

1 Deep-rooted plant species recruit distinct bacterial communities
2 in 3 m deep subsoil

3

4 Frederik Bak¹, Annemette Lyhne-Kjærbye¹, Stacie Tardif¹, Dorte Bodin Dresbøll² and Mette
5 H. Nicolaisen^{1, #}

6 1: Department of Plant and Environmental Sciences, University of Copenhagen, Denmark

7 2: Department of Crop Sciences, University of Copenhagen, Denmark

8

9 # Address correspondence to Mette H. Nicolaisen: meni@plen.ku.dk

10 Abstract

11 Deep-rooted plants can obtain water and nutrients from the subsurface, making them more
12 resilient to climatic changes such as drought. In addition, the deeper root network also allow
13 the plants to recruit bacteria from a larger reservoir in the soil. These bacteria might
14 contribute to nutrient acquisition and provide other plant beneficial traits to the plant.
15 However, the deep rhizosphere communities' compositions and their assembly dynamics are
16 unknown. Here, we show, using three perennial crops, Kernza, lucerne and rosinweed, grown
17 in 4 m RootTowers, that deep rhizosphere bacterial communities are plant specific, but
18 clearly distinct from the shallow communities. We found that the diversity decreased with
19 depth in the rhizosphere, whereas abundance of 16S rRNA gene copies did not change with
20 depth in lucerne and rosinweed. Furthermore, we identified a subgroup (4-8%) of ASVs in
21 the rhizosphere communities that could not be retrieved in the corresponding bulk soil
22 communities. The abundances of genes determined by qPCR involved in N-cycling: *amoA*,
23 *nifH*, *nirK*, *nirS* and *nosZ* differed significantly between plant species, suggesting differences
24 in N content in the root exudates of the plant species. Our results suggest that colonization of
25 the rhizosphere by bulk soil bacteria is not limited by carbon supply, but rather by dispersal.
26 Furthermore, the abundance of N cycling genes indicate that deep rhizosphere bacteria have
27 the potential to provide N through nitrogen fixation.

28

29 **Keywords:** Root microbiome, phytobiome, nitrogen cycling, bacterial abundance, fungal
30 abundance, bacterial community, plant-microbe interaction, *Medicago sativa*, *Thinopyrum*
31 *intermedium* and *Silphium integrifolium*

32 Introduction

33 Due to the changing climate, drought spells are expected to increase in length and frequency,
34 thereby threatening agriculture by reducing crop yield (Spinoni, Naumann and Vogt 2017).

35 Furthermore, current agricultural practices have reduced the quality of top soils leading to
36 lower nutrient availability and decreased microbial diversity in many areas (Lupwayi, Rice
37 and Clayton 1998). To reduce dependence on the top soil for nutrient and water supply, deep-
38 rooted cropping systems have been suggested towards a sustainable intensification of crop
39 production (Thorup-Kristensen *et al.* 2020). These systems are expected to show higher
40 resilience towards perturbations in climatic conditions as they can obtain water and nutrients,
41 as well as recruit microorganisms, from the subsurface (Maeght, Rewald and Pierret 2013).

42 Microorganisms inhabit all parts of the plants and develop complex and dynamic interactions
43 with their host. In the rhizosphere, microorganisms play important roles and have the
44 potential to influence plant health, development and productivity through direct and indirect
45 mechanisms (Berendsen, Pieterse and Bakker 2012). The most abundant microorganisms in
46 the rhizosphere are the bacteria, which are involved in plant beneficial functions such as
47 nutrient acquisition, antagonism against pest and pathogens, as well as activation of plant
48 host defenses against plant stress (Lugtenberg and Kamilova 2009).

49 In plants with shallow roots, the rhizosphere communities are specific to individual species or
50 even cultivars (Berendsen, Pieterse and Bakker 2012; Bulgarelli *et al.* 2013). This specificity
51 might depend on differences in exudate compositions (Sasse, Martinoia and Northen 2018),
52 although this has been argued to be too simple (Middleton *et al.* 2021). Furthermore, vertical
53 transmission from the seeds have been suggested to be involved in shaping the microbiome of
54 seedlings, even though the main effect is expected at the phyllosphere (Shade, Jacques and
55 Barret 2017). In any case, the current knowledge on rhizosphere bacterial communities of
56 crops are limited to the top soil, with a few studies focusing on the bacterial communities
57 developing in the rhizosphere down to 0.75 m below ground surface (bgs) (Uksa *et al.* 2014).
58 This knowledge gap can partly be explained by the difficulties in accessing the deep roots for
59 sampling (Maeght, Rewald and Pierret 2013).

60 In the bulk soil, it has been repeatedly shown that bacterial abundance and diversity decrease
61 with depth (Fierer, Schimel and Holden 2003; Eilers *et al.* 2012; Bak *et al.* 2019), coinciding
62 with a decrease in organic carbon and nutrients. Not surprisingly, this leads to an increase in
63 the relative abundances of autotrophic and lithotrophic bacteria concurrent with a decline in

64 taxa able to degrade plant polymers (Bak *et al.* 2019). It remains unclear, whether this change
65 in the bulk soil communities with depth will similarly affect the composition of the bacterial
66 communities in the deep rhizosphere. Possibly, the deep bulk soil communities represent a
67 reservoir for recruitment of bacterial rhizosphere communities, and their lower abundance
68 and diversity could lead to reduced diversity of the deep rhizosphere communities. Despite
69 this, the deep rhizosphere communities might depend heavily on root exudates for nutrition.
70 Consequently, bacterial communities of the deep soil rhizosphere communities might be less
71 similar between different plant species due to differences in exudate composition. Hence,
72 more knowledge on the bacterial communities in the deep rhizosphere, and where the
73 communities are recruited from, will be important for developing cropping systems for deep-
74 rooted crops. Additionally, these communities might affect ecosystem processes such as
75 long-term carbon sequestration (Rumpel and Kögel-Knabner 2011) and soil formation.

76

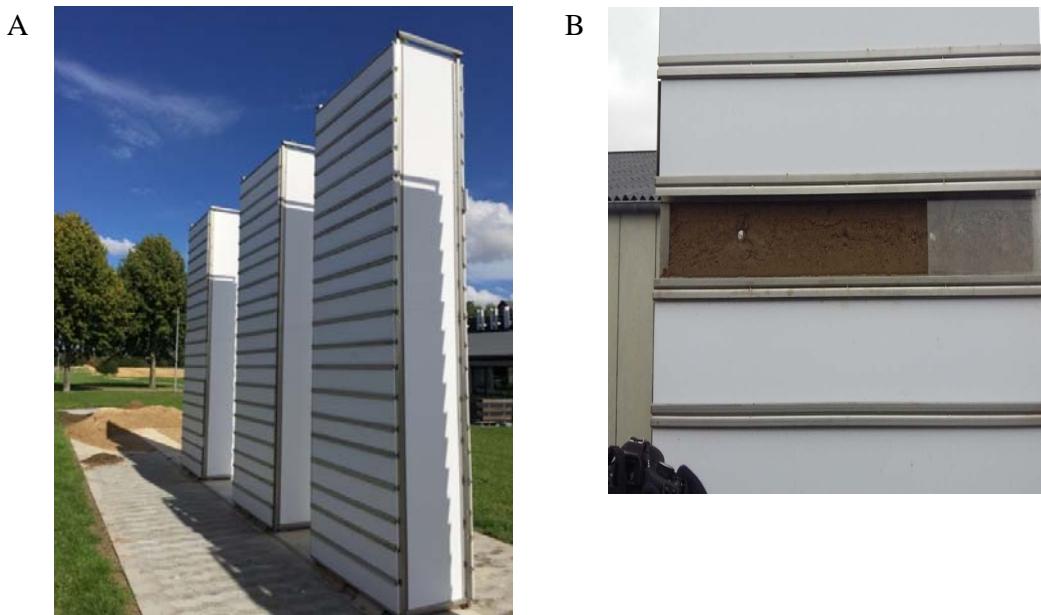
77 In the bulk soil, nitrogen content declines down through the soil profile (Hirsh and Weil
78 2019). For non-legume crops, this would lead to an expected increase in the C:N ratio in the
79 rhizosphere with depth. Furthermore, the need for N in the deep soil layer would be expected
80 to change the drivers for establishment of communities with different functional potential for
81 nitrogen fixation and turn-over in deep rhizosphere communities compared to shallow
82 rhizosphere communities. In a recent study by Piexoto *et al.* (2020), it was shown that despite
83 a lower rhizodisposition in the lower soil layers, a higher N input into the soil in the deep
84 lucerne rhizosphere resulted in higher C partitioning into the microbial biomass production,
85 and contributed this finding to the N-fixing ability of the root-nodules. Hence, the microbial
86 N-cycle in deep soil layers may impact the C-processes in these soil layers.

87

88 The overall aim of this study was to characterize the bacterial communities in the rhizosphere
89 of three perennial crops, lucerne (*Medicago sativa* L. cv. Creno), Kernza (*Thinopyrum*
90 *intermedium*), and rosinweed (*Silphium integrifolium*), down to 3 m bgs, by asking: 1) do
91 plants recruit rhizosphere communities from the deep bulk soil layers?; 2) are the deep
92 rhizosphere communities more similar than the shallow rhizosphere communities across
93 different plant species?; 3) do the functional potential in N cycling change with depth, and is
94 there an impact of plant species on this potential?

95 To address these research questions, we grew the crops in the unique RootTower facility,
96 recently developed at University of Copenhagen (Thorup-Kristensen *et al.* 2020). These
97 towers are an important innovation that enable sampling and further studies of deep-rooted
98 cropping systems and the plant-microbe interactions taking place down to 4 m bgs. All three
99 crops develop deep root systems. Kernza has a fibrous root, while rosinweed and the legume
100 lucerne develop taproot systems. We sampled the rhizosphere and the corresponding bulk soil
101 from three depths before and after two years of plant growth. We estimated the bacterial and
102 fungal abundances, as well as bacterial genes involved in N cycling by qPCR and
103 characterized the bacterial communities by 16S rRNA gene amplicon sequencing.

104


105 Materials and Methods

106 Experimental setup

107 The experiments were conducted at the RootTower facility at University of Copenhagen in 4-
108 m deep RootTowers ($4 \times 1.2 \times 0.6$ m) (Fig. 1), with each tower divided in two chambers ($4 \times$
109 1.2×0.3) (Peixoto *et al.* 2020; Thorup-Kristensen *et al.* 2020). The towers were filled in May
110 2016 with three layers of field soil, Topsoil (0-25 cm), and two subsoils; Upper Subsoil (25-
111 200 cm) and Lower Subsoil (200-400 cm). The topsoil was a 50:50 mixture of clayey loam
112 and sandy loam topsoil both from the University of Copenhagen's experimental farm in
113 Taastrup, Denmark ($55^{\circ}40' 08.5''$ N, $12^{\circ}18' 19.4''$ E) (Rasmussen, Thorup-Kristensen and
114 Dresbøll 2020). The clayey loam subsoils were collected from just below the plough layer at
115 an arable field at Store Havelse, Denmark ($55^{\circ}89' 83.9''$ N, $12^{\circ}06' 52.8''$ E). All soils were
116 classified as Luvisols according to the World Reference Base for Soil Resources (IUSS
117 Working Group WRB 2015). A soil bulk density of 1.6 g m^{-3} was obtained in the towers,
118 corresponding to bulk density at field conditions (Thorup-Kristensen *et al.* 2020). Soil
119 characteristics are shown in Table 1.

120

121 The perennial species, lucerne (*Medicago sativa* L. cv. Creno), Kernza (*Thinopyrum*
122 *intermedium*) and rosinweed (*Silphium integrifolium*) were used for the experiments. Three-
123 months-old Kernza plants and one-year-old lucerne plants from the field, as well as two-
124 months-old rosinweed plants grown in pots with field soil in the greenhouse, were
125 transplanted into individual chambers on 5 July 2016. Plants were selected to have similar
126 root length when transplanted. Each plant was grown in monoculture in three randomized
127 replicates, resulting in nine chambers in total. To mimic the normal plant density in the field,
128 chambers with Kernza and lucerne each contained 5 plants per chamber, all planted with 19
129 cm equal distance between, while rosinweed contained 3 plants per root chamber, with 28.5
130 cm between the plants.

131 **Figure 1.** A. Root Towers. B. Access to deep soil layers in the Root Towers.

132

133 **Sampling**

134 The original bulk soil was sampled from the Root Towers before any plants were planted in
135 the summer 2016, and used as reference soil (n = 4 for each depth). Bulk soil and root-
136 associated samples (i.e. roots with attached rhizosphere soil) were collected from the
137 RootTowers during the summer in 2018. Sampling was done for three depths (n = 3): 0-20
138 cm bgs (topsoil), 160 - 180 cm bgs (upper subsoil), and 280-300 cm bgs (lower subsoil) for
139 each of the nine RootTowers. Hereafter, we refer to the depths as 10 cm bgs (0-20 cm), 170
140 cm bgs (160-180 cm) and 290 cm bgs (280 – 300 cm). Samples were taken with a sterile soil
141 sampling tube (15 cm long, 1.5 cm in diameter), transferred to sterile Petri dishes, and kept at
142 4°C until further processing in the lab (done within nine days). Using sterilized tweezers,
143 roots were recovered, shaken to remove excess soil and subsequently transferred into sterile
144 Eppendorf tubes. Hence the original samples were divided into bulk soil and rhizosphere.

145

146 **Table 1.** Texture of the soil in the RootTowers.

Depth (cm bgs)	Clay (%) <0.002 mm	Silt (%) 0.002-0.02 mm	Fine Sand (%) 0.02-0.2 mm	Coarse Sand (%) 0.2 -2.0 mm	pH (CaCl ₂)	Organic matter (%)
0-25	8.7	8.6	46	35	6.8	2.0
25-200	18	4.2	51	27	7.4	0.3
200-400	16	8.7	54	21	7.5	<0.1

147

148

149 **DNA extraction, library preparation and sequencing**

150 All samples were freeze-dried overnight and homogenized by grinding. DNA from approx.
151 0.25 g of freeze-dried and homogenized sample was extracted using DNeasy Powersoil Kit
152 (Qiagen) following the manufacturer's protocol. For some of the deep root samples, less
153 material was obtained for extraction. This was accounted for by normalizing to sample mass
154 in the qPCR assay. The DNA concentration and purity were determined using a NanoDrop
155 ND-1000 spectrophotometer (Thermo Fisher Scientific, Carlsbad, Ca, USA) and a Qubit 2.0
156 fluorometer (Thermo Fisher Scientific, Carlsbad, Ca, USA). Amplicon libraries were
157 prepared by Macrogen Inc. (Seoul, Rep. of Korea) using the primer pair 341F (5'-
158 CCTAYGGGRBGCASCAG-3') and 805R (5'-GACTACNNGGTATCTAAT-3') (found
159 in Supplementary Table S1) targeting the variable regions V3-V4 of the 16S rRNA gene.
160 Resulting libraries were sequenced on an Illumina MiSeq platform (2 x 300 bp) by Macrogen
161 Inc. (Seoul, Rep. of Korea). Raw sequences will be deposited in the NCBI Sequence Read
162 Archive and are available from the authors upon request.

163

164 **Sequence processing**

165 Raw reads were treated using DADA2 version 1.14.1. The protocol for DADA2 was
166 followed using default parameters, with a few modifications. In brief, reads were quality
167 checked and primers were removed using trimLeft in the filterAndTrim() function. The
168 forward and reverse reads were trimmed to 280 and 210 bp, respectively, while the maxEE
169 was set to 3 and 6 for forward and reverse reads, respectively. Detection of amplicon
170 sequence variants (ASVs) were done using the pseudo-pool option. Merged reads in the range
171 of 395 to 439 bp were kept, as reads outside this range are considered too long or too short
172 for the sequenced region. Taxonomy was assigned using the Ribosomal Database Project
173 (RDP) classifier (Wang *et al.* 2007) with the Silva database v.138 (Quast *et al.* 2013). ASVs
174 assigned to Mitochondria or Chloroplast, and ASVs that were not classified at the Phylum
175 level, were removed.

176

177 **Diversity estimation and statistical analysis**

178 The 16S rRNA data set was analyzed in R version 4.0.2 (R Core Team 2020) using
179 Phyloseq v. 1.34.0 (McMurdie and Holmes 2013), ampvis2 v. 2.6.6 (Andersen *et al.* 2018)
180 and ggVennDiagram v. 0.5.0 (Gao 2021). The α diversity was estimated using Shannon
181 diversity at the genus level in Divnet v. 0.3.7 (Willis and Martin 2020) with default

182 parameters. To determine whether plant and depth had an effect on the bacterial
183 communities, PERMANOVA using the adonis() function in vegan v. 2.5.7 (Oksanen *et al.*
184 2020) on a Bray-Curtis dissimilarity matrix made on the ASV table. For visualization
185 nonmetric multidimensional scaling (NMDS) plot were constructed based on the Bray-Curtis
186 dissimilarity matrix. Venn diagrams were made based on all ASVs from all samples
187 belonging to a specific treatment. Testing for differences in bacterial and fungal gene
188 abundances was performed using linear and linear mixed-effect models in the basic and nlme
189 package (Pinheiro *et al.* 2012). Model assumptions were verified, and visual inspection of
190 residual plots did not reveal any obvious deviations from homoscedasticity or normality.

191

192 Quantitative PCR of 16S rRNA gene and ITS

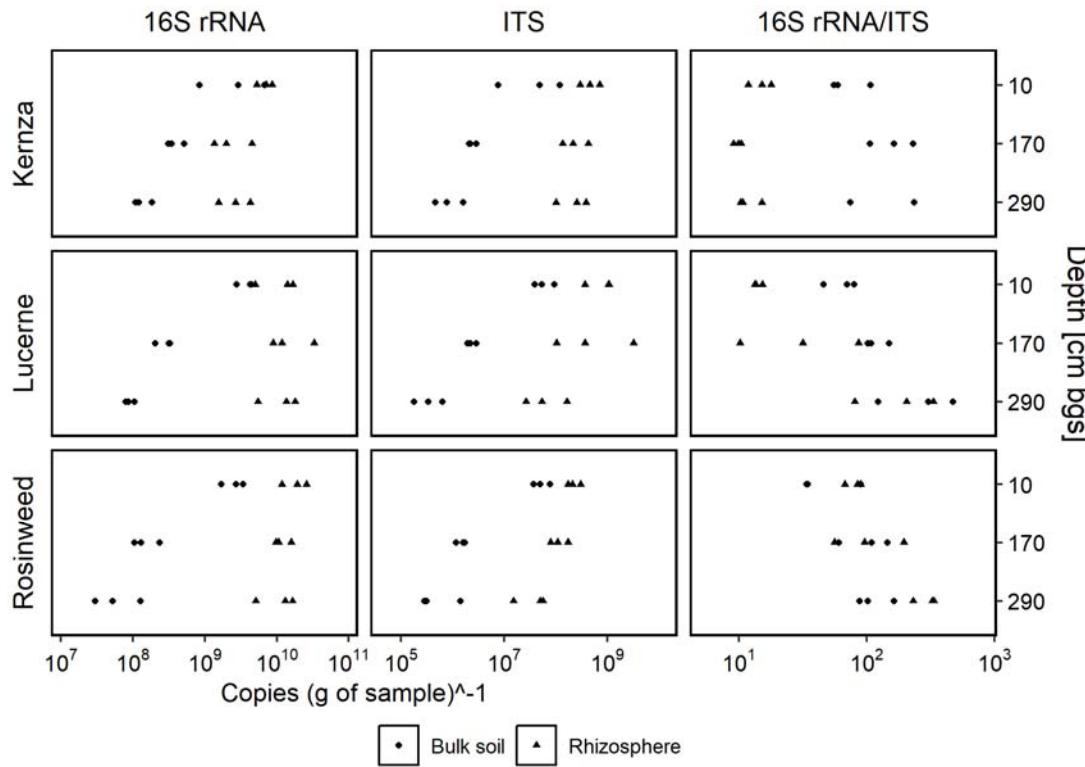
193 The copy numbers of the 16S rRNA gene, functional genes involved in N-cycling (*nifH*, *nirS*,
194 *nirK*, *nosZ* and bacterial *amoA*) and the Internal Transcribed Spacer 1 (ITS1) region were
195 quantified using quantitative PCR as in Garcia-Lemos *et al.* (2020). Primer sequences and
196 corresponding annealing temperatures can be found in Supplementary table 1. In brief, PCR
197 reactions were performed in 20 µl reaction mixtures containing: 2 µL of template DNA, 1 µl
198 BSA (20 mg/ml) (New England Biolabs Inc., Ipswich, MA, USA), 10 µl Brilliant III Ultra-
199 Fast SYBR® Green Low ROX qPCR Master Mix (Agilent Technologies, Santa Clara, CA,
200 USA) and 0.8 µl of each primer (10 µM). The qPCR was performed using an AriaMX Real-
201 Time PCR System (Agilent Technologies, Santa Clara, CA, USA). The thermal cycling
202 conditions were 3 min at 95°C followed by 40 cycles of 20 s at 95°C and 30 s at 55-63°C
203 (Supplementary table 1). A final melting curve was included according to the default settings
204 of the AriaMx qPCR software (Agilent Technologies, Santa Clara, CA, USA).

205

206 Standard curves for the 16S rRNA gene and the genes involved in N cycling were prepared as
207 in (Garcia-Lemos *et al.* 2020). For ITS1, the standard curve was constructed based on
208 fragments amplified from *Penicillium aculeatum* using the primer pair ITS1F and ITS2
209 (Supplementary Table 1). Tenfold dilution series were performed for each standard curve.
210 Standard curves spanned a dynamic range from 10² to 10⁸ copies/µL. The reaction
211 efficiencies were between 80 and 106% (see Supplementary Table 1).

212

213 Results


214 Bacterial and fungal abundance

215 To investigate the effects of depth and plant species on the rhizosphere microbial
216 communities of the three deep-rooted plant species, Kernza, lucerne and rosinweed, bulk soil
217 and rhizosphere samples were taken at three depths (10, 170 and 290 cm bgs) from the
218 RootTowers after two years of plant growth. The organic matter decreased in the RootTowers
219 with depth, coinciding with an increase in pH.

220 The bacterial and fungal abundances were significantly higher in the rhizosphere of the three
221 plant species at all depths compared to the bulk soil (Fig. 2) ($p < 0.01$). In the rhizosphere, the
222 bacterial abundance changed significantly with depth in Kernza ($p = 0.02$), while there was no
223 significant change in bacterial abundance with depth for lucerne or rosinweed. The fungal
224 abundance decreased significantly with depth for lucerne ($p = 0.05$) and rosinweed ($p <$
225 0.001), whereas no decrease in fungal abundance was observed for Kernza ($p = 0.1$). Except
226 for the bacterial abundance in the bulk soil where Kernza had been grown, a significant
227 decrease with depth in the bacterial and fungal abundances was observed (Fig. 2).

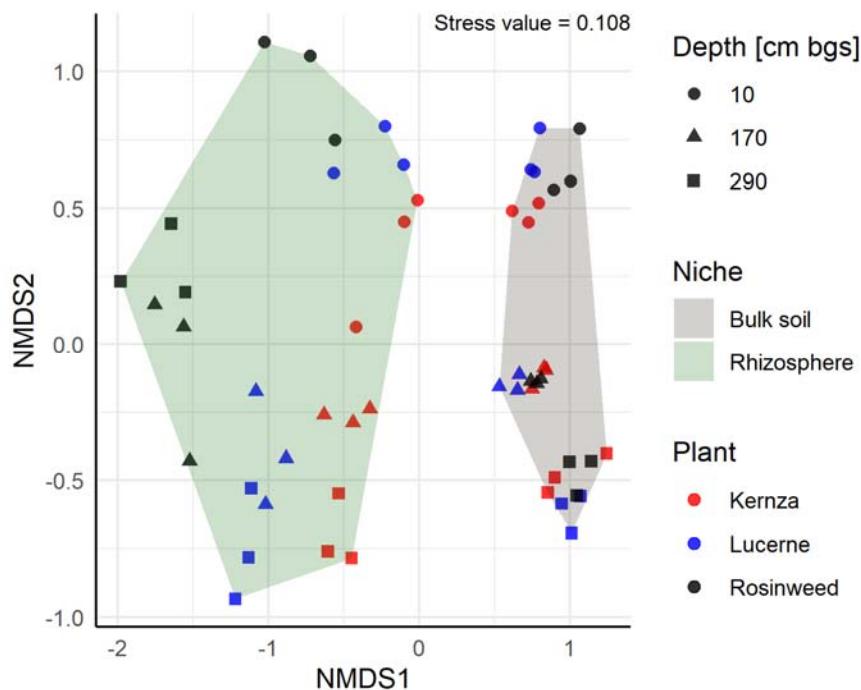
228 To evaluate the temporal dynamics of the microbial community in the root towers, bulk soil
229 samples taken after two years of plant growth were compared to samples collected before
230 planting. Over the two-year period, there was no change in microbial abundances verifying
231 that the RootTowers did not have an effect on microbial abundance (Supplementary Fig. S1).
232 In addition, plant species did not have any impact on the abundances of 16S rRNA gene or
233 ITS copies in the bulk soil.

234 In the bulk soil, there was a slight, but significant increase in bacterial:fungal ratio down
235 through the profile, regardless of the plant species that were planted in the tower (Fig. 2). In
236 contrast, significant differences in bacterial:fungal ratios in the rhizosphere were observed
237 between the plant species. In Kernza, the bacterial:fungal ratio did not change with depth in
238 the rhizosphere and was lower than in the bulk soil. In the lucerne rhizosphere, the
239 bacterial:fungal ratio increased with depth ($p = 0.03$). At 10 cm bgs, the bacterial:fungal ratio
240 was lower in rhizosphere than bulk soil, but there was no difference at 290 cm bgs. For
241 rosinweed, the bacterial:fungal ratio increased with depth ($p < 0.001$), but was not
242 significantly different from the ratio in the bulk soil at any depth.

243

244 **Figure 2.** Bacterial and fungal abundances (copies (g of sample)⁻¹) based on qPCR of 16S rRNA and
245 ITS region 1, respectively associated with the rhizosphere and bulk soil across three plant species. The
246 ratio between 16S rRNA genes and ITS copy numbers were determined for each sample.

247


248 Diversity and Community structure

249 To obtain more information on the bacterial communities that colonize the deep roots, we
250 performed 16S rRNA gene sequencing of the bacterial community DNA. The total dataset
251 consisted of 66 samples with 4,001,795 reads. The samples contained between 10,281 and
252 136,479 reads, with a median of 53,480 reads. The dataset comprised 58,720 ASVs. There
253 were no archaeal ASVs in the dataset. The rarefaction curves show that the samples had been
254 sequenced at sufficient depth to capture the richness in the environments, except for the
255 rhizosphere communities in Rosinweed, where a plateau was not reached (Supplementary
256 Fig. S2).

257 The Shannon diversity of the rhizosphere bacterial communities decreased with depth, with
258 the largest decrease observed for lucerne and rosinweed (Supplementary Fig. S3). Despite
259 this clear trend, significant differences were only observed between the 10 and 290 cm bgs.
260 The Shannon diversity of the bacterial community in the bulk soil was similar at 10 and 170
261 cm bgs, whereas a significantly lower diversity was observed at 290 cm bgs independent of

262 plant species. At 170 and 290 cm bgs, the Shannon diversity was lower for the rhizosphere
263 compared to the bulk soil for both lucerne and rosinweed, but not Kernza.
264 NMDS ordination plots based on Bray Curtis dissimilarity showed that the community
265 compositions in the rhizosphere of the three plants were different from those in the bulk soil
266 (Fig 3). In the rhizosphere, we observed a significant effect of depth (PERMANOVA, $p <$
267 0.001) and plant species ($p < 0.001$) (Supplementary Table S2). The interaction between
268 plant and depth was also significant ($p < 0.001$), indicating a different impact of the plant on
269 the community dependent on the sampling depth. The subsoil rhizosphere communities
270 clustered separately from the top soil communities for all plant species. Additionally, the plot
271 indicated more distinct plant specific communities at 170 and 290 cm bgs compared to 10 cm
272 bgs (Supplementary Table S3). However, the dissimilarity between rhizosphere bacterial
273 communities with-in plant species also increased with depth for the three plant species. A
274 clear separation of the rosinweed rhizosphere community from the rhizosphere communities
275 for Kernza and lucerne was observed.

276

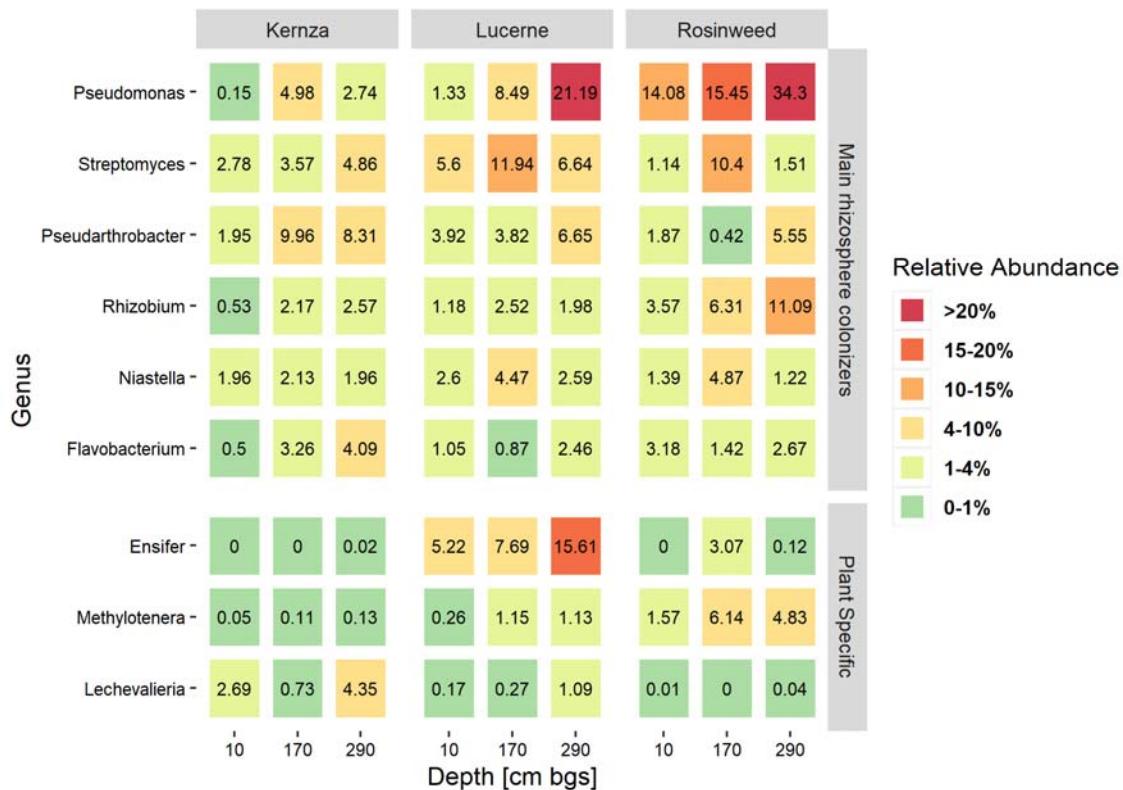
277

278 **Figure 3.** NMDS ordinations of rhizosphere communities and bulk soil communities based on
279 Bray-Curtis dissimilarities.

280

281 There were no significant differences in the community compositions between the bulk soil
282 samples coming from the same depth across the three plant species, indicating high
283 reproducibility across towers, and the sampling of true bulk soil in each of the towers (Fig. 3
284 and Table S2). A change in community structure of the bulk communities was observed
285 between the start and the end of the experiment (Supplementary Fig. S4).

286 We speculated that the bacterial communities in the deep rhizosphere microbiomes would
287 share more ASVs than the communities in the upper rhizosphere. This is because of the low
288 bacterial diversity in deep bulk soil layers. In contrast to this assumption, the proportion of
289 ASVs shared between plants at different depths, decreased with depth from 19.8% at 10 cm
290 bgs to 12.9% at 290 cm bgs (Supplementary Fig. S5). Furthermore, the proportion of ASVs
291 shared by two plants also decreased with depth.


292

293 Community composition

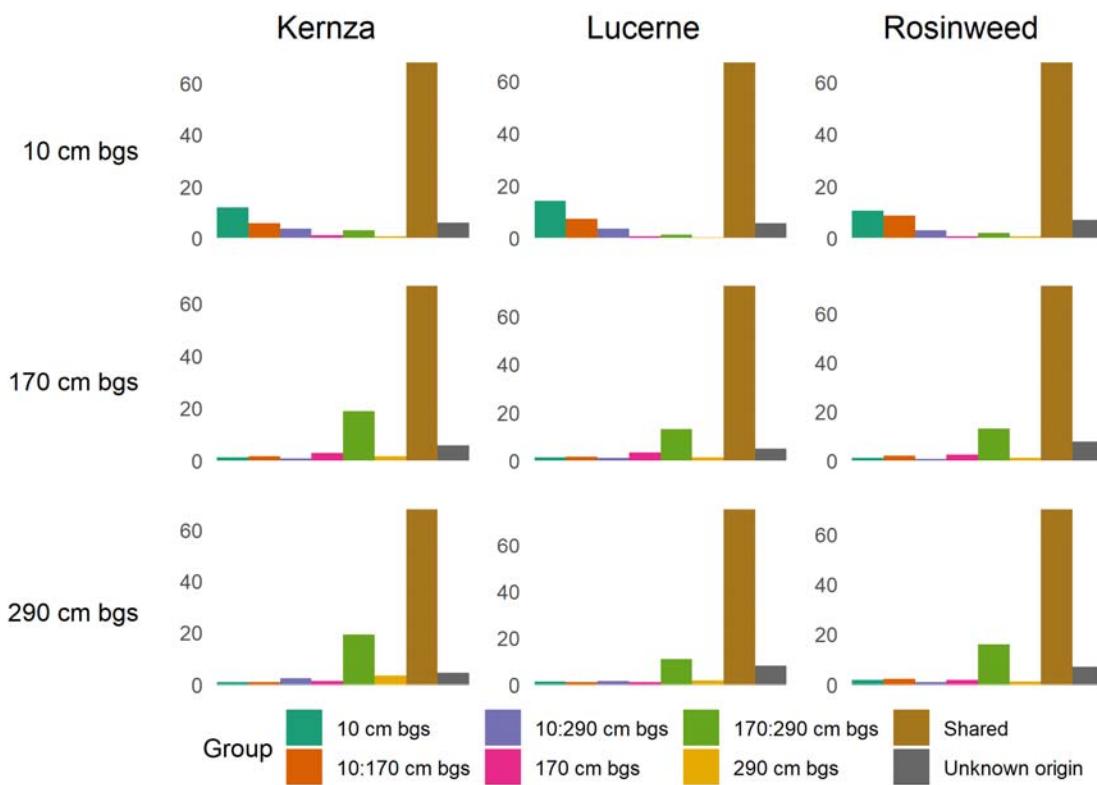
294 The rhizosphere communities of all plant species were dominated by genera from four
295 classes, namely Gammaproteobacteria, Alphaproteobacteria, Bacteroidia and Actinobacteria
296 (Supplementary Fig. S6). While bulk soil communities also comprised genera from these four
297 phyla, the diversity was higher and genera belonging to the classes Thermoleophilia,
298 Verrucomicrobiae, Blastocatellia, Bacilli and Acidimicrobia were also among the 15 most
299 abundant genera (Supplmentary Fig. S6D). Interestingly, six bacterial genera (*Pseudomonas*,
300 *Rhizobium*, *Streptomyces*, *Pseudarthrobacter*, *Niastella* and *Flavobacterium*) accounted for
301 more than 2% of the community in each plant species in at least one depth, suggesting that
302 these genera may be main rhizosphere colonizers (Fig. 4). Generally, these genera increased
303 in relative abundance with depth. The relative abundance of *Pseudomonas* increased with
304 depth for all plant species. However, whereas it constituted above 20% of the communities in
305 rosinweed and lucerne at 290 cm bgs, it constituted less than 5% of the Kernza rhizosphere
306 community. In addition to *Pseudomonas*, the genera *Rhizobium*, *Ensifer* and
307 *Pseudarthrobacter* were major constituents of the microbial communities of rosinweed,
308 lucerne and Kernza, respectively (Fig. 4). All these presented genera increased in relative
309 abundance in the deeper rhizosphere.

310 Some genera were primarily associated with specific plant genera and found at relative high
311 proportions, but in low abundance in the other plant species (Fig. 4). Deeper roots of

312 rosinweed were colonized by *Methylotenera*, *Ensifer* heavily colonized lucerne roots at all
313 depths, and *Lechevalieria* had a specific association with Kernza.

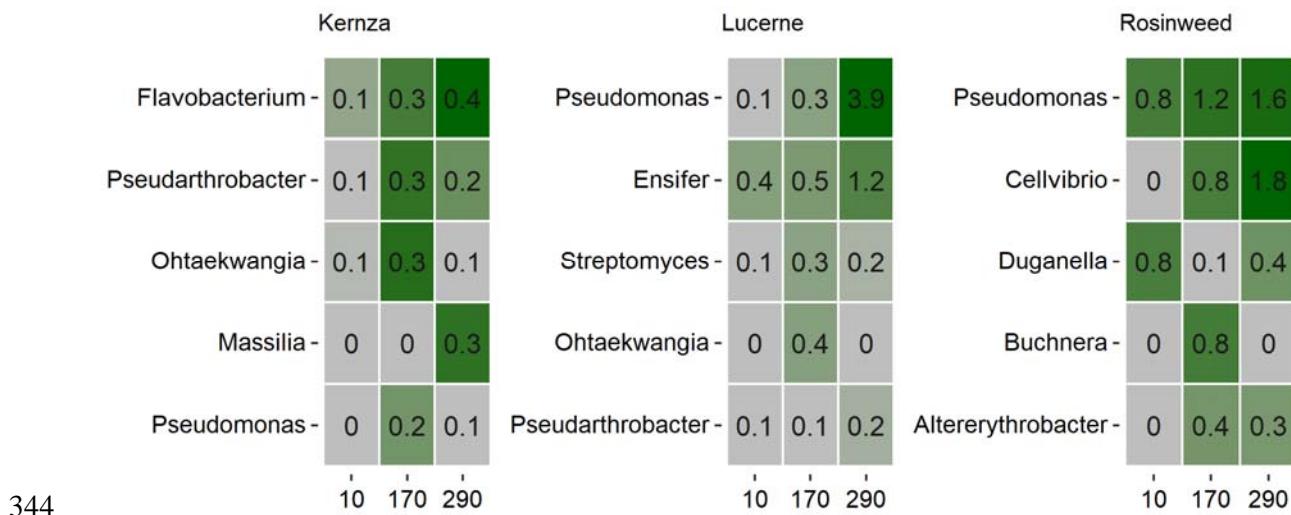
314

315 **Figure 4.** The six most abundant genera across all plant species, classified as main
316 rhizosphere colonizers. Three genera that have particularly high relative abundances in one of
317 the plant species, classified as plant specific genera. Values are in mean relative abundances
318 (n = 3).


319

320 Origin of the rhizosphere ASVs

321 We asked the question whether rhizosphere ASVs would be recruited at the different depths
322 pointing to colonization from the adjacent bulk soil layer (as opposed to vertical transmission
323 from the top-soil). Bulk soil ASVs were categorized as unique to a soil depth or as shared
324 between all soil depths (Supplementary Fig. S7). A total of 6,378 bulk soil ASVs were
325 classified as shared between all soil depths, while the soil at 10 cm bgs contained most
326 unique ASVs (12,809) as compared to 170 cm bgs (10,920) and 290 cm bgs (9,878). In the
327 case of the rhizosphere, the majority of ASVs in the rhizosphere communities of all three
328 plants at the three depths belonged to the shared group of bulk soil ASVs (67-76%) (Fig. 5).
329 Of the rhizosphere ASVs classified as unique to a given depth in the bulk soil, the group
330 belonging to 10 cm bgs constituted the largest proportion (11-14%) of the rhizosphere


331 communities in the three plants at 10 cm bgs, while they accounted for <2% in at 170 and
332 290 cm bgs. Rhizosphere ASVs unique to 170 or 290 cm bgs in the bulk soil comprised less
333 than 4% of the rhizosphere communities, suggesting a declining importance of recruitment
334 from adjacent bulk soil with increasing depth. Interestingly, for all three plants, a subgroup of
335 ASVs (4-8%) did not belong to any of the bulk soil categories. These ASVs belonged to the
336 genera *Flavobacterium*, *Pseudarthrobacter*, *Ohtakweangia*, *Masillia*, *Cellvibrio*, *Duganella*,
337 *Ensifer* and *Cellvibrio* (Fig. 6).

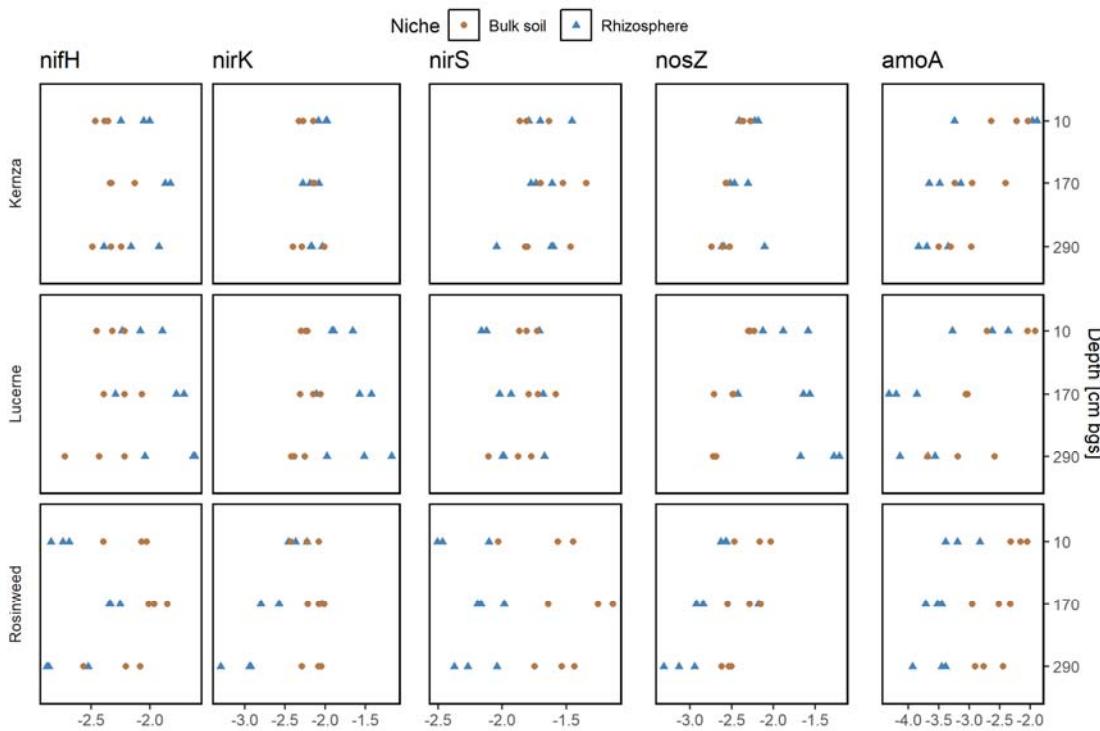
338

339

340 **Figure 5.** Tracing the potential origin of the rhizosphere ASVs from the bulk soil. Bulk soil
341 ASVs where grouped based on presence/absence at different depths in the rhizosphere.
342 Shared bulk soil ASVs were shared between all three soil depths. Values on the y-axis are
343 relative abundance (%). Unknown origin refers to ASVs that were not found in the bulk soil.

344

345 **Figure 6.** The relative abundance of the five most abundant genera with ASVs that belonged
346 to the group of unknown origin. Numbers on the x-axis indicate depth (cm bgs)


347

348 **N cycling genes**

349 Quantitative PCR was used to quantify the relative abundance of N-cycling genes at the
350 different depths. The relative abundance of the *nifH* gene involved in N-fixation did not
351 change with depth for Kernza and lucerne; however, both plant species showed a higher
352 relative abundance in the rhizosphere than in the bulk soil, pointing to a recruitment of *nifH*
353 bearing organisms to the roots. Rosinweed had a completely different profile, where the
354 middle depth at 170 cm bgs had an increased relative abundance compared to the other
355 depths. Furthermore, the relative abundance of *nifH* genes was lower in the rhizosphere than
356 in the bulk soil.

357 The *amoA* gene involved in nitrification showed a general trend of decreased abundance with
358 depth, and furthermore a lower relative abundance in the rhizosphere compared to the bulk
359 soil. For genes *nirS*, *nirK* and *nosZ* involved in denitrification, there was no difference in
360 relative abundance for Kernza with depth, nor was there any difference between the
361 rhizosphere and the bulk soil for any of the genes. Lucerne had a higher relative abundance of
362 the *nirK* and the *nosZ* genes in the rhizosphere, whereas there was no difference between bulk
363 soil and rhizosphere for the *nirS* gene. The relative abundance did not change with depth,
364 neither in the rhizosphere nor in the bulk soil. In contrast to the other plant species, the
365 Rosinweed rhizosphere had a lower relative abundance than the bulk soil for all three genes
366 at all depths.

367

368

369 **Figure 7.** qPCR data of N-cycling genes. The values are standardized per 16S rRNA gene.
370

371 Discussion

372 In this study, we examined the bacterial communities of three deep-rooted crops. In addition
373 to achieve knowledge on the general community structure at the deep roots, we also analyzed
374 the origin of the bacterial communities as well as the nitrogen cycling potential in the
375 rhizosphere.

376 Abundance and rhizosphere effect

377 Contrary to what we expected, the abundances of bacteria and fungi were stable in the
378 rhizosphere for the three plant species even up to 3 m bgs. It was recently shown that the
379 rhizodeposition decreased significantly with depth, leading us to expect a concurrent decrease
380 in microbial abundance (Peixoto *et al.* 2020). In contrast, the microbial abundance decreased
381 in the corresponding bulk soil, concurrent with a decrease in organic matter in accordance
382 with the literature (Agnelli *et al.* 2004; Eilers *et al.* 2012). Hence, the abundance of
383 microorganisms does not seem to be limited by carbon supply in the root exudates. Instead,
384 access to the root or potential to disperse might be governing factors for microbial

385 populations in the rhizosphere. The general decrease in diversity with depth, especially for
386 lucerne and rosinweed, support this, and is in accordance with the observation of fewer
387 motile strains in the subsoil previously reported (Krüger *et al.* 2019).

388 The bacterial:fungal ratio (measured as the 16S rRNA gene/ITS gene ratio) increased
389 significantly down through the soil profile. This could be explained by a general decrease in
390 available carbon for heterotrophic growth in deeper soil layers. For the Kernza rhizosphere,
391 the notion of a low bacterial:fungal ratio down through the soil profile, could hint to a close
392 interaction with a fungal community, and maybe even suggest the presence of fungal
393 endophytes in this plant species. However, this will need more research for confirmation.

394 In accordance with the literature, we found the plant species to shape their rhizosphere
395 bacterial rhizosphere communities in the topsoil (Berendsen, Pieterse and Bakker 2012). Due
396 to lower diversity and abundance of bacteria in the subsoil compared to the topsoil as found
397 in previous studies (Fierer, Schimel and Holden 2003; Eilers *et al.* 2012; Bak *et al.* 2019), we
398 expected that the deep rhizosphere communities would become more similar with depth. Our
399 results, however, showed an increasing effect of plant species on the rhizosphere
400 communities. In addition to a lower diversity in subsoils, the recruitment base (i.e., the bulk
401 soil) is more heterogeneous in subsoils, which could also impact the diversity measure, and
402 explain the higher dissimilarity between replicates from the same plant species. Hence, the
403 similarity between the various plants' rhizosphere communities decreased with depth.
404 Furthermore, we found a decrease in the proportion of shared ASVs between the plant
405 species at 170 and 290 cm bgs compared to 10 cm bgs. These results imply a stronger
406 selection for bacteria that can colonize the rhizosphere in the subsoil compared to topsoil.
407 This is partly backed up by the decreasing alpha diversity for rosinweed and lucerne. The
408 reason for the stronger selection can be attributed to a decrease in organic carbon with depth,
409 increasing the carbon gradient between the rhizosphere and the bulk soil.

410 **Composition of bacterial communities**

411 The rhizosphere communities comprised high abundances of *Pseudomonas*, *Streptomyces*,
412 *Rhizobium* and *Pseudarthrobacter* across the three plant species, even at 290 cm bgs. These
413 genera contain species well known for their interactions with plants, and expression of plant
414 beneficial traits (Tokala *et al.* 2002; Hayat *et al.* 2010), and especially pseudomonads are
415 well known as colonizers of new habitats when C becomes available (Lugtenberg, Dekkers
416 and Bloemberg 2001), probably due to their copiotrophic lifestyle and r-strategy for growth.

417 Hence, their dominance in the deep rhizosphere indicates that many beneficial bacterial traits
418 could be available for the deep roots. As inferring functional potential based on taxonomic
419 profiles is difficult, it would be important to verify this by metagenomic sequencing or
420 genome sequencing of isolates.

421 The high relative abundance of *Rhizobium* and *Ensifer* at 290 cm bgs in rosinweed and
422 lucerne rhizosphere communities, respectively, as well as an increase in abundance of
423 *Rhizobium* in the Kernza rhizosphere with depth, suggests that nitrogen fixation occurs
424 throughout the soil profile, but especially in the deep soil rhizosphere, providing important
425 nitrogen to the plants. Furthermore, it indicates that readily accessible nitrogen for bacteria
426 and plants is limited in the subsurface compared to the topsoil.

427 With *Ensifer* being a specific colonizer of root nodules of lucerne, it was not surprising to
428 find a high relative abundance of this genus specifically associated with this plant species
429 (Carelli *et al.* 2000). Rosinweed contained a high relative abundance of *Methylotenera*. This
430 genus contains methylotrops that are able to use C1 compounds as sole sources of energy and
431 carbon, especially methylamine (Kalyuzhnaya *et al.* 2006). *Methylotenera* has also been
432 found in the rhizosphere of rice and *Baccaris scandens* (Moronta-Barrios *et al.* 2018; Fuentes
433 *et al.* 2020). The presence of this genus indicates that the root exudates of rosinweed contain
434 a larger fraction of C1 compounds. *Lechevalieria* was found in relative high abundance in the
435 Kernza rhizosphere. While species from this genus has been isolated from rhizosphere in
436 wheat (Zhao *et al.* 2017), no consistent reports have linked this genus to rhizosphere
437 functions.

438 **Origin of the rhizosphere bacteria**

439 Bacteria in the rhizosphere can originate from the top soil and be transported along the roots
440 or by preferential flow paths (Dibbern *et al.* 2014; Bak *et al.* 2019). Alternatively, they can be
441 recruited from the soil horizons that the roots penetrate. The high abundance of *Pseudomonas*
442 in the deep rhizosphere, coinciding with a drop in diversity with depth, can be explained by
443 dispersal. In a study, on motility in subsurface soil, (Krüger *et al.* 2019) found *Pseudomonas*
444 to be a good disperser in soil samples from 80-120 cm bgs and preferential flow paths from
445 300-350 cm bgs. Furthermore, motility has been found to be an important trait in initial
446 colonization of sterile roots in a wild type-mutant experiment (Turnbull *et al.* 2001).

447 The majority of the ASVs identified in the rhizosphere communities could be found in the
448 bulk soil communities. However, a significant portion of approx. 5% of the rhizosphere

449 ASVs were not detected in the bulk soil communities. The genera that comprised these ASVs
450 belong to genera such as *Pseudomonas*, *Masillia*, *Niastella*, *Ohtakweangia*, *Ferruginibacter*
451 and *Flavobacterium*. Except for *Ferruginibacter*, which has previously only been reported
452 from aquatic habitats, all genera have been found as endophytes in roots or seeds in other
453 crops like durum wheat and maize (Gao *et al.* 2015; Truyens *et al.* 2015; Agnolucci *et al.*
454 2019). Although we cannot rule out lack of sequencing depth as an explanation, the
455 rarefaction curves obtained for the bulk soil samples indicated that we had sequenced deep
456 enough. Alternatively, the ASVs are pure endophytes, as the entire root was sampled along
457 with the rhizosphere. However, based on previous reports, CFU counts showed 100-fold
458 more bacteria in the rhizosphere compared to the endosphere per gram of sample (Benizri,
459 Baudoin and Guckert 2001; Blain, Helgason and Germida 2017), indicating that not all of the
460 ASVs are endophytes. Hence, we argue that these ASVs originate as seed associated.

461 **N-cycling potential**

462 For the N-cycling genes, it was found that lucerne had the highest number of denitrifiers,
463 based on quantification of *nirS*, *nirK* and *nosZ* genes. This could be explained by the higher
464 N output from lucerne as compared to the other two species (Peixoto *et al.* 2020).

465 Interestingly, the lucerne rhizosphere seems to recruit denitrifiers not harboring the *nirS* gene,
466 as these genes were equally abundant in the rhizosphere of lucerne and the bulk soil.

467 The *nifH* genes were specifically enriched in the lucerne rhizosphere, which would be
468 expected due to the development of root nodules. Interestingly, the *nifH* genes were also
469 specifically enriched in the Kernza rhizosphere, indicating an increased potential for N-
470 fixation in this habitat. This was in contrast to the rosinweed rhizosphere, where *nifH* genes
471 were not enriched. The ability of recruiting a N-fixing community in the rhizosphere will
472 potentially change the C:N ratio in the Kernza rhizosphere, and thereby impact the not only
473 the N-cycling, but also the incorporation of C into microbial biomass (Peixoto *et al.* 2020).

474 The current study was performed in field-like RootTowers, providing easy access to the
475 roots, making it possible to sample from the root systems with minimal disturbance of the
476 soil, but it is important to keep in mind that our findings may differ from future findings
477 performed in the field. We did see a change in community structure over time in the bulk
478 soil, however, we did not detect any changes in bacterial or fungal abundances over time.
479 Albeit, that the RootTowers are an artificial system, they pose a promising potential for
480 studying microbe-plant microbe interactions in the depth.

481 **Conclusion**

482 The three plant species recruited specific rhizosphere communities over the entire sampled
483 region. Furthermore, they have a high proportion of taxa that were shared between bulk soil
484 communities at all depths. Our results suggest that deep-rooted rhizosphere bacterial
485 communities are colonized by species recruited from the surrounding bulk soil, as well as
486 transported down with root growth. However, how important these two mechanisms are in
487 community assembly dynamics remains to be tested in subsequent experiments using
488 quantitative measures. Furthermore, our results pointing towards a substantial proportion of
489 deep rhizosphere communities are seed borne, should be investigated, as this might have
490 implications for the development of microbial inoculants. Deep-rooted crops are receiving
491 increased interest in carbon sequestration. Hence, understanding how communities are shaped
492 can provide practical and applicable knowledge for rhizosphere engineering of these
493 important crops.

494

495 **Acknowledgements**

496 We thank J. A. Teem, D.T. Ganzhorn, and M. Schiller S (University of Copenhagen) for their
497 assistance during sampling and D. T. Ganzhorn for the contribution to the qPCR setup. This
498 work was performed as part of the Deep Frontier project, which is a research collaboration
499 between University of Copenhagen, Aarhus University and International Centre for Research
500 in Organic Food Systems (ICROFS), financed by the Villum Foundation.

501 References

502 Agnelli A, Ascher J, Corti G *et al.* Distribution of microbial communities in a forest soil
503 profile investigated by microbial biomass, soil respiration and DGGE of total and
504 extracellular DNA. *Soil Biology and Biochemistry* 2004;36:859–68.

505 Agnolucci M, Palla M, Cristani C *et al.* Beneficial Plant Microorganisms Affect the
506 Endophytic Bacterial Communities of Durum Wheat Roots as Detected by Different
507 Molecular Approaches. *Front Microbiol* 2019;10, DOI: 10.3389/fmicb.2019.02500.

508 Andersen KS, Kirkegaard RH, Karst SM *et al.* ampvis2: an R package to analyse and
509 visualise 16S rRNA amplicon data. *bioRxiv* 2018:299537.

510 Bak F, Nybroe O, Zheng B *et al.* Preferential flow paths shape the structure of bacterial
511 communities in a clayey till depth profile. *FEMS Microbiology Ecology* 2019;95,
512 DOI: 10.1093/femsec/fiz008.

513 Benizri E, Baudoin E, Guckert A. Root Colonization by Inoculated Plant Growth-Promoting
514 Rhizobacteria. *Biocontrol Science and Technology* 2001;11:557–74.

515 Berendsen RL, Pieterse CMJ, Bakker PAHM. The rhizosphere microbiome and plant health.
516 *Trends in Plant Science* 2012;17:478–86.

517 Blain NP, Helgason BL, Germida JJ. Endophytic root bacteria associated with the natural
518 vegetation growing at the hydrocarbon-contaminated Bitumount Provincial Historic
519 site. *Can J Microbiol* 2017;63:502–15.

520 Bulgarelli D, Schlaepi K, Spaepen S *et al.* Structure and Functions of the Bacterial
521 Microbiota of Plants. *Annual Review of Plant Biology* 2013;64:807–38.

522 Carelli M, Gnocchi S, Fancelli S *et al.* Genetic Diversity and Dynamics of *Sinorhizobium*
523 *meliloti* Populations Nodulating Different Alfalfa Cultivars in Italian Soils. *Appl
524 Environ Microbiol* 2000;66:4785–9.

525 Dibbern D, Schmalwasser A, Lueders T *et al.* Selective transport of plant root-associated
526 bacterial populations in agricultural soils upon snowmelt. *Soil Biology and
527 Biochemistry* 2014;69:187–96.

528 Eilers KG, Debenport S, Anderson S *et al.* Digging deeper to find unique microbial
529 communities: The strong effect of depth on the structure of bacterial and archaeal
530 communities in soil. *Soil Biology and Biochemistry* 2012;50:58–65.

531 Fierer N, Schimel JP, Holden PA. Variations in microbial community composition through
532 two soil depth profiles. *Soil Biology and Biochemistry* 2003;35:167–76.

533 Fuentes A, Herrera H, Charles TC *et al.* Fungal and Bacterial Microbiome Associated with
534 the Rhizosphere of Native Plants from the Atacama Desert. *Microorganisms*
535 2020;8:209.

536 Gao C-H. ggVennDiagram: A “ggplot2” Implement of Venn Diagram [R package
537 ggVennDiagram version 0.5.0]. 2021.

538 Gao J-L, Lv F-Y, Wang X-M *et al.* *Flavobacterium endophyticum* sp. nov., a *nifH* gene-
539 harbouring endophytic bacterium isolated from maize root. *Int J Syst Evol Microbiol*
540 2015;**65**:3900–4.

541 Garcia-Lemos AM, Gobbi A, Nicolaisen MH *et al.* Under the Christmas Tree: Belowground
542 Bacterial Associations With *Abies nordmanniana* Across Production Systems and
543 Plant Development. *Front Microbiol* 2020;**11**, DOI: 10.3389/fmicb.2020.00198.

544 Hayat R, Ali S, Amara U *et al.* Soil beneficial bacteria and their role in plant growth
545 promotion: a review. *Ann Microbiol* 2010;**60**:579–98.

546 Hirsh SM, Weil RR. Deep Soil Cores Reveal Large End-of-Season Residual Mineral
547 Nitrogen Pool. *Agricultural & Environmental Letters* 2019;**4**:180055.

548 IUSS Working Group WRB. *World Reference Base for Soil Resources 2014: Update 2015*
549 *International Soil Classification System for Naming Soils and Creating Legends for*
550 *Soil Maps*. Rome: FAO, 2015.

551 Kalyuzhnaya MG, Bowerman S, Lara JC *et al.* *Methylotenera mobilis* gen. nov., sp. nov., an
552 obligately methylamine-utilizing bacterium within the family *Methylophilaceae*.
553 *International Journal of Systematic and Evolutionary Microbiology* 2006;**56**:2819–
554 23.

555 Krüger US, Dechesne A, Bak F *et al.* Bacterial Dispersers along Preferential Flow Paths of a
556 Clay Till Depth Profile. Cann I (ed.). *Appl Environ Microbiol* 2019;**85**:e02658-18,
557 /aem/85/6/AEM.02658-18.atom.

558 Lugtenberg B, Kamilova F. Plant-Growth-Promoting Rhizobacteria. *Annual Review of*
559 *Microbiology* 2009;**63**:541–56.

560 Lugtenberg BJJ, Dekkers L, Bloemberg GV. Molecular Determinants of Rhizosphere
561 Colonization by *Pseudomonas*. *Annual Review of Phytopathology* 2001;**39**:461–90.

562 Lupwayi NZ, Rice WA, Clayton GW. Soil microbial diversity and community structure
563 under wheat as influenced by tillage and crop rotation. *Soil Biology and Biochemistry*
564 1998;**30**:1733–41.

565 Maeght J-L, Rewald B, Pierret A. How to study deep roots—and why it matters. *Front Plant*
566 *Sci* 2013;**4**, DOI: 10.3389/fpls.2013.00299.

567 McMurdie PJ, Holmes S. phyloseq: An R Package for Reproducible Interactive Analysis and
568 Graphics of Microbiome Census Data. *PLOS ONE* 2013;**8**:e61217.

569 Middleton H, Yergeau É, Monard C *et al.* Rhizospheric Plant-Microbe Interactions: miRNAs
570 as a Key Mediator. *Trends Plant Sci* 2021;**26**:132–41.

571 Moronta-Barrios F, Gionechetti F, Pallavicini A *et al.* Bacterial Microbiota of Rice Roots:
572 16S-Based Taxonomic Profiling of Endophytic and Rhizospheric Diversity,
573 Endophytes Isolation and Simplified Endophytic Community. *Microorganisms*
574 2018;**6**:14.

575 Oksanen J, Blanchet FG, Friendly M *et al.* *Vegan: Community Ecology Package.*, 2020.

576 Peixoto L, Elsgaard L, Rasmussen J *et al.* Decreased rhizodeposition, but increased microbial
577 carbon stabilization with soil depth down to 3.6 m. *Soil Biology and Biochemistry*
578 2020;150:108008.

579 Pinheiro JC, Bates DJ, DebRoy S *et al.* *The Nlme Package: Linear and Nonlinear Mixed*
580 *Effects Models, R Version 3.*, 2012.

581 Quast C, Pruesse E, Yilmaz P *et al.* The SILVA ribosomal RNA gene database project:
582 improved data processing and web-based tools. *Nucleic Acids Research*
583 2013;41:D590–6.

584 R Core Team. *R: A Language and Environment for Statistical Computing*. Vienna, Austria:
585 R Foundation for Statistical Computing, 2020.

586 Rasmussen CR, Thorup-Kristensen K, Dresbøll DB. Uptake of subsoil water below 2 m fails
587 to alleviate drought response in deep-rooted Chicory (*Cichorium intybus* L.). *Plant*
588 *Soil* 2020;446:275–90.

589 Rumpel C, Kögel-Knabner I. Deep soil organic matter—a key but poorly understood
590 component of terrestrial C cycle. *Plant Soil* 2011;338:143–58.

591 Sasse J, Martinoia E, Northen T. Feed Your Friends: Do Plant Exudates Shape the Root
592 Microbiome? *Trends in Plant Science* 2018;23:25–41.

593 Shade A, Jacques M-A, Barret M. Ecological patterns of seed microbiome diversity,
594 transmission, and assembly. *Current Opinion in Microbiology* 2017;37:15–22.

595 Spinoni J, Naumann G, Vogt JV. Pan-European seasonal trends and recent changes of
596 drought frequency and severity. *Global and Planetary Change* 2017;148:113–30.

597 Thorup-Kristensen K, Halberg N, Nicolaisen MH *et al.* Exposing Deep Roots: A Rhizobox
598 Laboratory. *Trends in Plant Science* 2020;25:418–9.

599 Tokala RK, Strap JL, Jung CM *et al.* Novel Plant-Microbe Rhizosphere Interaction Involving
600 *Streptomyces lydicus* WYEC108 and the Pea Plant (*Pisum sativum*). *Appl Environ*
601 *Microbiol* 2002;68:2161–71.

602 Truyens S, Weyens N, Cuypers A *et al.* Bacterial seed endophytes: genera, vertical
603 transmission and interaction with plants. *Environmental Microbiology Reports*
604 2015;7:40–50.

605 Turnbull GA, Morgan JAW, Whipps JM *et al.* The role of bacterial motility in the survival
606 and spread of *Pseudomonas fluorescens* in soil and in the attachment and colonisation
607 of wheat roots. *FEMS Microbiology Ecology* 2001;36:21–31.

608 Uksa M, Fischer D, Welzl G *et al.* Community structure of prokaryotes and their functional
609 potential in subsoils is more affected by spatial heterogeneity than by temporal
610 variations. *Soil Biology and Biochemistry* 2014;75:197–201.

611 Wang Q, Garrity GM, Tiedje JM *et al.* Naive Bayesian classifier for rapid assignment of
612 rRNA sequences into the new bacterial taxonomy. *Appl Environ Microbiol*
613 2007;73:5261–7.

614 Willis AD, Martin BD. Estimating diversity in networked ecological communities.
615 *Biostatistics* 2020, DOI: 10.1093/biostatistics/kxaa015.

616 Zhao J, Li W, Shi L *et al.* *Lechevalieria rhizosphaerae* sp. nov., a novel actinomycete isolated
617 from rhizosphere soil of wheat (*Triticum aestivum* L.) and emended description of the
618 genus *Lechevalieria*. *Int J Syst Evol Microbiol* 2017;67:4655–9.