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Abstract

Developing accurate subcortical volumetric quantification tools is crucial for neurodevelopmental
studies, as they could reduce the need for challenging and time-consuming manual segmentation. In
this study the accuracy of two automated segmentation tools, FSL-FIRST (with three different
boundary correction settings) and FreeSurfer were compared against manual segmentation of
subcortical nuclei, including the hippocampus, amygdala, thalamus, putamen, globus pallidus,
caudate and nucleus accumbens, using volumetric and correlation analyses in 80 5-year-olds.

Both FSL-FIRST and FreeSurfer overestimated the volume on all structures except the caudate, and
the accuracy varied depending on the structure. Small structures such as the amygdala and nucleus
accumbens, which are visually difficult to distinguish, produced significant overestimations and
weaker correlations with all automated methods. Larger and more readily distinguishable structures
such as the caudate and putamen produced notably lower overestimations and stronger correlations.
Overall, the segmentations performed by FSL-FIRST’s Default pipeline were the most accurate,
while FreeSurfer’s results were weaker across the structures.

In line with prior studies, the accuracy of automated segmentation tools was imperfect with respect
to manually defined structures. However, apart from amygdala and nucleus accumbens, FSL-
FIRST’s agreement could be considered satisfactory (Pearson correlation > 0.74, Intraclass
correlation coefficient (ICC) > 0.68 and Dice Score coefficient (DSC) > 0.87) with highest values
for the striatal structures (putamen, globus pallidus and caudate) (Pearson correlation > 0.77, ICC >
0.87 and DSC > 0.88, respectively). Overall, automated segmentation tools do not always provide
satisfactory results, and careful visual inspection of the automated segmentations is strongly
advised.
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Introduction

The subcortical structures of the brain are responsible for numerous important functions and their
development can be affected by early life environmental exposures and experiences (Lee et al.,
2019; Pulli et al., 2019). Therefore, it is crucial to gather accurate information about them in
magnetic resonance imaging (MRI) studies conducted in paediatric populations. Accurate
segmentation of paediatric MR images is challenging, partly due to the variation in pre-processing
and segmentation protocols (Hashempour et al., 2019; Schoemaker et al., 2016). Several
segmentation protocols have been developed for adult brains, but they cannot be directly applied in
segmenting children brain since children MR images have different contrast and comparatively
lower resolution than adults’ images (Gousias et al., 2012; Moore et al., 2014; Morey et al., 2009).
Manual segmentation is currently considered the gold standard in volumetric segmentation. While it
is considered the most accurate method, it is highly time consuming and requires expertise for
adequate results. Furthermore, a major downside is the subjective approach in estimating the shapes
and sizes of the structures, which may cause reproducibility issues that may be even more
pronounced in larger samples.

Several software have been developed for automated segmentation of the brain. In this study, we
focused on two mainstream analysis pipelines. One is FSL-FIRST from the FMRIB software library
(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FIRST). FSL-FIRST is a segmentation tool that uses the
template based on manually segmented images to construct the shape of the automated
segmentation models. It utilises the Active Appearance Model (AAM) combined with a Bayesian
framework, which allows probabilistic relationships between voxel intensity and the shapes of
different structures (Patenaude et al., 2011). The other is FreeSurfer
(https://surfer.nmr.mgh.harvard.edu/), which is an open-source software suite for processing and
analysing MR images. FreeSurfer uses a five-stage volume-based stream for segmenting subcortical

structures. Final segmentation is based on a subject-independent probabilistic atlas and subject
specific values. Both FSL-FIRST and FreeSurfer use a training dataset for the basis of segmentation
and utilise probabilistic computing to determine the final shape and volume of each structure.
Although both FSL-FIRST and FreeSurfer were originally developed for adult brain imaging and
utilize adult templates, they have also been used in paediatric imaging (Barch et al., 2019;
Schoemaker et al., 2016).

Consistent overestimation of subcortical volumes regarding both FreeSurfer and FSL-FIRST
(Cherbuin et al., 2009; Doring et al., 2011) has been a common finding in previous studies. This
result has been documented in paediatric populations on the hippocampus and amygdala (Mulder et
al., 2014; Schoemaker et al., 2016). The study by Schoemaker et al. also found that the consistency
between manual segmentation and FreeSurfer was better than between manual segmentation and
FSL-FIRST in children aged between 6 and 11 years (Schoemaker et al., 2016). While the
reliability of these segmentation methods has been assessed in multiple studies in the medial
temporal lobe structures, there has been little research including the striatal structures.

The aim of this study was to compare the accuracy of FSL-FIRST and FreeSurfer against the gold
standard manually corrected segmentation on subcortical structures, including the hippocampus,
amygdala, thalamus, putamen, globus pallidus (GP), caudate and nucleus accumbens, in paediatric
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populations. Therefore, we compared the volumes of all the structures extracted from each
segmentation method. Furthermore, we analysed the shape of the segmentation models to determine
the areas where the automated segmentation tools overestimated or underestimated the size of the
structures and their borders. This was a feasibility study that critically assessed the extent to which
adult delineation software can be used to segment child brain images that have nearly adult-like
contrast pattern in T1-weighted images and are close in size to adult brain.

Material and Methods

This study was conducted in accordance with the Declaration of Helsinki, and it was approved by
the Joint Ethics Committee of the University of Turku and the Hospital District of Southwest
Finland (07.08.2018) §330, ETMK: 31/180/2011.

Subjects

MRI scans were acquired in children as part of the FinnBrain Birth Cohort Study

(www finnbrain.f1), which was started in 2011. The main goal of the cohort is to study the effects of
genes and environment on the development and mental health of children (Karlsson et al., 2018).
Initial recruitment of FinnBrain Birth Cohort Study was performed systematically in routine
ultrasound examinations during the 12" week of gestation. For the 5-year neuroimaging visit, we
primarily recruited participants that had a prior visit to neuropsychological measurements at ca. 5
years of age (n = 76). However, there were a few exceptions: three participants were included
without a neuropsychological visit, as they had an exposure to maternal prenatal synthetic
glucocorticoid treatment (recruited separately for a nested case-control sub study). The data
additionally included one participant that was enrolled for a pilot scan. The exclusion criteria for
this study were: 1) born before gestational week 35 (born before gestational week 32 in the
synthetic glucocorticoid treatment group), 2) developmental anomaly or abnormalities in senses or
communication (e.g. congenital heart disease, blindness, deafness), 3) known long-term medical
diagnosis (e.g. epilepsy, autism, attention deficit hyperactivity disorder (ADHD)), 4) ongoing
medical examinations or clinical follow up in a hospital (meaning there has been a referral from
primary care setting to experts), 5) child use of continuous, daily medication (including per oral
medications, topical creams and inhalants. One exception to this was desmopressin (®Mirinin)
medication, which was allowed), 6) history of head trauma (defined as concussion necessitating
clinical follow up in a health care setting or worse), 7) metallic ear tubes (to assure good-quality
scans), and routine MRI contraindications.

In this study we used a representative subsample of 80 T1-weighted brain images, which were all
visually inspected by a single expert rater (Kristian Lidauer). The sample included 34 girls and 46
boys aged between 5 and 5.5 years (mean age 5.34 years, SD = 0.06).

Study visit
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The subjects were recruited for the neuroimaging visits via phone calls by a research staff member.
On the first call the families were given general information about the study and the inclusion and
exclusion criteria were checked. The follow-up call was made to confirm the participation, and we
gave instructions to practice for the MRI visit at home. A member of the research staff made a
home visit before the scan to deliver earplugs and headphones, to give more detailed information
about the visit, and to answer any remaining questions. An added benefit of the home visit was the
chance to meet the participating child and that way start the familiarization with the research staff,
which helped the preparations on the scanning day. A written consent was acquired from both
parents before the MRI scan as well as verbal assent from the child.

Multiple methods were applied to reduce anxiety and make the visit feel as safe as possible (many
of the methods have been described in earlier studies (Greene, Black, & Schlaggar, 2016). The visit
was conducted in a child-friendly manner with a flexible timetable in the preparation before the
scan, and we did our best to accommodate in order to befit the child in cooperation with the family.
The participants were scanned awake. During the structural imaging the subjects were allowed to
watch a cartoon or a movie of their choice. A parent and a research staff member were present in
the scanner room throughout the scan. Everyone in the room had their hearing protected with
earplugs and headphones. The maximum scan time was 60 minutes, and the subjects were allowed
to stop the scan at any time. For a more detailed description of the study visits, please see (Pulli et
al., 2021) and (Copeland et al., 2021).

MRI acquisition

Participants were scanned using a Siemens Magnetom Skyra fit 3T with a 20-element head/neck
matrix coil. We used Generalized Autocalibrating Partially Parallel Acquisition (GRAPPA)
technique to accelerate image acquisition (parallel acquisition technique [PAT] factor of 2 was
used). For the purposes of the current study, we acquired a high resolution three-dimensional T1-
weighted magnetization prepared rapid acquisition gradient-echo sequence (MPRAGE) in sagittal
plane with the following sequence parameters: TR = 1900 ms, TE = 3.26 ms, TI = 900 ms, FA =9
degrees, voxel size = 1.0x1.0x1.0 mm3, FOV =256 mm. In addition, the max. 60-minute scanning
protocol included a T2 turbo spin echo (TSE), a 7-minute resting state functional MRI, and a DTI-
sequence. The T1 scans were planned as per recommendations of the FreeSurfer developers
(https://surfer.nmr.mgh.harvard.edu/fswiki/FreeSurferWiki?action=AttachFile&do=get&target=Fre
eSurfer Suggested Morphometry Protocols.pdf, at the time of writing).

Automated segmentation of the subcortical nuclei using FSL-FIRST

The automated segmentation of the subcortical structures was performed using FSL-FIRST 5.0.9
(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FIRST), a freely available automated segmentation tool
provided by the FMRIB software library. FSL-FIRST uses a training data-based approach
combined with a Bayesian probabilistic model to determine the most probable shape of the structure
given the intensities of the T1-image. More detailed information about the technical process can
found in an article by Patenaude et al. (Patenaude et al., 2011). In this study, we segmented the T1-
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images using FSL-FIRST with three different boundary correction settings. The FSL Default
method uses different options based on empirical observations for each different structure. The FSL
Fast option uses an FSL-FAST based tissue-type classification to determine the final shape of the
model. For the third boundary correction option we chose F'SL None, which does not use any
boundary correction settings. After running the pipelines, a voxel count was performed to estimate
the volumes produced by each different method.

Automated segmentation of the subcortical nuclei using FreeSurfer

The other automated segmentation software used in this study was FreeSurfer 6.0
(https://surfer.nmr.mgh.harvard.edu/), a freely available open software neuroimage analysis suite.
We used the recon-all pipeline with default settings consisting of several stages. In brief, the
process includes motion correcting and averaging of multiple T1 images, which is proceeded by
removal of non-brain tissue using a watershed/surface deformation procedure, after which the

images are transferred into a Talairach space, where the white matter and subcortical grey matter
are segmented by labelling each voxel based on the probabilities from a manually edited training
dataset and the intensities of the T1-image. The technical details of the FreeSurfer process are
described more in-depth in prior publications (Fischl et al., 2002, 2004; Segonne et al., 2004). The
volumes were extracted with “asegstats2table” command.

Manual segmentation of the subcortical nuclei

Manual segmentation was done by editing the models produced by FSL None. We visually
inspected the results of all three FSL-FIRST pipelines and chose F'SL None, because it required the
least amount of editing. The subcortical structures were segmented by a single expert rater (Kristian
Lidauer) using the software FslView (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FslView). The rater was
experienced in manual segmentation of infant brain MR images and templates (Acosta et al., 2020;
Hashempour et al., 2019) across a period of two years before starting the current study (2018-2020).

The use of initial estimates from FSL-FIRST significantly reduced the working time as compared to
full manual segmentation. It also made the work easier as the main task for the investigators was
correction of the borders. This process was guided by prior work for striatal structures (Perlaki et
al., 2017) and the thalamus (Owens-Walton et al., 2019; Power et al., 2015) as well as our prior
work for amygdala and hippocampus segmentation, which is provided in our recent open access
article (Hashempour et al., 2019).

The manual edits were performed on “initial estimates” that saved time. The edits were documented
on 40 randomly chosen subjects of the total 80 to highlight important areas for quality control. The
anatomical delineations that we incorporated into locally adapted procedures are in line with prior
work (de Macedo Rodrigues et al., 2015). Manual segmentations/edits were performed in a slice-
by-slice manner to carefully trace the correct anatomical border and reviewed in axial, coronal and
sagittal planes for a three-dimensional consistency of the segmentations. Finally, all segmentations
were checked for accuracy by senior scientist (Jetro J. Tuulari). The accuracy check was performed
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with fsleyes and entailed: 1) selection of a reference segmentation with all structures accurately
delineated, 2) opening three segmentations at a time and comparing them against the reference
segmentation, 3) checking bilateral structures from each one by browsing the structure in all 3D
planes and checking the borders with intermittent opening and closing the overlay to check the
consistency of the borders. This process took about 15 minutes per three segmentation (ca. 7 hours
in the final round of quality control).

A voxel count was then concluded with fslmaths to estimate the volumes of the manually
segmented structures.

Statistical analysis

All statistical analyses and plotting of the results were performed using R tools v.4.0
(https://www.r-project.org/) and R-Studio 1.3 (https://rstudio.com/). For the plots and following
analyses we used irr, ggplot2, gridExtra, grid and gtable libraries.

The volumetric difference between automated segmentation and manual segmentation was
calculated as the percentage using the following equation (Schoemaker et al., 2016): %VD = [(Va—
Vi)/Vi] * 100%, where V., is the automated volume and V, is the manually segmented volume. A
negative result indicates that the automated method underestimated the volume whereas a positive
value shows that the automated method overestimated the volume.

Pearson correlations were calculated to measure the strength of the association between manual
segmentation and the different automated techniques for each individual structure. A strong
correlation would indicate good consistency between methods. To estimate reproducibility between
different techniques and estimation bias, we computed intraclass correlation coefficients (ICC). We
used a two-way mixed effect model with absolute agreement and average measures (ICC type A, k)
as specified by McGraw and Wong (McGraw & Wong, 1996), which is a model not defined in the
commonly used Shrout and Fleiss convention (Shrout & Fleiss, 1979). A high value would confirm
a good reproducibility between two raters. There are no fixed guidelines on how to interpreter ICC
values, but in previous studies a coefficient of 0.70 has been considered as the minimum for
establishing an adequate reliability between two raters (Terwee et al., 2007).

To determine the spatial overlap of the structures we conducted Dice score coefficient (DSC)
analysis between manual and automated segmentation methods. The value of DSC ranges from 0,
indicating no spatial overlap between structures, to 1, indicating complete overlap (Zou et al.,
2004).

Results

Volumetric differences between FSL-FIRST pipelines

FSL None produced the highest volumes for the hippocampus, amygdala, caudate and nucleus
accumbens, and produced the same result as the FSL Default pipeline in the other three structures:
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the putamen, GP and the thalamus. The mean volumes for the left and right hippocampus were
4244.95 (SD = 575.67) and 4434.70 (SD = 531.64), respectively, and for the left and right
amygdala 1377.63 (SD = 232.26) and 1306.54 (SD = 228.94), respectively. The other pipelines,
FSL Default and FSL Fast, had considerably lower volumes for the hippocampus and amygdala and
yielded the exact same result for both structures. The mean volumes for the left and right
hippocampus were 3412.41 (SD = 441.28) and 3551.45 (SD = 415.35), respectively, and for the left
and right amygdala 1096.85 (SD = 203.91) and 1053.94 (SD = 194.49), respectively. FSL Default
and FSL Fast performed very similarly throughout and showed the exact same volumes also for the
caudate and the nucleus accumbens. The volumetric unit used is 1 voxel = 1 mm* The volumes for
each pipeline and structure are presented in Table 1. The identical results in some of the structures
are caused by utilizing the same boundary correction options.

The volume difference between FSL-FIRST and manual segmentation was highest with the FSL
None pipeline. FSL None overestimated volumes for the left and right hippocampus 41.15% (SD =
10.62) and 41.58% (SD = 12.75), respectively, and for the left and right amygdala 56.56% (SD =
23.88) and 57.75% (SD = 27.28), respectively. F'SL Default and FSL Fast overestimated volumes
less, for the left and right hippocampus 13.61% (SD =9.31) and 13.45% (SD = 10.27), respectively,
and for the left and right amygdala 24.65% (SD = 21.68) and 27.02% (SD = 22.55), respectively,
for both pipelines. FSL Fast underestimated volumes for the putamen, GP, thalamus and caudate,
while F'SL Default underestimated the caudate volume. FSL None overestimated the volume for
every structure. The percentage differences for each structure and each pipeline are presented in
Table 1.

FSL-FIRST volumetric correlation analysis

Pearson correlation coefficient between FSL None and manual segmentation for the left and right
hippocampus was r = 0.86 and r = 0.75, respectively, and r = 0.67 for both the left and right
amygdala. The correlation for FSL Default and FSL Fast pipelines for the left and right
hippocampus was r = 0.83 and r = 0.74, respectively, and for the left and right amygdala r = 0.61
and r = 0.66, respectively. For the other structures, all three pipelines had similar correlation values,
which are all presented in Table 2. A scatter plot illustration for all structures and methods is
provided in Figure 1.

Intraclass correlation coefficient (A, k) between FSL None and manual segmentation for the left and
right hippocampus was ICC = 0.34 and ICC = 0.28, respectively, and for the left and right amygdala
ICC =0.29 and ICC = 0.31, respectively. The correlations for FSL Default and FSL Fast pipelines
were notably higher than FSL None'’s for the left and right hippocampus, ICC = 0.75 and ICC =
0.68, respectively and for the left and right amygdala ICC = 0.55 and ICC = 0.58, respectively.
Intraclass correlation values for each structure and pipeline are presented in Table 2. FSL None had
the lowest intraclass correlations in almost all structures. F'SL Default and FSL Fast had similar
values except for the GP, where F'SL Fast produced notably lower correlations, ICC = 0.53 and ICC
= 0.46 for the left and right GP, respectively, compared to the FSL Defaults and F'SL None’s ICC =
0.82 and ICC = 0.85, for the left and right GP, respectively.
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Comparison of mean (standard deviation) volumes and percentage of volume difference between techniques. The volumetric unit
used is 1 voxel (=1 mm?3).

Manual

FSL-FIRST

FreeSurfer

Default

Fast

None

Volume (SD)
L-hippocampus
R-hippocampus
L-amygdala
R-amygdala
L-thalamus
R-thalamus
L-putamen
R-putamen
L-GP
R-GP
L-caudate
R-caudate
L-accumbens
R-accumbens
L-cau+acc
R-cau+acc

Combined mean
% volume diff. (SD)

L-hippocampus
R-hippocampus
L-amygdala
R-amygdala
L-thalamus
R-thalamus
L-putamen
R-putamen
L-GP

R-GP
L-caudate
R-caudate
L-accumbens
R-accumbens
L-cau+acc
R-cau+acc
Combined mean

3019.89 (444.14)
3150.08 (425.61)
892.89 (169.80)
845.36 (174.28)
7354.33 (723.20)
7274.78 (691.27)
4899.50 (508.16)
4924.40 (530.36)
164491 (159.43)
1664.09 (171.18)
4018.88 (428.88)
4222.35 (464.31)
523.96 (100.67)
428.64 (86.09)
4542.85 (469.18)
4650.99 (480.17)
3204.58

3412.41 (441.28)
3551.45 (415.35)
1096.85 (203.91)
1053.94 (194.49)
8194.63 (665.97)
8053.54 (653.88)
5152.74 (509.74)
5250.24 (541.97)
1775.01 (152.92)
1780.10 (165.80)
3870.68 (441.35)
4016.30 (511.14)
610.65 (128.79)
534.33 (96.44)
4481.33 (497.87)
4550.63 (531.08)
345378

13.61 (9.31)
13.45 (10.27)
24.65 (21.68)
27.02 (22.55)

11.73 (5.75)
10.93 (4.85)

5.24 (2.06)

6.69 (2.45)

8.08 (3.89)

7.16 (4.38)

-3.50 (7.15)

-4.89 (6.49)
17.58 (18.59)
26.13 (15.34)
-1.17 (7.26)
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Description of mean volumes obtained from each method as well as mean percentage of volume difference (% volume diff.)

between manual segmentation, FreeSurfer and different FSL-FIRST pipelines. L — left, R — right, SD — standard deviation, GP —
Globus pallidus, Cau+acc — combined volume of the caudate and nucleus accumbens, Combined mean — mean of all structures
combined.

FreeSurfer volumetric analysis

FreeSurfers volume for the left and right hippocampus was 4076.74 (SD = 384.19) and 4189.92
(SD = 393.52), respectively, and for the left and right amygdala 1540.28 (SD =214.03) and
1734.00 (SD = 193.02), respectively. FreeSurfer produced the higher volumes than any of the FSL-
FIRST pipelines in the amygdala, putamen and GP. Compared to manual segmentation, FreeSurfer
had higher volumes in all structures except for the caudate. Percentage difference between
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FreeSurfer and manual segmentation mean volume for the left and right hippocampus was 37.10%
(SD =20.12) and 34.55% (SD = 16.01), respectively, and for the left and right amygdala 77.02%
(SD =16.01) and 112.00% (SD = 40.58), respectively. Mean volumes and percentage differences
for all other structures are presented in Table 1.

Table 2
Comparison of correlation analysis between manual and automated segmentation techniques (FSL-FIRST, FreeSurfer).
FSL-FIRST FreeSurfer
Default Fast None

PCC
L-hippocampus 0.83 0.83 0.86 0.47
R-hippocampus 0.74 0.74 0.75 0.54
L-amygdala 0.61 0.61 0.67 0.34
R-amygdala 0.66 0.66 0.67 0.47
L-thalamus 0.86 0.87 0.86 0.60
R-thalamus 0.89 0.88 0.89 0.61
L-putamen 0.98 0.97 0.98 0.82
R-putamen 0.98 0.96 0.98 0.84
L-GP 0.94 0.89 0.94 0.49
R-GP 0.92 0.87 0.92 0.52
L-caudate 0.78 0.78 0.69 0.84
R-caudate 0.87 0.87 0.80 0.80
L-accumbens 0.69 0.69 0.77 0.44
R-accumbens 0.81 0.81 0.76 0.56
L-cau+acc 0.77 0.77 0.70 0.83
R-cau+acc 0.85 0.85 0.78 0.81
Combined mean 0.83 0.82 0.82 0.60

ICC (Ak)
L-hippocampus 0.75 0.75 0.34 0.20
R-hippocampus 0.68 0.68 0.28 0.23
L-amygdala 0.55 0.55 0.29 0.09
R-amygdala 0.58 0.58 0.31 0.07
L-thalamus 0.66 0.72 0.66 0.66
R-thalamus 0.69 0.70 0.69 0.66
L-putamen 0.93 0.95 0.93 0.84
R-putamen 0.90 0.92 0.90 0.82
L-GP 0.82 0.53 0.82 0.26
R-GP 0.85 0.46 0.85 0.39
L-caudate 0.85 0.85 0.37 0.90
R-caudate 0.89 0.89 0.53 0.85
L-accumbens 0.69 0.69 0.33 0.58
R-accumbens 0.65 0.65 0.31 0.27
L-cau+acc 0.87 0.87 0.31 0.91
R-cau+acc 0.91 0.91 0.43 0.90
Combined mean 0.75 0.71 0.54 0.49

Pearson correlation coefficients (PCC) and intraclass correlation coefficients (ICC) (A, k) computed between manual and
automatic segmentation volumes. L — left, R — right, GP — Globus Pallidus, Cau+acc — combined volume of the caudate and
nucleus accumbens, Combined mean — mean of all structures combined.

FreeSurfer volumetric correlation analysis

Pearson correlation coefficients between FreeSurfer and manual segmentation were lower than any
of the FSL-FIRST pipelines in all structures except the caudate, where the values were similar.
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Pearson correlation coefficient for the left and right hippocampus was r = 0.47 and r = 0.54,
respectively, and for the left and right amygdala r = 0.34 and r = 0.47, respectively. Intraclass
correlation coefficient (A, k) for the left and right hippocampus was ICC = 0.20 and ICC = 0.23,
respectively, and for the left and right amygdala ICC = 0.09 and ICC = 0.07, respectively.
FreeSurfer produced overall lower intraclass correlation values except for the caudate, where its
values were similar compared to FSL Default and FSL Fast pipelines, for the left and right caudate
ICC =0.90 and ICC = 0.85, respectively. Pearson and intraclass correlation coefficient values for
all structures are presented in Table 2.

Dice score coefficient analysis

Dice score coefficient values between manual segmentation and automated methods were good
across the board. FSL-FIRST provided overall slightly higher scores than FreeSurfer. F'SL Default
and FSL Fast produced the highest values for the left and right hippocampus, DSC = 0.87 (SD =
0.03) and DSC = 0.88 (SD = 0.03), respectively, for both pipelines. FreeSurfer yielded weaker
results for the left and right hippocampus, DSC = 0.76 (SD = 0.05) and DSC = 0.78 (SD = 0.04),
respectively. All automated techniques produced lower results for the amygdala than the
hippocampus. FSL Default and FSL Fast had the highest score regarding the left and right
amygdala, DSC = 0.73 (SD = 0.05) and DSC = 0.73 (SD = 0.06), respectively. FreeSurfers result
for the left and right amygdala was DSC = 0.62 (SD = 0.07) and DSC = 0.60 (SD = 0.07),
respectively. Dice score coefficient values for all structures and methods are presented in Table 3.

Table 3
Comparison of mean Dice score coefficient values between manual and automated segmentation techniques.
FSL-FIRST FreeSurfer
Default Fast None

DSC (SD)
L-hippocampus 0.87 (0.03) 0.87 (0.03) 0.83 (0.04) 0.76 (0.05)
R-hippocampus 0.88 (0.03) 0.88 (0.03) 0.83 (0.04) 0.78 (0.04)
L-amygdala 0.73 (0.05) 0.73 (0.05) 0.72 (0.05) 0.62 (0.07)
R-amygdala 0.73 (0.06) 0.73 (0.06) 0.71 (0.06) 0.60 (0.07)
L-thalamus 0.95 (0.02) 0.91 (0.01) 0.95 (0.02) 0.88 (0.02)
R-thalamus 0.95 (0.02) 0.91 (0.01) 0.95 (0.02) 0.89 (0.02)
L-putamen 0.98 (0.01) 0.95 (0.01) 0.98 (0.01) 0.86 (0.02)
R-putamen 0.98 (0.01) 0.95 (0.01) 0.98 (0.01) 0.85 (0.03)
L-GP 0.98 (0.01) 0.88 (0.03) 0.98 (0.01) 0.80 (0.05)
R-GP 0.97 (0.02) 0.87 (0.03) 0.97 (0.02) 0.79 (0.06)
L-caudate 0.88 (0.04) 0.88 (0.04) 0.86 (0.05) 0.87 (0.03)
R-caudate 0.90 (0.03) 0.89 (0.03) 0.90 (0.04) 0.87 (0.02)
L-accumbens 0.84 (0.05) 0.84 (0.05) 0.84 (0.05) 0.62 (0.07)
R-accumbens 0.84 (0.03) 0.84 (0.03) 0.83 (0.04) 0.65 (0.06)
L-cau+acc 0.89 (0.03) 0.89 (0.03) 0.90 (0.04) 0.87 (0.02)
R-cau+acc 0.84 (0.03) 0.84 (0.03) 0.83 (0.04) 0.65 (0.06)
Combined mean 0.89 0.87 0.88 0.77

Comparison of Dice score coefficient (DSC) mean values between manual and automated segmentation techniques. L — left,
R —right, SD — standard deviation, GP- Globus Pallidus, Cau+acc — score calculated with the combined area of the caudate and
the nucleus accumbens, Combined mean — mean score of all structures.


https://doi.org/10.1101/2021.05.28.445926
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.28.445926; this version posted August 3, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Analysis of edits that were performed during manual segmentation

The edits were documented on 40 randomly chosen subjects of the total 80 to describe the workflow
and also to highlight important areas for quality control. The hippocampus and amygdala
consistently required the most edits. The hippocampus had two typical errors that required major
manual corrections in most subjects: The lateral anterior superior border was overestimated in 35
and 36 subjects in the left and right hippocampus, respectively, and the inferior posterior area was
too large in 30 and 32 subjects in the left and right hippocampus, respectively. The amygdala
needed major edits on all subjects. The lateral superior border was overestimated in all subjects and
the anterior side was underestimated in 33 and 35 subjects, for the left and right amygdala,
respectively. The lateral inferior edge was too large in 21 on the left side and 18 on the right side.
The thalami were overall slightly too big and needed minor edits throughout the structure, most
notably on the medial posterior inferior edge, which was overestimated in 21 subjects for the left
and in 19 for the right thalamus. The caudate received most edits on the lateral posterior inferior
area, where the FSL None pipeline overestimated the border in 30 subjects for the left and in 26 for
the right caudate. Notably the superior medial area of the right caudate was too large in 17 subjects,
while on the left it was only overestimated in 3 subjects. All common edits are listed in Table 4.
The putamen, GP and nucleus accumbens were more accurately segmented by FSL-FIRST than by
FreeSurfer and only received minor and sporadic edits.

Table 4
Most common major edits to structures and areas using the FSL-None segmentations out of 40 randomly chosen
images.

Edited areas Number of subjects edited
Hippocampus Left Right
Lateral anterior superior area overestimated 35 36
Inferior posterior area overestimated 30 32
Uneven anterior end 12 13
Amygdala
Lateral superior posterior area overestimated 39 40
Anterior side underestimated 33 35
Lateral inferior edge overestimated 21 18
Thalamus
Medial posterior inferior edge overestimated 21 19
Anterior end overestimated 5 5
Posterior inferior edge overestimated 3 2
Caudate
Lateral posterior inferior area overestimated 30 26
Superior medial area overestimated 3 17
Superior medial anterior edge underestimated 8 7
Superior medial inferior edge underestimated 5 2
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Figure 1. Scatter plots of automated segmentation methods against manual segmentation.

Discussion

In this study we compared two automated segmentation tools, FSL-FIRST and FreeSurfer, against
manual segmentation, on subcortical areas in a paediatric population. We included in the
comparisons, FSL-FIRST’s three different pipelines, FSL Default, FSL Fast and FSL None, each of
which uses different boundary correction settings to determine the exact anatomical borders of
structures. Our goal was to compare the accuracy of these automated segmentation methods to
manual segmentation, which is currently considered the gold standard (Hashempour et al., 2019;
Morey et al., 2009), and has been validated as such in previous articles in paediatric as well as adult
populations (Schoemaker et al., 2016; Makowski et al., 2018). In our results, FSL Default and F'SL
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Fast pipelines performed overall more accurately than FSL None or FreeSurfer. We observed that
automated methods tend to overestimate volumes in most structures, as was expected based on
previous studies (Grimm et al., 2015; Hashempour et al., 2019; Nugent et al., 2013; Pipitone et al.,
2014). The overestimation was overall most prominent with FreeSurfer and FSL None, although
there were some notable exceptions in specific structures, such as the caudate, where FreeSurfer
slightly underestimated volumes. Excluding the F'SL None pipeline, FSL-FIRST produced generally
better agreement across the structures than FreeSurfer.

Hippocampus and amygdala

Both hippocampus and amygdala were overestimated by all automated segmentation methods in our
study. Most accurate were F'SL Default and FSL Fast pipelines with a moderate overestimation.
FSL None and FreeSurfer overestimated both structures greatly. With all methods, the
overestimation was more prominent in the amygdala than the hippocampus, which has also been
documented in previous articles in adults as well as paediatric populations (Akudjedu et al. 2018;
Doring et al., 2011; Pipitone et al., 2014; Schoemaker et al., 2016).

FSL Default and FSL Fast had overall better correlations with manual segmentation than FSL None
or FreeSurfer. For the hippocampus, all of FSL-FIRST’s pipelines exceeded the threshold
coefficient of r > 0.70, which has previously been suggested as the minimum for defining
reliability between measures (Terwee et al., 2007). The Pearson correlation coefficients for the
amygdala were lower, ranging from r = 0.61 to r = 0.67 with FSL-FIRST’s pipelines. FreeSurfers
correlations were significantly weaker than FSL-FIRST’s for both hippocampus and amygdala, with
amygdala having the lowest values. FSL Default and FSL Fast produced identical intraclass
correlation (A, k) values, while F'SL None and FreeSurfer showed very low to no correlation,
indicating a large estimation bias. Automated segmentation of the hippocampus tends to have better
consistency and reproducibility than the amygdala, which has been shown in multiple previous
studies (Morey et al., 2009; Nugent et al., 2013; Pardoe et al., 2009; Schoemaker et al., 2016) that
reported Pearson correlation coefficients ranging from r = 0.47 to r = 0.67 for the hippocampus and
r=0.24 to r = 0.35 for the amygdala using FSL-FIRST andr=0.67tor=0.82andr=0.45tor =
0.61 for the hippocampus and amygdala, respectively, using FreeSurfer. Similar results were shown
regarding the DSC with every automated method producing higher mean values for the
hippocampus (DSC > 0.76) than the amygdala (DSC > 0.60) in our results. The studies conducted
by Morey et al. and Pardoe et al. also included DSC analysis showing results of the hippocampus
producing higher spatial overlap than the amygdala with both FSL-FIRST and FreeSurfer, which is
in line with our findings.

We found that FreeSurfer performed poorer than FSL-FIRST overall. This was an unexpected
finding, as FreeSurfer has previously been reported to be overall more accurate and consistent than
FSL-FIRST for both the hippocampus and amygdala for paediatric and adult populations (Morey et
al., 2009; Schoemaker et al., 2016). Inter-rater variability may have contributed to these differences,
as it is one of the key challenges with manual segmentation. The differences can be more
pronounced in structures such as the amygdala, where the border around the structure may be
difficult to distinguish visually. In these instances, the rater must rely on general anatomical
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knowledge instead of the intensities of the MR image to determine the exact shape of the structure.
This is even more significant in paediatric MR images, since they have different contrast and
comparatively lower resolution than adult images (Gousias et al., 2012). Example segmentations of
the hippocampus and amygdala are presented in Figure 2.
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Figure 2. Transversal view of the segmentations of the hippocampus and amygdala. Yellow — hippocampus,
turquoise — amygdala.

Thalamus

The thalamus was most accurately segmented by FreeSurfer with only a slight overestimation. F'SL
Default and FSL None pipelines produced a larger overestimation while Fast underestimated the
volume. Previous studies have shown results of FreeSurfer producing larger or similar volumes
compared to FSL-FIRST (Hannoun, 2019; Makowski et al., 2018; Nass-schmidt et al., 2016). The
discrepancy in results might be partly caused by inter-rater variability between the researchers in
different studies. Despite having the most accurate mean volume, FreeSurfers Pearson correlation
coefficient was significantly worse, r = 0.60, than any of FSL-FIRST’s pipelines, ranging from r =
0.86 to r = 0.89, indicating a larger volumetric variation in individual segmentations. Intraclass
correlation (A, k) was on similar levels with coefficients ranging from ICC = 0.66 to ICC = 0.72,
with all methods, suggesting a low to moderate reproducibility rate with manual segmentation. One
previous study (Makowski et al., 2018) also showed weaker Pearson correlations for both
FreeSurfer and FSL-FIRST than our results, ranging from r = 0.37 to r = 0.44, but included a
significantly smaller sample size of 30 adults and that may explain some of the differences. The
DSC values were great for all methods in our study, DSC > 0.91 for FSL-FIRST and DSC > 0.88
for FreeSurfer. A previous study done by Hannoun et al., including subjects aged between 1 and 18
years, showed similar results with DSC = 0.86 for FSL-FIRST and DSC = 0.84 for FreeSurfer
(Hannoun et al., 2019). Segmentations of the thalamus are presented in Figure 3 and Figure 4.
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Figure 3.Transversal view of segmentations of the putamen, globus pallidus (GP), thalamus and caudate.
Putamen — pink, GP — blue, thalamus — green, caudate — light blue.

Putamen and globus pallidus

The putamen was segmented more accurately than the GP by all methods in this study. FSL Default
and F'SL None as well as FreeSurfer overestimated the putamen slightly, while Fast produced an
underestimation of a similar volume. Similar results were observed with the GP, but with a greater
magnitude. A previous study yielded similar results with FreeSurfer producing a higher
overestimations than FIRST and GP having a greater relative volume difference than the putamen
(Velasco-Annis et al., 2018). FSL-FIRST had excellent correlations for both putamen and GP,
ranging from r = 0.86 to r = 0.98 across all pipelines. FreeSurfer also had a strong correlation for
the putamen but performed significantly weaker for the GP with coefficients of r =0.49 and r =
0.52 for the left and right GP. Intraclass correlation coefficients (A, k) were high across the board,
with all methods yielding a coefficient of ICC > 0.80 for the putamen. For the GP, intraclass
correlations were significantly lower for FSL Fast and FreeSurfer, while FSL Default and FSL None
had great values of ICC > 0.80 for both structures, indicating a small estimation bias and good
reproducibility with manual segmentation. A 2017 published study showed FreeSurfer having
slightly better segmentation reproducibility for both the putamen and GP (Velasco-Annis et al.,
2018). Another study published in 2018 showed the opposite and indicated that for FSL-FIRST has
better consistency for the GP segmentation (Makowski et al., 2018). Direct comparison of these
results is not ideal since both studies were done on an adult population and included a sample size
of 30 or less. The DSC results in our study were great across the board with FSL-FIRST producing
excellent results of DSC > 0.90 for both the putamen and GP with all techniques. FreeSurfer’s
results were lower, but still satisfactory, DSC > 0.79. A previous study showed similar results with
FSL-FIRST (DSC > 0.90) producing slightly higher DSC values than FreeSurfer (DSC > 0.80) for
the putamen (Perlaki et al., 2017). However, the age of the subjects was not specified so the results
may not be adequately comparable with our findings. To our knowledge this is the first automated
segmentation method validation study done on a paediatric population including the putamen and
GP. Segmentations of the putamen and GP are presented in Figure 3.
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Caudate and nucleus accumbens

The caudate was overall segmented accurately whereas the nucleus accumbens was overestimated
by all methods in our study. The caudate was segmented accurately by all methods excluding F'SL
None, which overestimated both the caudate and the nucleus accumbens significantly. FreeSurfer
and FSL-FIRST’s other pipelines produced an accurate volume for the caudate with only a minor
underestimation. The nucleus accumbens was overestimated by all methods, with FSL None and
FreeSurfer yielding the highest volumes. Notable is also the more prominent overestimation of the
right nucleus accumbens, compared to the left, which was present in all four automated methods.
Previous research indicates a moderate overestimation of both the caudate and nucleus accumbens
with both FSL-FIRST and FreeSurfer (Perlaki et al., 2017; Velasco-Annis et al., 2018) with similar
volumetric values compared to our results.

Pearson correlations coefficients were strong across all methods for the caudate, ranging from r =
0.69 to r = 0.84, showing a strong relationship between manual segmentation and the automated
methods. The nucleus accumbens has similar coefficient values regarding FSL-FIRST, but
FreeSurfer produced significantly weaker correlations. The intraclass correlation coefficients (A, k)
showed that FSL Default and FSL Fast had superior reproducibility compared to FSL None and
FreeSurfer for the nucleus accumbens. The results are similar for the caudate with the exception of
FreeSurfer performing just as good as F'SL Default and FSL Fast, with ICC values ranging from
ICC =0.85 to ICC = 0.90, while FSL None’s coefficients were significantly lower at ICC = 0.37
and ICC = 0.53 for the left and right caudate, respectively. The consistency and reproducibility of
the caudate and nucleus accumbens have been documented in previous studies with slightly
different results compared to our study (Perlaki et al., 2017; Velasco-Annis et al., 2018). The article
by Velasco-Annis et al. suggested great reproducibility rates for the caudate with both FreeSurfer
and FSL-FIRST, with ICC values ranging from ICC = 0.86 to ICC = 0.93, producing similar values
for each method. The other study conducted by Perlaki et al. showed a slightly better reproducibility
with FreeSurfer regarding the caudate and nucleus accumbens. The study by Perlaki et al. also
showed results similar to ours regarding the DSC values with FSL-FIRST producing better slightly
better values than FreeSurfer for the caudate (Perlaki et al., 2017).

Overall, these variations in results may be explained with the difficult determination of the border
between the caudate and nucleus accumbens. The intensities of the MR image are visually
indistinguishable for these two structures, which may lead to inaccuracy in volumetric
quantification. To assess this problem, we combined the volumes of both structures to eliminate
possible errors caused by the similarity of intensities. Considering the relatively small volume of the
nucleus accumbens, the results for combined volume were similar to the results derived from the
caudate volumes. Segmentations of the caudate and nucleus accumbens are presented in Figure 4.
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Figure 4. Sagittal view of the thalamus, caudate and nucleus accumbens. Thalamus — green, caudate — light
blue, nucleus accumbens — orange.

Limitations

Our study presents a few limitations. Firstly, the sample size is limited due to the time-consuming
manual segmentation process but likely sufficient for building study-specific templates, which is a
potential goal for applied studies (Lee et al., 2019). Secondly, all manual segmentations were
performed by a single rater which might lead to some systematic biases in delineation of anatomical
borders in MR images. However, the expert review provides some safeguard for this. On a related
note, the manual segmentation was done by editing models produced by FSL None which might
potentially cause the manual segmentations to have a bias towards FSL-FIRST.

Conclusions

In this feasibility study, we determined the accuracy of two automated segmentation tools for T1-
weighted MR images, FSL-FIRST with three different boundary correction settings and FreeSurfer
against manual segmentation in a paediatric, 5-year-old population (N = 80). Overall, the automated
tools show promising accuracies, but the performance of all automated tools changed vastly based
on the structure. Small structures such as the amygdala and nucleus accumbens were inaccurately
segmented by all automated methods. On the other hand, the segmentation of the putamen and the
caudate were performed accurately with most of the automated methods and yielded relatively good
consistency and reproducibility with manual segmentation. The use of these automated
segmentation tools in neuroimaging studies still presents challenges, and careful visual inspection
of the automated segmentations is still strongly advised, since there are many factors, such as the
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quality of the used MR-images that might impact the accuracy of the segmentations. Future
research should investigate the benefits of using custom subcortical atlases to improve the accuracy

and reliability of automated segmentation methods especially for the amygdala and hippocampus
(Lee et al., 2019).
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