

1 **Structural basis for recognition of anti-migraine drug lasmiditan by the serotonin receptor 5-**
2 **HT_{1F}–G protein complex**

3
4 Sijie Huang^{1,2,3*}, Peiyu Xu^{1,2*}, Yangxia Tan^{1,2,3*}, Chongzhao You^{1,2}, Yumu Zhang^{1,2,3}, Yi Jiang^{1,2†}, and H.
5 Eric Xu^{1,2,3†}

6
7 ¹The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese
8 Academy of Sciences, Shanghai 201203, China.

9 ²University of Chinese Academy of Sciences, Beijing 100049, China.

10 ³School of Life Science and Technology, ShanghaiTech University, 201210 Shanghai, China.

11
12 *These authors contributed equally: Sijie Huang, Peiyu Xu, Yangxia Tan
13 †Correspondence: yijiang@simm.ac.cn (Y.J.) and eric.xu@simm.ac.cn (H.E.X.)

14
15 **Abstract**

16 Migraine headache has become global pandemics and is the number one reason of work day loss. The
17 most common drugs for anti-migraine are the triptan class of drugs that are agonists for serotonin
18 receptors 5-HT_{1B} and 5-HT_{1D}. However, these drugs have side effects related to vasoconstriction that
19 could have fatal consequences of ischemic heart disease and myocardial infarction. Lasmiditan is a new
20 generation of anti-migraine drug that selectively binds to the serotonin receptor 5-HT_{1F} due to its
21 advantage over the triptan class of anti-migraine drugs. Here we report the cryo-EM structure of the 5-
22 HT_{1F} in complex with Lasmiditan and the inhibitory G protein heterotrimer. The structure reveals the
23 mechanism of 5-HT_{1F}-selective activation by Lasmiditan and provides a template for rational design of
24 anti-migraine drugs.

25

26 The serotonin 5-HT₁ receptor subtypes, including 5-HT_{1A}, 5-HT_{1B}, 5-HT_{1D}, 5-HT_{1e}, and 5-HT_{1F}, are G
27 protein-coupled receptors (GPCRs) that respond to the endogenous neurotransmitter serotonin and
28 couple preferentially to the G_{i/o} family of G proteins¹. Drugs targeting 5-HT₁ receptors are used to treat
29 migraine, depression, and schizophrenia². Clinical use of traditional anti-migraine drugs, triptans, caused
30 side effects arising from therapeutic vasoconstrictive actions when targeting 5-HT_{1B/D} receptors³. The
31 requirement of new anti-migraine drugs lacking vasoconstrictive effects led to the development of
32 lasmiditan, a highly selective 5-HT_{1F} receptor agonist with minimizing on-target side effects⁴.

33
34 Migraine is one of the most common diseases worldwide and, importantly, a major cause of lost work
35 productivity³. The selective 5-HT_{1B/D} agonists, triptans, are currently a first-line acute treatment of
36 moderate-to-severe migraine attacks. Triptans bind mostly to 5-HT_{1B/D} receptors within cerebral blood
37 vessels, leading to vasoconstriction. Unfortunately, a large percentage of patients are not satisfied with
38 current acute migraine treatments, because 5-HT_{1B/D} receptors are also present on coronary and limb
39 arteries and triptans may cause acute coronary syndromes in patients with or without cardiovascular
40 disease^{3,5}.

41
42 Lasmiditan, a potent and selective agonist for the 5-HT_{1F} receptor, has recently been approved for acute
43 migraine⁶. Lasmiditan lacks vasoconstriction effects and may be a safer and more effective option for
44 patients refractory to treatment with triptans and for patients with cardiovascular disease⁶. Lasmiditan
45 has a pyridinyl-piperidine scaffold, which is structurally different from the indole derivatives of triptans.
46 In addition, Lasmiditan is able to penetrate the blood-brain barrier to act on receptor located in the brain,
47 thus enhancing its action on receptor sites in central nervous system (CNS)⁶. To better understand the
48 structural basis of lasmiditan for the 5-HT_{1F} selectivity and activation, we determined the structure of the
49 5-HT_{1F} in complex with lasmiditan and G_{i1} at a resolution of 3.4 Å by single-particle cryo-EM. The
50 structure reveals the mechanism of 5-HT_{1F}-selective activation and provides a template for the rational
51 design of anti-migraine drugs.

52

53 For single-particle cryo-EM structural studies, we prepared the lasmiditan-bound 5-HT_{1F}–G_i complex,
54 which were met with technical challenges of low expression levels and unstable formation of the
55 receptor-G protein complex. Despite these difficulties and after many attempts, we were able to prepare
56 homogenous sample for cryo-EM analysis. The structure was determined at a global resolution of 3.4 Å
57 (Supplementary information, Fig. S1). The lasmiditan-bound 5-HT_{1F}–G_i complex EM density maps are
58 sufficiently clear to define the position of the 5-HT_{1F} receptor, the G_i heterotrimer, scFv16, and the
59 bound ligand lasmiditan. The overall structure of 5-HT_{1F} consists of a canonical transmembrane domain
60 (TMD) of seven transmembrane helices (TM1-7), a short intracellular loop 2 (ICL2) helix, and an
61 amphipathic helix H8 (Fig. 1a, b). The active 5-HT_{1F} receptor shares a similar overall conformation with
62 other active 5-HT₁ receptors⁷, while a complete backbone structure for ECL2 is visible, which is partly
63 missing in other 5-HT₁ structures due to the flexibility. The cryo-EM map includes well-defined features
64 for amino acids forming the agonist-binding pocket and clear density for lasmiditan in 5-HT_{1F} (Fig. 1b).
65 We found that negatively charged amino acids in the ligand binding pocket of 5-HT_{1F} are primarily
66 responsible for the affinity of lasmiditan (Fig. 1c, d). In the orthosteric binding pocket (OBP), the
67 primary amine on methylpiperidine group of lasmiditan forms a canonical charge interaction with
68 D103^{3x32} of 5-HT_{1F} (Fig. 1d), which simultaneously forms a hydrogen bond with Y337^{7x42}, supporting a
69 stable interaction between the ligand and the receptor (Fig. 1d). Mutational studies showed these
70 residues are critical for lasmiditan binding (Supplementary information, Fig. S2). The interactions from
71 D^{3x32} of the receptor to the primary amine of agonists and the supportive Y^{7x42} are conserved in
72 aminergic GPCRs⁸. In addition, the methylpiperidine group of lasmiditan forms hydrophobic
73 interactions with F309^{6x51} in TM6 of 5-HT_{1F} (Fig. 1d), mutation in F309^{6x51} cause a nearly 100-fold
74 reduction of lasmiditan affinity (Supplementary information, Fig. S2). Meanwhile, the aromatic pyridine
75 scaffold of lasmiditan is sandwiched between I104^{3x33} and F310^{6x52}, forming a hydrophobic interaction
76 core (Fig. 1d). F310^{6x52}A mutation simultaneously eliminated 5-HT_{1F}-G protein coupling signals and
77 lasmiditan affinity, and I104^{3x33}A mutation also cause a nearly 60-fold reduction of lasmiditan affinity,
78 suggesting that these hydrophobic interactions are crucial for lasmiditan-induced 5-HT_{1F} activation
79 (Supplementary information, Fig. S2). I^{3x33} of 5-HT_{1F} is 3.5 Å away from the aromatic ring of

80 lasmiditan, which provides a stronger hydrophobic interaction than V^{3x33} of 5-HT_{1A} and M^{3x33} of 5-
81 HT_{1E}. In the extended binding pocket (EBP), the trifluorobenzene group of lasmiditan forms additional
82 hydrophobic interactions with I174^{ECL2} and P158^{4x60}, and forms hydrogen bonds with residue E313^{6x55},
83 N317^{6x59}, T182^{5x40}, and H176^{ECL2} of 5-HT_{1F} (Fig. 1d). These structural observations are also confirmed
84 by mutation experiments (Supplementary information, Fig. S2).

85
86 Lasmiditan is a new generation 5-HT receptor agonist with high affinity and selectivity for 5-HT_{1F} (Ki =
87 2 nM) over other serotonin receptors (Ki > 500 nM)⁴, and this selectivity is also confirmed by our
88 NanoBiT G-protein recruitment assays (Fig. 1e; Supplementary information, Fig. S3a). Comparison of
89 the structure of 5-HT_{1F} bound to lasmiditan with other 5-HT₁ structures^{7,9} uncovers the structural basis
90 of selectivity for lasmiditan (Fig. 1f-h). Comparison of 5-HT_{1F} with 5-HT_{1B} shows that the ligand-
91 receptor interaction are basically conserved in OBP, while differences in EBP, which are formed by
92 TM4/5/6, and ECL2. For the TM4/5, the residues that interact with the trifluorobenzene group of
93 lasmiditan in 5-HT_{1F} are highly conserved with 5-HT_{1B} (Fig. 1f). However, the conformation of TM4/5
94 shows significant changes between 5-HT_{1F} and 5-HT_{1B}. On the extracellular side, TM4 shifts 3.6 Å, and
95 TM5 shifts 2.8 Å for 5-HT_{1F} from those in 5-HT_{1B} (Fig. 1f). For the TM6, the E^{6x55} and N^{6x59} of 5-HT_{1F}
96 form hydrogen bonds with lasmiditan, but the corresponding residues are S^{6x55} and P^{6x59} in 5-HT_{1B}, and
97 they cannot provide the corresponding interactions. For the ECL2, including the region that interacts
98 with lasmiditan shows different conformations between 5-HT_{1F} and 5-HT_{1B} (Fig. 1f).

99
100 5-HT_{1E} is the receptor with the highest homology to 5-HT_{1F}. The structure of 5-HT_{1E} we previously
101 reported reveals the mechanism of the 5-HT_{1E/1F} selective ligand BRL54443 for 5-HT_{1E}. Lasmiditan is
102 only selective for 5-HT_{1F}, rather than for 5-HT_{1E}. Structural comparison of 5-HT_{1F} and 5-HT_{1E} provides
103 an opportunity to uncover the mechanism of selectivity of lasmiditan on 5-HT_{1F}. Although 5-HT_{1F} and
104 5-HT_{1E} have relatively conserved residues for ligand binding both in OBP and EBP, the conformations
105 of TM4, TM5, and ECL2 show significant differences. Among them, the extracellular end of TM4
106 shifted by 3.5 Å, TM5 shifted by 2.0 Å, and the backbone of ECL2 shows different conformatrion (Fig.

107 1g). These changes are similar in comparison with 5-HT_{1B} (Fig. 1f). We further compared the 5-HT_{1F}
108 structure with other 5-HT₁ subfamily receptors, the results showed that the conformation of the TM4-
109 TM5-ECL2 region is relatively conserved in 5-HT_{1A}, 5-HT_{1B}, 5-HT_{1D}, and 5-HT_{1E}, but not for 5-HT_{1F}
110 (Fig. 1h; **Supplementary information**, Fig. S3b-d). To confirm the roles of ECL2 on ligand selectivity,
111 we replaced the ECL2 of 5-HT_{1F} with that of other 5-HT₁ receptors and tested the receptor activation.
112 The result shows that the lasmiditan induced activation was significantly affected (**Supplementary**
113 **information**, Fig. S3e). The importance of EPB for lasmiditan binding and the different shape of EBP of
114 5-HT_{1F} from other 5-HT receptors determines the high selectivity of lasmiditan on 5-HT_{1F}.

115
116 The lasmiditan induces activation for 5-HT_{1F} undergoing a canonical conformational rearrangement.
117 Comparing to the inactive state 5-HT_{1B}¹⁰, lasmiditan triggers the toggle switch residue W^{6x48} of 5-HT_{1F}
118 downward movement, then induces the conformational changes in PIF, DRY, and NPxxY motifs
119 (**Supplementary information**, Fig. S4a-e). These conformational changes further cause an 8 Å outward
120 movement of TM6, which allows the α 5 helix of G α i1 insert into the intracellular cavity formed by the
121 receptor TMD bundle, a hallmark of GPCR activation (**Supplementary information**, Fig. S4f). Structural
122 comparison of the G α -coupled 5-HT_{1F} with the G α -coupled 5-HT_{1B} complexes⁹ reveals differences in G-
123 protein coupling (**Supplementary information**, Fig. S4g, h). Although the conformation of the main
124 interfaces between receptor and G-protein are similar, the G-protein conformation shows observable
125 changes. The main body of the Ras-like domain shares a similar conformation, while the N-terminus of
126 α N shift 9.4 Å and the last residue of α 5 shift 2.4 Å between G α i and G α (**Supplementary information**,
127 Fig. S4g). Comparing the 5-HT_{1F}-G α i complex with other 5-HT₁-G α i/o complex structures^{7,9}, we found
128 that the α N of 5-HT_{1F} bound G α i shifts away from other 5-HT₁ receptors bound G α i/o, which suggests that
129 the coupling of 5-HT_{1F} to G α i protein is unique from other 5-HT₁ receptors (Fig. 1i).

130
131 In summary, in this paper, we report the cryo-EM structure of the 5-HT_{1F}-G α i complex bound to a highly
132 selective anti-migraine drug lasmiditan. The structure reveals the binding mode of lasmiditan in 5-HT_{1F}.
133 Comparison of our structure with the previously reported 5-HT₁ structures⁹ provide the basis of the

134 selectivity for lasmiditan to 5-HT_{1F}. The determination for selectivity mainly attributes to the interaction
135 between the trifluorobenzene group of lasmiditan and the specific extended binding pocket (EBP) of 5-
136 HT_{1F}. Furthermore, our structure reveals a conserved mechanism for activation of 5-HT_{1F} and the unique
137 G protein coupling conformation from that in the 5-HT₁–G-protein structures^{7,9}. Together, these results
138 provide a rational template for design of new generation of anti-migraine drugs that selectively target 5-
139 HT_{1F}, therefore avoiding the main disadvantage of cardiovascular side effects associated with the triptan
140 class of anti-migraine drugs.

141

142 **Fig. 1 Structure of lasmiditan–5-HT_{1F}–G_{i1} complex.** **a** Cryo-EM map of the 5-HT_{1F}–G_i complex. **b**
143 Structural model of the 5-HT_{1F}–G_i complex. The ligand model is shown on left side of the complex with
144 surrounding density map. **c** Electrostatic surface representation of lasmiditan binding pocket of 5-HT_{1F}.
145 **d** The binding mode of lasmiditan in the ligand binding pocket of 5-HT_{1F}. **e** G_i recruitment assay using
146 NanoBiT for wild type 5-HT_{1A}, 5-HT_{1B}, 5-HT_{1D}, 5-HT_{1E}, and 5-HT_{1F} induced by serotonin, donitriptan
147 and lasmiditan. **f** Structural comparison of lasmiditan-bound 5-HT_{1F} with donitriptan-bound 5-HT_{1B}
148 (PDB code: 6G79). **g** Structural comparison of lasmiditan-bound 5-HT_{1F} with BRL54443-bound 5-HT_{1E}
149 (PDB code: 7E33). **h** Structure comparison focus on extracellular end of TM4 (left) and TM5 (right)
150 among 5-HT_{1A} (red, PDB code: 7E2Y), 5-HT_{1B} (tan, PDB code: 6G79), 5-HT_{1D} (yellow, PDB code:
151 7E32), 5-HT_{1E} (blue, PDB code: 7E33) and 5-HT_{1F} (green). **i** Comparison of the G_α conformation
152 among the structures of G_{i/o} coupled 5-HT_{1A} (red, PDB code: 7E2Y), 5-HT_{1B} (tan, PDB code: 6G79), 5-
153 HT_{1D} (yellow, PDB code: 7E32), 5-HT_{1E} (blue, PDB code: 7E33) and 5-HT_{1F} (green).

154

155 **Data availability**

156 The corresponding coordinates and cryo-EM density map have been deposited in the Protein Data Bank
157 (<http://www.rcsb.org/pdb>) with code 7EXD, and in EMDB (<http://www.ebi.ac.uk/pdbe/emdb/>) with code
158 EMD-31371.

159

160 **Acknowledgements**

161 The cryo-EM data were collected at the Cryo-Electron Microscopy Research Center, Shanghai Institute
162 of Materia Medica, Chinese Academy of Sciences (Shanghai, China). This work was partially supported
163 by the Ministry of Science and Technology (China) grant (2018YFA0507002 to H.E.X.); CAS Strategic
164 Priority Research Program (XDB37030103 to H.E.X.); Shanghai Municipal Science and Technology
165 Major Project (2019SHZDZX02 to H.E.X.); the National Natural Science Foundation (31770796 to
166 Y.J.); National Science & Technology Major Project “Key New Drug Creation and Manufacturing
167 Program” (2018ZX09711002-002-002 to Y.J.).

168

169 **Author contributions**

170 S.H. and P.X. designed the expression constructs, purified the complexes, prepared samples for negative
171 stain and data collection toward the structures, performed functional assay, prepared the figures and
172 manuscript draft. P.X. evaluated the specimen by negative-stain EM, screened the cryo-EM conditions,
173 prepared the cryo-EM grids, collected cryo-EM images, built the model, and refined the structures. Y.T.,
174 C.Y., and Y.Z. participated in the NanoBiT G-protein recruitment assays. Y.J. participated in the
175 supervision of S.H., P.X., Y.T., C.Y., and Y.Z. and analyzed the structures, edited the manuscript. H.E.X.
176 conceived and supervised the project, analyzed the structures, and wrote the manuscript with inputs from
177 all authors.

178

179 **Competing interests:** The authors declare no competing interests.

180

181 **References**

182 1 McCory, J. D. & Roth, B. L. Structure and function of serotonin G protein-coupled receptors. *Pharmacol*

183 1 *Therapeut* **150**, 129-142, doi:10.1016/j.pharmthera.2015.01.009 (2015).

184 2 Pytliak, M., Vargova, V., Mechirova, V. & Felsoci, M. Serotonin receptors - from molecular biology to clinical
185 3 applications. *Physiol Res* **60**, 15-25, doi:10.33549/physiolres.931903 (2011).

186 4 Negro, A., Koverech, A. & Martelletti, P. Serotonin receptor agonists in the acute treatment of migraine: a
187 5 review on their therapeutic potential. *J Pain Res* **11**, 515-526, doi:10.2147/JPR.S132833 (2018).

188 6 Nelson, D. L. *et al.* Preclinical pharmacological profile of the selective 5-HT1F receptor agonist lasmiditan.
189 7 *Cephalalgia* **30**, 1159-1169, doi:10.1177/0333102410370873 (2010).

190 8 Weder, C. R. & Schneemann, M. Triptans and troponin: a case report. *Orphanet J Rare Dis* **4**, 15,
191 9 doi:10.1186/1750-1172-4-15 (2009).

192 10 Clemow, D. B. *et al.* Lasmiditan mechanism of action - review of a selective 5-HT1F agonist. *J Headache Pain*
193 11 **21**, 71, doi:10.1186/s10194-020-01132-3 (2020).

194 12 Xu, P. *et al.* Structural insights into the lipid and ligand regulation of serotonin receptors. *Nature*, 1-5 (2021).

195 13 Michino, M. *et al.* What can crystal structures of aminergic receptors tell us about designing subtype-
196 14 selective ligands? *Pharmacol Rev* **67**, 198-213, doi:10.1124/pr.114.009944 (2015).

197 15 Garcia-Nafria, J., Nehme, R., Edwards, P. C. & Tate, C. G. Cryo-EM structure of the serotonin 5-HT1B receptor
198 16 coupled to heterotrimeric Go. *Nature* **558**, 620-623, doi:10.1038/s41586-018-0241-9 (2018).

199 17 Yin, W. *et al.* Crystal structure of the human 5-HT1B serotonin receptor bound to an inverse agonist. *Cell*
200 18 *Discov* **4**, 12, doi:10.1038/s41421-018-0009-2 (2018).

201

202

203 **Supplementary information**

204

205 **Supplementary information, Figure S1**

206 **Fig. S1** Sample preparation and cryo-EM of the 5-HT_{1F}–G_{i1} complexes. **a** Analytical size-exclusion
207 chromatography of the purified complex and SDS-PAGE/Coomassie blue stain of the purified complex.
208 **b, c** Representative cryo-EM image and 2D averages. **d** Flowchart of cryo-EM data analysis of the
209 lasmiditan bound-5-HT_{1F}–G_i complex. **e** Euler angle distribution of particles used in the final
210 reconstruction. **f** ‘Gold-standard’ Fourier shell correlation curves of the lasmiditan–5-HT_{1F}–G_i complex.
211

212 **Supplementary information, Figure S2**

213 **Fig. S2** Mutagenesis data of lasmiditan mediate 5-HT_{1F} activation by NanoBiT Gi-protein-recruitment
214 assay. **a** Dose response cuves of mutations on ligand-binding pocket. **b** Dose response cuves of
215 mutations on G-protein interaction interface. **c** pEC₅₀ of mutations on G-protein interaction interface and
216 ECL2 chimeraic receptors. **d** pEC₅₀ of mutations on ligand-binding pocket. Data are mean ± s.e.m. from
217 at least three independent experiments performed in technical triplicate.
218

219 **Supplementary information, Figure S3**

220 **Fig. S3 Selectivity of lasmiditan.** **a** Dose response cuves and pEC50 of 5-HT, donitriptan, and
221 lasmiditan induced activation of 5-HT_{1A}, 5-HT_{1B}, 5-HT_{1D}, 5-HT_{1E} and 5-HT_{1F}. **b** comparison of the
222 ligand-binding pocket among the structures of G_{i/o} coupled 5-HT_{1A} (red, PDB code: 7E2Y), 5-HT_{1B} (tan,
223 PDB code: 6G79), 5-HT_{1D} (yellow, PDB code: 7E32), 5-HT_{1E} (blue, PDB code: 7E33) and 5-HT_{1F}
224 (green). **c, d** Comparison of TM4-TM5-ECL2 region among 5-HT₁ sub-family receptors. **c**, extracellular
225 view; **d**, side view. **e** The replacement of ECL2 of 5-HT_{1F} with other 5-HT₁ receptors affects the
226 lasmiditan mediate activation. Data are mean ± s.e.m. from at least three independent experiments
227 performed in technical triplicate.
228

229 **Supplementary information, Figure S4**

230 **Fig. S4** Lasmiditan induced activation of 5-HT_{1F}. **a** Structural superposition of active 5-HT_{1F} and inactive
231 5-HT_{1B} (PDB code: 5v54) complexes. **b-e** residues rearrangement of Toggle switch (**b**), PIF motif (**c**),
232 DRY motif (**d**), and NPxxY motif (**e**). **f** The outward movement of intracellular end of TM6. **g**
233 Comparison of the 5-HT_{1F} bound G α _i conformation and 5-HT_{1B} bound G α _o conformation. The left arrow
234 indicates the movement of α N helix in G α _i structure relative to G α _o structure. The right arrow indicates
235 the movement of the last amino acid in the G α α 5 helix in G α _i structure relative to G α _o structure. **i**
236 Comparison of ICL2-G protein interactions in the 5-HT_{1F}-G_i and 5-HT_{1B}-mG_o structures.
237

238 **Materials and methods**

239 **Constructs of 5-HT_{1F} and G_{i1} heterotrimer**

240 The full-length gene sequences of wild type *human* 5-HT_{1F} receptors were subcloned into pFastbac
241 vector using ClonExpress II One Step Cloning Kit (Vazyme Biotech Co.,Ltd). An N-terminal thermally
242 stabilized BRIL¹ as a fusion protein to enhance receptor expression. N-terminal fusions of Flag tag and
243 8 \times His tag were used to facilitate protein purification. A dominant-negative G α _{i1} was generated by site-
244 directed mutagenesis to incorporate mutations S47N, G203A, A326S, and E245A that improves the
245 dominant-negative effect by weakening a salt bridge that helps to stabilize the interactions with the $\beta\gamma$
246 subunits². All the three G_i subunits, *human* DN_G α _{i1}, wild type G β 1, and G γ 2 were cloned into the
247 pFastBac vector separately. A no-tag single-chain antibody scFv16³ was cloned into pFastBac.
248

249 **Insect cell expression**

250 *Human* 5-HT_{1F}, DNG α _{i1}, G β 1, G γ 2, and scFv16 were co-expressed in *Trichoplusia ni* Hi5 insect cells
251 using the baculovirus method (Expression Systems). Cell cultures were grown in ESF 921 serum-free
252 medium (Expression Systems) to a density of 2-3 million cells per ml and then infected with four
253 separate baculoviruses at a suitable ratio. The culture was collected by centrifugation 48 h after infection
254 and cell pellets were stored at -80°C.
255

256

257 **Complex purification**

258 The complex was purified as previously described⁴. In brief, cell pellets were thawed in 20 mM HEPES
259 pH 7.4, 50 mM NaCl, 10 mM MgCl₂ supplemented with Protease Inhibitor Cocktail (Bimake). The 5-
260 HT_{1F} complex formation was initiated by addition of 10 µM lasmiditan (TargetMol), apyrase (25
261 mU/ml, Sigma). The suspension was incubated for 1 h at room temperature and the complex was
262 solubilized from the membrane using 0.5% (w/v) n-dodecyl-β-d-maltoside (DDM, Anatrace) and 0.1%
263 (w/v) cholestryl hemisuccinate (CHS, Anatrace) for 2 h at 4°C. Insoluble material was removed by
264 centrifugation at 65,000 g for 30 min and the solubilized complex was immobilized by batch binding to
265 Talon affinity resin. The resin was then packed and washed with 20 column volumes of 20 mM HEPES
266 pH 7.4, 100 mM NaCl, 5 mM MgCl₂, 0.01% (w/v) LMNG, and 0.002% (w/v) CHS, 10 µM lasmiditan.
267 Finally, the complex was eluted in buffer containing 300 mM imidazole and concentrated with an
268 Amicon Ultra Centrifugal Filter (MWCO 100 kDa). Complex was subjected to size-exclusion
269 chromatography on a Superdex 200 Increase 10/300 column (GE Healthcare) pre-equilibrated with 20
270 mM HEPES pH 7.4, 100 mM NaCl, 0.05% (w/v) digitonin, and 10 µM lasmiditan, to separate complex
271 from contaminants. Eluted fractions consisting of receptor and G_i-protein complex were pooled and
272 concentrated.
273

274 **NanoBiT G-protein recruitment assay**

275 Analysis of G-protein recruitment was performed by using a modified protocol of NanoBiT system
276 (Promega) assay described previously⁵. Receptor-LgBiT, G α_{i1} , SmBiT-fused G β_1 , and G γ_2 were co-
277 expressed in *Trichoplusia ni* Hi5 insect cells using the baculovirus method (Expression Systems). Cell
278 cultures were grown in ESF 921 serum-free medium (Expression Systems) to a density of 2-3 million
279 cells per ml and then infected with four separate baculoviruses at a suitable ratio. The culture was
280 collected by centrifugation 48 h after infection and cell pellets were collected with PBS. The cell
281 suspension was dispensed in a white 384-well plate at a volume of 40 µl per well and loaded with 5 µl
282 of 90 µM coelenterazine diluted in the assay buffer. Test compounds (5 µl) were added and incubated for
283 3-5 min at room temperature before measurement. Luminescence counts were normalized to the initial

284 count and fold-change signals over vehicle treatment were used to show G-protein binding response.

285

286 **Cryo-EM grid preparation and data collection**

287 For the preparation of cryo-EM grids, 3 μ L of the purified lasmiditan–5-HT_{1F}–G_i complex at
288 concentration ~15 mg/ml were applied onto a glow-discharged holey carbon grid (Quantifoil R1.2/1.3
289 Au 300). Grids were plunge-frozen in liquid ethane using Vitrobot Mark IV (Thermo Fisher Scientific).
290 Frozen grids were transferred to liquid nitrogen and stored for data acquisition. Cryo-EM imaging was
291 performed on a Titan Krios at 300 kV using Gatan K3 Summit detector in the Cryo-Electron Microscopy
292 Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (Shanghai,
293 China). The images were recorded at a dose rate of about 26.7 e⁻/Å²/s with a defocus ranging from -1.2
294 to -2.2 μ m. The total exposure time was 3 s and intermediate frames were recorded in 0.083 s intervals,
295 resulting in a total of 36 frames per micrograph.

296

297 **Image processing and map construction**

298 Dose-fractionated image stacks were aligned using MotionCor2.1⁶. Contrast transfer function (CTF)
299 parameters for each micrograph were estimated by Gctf⁷. Cryo-EM data processing was performed
300 using RELION-3.1⁸. Automated particle picking yielded 4,075,443 particles that were subjected to
301 reference-free 2D classification to discard poorly defined particles, producing 1,467,387 particles. The
302 map of 5-HT_{1B}–miniG_o complex (EMDB-4358)⁹ low-pass filtered to 60 Å was used as an initial
303 reference model for 3 rounds of 3D classification. Two subsets show the high-quality receptor density
304 was selected, producing 263,350 particles. The selected subsets was subsequently subjected to 3D
305 refinement, CTF refinement, Bayesian polishing, and DeepEMhancer¹⁰. The final refinement generated
306 a map with an indicated global resolution of 3.4 Å at a Fourier shell correlation of 0.143. Local
307 resolution was determined using the 3DFSC package with half maps as input maps.

308

309 **Model building and refinement**

310 The cryo-EM structure of 5-HT_{1B}-mG_o complex (PDB code: 6G79) and the G_i protein model (PDB
311 code: 6PT0) were used as the start for model rebuilding and refinement against the electron microscopy
312 map. The model was docked into the electron microscopy density map using Chimera¹¹, followed by
313 iterative manual adjustment and rebuilding in COOT¹² and ISOLDE¹³. Real space and reciprocal space
314 refinements were performed using Phenix programs¹⁴. The model statistics were validated using
315 MolProbity¹⁵. Structural figures were prepared in ChimeraX¹⁶.

316

317 **References**

- 318 1 Chun, E. *et al.* Fusion partner toolchest for the stabilization and crystallization of G protein-coupled
319 receptors. *Structure* **20**, 967-976, doi:10.1016/j.str.2012.04.010 (2012).
- 320 2 Liang, Y. L. *et al.* Dominant Negative G Proteins Enhance Formation and Purification of Agonist-GPCR-G
321 Protein Complexes for Structure Determination. *ACS Pharmacol Transl Sci* **1**, 12-20,
322 doi:10.1021/acsptsci.8b00017 (2018).
- 323 3 Maeda, S. *et al.* Development of an antibody fragment that stabilizes GPCR/G-protein complexes. *Nature
324 Communications* **9**, doi:ARTN 3712
325 10.1038/s41467-018-06002-w (2018).
- 326 4 Zhuang, Y. *et al.* Structural insights into the human D1 and D2 dopamine receptor signaling complexes. *Cell*
327 **184**, 931-942. e918 (2021).
- 328 5 Xu, P. *et al.* Structures of the human dopamine D3 receptor-Gi complexes. *Molecular Cell* (2021).
- 329 6 Zheng, S. Q. *et al.* MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron
330 microscopy. *Nat Methods* **14**, 331-332, doi:10.1038/nmeth.4193 (2017).
- 331 7 Zhang, K. Gctf: Real-time CTF determination and correction. *J Struct Biol* **193**, 1-12,
332 doi:10.1016/j.jsb.2015.11.003 (2016).
- 333 8 Scheres, S. H. W. RELION: Implementation of a Bayesian approach to cryo-EM structure determination. *J
334 Struct Biol* **180**, 519-530, doi:10.1016/j.jsb.2012.09.006 (2012).
- 335 9 Kato, H. E. *et al.* Conformational transitions of a neuropeptide Y receptor 1-Gi1 complex. *Nature*,
336 doi:10.1038/s41586-019-1337-6 (2019).
- 337 10 Sanchez-Garcia, R. *et al.* DeepEMhancer: a deep learning solution for cryo-EM volume post-processing.
338 *bioRxiv* (2020).
- 339 11 Pettersen, E. F. *et al.* UCSF Chimera--a visualization system for exploratory research and analysis. *J Comput
340 Chem* **25**, 1605-1612, doi:10.1002/jcc.20084 (2004).
- 341 12 Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. *Acta Crystallogr D Biol Crystallogr*
342 **60**, 2126-2132, doi:10.1107/S0907444904019158 (2004).
- 343 13 Croll, T. I. ISOLDE: a physically realistic environment for model building into low-resolution electron-density
344 maps. *Acta Crystallogr D Struct Biol* **74**, 519-530, doi:10.1107/S2059798318002425 (2018).
- 345 14 Adams, P. D. *et al.* PHENIX: a comprehensive Python-based system for macromolecular structure solution.
346 *Acta Crystallogr D Biol Crystallogr* **66**, 213-221, doi:10.1107/S0907444909052925 (2010).

347 15 Chen, V. B. *et al.* MolProbity: all-atom structure validation for macromolecular crystallography. *Acta*
348 *Crystallogr D* **66**, 12-21, doi:10.1107/S0907444909042073 (2010).

349 16 Pettersen, E. F. *et al.* UCSF ChimeraX: Structure visualization for researchers, educators, and developers.
350 *Protein Sci*; doi:10.1002/pro.3943 (2020).

351

352

Fig. 1

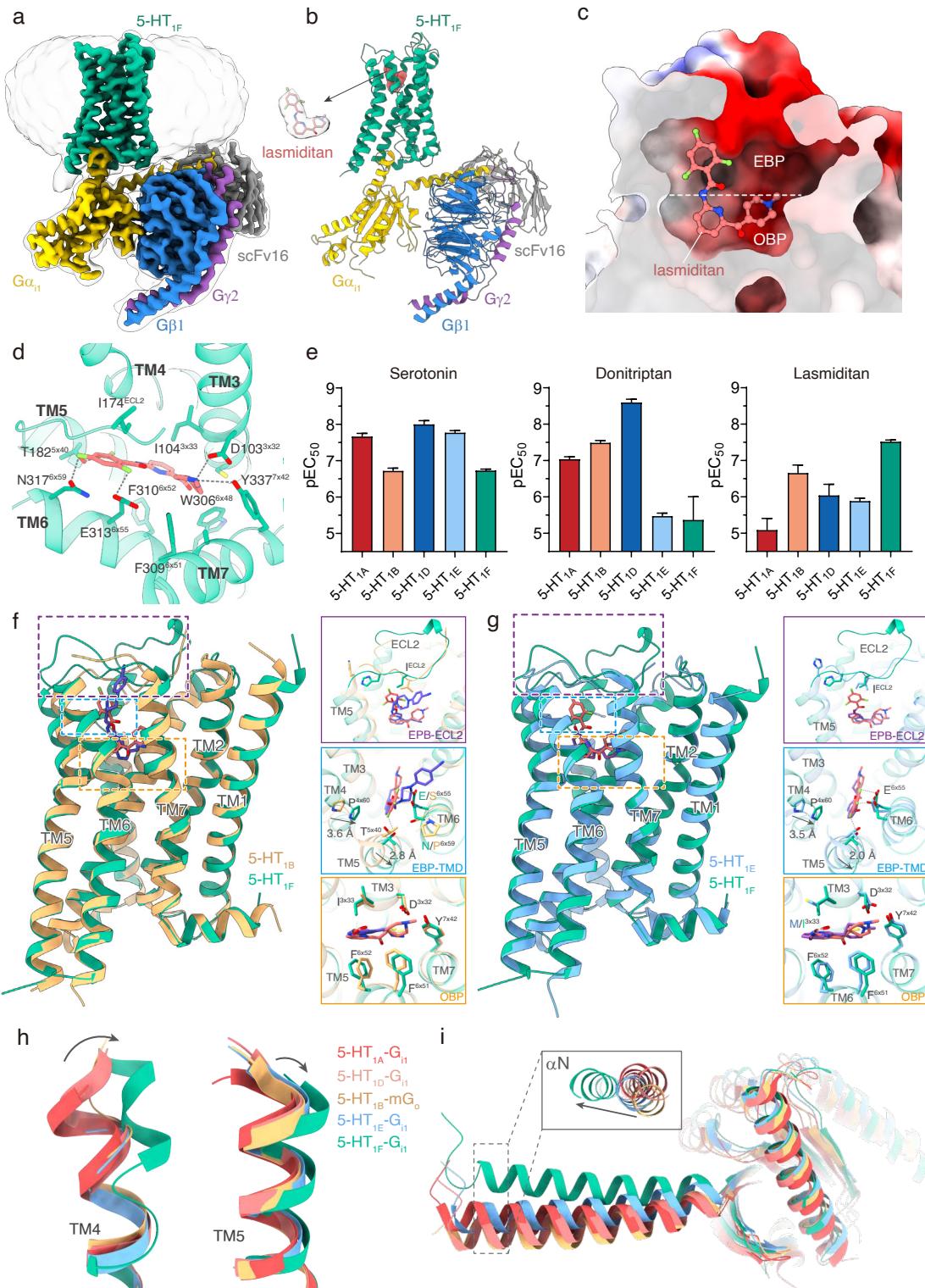


Fig. S1

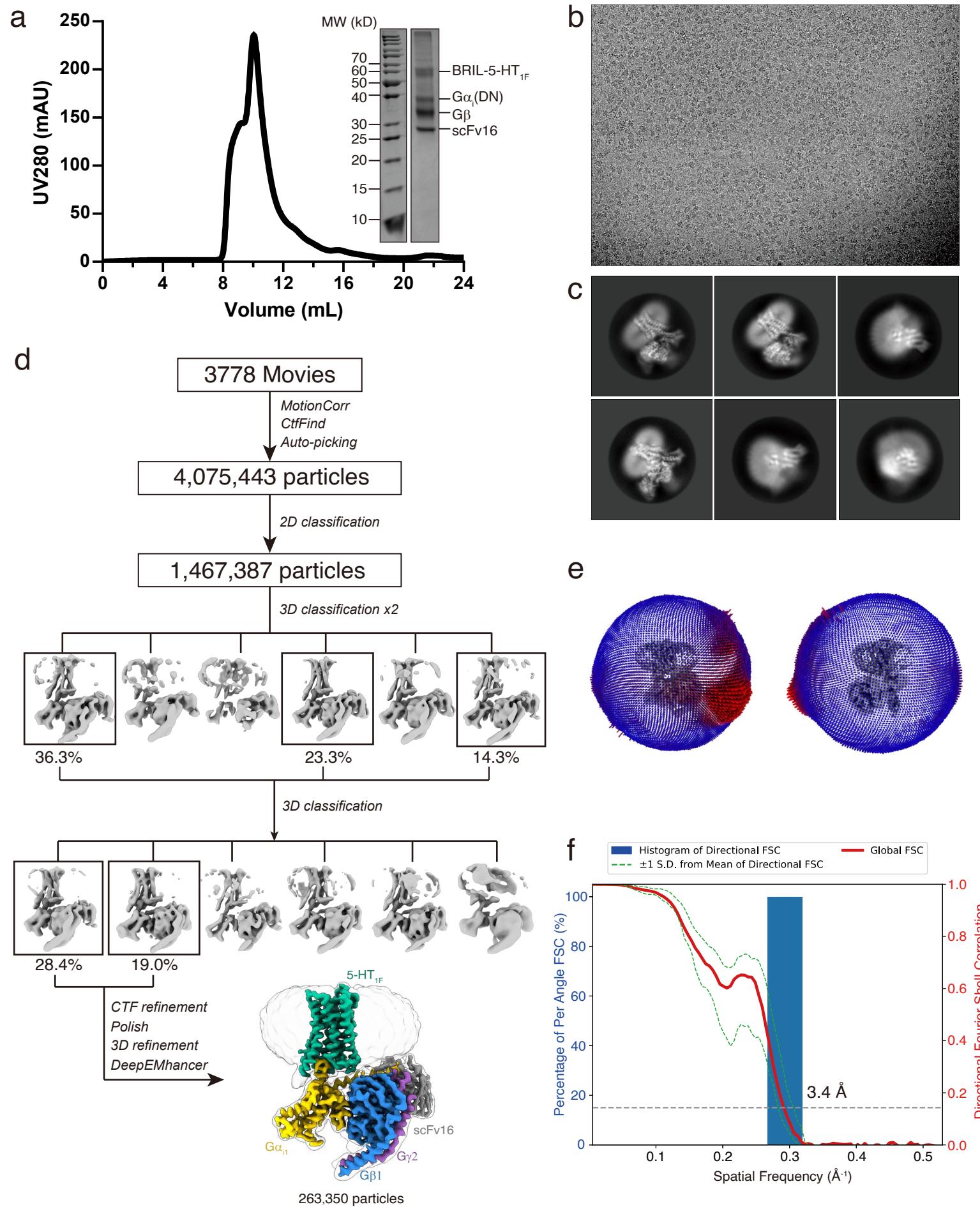


Fig. S2

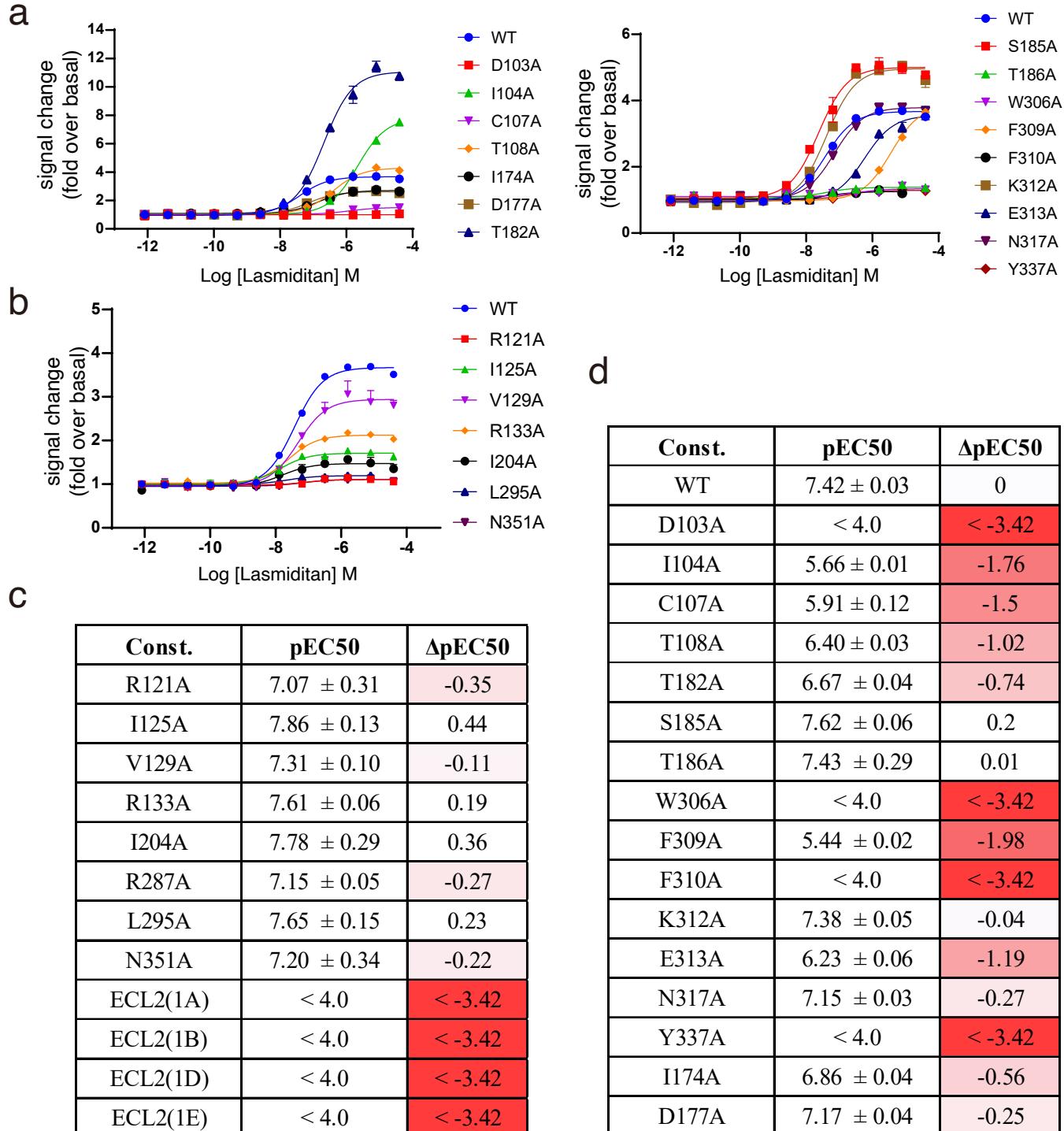


Fig. S3

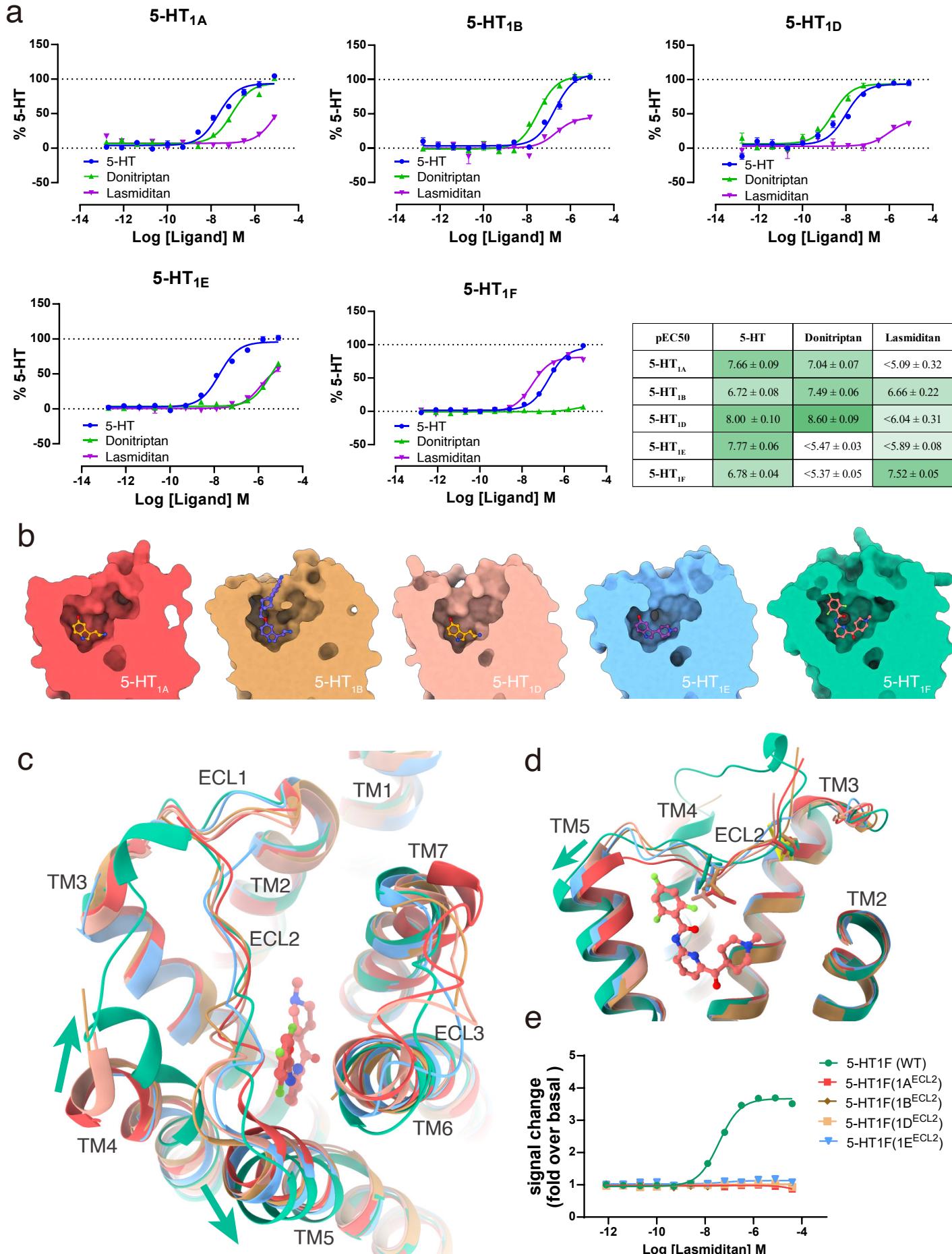
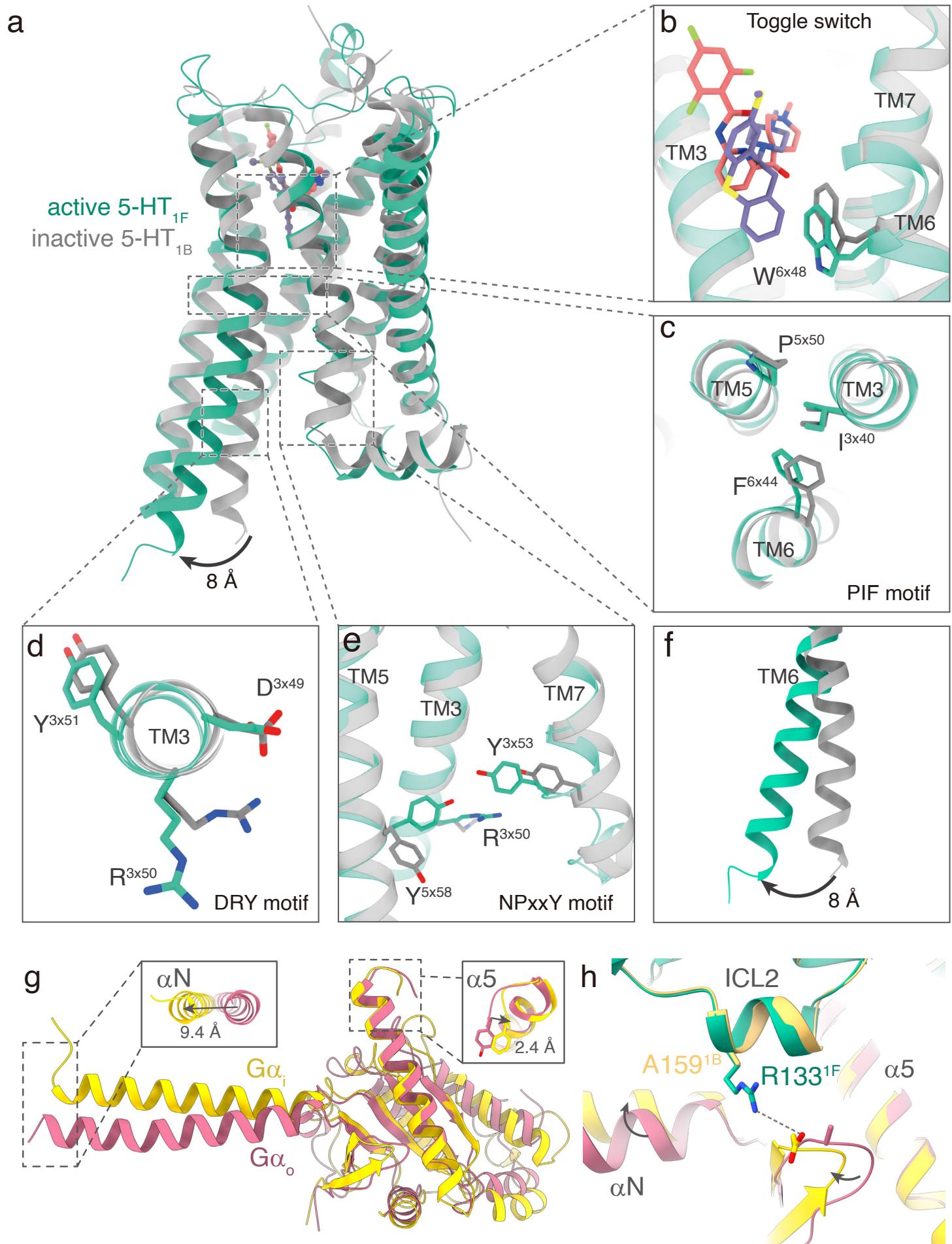



Fig. S4

