to ageing in the brain are associated with neurological disorders. 
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Discussion 

In this work, we integrated gene expression data across diverse sources into context-

specific GEMs and sought to identify and characterise disease subclasses of AD and PD. We 

used unsupervised clustering to identify AD/PD subclasses and employed DEG and GSE 

analysis to functionally characterise them. We used network exploration, constraint-based 

metabolic modelling, and reporter metabolite analysis to characterise flux and metabolic 

perturbations within basal metabolic functions and pathways. We then leveraged expression 

data from zebrafish ageing mutants to validate our findings that these perturbations might be 

explained by ageing. Our analysis concluded with the identification and characterisation of 

three AD/PD subclasses, each with distinct functional characteristics and metabolic profiles. 

All three subclasses showed depletion of retinoids by an ageing-related mechanism as a 

common characteristic. 

We believe that a combined analysis that integrates AD and PD data is necessary to 

elucidate common attributes between the two diseases. However, we realised that such an 

analysis will likely obscure AD- and PD-specific factors, such as amyloid β and α-synuclein, 

but should aid the discovery of any factors in common. Since AD and PD share numerous 

risk factors and comorbidities such as old age, diabetes, and cancer risk, we believe that an 

AD/PD combined analysis can identify factors in common to both diseases and prove 

valuable for the identification of treatment strategies which might be effective in the 

treatment of both diseases. 

 GSE analysis highlighted significant changes related to retinoid function or visual 

system function, in which retinol and retinal act as signalling molecules (Blomhoff and 

Blomhoff, 2006), in all clusters (Figure 2, Supplementary data 1). Together with the 

identification of multiple retinol derivatives as significant reporter metabolites in iBrain2845 

(Table 3, Supplementary data 3), we hypothesised that retinoids are a commonly 
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dysregulated class of molecules in both AD and PD, and that this may be due to an ageing 

mechanism. Indeed, in our investigation with zebrafish telomerase mutants, we again found 

alterations in retinoid and visual system function in GSE analysis (Figure 5B, 

Supplementary figure 3, Supplementary data 5) and reporter metabolite analysis (Figure 

5C, Table 5, Supplementary data 6). 

Retinoids were identified as a reporter metabolite in all three clusters of patients in 

this study, and we believe that retinoid therapy is a potentially viable treatment for both AD 

and PD patients. Further, our zebrafish analysis highlighted the importance of retinoids in 

ageing of the brain and the skin (Figure 5C, Table 5, Supplementary data 6). Retinol, its 

derivatives, and its analogues are already used as topical anti-ageing therapies for aged skin 

(Riahi et al., 2016), and there is a growing body of evidence suggesting its efficacy for the 

treatment of AD (Shudo et al., 2009; Fukasawa et al., 2012; Das et al., 2019; Fitz et al., 2019). 

We add to the body of evidence with this in silico investigation involving zebrafish 

telomerase mutants, suggesting that the source of retinoid depletion in AD and PD is ageing-

related. Interestingly, regarding our finding for skin ageing in zebrafish, lipid biomarkers 

have been proposed in a recent skin sebum metabolomics study in PD patients (Sinclair et al., 

2021). This could be interpreted as co-ageing in brain and skin tissues, possibly allowing for 

cheap, non-invasive prognostic testing for PD. 

In addition to retinoids, we found evidence for subclass-specific dysregulation within 

the androgen metabolism pathway in each of the three clusters in FBA (Table 2, 

Supplementary data 2) and reporter metabolite analysis (Table 3, Supplementary data 3). 

We found that iADPD1 displayed increased oestrone conversion to the less potent (Martucci, 

1983) 2-methoxyoestrone, iADPD2 displayed increased production of the cholesterol 

precursor molecules geranyl pyrophosphate and lathosterol and increased androgen 

biosynthesis, and iADPD3 displayed decreased conversion of 4-androstene-3,17-dione to 
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testosterone. However, there was no definitive evidence to suggest an ageing-related basis for 

these observations based on our zebrafish study, but this may be due to the diverse functional 

roles that sex hormones have, limitations within the ZebraGEM2.1 model, or absence of an 

actual biological link between sex hormones and ageing of the brain. Despite this, given the 

widely reported variability in responses to sex hormone replacement therapy in AD and PD 

(Baum, 2005; Shepardson et al., 2011; Wahjoepramono et al., 2016; Resnick et al., 2017), we 

believe that this observation represents a possible explanation for the heterogeneity. Our 

observation regarding the dysregulation of the androgen pathway at three separate points 

suggests that dysregulation at other points might also be linked to AD and PD, thus implying 

that androgen metabolism dysregulation in general might be important for the development 

of AD and PD. Our finding via network community analysis of a gene module associated 

with glucuronidation activity points to a possible therapeutic strategy to combat androgen 

dysregulation. More work is needed to elucidate the importance of sex hormones and 

glucuronidation regarding AD and PD.  

Identification of subclasses is desirable to address the heterogeneity in disease with 

regards transcriptomic profile and treatment response, but patients must be stratified in order 

to be diagnosed with the correct disease subclass and therefore administer the appropriate 

treatment. To this end, we used GSE analysis to functionally characterise the AD/PD 

subclasses (Figure 2, Supplementary data 1). Cluster 2, which was associated with a 

decreased immune and stress response, appeared to be most severe disease subclass, whereas 

cluster 3, which was associated with an increased sensory perception of smell, reduced 

haemostasis, and reduced immune and DNA damage response, seemed to be the least severe. 

Meanwhile, cluster 1 was associated with an increased immune and inflammatory responses 

and reduced sensory perception of smell. The functional terms are supported by community 

analysis of our AD and PD gene co-expression networks, which identified gene modules that 
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roughly align with the GSE results (Figure 4, Supplementary data 4). The proposed 

severity ratings are supported by FBA findings, which show iADPD2 as having the highest 

total flux dysregulation compared to control, and iADPD3 as having the least (Table 2, 

Supplementary data 2). Although we did not attempt to characterise for stratifying and 

diagnosing patients in our study, our findings clearly showed that such stratification is 

possible. Given the differing nature of the proposed therapeutic strategies that we outline 

above, stratification of patients into distinct disease subclasses is desirable. 

In conclusion, we report three distinct subclasses of AD and PD. The first subclass 

was identified as being associated with increased immune response, inflammatory response, 

and reduced sensory perception of smell, according to GSE results. We observed that this 

subclass exhibited increased oestradiol turnover, according to FBA results. We therefore 

propose that subjects consistent with the first subclass may be treatable with combined 

retinoid and oestradiol therapy. The second subclass was linked with increased cholesterol 

biosynthesis and general increased flux through the androgen biosynthesis and metabolism 

pathway. This subclass was characterised by reduced immune response. We therefore suggest 

that subjects consistent with the second subclass be studied further with combined retinoid 

and statin therapy. The third subclass was characterised by enrichment of GO terms 

indicating increased sensory perception of smell, reduced haemostasis, and reduced immune 

and DNA damage response. This subclass also exhibited reduced testosterone biosynthesis 

from androstenedione, as determined by FBA. We therefore hypothesise that subjects 

consistent with the third subclass may benefit from combined retinoid and testosterone 

therapy. For all subclasses of AD and PD, more investigation is required to verify the 

effectiveness of these stratification methods and precision therapies. To our knowledge this is 

the first meta-analysis at this scale highlighting the potential significance of NDD therapy 

using retinoids, oestradiol, and testosterone by studying AD and PD in combination. We 
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observed that the existence of disease subclasses demands precision or personalised medicine 

and explains the heterogeneity in NDD response to single-factor treatments. 
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Materials and methods 

Data acquisition and processing 

Gene expression values of protein-coding genes from the ROSMAP dataset were 

determined using kallisto (Bray et al., 2016) by aligning raw RNA sequencing reads to the 

Homo sapiens genome in Ensembl release 96 (Yates et al., 2020). Raw single-cell RNA 

sequencing reads from ROSMAP were converted to counts in Cell Ranger 4.0 (10X 

Genomics, https://support.10xgenomics.com/single-cell-gene-

expression/software/pipelines/latest/installation) and aligned to the Cell Ranger Homo 

sapiens reference transcriptome version 2020-A. Single-cell expression values were compiled 

into pseudo-bulk expression profiles for each sample. 

AD, PD, and control brain expression values of protein-coding genes from the 

ROSMAP dataset (Myers et al., 2007; Webster et al., 2009; Mostafavi et al., 2018), GTEx 

database version 8 (GTEx Consortium, 2013), FANTOM5 database (Forrest et al., 2014; 

Lizio et al., 2015, 2019) via Regulatory Circuits Network Compendium 1.0 (Marbach et al., 

2016), HPA database (Uhlén et al., 2015), Rajkumar dataset (Rajkumar et al., 2020), and 

Zhang/Zheng dataset (Zhang et al., 2005; Zheng et al., 2010) were then combined. Genes 

from GTEx and FANTOM5 brain samples were filtered such that only genes whose products 

are known to participate in a protein-protein interaction described in the HuRI database (Luck 

et al., 2019) were included. Expression values were scaled and TMM normalised per sample, 

Pareto scaled per gene, and batch effects removed with the removeBatchEffects function from 

the limma (Ritchie et al., 2015) R package. After quality control and normalisation, a total of 

64794 genes and 2055 samples resulted, of which 1572 samples corresponding to AD, PD, or 

control were accepted for analysis. 
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Projections onto 2-D space by PCA, t-SNE (Van Der Maaten and Hinton, 2008), and 

UMAP (McInnes et al., 2018) methods were generated on data after missing value imputation 

with data diffusion (van Dijk et al., 2018). t-SNE projections were generated with perplexity 

20 and 1000 iterations. All other parameters were kept default. PCA and UMAP projections 

were generated using all default parameters. 

Transcriptome analysis 

Using normalised, imputed expression values, AD and PD samples were then 

arranged into clusters without supervision using ConsensusClusterPlus (Wilkerson and Hayes, 

2010) with maxK = 20 and rep = 1000. All other parameters were kept default. Clustering by 

k = 3 clusters was selected for downstream analysis. A fourth cluster containing only control 

samples was artificially added to the analysis.  

For differential gene expression analysis, normalised, non-imputed counts were used. 

Genes were removed if expression values were missing in 40% or more of samples or were 

zero in all samples. Differential expression was then performed using DESeq2 (Love et al., 

2014) with uniform size factors and all other parameters set to default. Genes with a 

Benjamini-Hochberg adjusted p-value at or below a cut-off of 1×10-10 were determined 

significantly differentially expressed genes. 

Gene set enrichment analysis was performed using piano (Väremo et al., 2013) using 

all default parameters. GO term lists were obtained from Ensembl Biomart 

[https://www.ensembl.org/biomart/martview, accessed 2021-03-09] and were used as gene 

set collections. Enrichment of GO terms was determined by analysing GO terms of genes 

differentially expressed genes detected by DESeq2 as well as the parents of those GO terms. 

GO terms with an adjusted p-value at or below 0.05 for distinct-directional and/or mixed-

directional methods were determined statistically significant. 
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Metabolic analysis 

For each cluster, consensus gene expression values were determined by taking the 

geometric mean of normalised expression counts across all samples within each cluster.  

A reference GEM was created by modifying the gene associations of all reactions 

within the adipocyte-specific GEM iAdipocytes1850 (Mardinoglu et al., 2013) to match those 

within the generic human GEM HMR3 (Mardinoglu et al., 2014). The resulting GEM was 

designated iBrain2845. Cluster-specific GEMs were reconstructed using the RAVEN 

Toolbox 2.0 (Wang et al., 2018) tINIT algorithm (Agren et al., 2012, 2014) with iBrain2845 

as the reference GEM. 

FBA was conducted on each cluster-specific GEM using the solveLP function from 

the RAVEN Toolbox 2.0 with previously reported constraints (Baloni et al., 2020) and 

defining ATP synthesis (iBrain2845: HMR_6916) as the objective function. All constraints 

were applied with the exception of the following reaction IDs, which were excluded: 

EX_ac[e] (iBrain2845: HMR_9086) and EX_etoh[e] (iBrain2845: HMR_9099). 

Reporter metabolite analysis was conducted using the reporterMetabolites function 

(Patil and Nielsen, 2005) from the RAVEN Toolbox 2.0, using iBrain2845 as the reference 

model. 

Network analysis 

To generate gene networks, normalised, non-imputed expression values from AD and 

PD samples were taken. Control samples and samples from blood were excluded. One 

network was generated each for AD and PD. For the AD model, all male samples were 

included and 171 female samples were chosen at random and included. For the PD model, all 

samples were included. Genes with any missing values were dropped. Genes with the 15% 

lowest expression or 15% lowest variance were disregarded from further analysis. Spearman 
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correlations were calculated for each pair of genes and the top 1% of significant correlations 

were used to generate gene co-expression networks. Random Erdős-Rényi models were 

created for the AD and PD models with the same numbers of nodes and edges to act as null 

models, and compared against their respective networks in terms of centrality distributions. 

Community analyses were performed through the Leiden algorithm (Traag et al., 2019) by 

optimizing CPMVertexPartition, after a resolution scan of 10,000 points between 10-3 and 10. 

The scan showed global maxima at resolutions = 0.077526 and 0.089074 for AD and PD 

networks, which were used for optimization. Enrichment analysis was performed on modules 

with >30 nodes using enrichr (Chen et al., 2013; Kuleshov et al., 2016) using GO Biological 

Process, KEGG, and Online Mendelian Inheritance in Man libraries and was explored using 

Revigo (Supek et al., 2011). 

Zebrafish data acquisition and analysis 

The tert mutant zebrafish line (terthu3430) was obtained from Miguel Godhino Ferreira 

(Henriques et al., 2013). Fish maintenance, RNA isolation, processing, and sequencing were 

conducted as described previously (Aramillo Irizar et al., 2018).  

From n = 5 wildtype (tert+/+), n = 5 heterozygous mutant (tert+/-), and n = 3 

homozygous mutant (tert-/-), expression values were determined from RNA sequencing reads 

using kallisto by aligning to the Danio rerio genome in Ensembl release 96 (Yates et al., 

2020). Expression values were generated for each extracted tissue as well as ‘psuedo–whole 

animal’, containing combined values across all tissues. 

A reference zebrafish GEM was manually curated by modifying the existing 

ZebraGEM2 model and was designated ZebraGEM2.1. 

Differential expression analysis, gene set enrichment analysis, GEM reconstruction, 

FBA, and reporter metabolite analysis were conducted on tert-/- and tert+/- animals against a 
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tert+/+ reference using DESeq2, piano, and RAVEN Toolbox 2.0 with default parameters. 

Reporter metabolite analysis was conducted with ZebraGEM2.1 as the reference GEM. 

FBA was attempted as described for the human GEMs with the exception that the 

following metabolic constraints were excluded: r1391, HMR_0482 (ZebraGEM2.1: G3PDm), 

EX_ile_L[e] (ZebraGEM2.1: EX_ile_e), EX_val_L[e] (ZebraGEM2.1: EX_val_e),  

EX_lys_L[e] (ZebraGEM2.1: EX_lys_e), EX_phe_L[e] (ZebraGEM2.1: EX_phe_e),  

GLCt1r, EX_thr_L[e] (ZebraGEM2.1: EX_thr_e),  EX_met_L[e] (ZebraGEM2.1: 

EX_met__L_e),  EX_arg_L[e] (ZebraGEM2.1: EX_arg_e), EX_his_L[e] (ZebraGEM2.1: 

EX_his__L_e),    EX_leu_L[e] (ZebraGEM2.1: EX_leu_e), and  EX_o2[e] (ZebraGEM2.1: 

EX_o2_e). The objective function was defined as ATP synthesis (ZebraGEM2.1: ATPS4m). 

FBA results for zebrafish are not presented. 

Data and code accessibility 

All original computer code, models, and author-curated data files have been released 

under a Creative Commons Attribution ShareAlike 4.0 International Licence 

(https://creativecommons.org/licenses/by-sa/4.0/) and are freely available for download from 

<https://github.com/SimonLammmm/ad-pd-retinoid>. 

Zebrafish tert mutant sequencing data have been deposited in the NCBI Gene 

Expression Omnibus (GEO) and are accessible through GEO Series accession numbers 

GSE102426, GSE102429, GSE102431, and GSE102434. 
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Figure and table legends 

Figure 1. Overview and exploratory data analysis. A) Workflow for the analysis of human 

AD and PD samples. B) AD and PD samples were clustered into k clusters without 

supervision on the basis of normalised expression counts. Results are shown k = 3 and 1000 

bootstrap replicates. Colour bars indicate cluster identity for each sample. For 2 ≤ k ≤ 7, refer 

to Supplementary figure 1. C) Normalised expression data from AD, PD, and control samples 

were projected onto 2-D space using t-distributed stochastic neighbour embedding (t-SNE). 

Points are coloured according to cluster assignment by unsupervised clustering. For further 

data visualisation, refer to Supplementary figure 2. 

Figure 2. Transcriptomic and functional characterisation of AD and PD subclasses. 

Differentially expressed gene (DEG) analysis and gene set enrichment (GSE) analysis were 

performed for AD and PD and control samples for each disease cluster, using the control 

cluster as reference. A) DEG results. Significant DEGs were determined as those with a 

Benjamini-Hochberg adjusted p-value at or below a cut-off of 1×10-10. Upregulated 

significant DEGs are coloured red. Downregulated significant DEGs are coloured blue. Non-

significant DEGs are coloured grey. B) Selected significantly enriched GO terms by number 

of genes as determined by GSE analysis. Red bars indicate upregulated GO terms. Blue bars 

indicate downregulated GO terms. For full data, refer to Supplementary data 1. 

Figure 3. Metabolic characterisation of AD and PD subclasses. Flux balance analysis 

(FBA) was performed on iADPD1-3 genome-scale metabolic models (GEMs) and flux values 

were compared with those of iADPDControl. Key metabolites and reactions within the 

androgen metabolism pathway are shown and key dysregulations are displayed as coloured 

arrows: red indicates increased flux compared to iADPDControl; blue indicates decreased 

flux compared to iADPDControl. Dysregulations associated to each GEM are shown in 
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coloured boxes. The dashed line indicates multiple reactions are involved. Human Metabolic 

Reactions (HMR) identifiers are shown for androgen metabolism reactions with dysregulated 

fluxes. For full data, refer to Supplementary data 2. 

Figure 4. Network analysis of AD and PD gene co-expression modules. A) Gene co-

expression networks were constructed from transcriptomic data from AD and PD samples. 

Community analysis was used to identify gene modules (Methods). Modules with at least 30 

genes are shown as nodes. Node size indicates number of genes. Nodes are coloured by 

network of origin and numbered in descending order of module size. Shared genes between 

modules are shown as edges. Edge weight indicates number of shared genes. B) Degree 

distribution of AD, PD, and random networks. C) Enrichment analysis was performed on 

gene modules containing at least 30 genes using the KEGG database (Methods). Significantly 

enriched gene modules are shown as coloured, numbered blocks. Colour and number keys are 

as in (A). 

Figure 5. Summary of zebrafish tert mutant analysis. A) Workflow for the analysis of 

zebrafish tert mutants. B) Differentially expressed gene (DEG) (left panels) and gene set 

enrichment (GSE) analysis (right panels) of zebrafish brain samples. DEG and GSE analyses 

were performed on zebrafish tert mutant brain expression data for tert-/- (upper panels) and 

tert+/- (lower panels), using tert+/+ as a reference. Methods and colour keys are as in Figure 2. 

For muscle, liver, skin, and pseudo–whole animal analyses, refer to Supplementary figure 3. 

For full data, refer to Supplementary data 5. C) Reporter metabolite analysis of zebrafish 

samples. DEG data were overlaid on ZebraGEM2.1 to determine reporter metabolites. Shown 

are reporter metabolites with p < 0.1 within the retinoic acid metabolic pathway. Red 

numbers indicate p-values in tert-/- compared to tert+/+. Blue numbers indicate p-values in 

tert+/- compared to tert+/+. Green numbers indicate p-values in tert-/- compared to tert+/-. 

Tissues are indicated with icons. For full data, refer to Supplementary data 6. 
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Table 1. Summary of expression data sources. Expression data from AD and PD samples 

were obtained from the Genotype-Tissue Expression (GTEx) database, Functional 

Annotation of the Mammalian Genome 5 (FANTOM5) database, Human Protein Atlas 

(HPA), Religious Orders Study and Rush Memory Aging Project (ROSMAP), Rajkumar 

dataset, and Zhang/Zheng dataset. 

Table 2. Flux balance analysis of iADPD1, iADPD2, and iADPD3 versus iADPDControl. 

Flux balance analysis was performed for each iADPD-series GEM and the predicted fluxes 

for the three disease cluster GEMs were compared against the predicted fluxes for the control 

cluster GEM. Reactions are grouped by subsystem and flux difference values are expressed 

as mean flux difference between disease clusters and the control cluster across all changed 

reactions within a subsystem. For full results, refer to Supplementary data 2. 

Table 3. Reporter metabolite analysis of AD and PD subclasses. Reporter metabolite 

analysis was performed for each AD/PD subclass by overlaying differential expression 

results onto iBrain2845. Top 10 unique reporter metabolites by p-value for each cluster 

compared to the control cluster are shown. For full results, refer to Supplementary data 3. 

Table 4. AD and PD network properties. Gene co-expression networks were generated for 

AD and PD samples. AD, PD, and random networks are shown. 

Table 5. Reporter metabolite analysis of zebrafish tert mutants. Reporter metabolite 

analysis was performed for the brains of zebrafish tert mutant by overlaying differential 

expression results onto ZebraGEM2.1. Top 20 unique reporter metabolites by p-value for 

each cluster compared to wildtype tert+/+ zebrafish are shown. For full results, refer to 

Supplementary data 6. 
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Supplementary figure legends 

Supplementary figure 1. Unsupervised clustering of AD and PD samples. AD and PD 

samples were clustered into k clusters without supervision on the basis of normalised 

expression counts. Clustering was performed with 2 ≤ k ≤ 20. Consensus matrices for 2 ≤ k ≤ 

7 are shown. Parameters and colour keys are as in Figure 1b. 

Supplementary figure 2. Visualisation of AD and PD samples. Expression data from AD 

and PD and control samples were integrated, normalised, and projected onto 2-D space using 

principal component analysis (PCA), t-distributed stochastic neighbour embedding (t-SNE), 

and uniform manifold approximation and projection (UMAP). Points are coloured according 

to A) organ of sample origin, B) brain subregion of sample origin, C) brain tissue of sample 

origin, D) dataset, E) sex, F) age, or G) cluster assignment by unsupervised clustering. Points 

with no data available are shown in grey. 

Supplementary figure 3. Transcriptomic and functional characterisation of zebrafish 

tert mutants. Differentially expressed gene (DEG) and gene set enrichment (GSE) analyses 

were performed on zebrafish tert mutant expression data for tert-/- and tert+/-, using tert+/+ as a 

reference. Methods and colour keys are as in Figure 2. A) DEG analyses. B) GSE analyses. 

Left panels, tert-/- vs tert+/+. Right panels, tert+/- vs tert+/+. Panels top to bottom: pseudo–

whole animal, liver, muscle, skin. For the brain, refer to Figure 5. For full results, refer to 

Supplementary data 5. 
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Supplementary files and data 

Supplementary file 1. iBrain2845 genome-scale metabolic model. 

Supplementary file 2. iADPD-series context-specific genome-scale metabolic models. 

Supplementary file 3. ZebraGEM2.1 genome-scale metabolic model. 

Supplementary file 4. Zebrafish context-specific genome-scale metabolic models. 

Supplementary data 1. Gene set enrichment analysis results for AD and PD subclasses. 

Supplementary data 2. Flux balance analysis results for iADPD-series genome-scale 

metabolic models. 

Supplementary data 3. Reporter metabolite analysis results for AD and PD subclasses. 

Supplementary data 4. Network analysis results for AD and PD samples. 

Supplementary data 5. Gene set enrichment analysis results for zebrafish tert mutants. 

Supplementary data 6. Reporter metabolite analysis results for zebrafish tert mutants. 
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Table 1. Summary of expression data sources. 
Source AD samples PD samples Control samples 
GTEx/FANTOM5 0 0 67 
HPA 0 0 52 
Rajkumar 0 14 13 
ROSMAP 629 0 704 
Zhang/Zheng 0 40 53 
Total 629 54 889 
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Table 2. Flux balance analysis of iADPD1, iADPD2, and iADPD3 versus iADPDControl. 
Subsystem iADPD1 iADPD2 iADPD3 
Acyl-CoA hydrolysis -0.001 0.001 0.000 
Alanine, aspartate and glutamate metabolism -0.148 0.014 0.000 
Aminoacyl-tRNA biosynthesis 4.698 4.698 0.000 
Androgen metabolism -1.426 -0.399 -0.001 
Arachidonic acid metabolism -0.098 0.010 0.000 
Arginine and proline metabolism -0.182 -0.327 0.000 
Beta oxidation of branched-chain fatty acids (mitochondrial) -0.049 -0.049 -0.049 
Beta oxidation of di-unsaturated fatty acids (n-6) 
(mitochondrial) -0.636 0.002 -0.001 
Beta oxidation of odd-chain fatty acids (mitochondrial) 0.001 -0.002 -0.002 
Beta oxidation of poly-unsaturated fatty acids 
(mitochondrial) 0.709 0.024 0.000 
Beta oxidation of unsaturated fatty acids (n-7) 
(mitochondrial) -0.016 0.001 -0.003 
Beta oxidation of unsaturated fatty acids (n-9) 
(mitochondrial) 0.011 0.000 0.007 
Carnitine shuttle (cytosolic) 0.012 0.000 -0.001 
Carnitine shuttle (mitochondrial) 0.003 0.000 0.002 
Cholesterol biosynthesis 1 (Bloch pathway)  0.076 -0.983 0.001 
Cholesterol biosynthesis 2 2.501 4.472 0.000 
Cholesterol biosynthesis 3 (Kandustch-Russell pathway) 1.699 0.000 0.000 
Cholesterol metabolism 0.067 4.482 0.000 
Estrogen metabolism 2.085 0.000 0.000 
Fatty acid activation (endoplasmic reticular) 0.000 0.000 0.000 
Fatty acid biosynthesis (even-chain) 0.000 0.000 0.000 
Fatty acid desaturation (even-chain) 0.785 0.000 0.000 
Fatty acid elongation (odd-chain) -0.042 -0.024 0.000 
Formation and hydrolysis of cholesterol esters -0.382 0.004 0.000 
Fructose and mannose metabolism -0.211 -0.007 0.000 
Galactose metabolism -0.008 0.035 0.000 
Glycine, serine and threonine metabolism 0.276 0.557 0.000 
Glycolysis / Gluconeogenesis -0.213 0.022 0.033 
Histidine metabolism 0.000 0.000 0.000 
Leukotriene metabolism -0.032 0.000 0.000 
Lysine metabolism 0.000 0.000 0.000 
N-glycan metabolism -0.784 0.016 0.000 
Nitrogen metabolism 0.000 0.000 0.000 
Nucleotide metabolism 0.027 -0.028 0.000 
O-glycan metabolism -2.346 -4.738 0.000 
Pentose phosphate pathway 0.127 0.000 0.000 
Propanoate metabolism -0.116 0.020 0.091 
Protein degradation 0.000 0.000 0.000 
Purine metabolism 0.112 -0.013 0.000 
Pyrimidine metabolism -0.071 -0.010 -0.001 
Pyruvate metabolism -0.183 -0.004 -0.077 
Starch and sucrose metabolism 0.000 0.000 0.000 
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Steroid metabolism -0.097 -0.295 0.003 
Terpenoid backbone biosynthesis 0.398 0.187 0.020 
Valine, leucine and isoleucine degradation 0.127 0.000 0.000 
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Table 3. Reporter metabolite analysis of AD and PD subclasses. 
Reporter metabolite Z-score p-value 

Cluster 1 
O2 6.111 4.95E-10 
estrone 5.4557 2.44E-08 
retinoate 5.3943 3.44E-08 
NADP+ 5.3667 4.01E-08 
arachidonate 5.2822 6.38E-08 
2-hydroxyestradiol-17beta 5.0999 1.70E-07 
linoleate 5.0622 2.07E-07 
10-HETE 5.0454 2.26E-07 
11,12,15-THETA 5.0454 2.26E-07 
11,14,15-theta 5.0454 2.26E-07 

Cluster 2 
1-acylglycerol-3P-LD-PC pool 4.3322 7.38E-06 
acyl-CoA-LD-PI pool 4.143 1.71E-05 
phosphatidate-CL pool 4.0973 2.09E-05 
thymidine 3.5852 0.00016843 
uridine 3.5852 0.00016843 
prostaglandin D2 3.2144 0.00065348 
G10596 3.1354 0.0008581 
G10597 3.1354 0.0008581 
D-myo-inositol-1,4,5-trisphosphate 2.9988 0.0013552 
dolichyl-phosphate 2.9655 0.001511 

Cluster 3 
D-myo-inositol-1,4,5-trisphosphate 2.6543 0.0039734 
13-cis-retinal 2.6537 0.0039806 
heparan sulfate, precursor 9 2.5915 0.0047772 
sn-glycerol-3-phosphate 2.578 0.0049682 
DHAP 2.5353 0.0056173 
porphobilinogen 2.4987 0.0062333 
ATP 2.4838 0.0064998 
L-glutamate 5-semialdehyde 2.4576 0.006994 
prostaglandin D2 2.451 0.0071221 
ribose 2.4133 0.0079045 
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Table 4. AD and PD network properties. Gene co-expression networks were generated for 
AD and PD samples. AD, PD, and random networks are shown. 
 
 

Nodes Edges Diameter 
Average 
path 
length 

Density Clustering 
coefficient 

Connected 
network? 

Minimum 
cut 

AD 4861 396985 11 3.004 0.034 0.443 No - 
PD 5857 394405 18 3.598 0.023 0.397 No - 
Random 
AD 

4861 396985 3 1.970 0.034 0.034 Yes 114 

Random 
PD 

5857 394405 3 2.021 0.023 0.023 Yes 89 
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Table 5. Reporter metabolite analysis of zebrafish tert mutants. 
Reporter metabolite Z-score p-value 

tert-/- 
H+ 3.911 4.60E-05 
H2O 3.0672 0.0010804 
L-Lysine 2.8564 0.0021424 
Biocyt c 2.8564 0.0021424 
Ubiquinone 2.5742 0.0050241 
Nicotinamide adenine dinucleotide - reduced 2.3946 0.0083183 
Phosphate 2.0562 0.019883 
Superoxide anion 2.0365 0.020851 
Sodium 1.9228 0.027254 
TRNA (Glu) 1.8752 0.030381 
Thiosulfate 1.7684 0.038493 
Selenate 1.7684 0.038493 
Reduced glutathione 1.7184 0.042862 
ADP 1.6716 0.047305 
L-Lysine 1.6625 0.04821 
Benzo[a]pyrene-4,5-oxide 1.6042 0.054333 
Formaldehyde 1.5955 0.055302 
L-Glutamate 1.4622 0.071837 
(1R,2S)-Naphthalene epoxide 1.4518 0.073276 
Aflatoxin B1 exo-8,9-epozide 1.4518 0.073276 

tert+/- 
H+ 4.9585 3.55E-07 
Ubiquinol 3.9938 3.25E-05 
H2O 3.2078 0.00066883 
Nicotinamide adenine dinucleotide - reduced 3.029 0.0012268 
Superoxide anion 2.0908 0.018274 
L-Lactate 2.0752 0.018983 
O2 1.9958 0.022976 
Lnlncgcoa c 1.9628 0.024834 
Succinate 1.9449 0.025895 
Ferricytochrome c 1.8352 0.033237 

Phosphatidylinositol-3,4,5-trisphosphate 1.7494 0.040109 
9-cis-Retinoic acid 1.7 0.044567 
[(Gal)2 (GlcNAc)4 (LFuc)1 (Man)3 (Asn)1'] 1.6672 0.047739 
O-Phospho-L-serine 1.6601 0.048451 
[(Glc)3 (GlcNAc)2 (Man)9 (Asn)1'] 1.6276 0.051802 
Protein serine 1.6078 0.053937 
[(GlcNAc)1 (Ser/Thr)1'] 1.6078 0.053937 
Geranyl diphosphate 1.5912 0.055785 
CTP 1.5625 0.059088 
[(Gal)2 (GlcNAc)4 (LFuc)1 (Man)3 (Neu5Ac)2 (Asn)1'] 1.5367 0.062179 
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