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Abstract 

Developing accurate subcortical volumetric quantification tools is crucial for neurodevelopmental 

studies, as they could reduce the need for challenging and time-consuming manual segmentation. In 

this study the accuracy of two automated segmentation tools, FSL-FIRST (with three different 

boundary correction settings) and FreeSurfer were compared against manual segmentation of 

subcortical nuclei, including the hippocampus, amygdala, thalamus, putamen, globus pallidus, 

caudate and nucleus accumbens, using volumetric and correlation analyses in 80 5-year-olds. 

Both FSL-FIRST and FreeSurfer overestimated the volume on all structures except the caudate, and 

the accuracy varied depending on the structure. Small structures such as the amygdala and nucleus 

accumbens, which are visually difficult to distinguish, produced significant overestimations and 

weaker correlations with all automated methods. Larger and more readily distinguishable structures 

such as the caudate and putamen produced notably lower overestimations and stronger correlations. 

Overall, the segmentations performed by FSL-FIRST’s Default pipeline were the most accurate, 
while FreeSurfer’s results were weaker across the structures. 

In line with prior studies, the accuracy of automated segmentation tools was imperfect with respect 

to manually defined structures. However, apart from amygdala and nucleus accumbens, FSL-

FIRST’s agreement could be considered satisfactory (Pearson correlation > 0.74, Intraclass 

correlation coefficient (ICC) > 0.68 and Dice Score coefficient (DSC)  > 0.87) with highest values 

for the striatal structures (putamen, globus pallidus and caudate) (Pearson correlation > 0.77,  ICC > 

0.87 and DSC > 0.88, respectively). Overall, automated segmentation tools do not always provide 

satisfactory results, and careful visual inspection of the automated segmentations is strongly 

advised.       
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Introduction 

The subcortical structures of the brain are responsible for numerous important functions and their 

development can be affected by early life environmental exposures and experiences (Lee et al., 

2019; Pulli et al., 2019). Therefore, it is crucial to gather accurate information about them in 

magnetic resonance imaging (MRI) studies conducted in paediatric populations. Accurate 

segmentation of paediatric MR images is challenging, partly due to the variation in pre-processing 

and segmentation protocols (Hashempour et al., 2019; Schoemaker et al., 2016). Several 

segmentation protocols have been developed for adult brains, but they cannot be directly applied in 

segmenting children brain since children MR images have different contrast and comparatively 

lower resolution than adults’ images (Gousias et al., 2012; Moore et al., 2014; Morey et al., 2009). 

Manual segmentation is currently considered the gold standard in volumetric segmentation. While it 

is considered the most accurate method, it is highly time consuming and requires expertise for 

adequate results. Furthermore, a major downside is the subjective approach in estimating the shapes 

and sizes of the structures, which may cause reproducibility issues that may be even more 

pronounced in larger samples.  

Several software have been developed for automated segmentation of the brain. In this study, we 

focused on two mainstream analysis pipelines. One is FSL-FIRST from the FMRIB software library 

(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FIRST). FSL-FIRST is a segmentation tool that uses the 

template based on manually segmented images to construct the shape of the automated 

segmentation models. It utilises the Active Appearance Model (AAM) combined with a Bayesian 

framework, which allows probabilistic relationships between voxel intensity and the shapes of 

different structures (Patenaude et al., 2011). The other is FreeSurfer 

(https://surfer.nmr.mgh.harvard.edu/), which is an open-source software suite for processing and 

analysing MR images. FreeSurfer uses a five-stage volume-based stream for segmenting subcortical 

structures. Final segmentation is based on a subject-independent probabilistic atlas and subject 

specific values. Both FSL-FIRST and FreeSurfer use a training dataset for the basis of segmentation 

and utilise probabilistic computing to determine the final shape and volume of each structure. 

Although both FSL-FIRST and FreeSurfer were originally developed for adult brain imaging and 

utilize adult templates, they have also been used in paediatric imaging (Barch et al., 2019; 

Schoemaker et al., 2016). 

Consistent overestimation of subcortical volumes regarding both FreeSurfer and FSL-FIRST 

(Cherbuin et al., 2009; Doring et al., 2011) has been a common finding in previous studies. This 

result has been documented in paediatric populations on the hippocampus and amygdala (Mulder et 

al., 2014; Schoemaker et al., 2016). The study by Schoemaker et al. also found that the consistency 

between manual segmentation and FreeSurfer was better than between manual segmentation and 

FSL-FIRST in children aged between 6 and 11 years (Schoemaker et al., 2016). While the 

reliability of these segmentation methods has been assessed in multiple studies in the medial 

temporal lobe structures, there has been little research including the striatal structures.  

The aim of this study was to compare the accuracy of FSL-FIRST and FreeSurfer against the gold 

standard manually corrected segmentation on subcortical structures, including the hippocampus, 

amygdala, thalamus, putamen, globus pallidus (GP), caudate and nucleus accumbens, in paediatric 
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populations. Therefore, we compared the volumes of all the structures extracted from each 

segmentation method. Furthermore, we analysed the shape of the segmentation models to determine 

the areas where the automated segmentation tools overestimated or underestimated the size of the 

structures and their borders. This was a feasibility study that critically assessed the extent to which 

adult delineation software can be used to segment child brain images that have nearly adult-like 

contrast pattern in T1-weighted images and are close in size to adult brain. 

 

Material and Methods 

This study was conducted in accordance with the Declaration of Helsinki, and it was approved by 

the Joint Ethics Committee of the University of Turku and the Hospital District of Southwest 

Finland (07.08.2018) §330, ETMK: 31/180/2011. 

 

Subjects 

MRI scans were acquired in children as part of the FinnBrain Birth Cohort Study 

(www.finnbrain.fi), which was started in 2011. The main goal of the cohort is to study the effects of 

genes and environment on the development and mental health of children (Karlsson et al., 2018). 

Initial recruitment of FinnBrain Birth Cohort Study was performed systematically in routine 

ultrasound examinations during the 12th week of gestation. For the 5-year neuroimaging visit, we 

primarily recruited participants that had a prior visit to neuropsychological measurements at ca. 5 

years of age (n = 76). However, there were a few exceptions: three participants were included 

without a neuropsychological visit, as they had an exposure to maternal prenatal synthetic 

glucocorticoid treatment (recruited separately for a nested case-control sub study). The data 

additionally included one participant that was enrolled for a pilot scan. The exclusion criteria for 

this study were: 1) born before gestational week 35 (born before gestational week 32 in the 

synthetic glucocorticoid treatment group), 2) developmental anomaly or abnormalities in senses or 

communication (e.g. congenital heart disease, blindness, deafness), 3) known long-term medical 

diagnosis (e.g. epilepsy, autism, attention deficit hyperactivity disorder (ADHD)), 4) ongoing 

medical examinations or clinical follow up in a hospital (meaning there has been a referral from 

primary care setting to experts), 5) child use of continuous, daily medication (including per oral 

medications, topical creams and inhalants. One exception to this was desmopressin (®Mirinin) 

medication, which was allowed), 6) history of head trauma (defined as concussion necessitating 

clinical follow up in a health care setting or worse), 7) metallic ear tubes (to assure good-quality 

scans), and routine MRI contraindications.  

In this study we used a representative subsample of 80 T1-weighted brain images, which were all 

visually inspected by a single expert rater (Kristian Lidauer). The sample included 34 girls and 46 

boys aged between 5 and 5.5 years (mean age 5.34 years, SD = 0.06).   

 

Study visit 
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The subjects were recruited for the neuroimaging visits via phone calls by a research staff member. 

On the first call the families were given general information about the study and the inclusion and 

exclusion criteria were checked. The follow-up call was made to confirm the participation, and we 

gave instructions to practice for the MRI visit at home. A member of the research staff made a 

home visit before the scan to deliver earplugs and headphones, to give more detailed information 

about the visit, and to answer any remaining questions. An added benefit of the home visit was the 

chance to meet the participating child and that way start the familiarization with the research staff, 

which helped the preparations on the scanning day. A written consent was acquired from both 

parents before the MRI scan as well as verbal assent from the child. 

Multiple methods were applied to reduce anxiety and make the visit feel as safe as possible (many 

of the methods have been described in earlier studies (Greene, Black, & Schlaggar, 2016). The visit 

was conducted in a child-friendly manner with a flexible timetable in the preparation before the 

scan, and we did our best to accommodate in order to befit the child in cooperation with the family. 

The participants were scanned awake. During the structural imaging the subjects were allowed to 

watch a cartoon or a movie of their choice. A parent and a research staff member were present in 

the scanner room throughout the scan. Everyone in the room had their hearing protected with 

earplugs and headphones. The maximum scan time was 60 minutes, and the subjects were allowed 

to stop the scan at any time. For a more detailed description of the study visits, please see (Pulli et 

al., 2021) and (Copeland et al., 2021). 

 

MRI acquisition 

Participants were scanned using a Siemens Magnetom Skyra fit 3T with a 20-element head/neck 

matrix coil. We used Generalized Autocalibrating Partially Parallel Acquisition (GRAPPA) 

technique to accelerate image acquisition (parallel acquisition technique [PAT] factor of 2 was 

used). For the purposes of the current study, we acquired a high resolution three-dimensional T1-

weighted magnetization prepared rapid acquisition gradient-echo sequence (MPRAGE) in sagittal 

plane with the following sequence parameters: TR = 1900 ms, TE = 3.26 ms, TI = 900 ms, FA = 9 

degrees, voxel size = 1.0x1.0x1.0 mm³, FOV = 256 mm. In addition, the max. 60-minute scanning 

protocol included a T2 turbo spin echo (TSE), a 7-minute resting state functional MRI, and a DTI-

sequence. The T1 scans were planned as per recommendations of the FreeSurfer developers 

(https://surfer.nmr.mgh.harvard.edu/fswiki/FreeSurferWiki?action=AttachFile&do=get&target=Fre

eSurfer_Suggested_Morphometry_Protocols.pdf, at the time of writing). 

 

Automated segmentation of the subcortical nuclei using FSL-FIRST 

The automated segmentation of the subcortical structures was performed using FSL-FIRST 5.0.9 

(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FIRST), a freely available automated segmentation tool 

provided by the FMRIB software library. FSL-FIRST uses a training data-based approach 

combined with a Bayesian probabilistic model to determine the most probable shape of the structure 

given the intensities of the T1-image. More detailed information about the technical process can 

found in an article by Patenaude et al. (Patenaude et al., 2011). In this study, we segmented the T1-
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images using FSL-FIRST with three different boundary correction settings. The FSL Default 

method uses different options based on empirical observations for each different structure. The FSL 

Fast option uses an FSL-FAST based tissue-type classification to determine the final shape of the 

model. For the third boundary correction option we chose FSL None, which does not use any 

boundary correction settings. After running the pipelines, a voxel count was performed to estimate 

the volumes produced by each different method. 

 

Automated segmentation of the subcortical nuclei using FreeSurfer 

The other automated segmentation software used in this study was FreeSurfer 6.0 

(https://surfer.nmr.mgh.harvard.edu/), a freely available open software neuroimage analysis suite. 

We used the recon-all pipeline with default settings consisting of several stages. In brief, the 

process includes motion correcting and averaging of multiple T1 images, which is proceeded by 

removal of non-brain tissue using a watershed/surface deformation procedure, after which the 

images are transferred into a Talairach space, where the white matter and subcortical grey matter 

are segmented by labelling each voxel based on the probabilities from a manually edited training 

dataset and the intensities of the T1-image. The technical details of the FreeSurfer process are 

described more in-depth in prior publications (Fischl et al., 2002, 2004; Segonne et al., 2004). The 

volumes were extracted with <asegstats2table= command. 

 

Manual segmentation of the subcortical nuclei 

Manual segmentation was done by editing the models produced by FSL None. We visually 

inspected the results of all three FSL-FIRST pipelines and chose FSL None, because it required the 

least amount of editing. The subcortical structures were segmented by a single expert rater (Kristian 

Lidauer) using the software FslView (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FslView). The rater was 

experienced in manual segmentation of infant brain MR images and templates (Acosta et al., 2020; 

Hashempour et al., 2019) across a period of two years before starting the current study (2018-2020). 

The use of initial estimates from FSL-FIRST significantly reduced the working time as compared to 

full manual segmentation. It also made the work easier as the main task for the investigators was 

correction of the borders. This process was guided by prior work for striatal structures (Perlaki et 

al., 2017) and the thalamus (Owens-Walton et al., 2019; Power et al., 2015) as well as our prior 

work for amygdala and hippocampus segmentation, which is provided in our recent open access 

article (Hashempour et al., 2019). 

The manual edits were performed on <initial estimates= that saved time. The edits were documented 

on 40 randomly chosen subjects of the total 80 to highlight important areas for quality control. The 

anatomical delineations that we incorporated into locally adapted procedures are in line with prior 

work (de Macedo Rodrigues et al., 2015). Manual segmentations/edits were performed in a slice-

by-slice manner to carefully trace the correct anatomical border and reviewed in axial, coronal and 

sagittal planes for a three-dimensional consistency of the segmentations. Finally, all segmentations 

were checked for accuracy by senior scientist (Jetro J. Tuulari). The accuracy check was performed 
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with fsleyes and entailed: 1) selection of a reference segmentation with all structures accurately 

delineated, 2) opening three segmentations at a time and comparing them against the reference 

segmentation, 3) checking bilateral structures from each one by browsing the structure in all 3D 

planes and checking the borders with intermittent opening and closing the overlay to check the 

consistency of the borders. This process took about 15 minutes per three segmentation (ca. 7 hours 

in the final round of quality control). 

A voxel count was then concluded with fslmaths to estimate the volumes of the manually 

segmented structures.  

 

Statistical analysis 

All statistical analyses and plotting of the results were performed using R tools v.4.0 

(https://www.r-project.org/) and R-Studio 1.3 (https://rstudio.com/). For the plots and following 

analyses we used irr, ggplot2, gridExtra, grid and gtable libraries. 

The volumetric difference between automated segmentation and manual segmentation was 

calculated as the percentage using the following equation (Schoemaker et al., 2016): %VD = [(Va – 

Vm)/Vm] ∗ 100%, where Va is the automated volume and Vm is the manually segmented volume. A 

negative result indicates that the automated method underestimated the volume whereas a positive 

value shows that the automated method overestimated the volume. 

Pearson correlations were calculated to measure the strength of the association between manual 

segmentation and the different automated techniques for each individual structure. A strong 

correlation would indicate good consistency between methods. To estimate reproducibility between 

different techniques and estimation bias, we computed intraclass correlation coefficients (ICC). We 

used a two-way mixed effect model with absolute agreement and average measures (ICC type A, k) 

as specified by McGraw and Wong (McGraw & Wong, 1996), which is a model not defined in the 

commonly used Shrout and Fleiss convention (Shrout & Fleiss, 1979). A high value would confirm 

a good reproducibility between two raters. There are no fixed guidelines on how to interpreter ICC 

values, but in previous studies a coefficient of 0.70 has been considered as the minimum for 

establishing an adequate reliability between two raters (Terwee et al., 2007).  

To determine the spatial overlap of the structures we conducted Dice score coefficient (DSC) 

analysis between manual and automated segmentation methods. The value of DSC ranges from 0, 

indicating no spatial overlap between structures, to 1, indicating complete overlap (Zou et al., 

2004). 

 

Results 

Volumetric differences between FSL-FIRST pipelines 

FSL None produced the highest volumes for the hippocampus, amygdala, caudate and nucleus 

accumbens, and produced the same result as the FSL Default pipeline in the other three structures: 
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the putamen, GP and the thalamus. The mean volumes for the left and right hippocampus were 

4244.95 (SD = 575.67) and 4434.70 (SD = 531.64), respectively, and for the left and right 

amygdala 1377.63 (SD = 232.26) and 1306.54 (SD = 228.94), respectively. The other pipelines, 

FSL Default and FSL Fast, had considerably lower volumes for the hippocampus and amygdala and 

yielded the exact same result for both structures. The mean volumes for the left and right 

hippocampus were 3412.41 (SD = 441.28) and 3551.45 (SD = 415.35), respectively, and for the left 

and right amygdala 1096.85 (SD = 203.91) and 1053.94 (SD = 194.49), respectively. FSL Default 

and FSL Fast performed very similarly throughout and showed the exact same volumes also for the 

caudate and the nucleus accumbens. The volumetric unit used is 1 voxel = 1 mm3. The volumes for 

each pipeline and structure are presented in Table 1. The identical results in some of the structures 

are caused by utilizing the same boundary correction options. 

The volume difference between FSL-FIRST and manual segmentation was highest with the FSL 

None pipeline. FSL None overestimated volumes for the left and right hippocampus 41.15% (SD = 

10.62) and 41.58% (SD = 12.75), respectively, and for the left and right amygdala 56.56% (SD = 

23.88) and 57.75% (SD = 27.28), respectively. FSL Default and FSL Fast overestimated volumes 

less, for the left and right hippocampus 13.61% (SD = 9.31) and 13.45% (SD = 10.27), respectively, 

and for the left and right amygdala 24.65% (SD = 21.68) and 27.02% (SD = 22.55), respectively, 

for both pipelines. FSL Fast underestimated volumes for the putamen, GP, thalamus and caudate, 

while FSL Default underestimated the caudate volume. FSL None overestimated the volume for 

every structure. The percentage differences for each structure and each pipeline are presented in 

Table 1. 

 

FSL-FIRST volumetric correlation analysis 

Pearson correlation coefficient between FSL None and manual segmentation for the left and right 

hippocampus was r = 0.86 and r = 0.75, respectively, and r = 0.67  for both the left and right 

amygdala. The correlation for FSL Default and FSL Fast pipelines for the left and right 

hippocampus was r = 0.83 and r = 0.74, respectively, and for the left and right amygdala r = 0.61 

and r = 0.66, respectively. For the other structures, all three pipelines had similar correlation values, 

which are all presented in Table 2. A scatter plot illustration for all structures and methods is 

provided in Figure 1. 

Intraclass correlation coefficient (A, k) between FSL None and manual segmentation for the left and 

right hippocampus was ICC = 0.34 and ICC = 0.28, respectively, and for the left and right amygdala 

ICC = 0.29 and ICC = 0.31, respectively. The correlations for FSL Default and FSL Fast pipelines 

were notably higher than FSL None’s for the left and right hippocampus, ICC = 0.75 and ICC = 

0.68, respectively and for the left and right amygdala ICC = 0.55 and ICC = 0.58, respectively. 

Intraclass correlation values for each structure and pipeline are presented in Table 2. FSL None had 

the lowest intraclass correlations in almost all structures. FSL Default and FSL Fast had similar 

values except for the GP, where FSL Fast produced notably lower correlations, ICC = 0.53 and ICC 

= 0.46 for the left and right GP, respectively, compared to the FSL Defaults and FSL None’s ICC = 

0.82 and ICC = 0.85, for the left and right GP, respectively. 
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Table 1 
Comparison of mean (standard deviation) volumes and percentage of volume difference between techniques. The volumetric unit 

used is 1 voxel ( = 1 mm³). 

  Manual  FSL-FIRST  FreeSurfer  

  Default Fast None  

Volume (SD) 

  L-hippocampus 3019.89 (444.14) 3412.41 (441.28) 3412.41 (441.28) 4244.95 (575.67) 4076.74 (384.19) 

  R-hippocampus 3150.08 (425.61) 3551.45 (415.35) 3551.45 (415.35) 4434.70 (531.64) 4189.92 (393.52) 

  L-amygdala 892.89 (169.80) 1096.85 (203.91) 1096.85 (203.91) 1377.63 (232.26) 1540.28 (214.03) 

  R-amygdala 845.36 (174.28) 1053.94 (194.49) 1053.94 (194.49) 1306.54 (228.94) 1734.00 (193.02) 

  L-thalamus 7354.33 (723.20) 8194.63 (665.97) 6713.21 (547.86) 8194.63 (665.97) 7751.61 (565.98) 

  R-thalamus 7274.78 (691.27) 8053.54 (653.88) 6612.65 (528.49) 8053.54 (653.88) 7714.82 (577.31) 

  L-putamen 4899.50 (508.16) 5152.74 (509.74) 4695.56 (482.28) 5152.74 (509.74) 5178.54 (570.61) 

  R-putamen 4924.40 (530.36) 5250.24 (541.97) 4656.94 (501.47) 5250.24 (541.97) 5283.99 (580.31) 

  L-GP 1644.91 (159.43) 1775.01 (152.92) 1377.19 (150.87) 1775.01 (152.92) 2064.27 (241.91) 

  R-GP 1664.09 (171.18) 1780.10 (165.80) 1348.86 (153.55) 1780.10 (165.80) 1938.86 (188.74) 

  L-caudate 4018.88 (428.88) 3870.68 (441.35) 3870.68 (441.35) 5014.68 (577.25) 3931.77 (426.83) 

  R-caudate 4222.35 (464.31) 4016.30 (511.14) 4016.30 (511.14) 5059.09 (643.09) 4052.67 (419.55) 

  L-accumbens 523.96 (100.67) 610.65 (128.79) 610.65 (128.79) 804.31 (136.64) 568.37 (114.45) 

  R-accumbens 428.64 (86.09) 534.33 (96.44) 534.33 (96.44) 675.84 (117.69) 635.72 (97.09) 

  L-cau+acc 4542.85 (469.18) 4481.33 (497.87) 4481.33 (497.87) 5818.99 (641.97) 4500.13 (484.39) 

  R-cau+acc 4650.99 (480.17) 4550.63 (531.08) 4550.63 (531.08) 5734.93 (659.63) 4688.39 (472.09) 

Combined mean 3204.58 3453.78 3110.79 3794.57 3618.68 

% volume diff. (SD) 

  L-hippocampus  13.61 (9.31) 13.61 (9.31) 41.15 (10.62) 37.10 (20.12) 

  R-hippocampus  13.45 (10.27) 13.45 (10.27) 41.58 (12.75) 34.55 (16.01) 

  L-amygdala  24.65 (21.68) 24.65 (21.68) 56.56 (23.88) 77.02 (34.11) 

  R-amygdala  27.02 (22.55) 27.02 (22.55) 57.75 (27.28) 112.00 (40.58) 

  L-thalamus  11.73 (5.75) -8.49 (4.43) 11.73 (5.75) 5.96 (8.72) 

  R-thalamus  10.93 (4.85) -8.90 (4.06) 10.93 (4.85) 6.52 (8.08) 

  L-putamen  5.24 (2.06) -4.13 (2.38) 5.24 (2.06) 5.81 (6.76) 

  R-putamen  6.69 (2.45) -5.39 (2.80) 6.69 (2.45) 7.49 (6.98) 

  L-GP  8.08 (3.89) -16.28 (4.28) 8.08 (3.89) 26.00 (14.00) 

  R-GP  7.16 (4.38) -18.92 (4.58) 7.16 (4.38) 17.17 (12.02) 

  L-caudate  -3.50 (7.15) -3.50 (7.15) 25.14 (11.12) -1.99 (6.12) 

  R-caudate  -4.89 (6.49) -4.89 (6.49) 19.91 (9.84) -3.72 (7.00) 

  L-accumbens  17.58 (18.59) 17.58 (18.59) 55.34 (20.97) 10.79 (24.05) 

  R-accumbens  26.13 (15.34) 26.13 (15.34) 60.02 (22.24) 52.08 (27.03) 

  L-cau+acc  -1.17 (7.26) -1.17 (7.26) 28.44 (10.89 -0.80 (6.06) 

  R-cau+acc  -2.12 (6.31) -2.12 (6.31) 23.47 (9.47) 1.03 (6.60) 

  Combined mean  11.71 3.71 29.09 27.63 

Description of mean volumes obtained from each method as well as mean percentage of volume difference (% volume diff.) 

between manual segmentation, FreeSurfer and different FSL-FIRST pipelines. L – left, R – right, SD – standard deviation, GP – 

Globus pallidus, Cau+acc – combined volume of the caudate and nucleus accumbens, Combined mean – mean of all structures 

combined. 

 

FreeSurfer volumetric analysis 

FreeSurfers volume for the left and right hippocampus was 4076.74 (SD = 384.19) and 4189.92 

(SD = 393.52), respectively, and for the left and right amygdala 1540.28 (SD = 214.03) and 

1734.00 (SD = 193.02), respectively. FreeSurfer produced the higher volumes than any of the FSL-

FIRST pipelines in the amygdala, putamen and GP. Compared to manual segmentation, FreeSurfer 

had higher volumes in all structures except for the caudate. Percentage difference between 
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FreeSurfer and manual segmentation mean volume for the left and right hippocampus was 37.10% 

(SD = 20.12) and 34.55% (SD = 16.01), respectively, and for the left and right amygdala 77.02% 

(SD = 16.01) and 112.00% (SD = 40.58), respectively. Mean volumes and percentage differences 

for all other structures are presented in Table 1. 

 

Table 2 
Comparison of correlation analysis between manual and automated segmentation techniques (FSL-FIRST, FreeSurfer). 

 FSL-FIRST  FreeSurfer  

 Default Fast None  

PCC     

  L-hippocampus 0.83 0.83 0.86 0.47 

  R-hippocampus 0.74 0.74 0.75 0.54 

  L-amygdala 0.61 0.61 0.67 0.34 

  R-amygdala 0.66 0.66 0.67 0.47 

  L-thalamus 0.86 0.87 0.86 0.60 

  R-thalamus 0.89 0.88 0.89 0.61 

  L-putamen 0.98 0.97 0.98 0.82 

  R-putamen 0.98 0.96 0.98 0.84 

  L-GP 0.94 0.89 0.94 0.49 

  R-GP 0.92 0.87 0.92 0.52 

  L-caudate 0.78 0.78 0.69 0.84 

  R-caudate 0.87 0.87 0.80 0.80 

  L-accumbens 0.69 0.69 0.77 0.44 

  R-accumbens 0.81 0.81 0.76 0.56 

  L-cau+acc 0.77 0.77 0.70 0.83 

  R-cau+acc 0.85 0.85 0.78 0.81 

  Combined mean 0.83 0.82 0.82 0.60 

ICC (A,k)     

  L-hippocampus 0.75 0.75 0.34 0.20 

  R-hippocampus 0.68 0.68 0.28 0.23 

  L-amygdala 0.55 0.55 0.29 0.09 

  R-amygdala 0.58 0.58 0.31 0.07 

  L-thalamus 0.66 0.72 0.66 0.66 

  R-thalamus 0.69 0.70 0.69 0.66 

  L-putamen 0.93 0.95 0.93 0.84 

  R-putamen 0.90 0.92 0.90 0.82 

  L-GP 0.82 0.53 0.82 0.26 

  R-GP 0.85 0.46 0.85 0.39 

  L-caudate 0.85 0.85 0.37 0.90 

  R-caudate 0.89 0.89 0.53 0.85 

  L-accumbens 0.69 0.69 0.33 0.58 

  R-accumbens 0.65 0.65 0.31 0.27 

  L-cau+acc 0.87 0.87 0.31 0.91 

  R-cau+acc 0.91 0.91 0.43 0.90 

  Combined mean 0.75 0.71 0.54 0.49 

Pearson correlation coefficients (PCC) and intraclass correlation coefficients (ICC) (A, k) computed between manual and 

automatic segmentation volumes. L – left, R – right, GP – Globus Pallidus, Cau+acc – combined volume of the caudate and 

nucleus accumbens, Combined mean – mean of all structures combined. 

 

FreeSurfer volumetric correlation analysis 

Pearson correlation coefficients between FreeSurfer and manual segmentation were lower than any 

of the FSL-FIRST pipelines in all structures except the caudate, where the values were similar. 
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Pearson correlation coefficient for the left and right hippocampus was r = 0.47 and r = 0.54, 

respectively, and for the left and right amygdala r = 0.34 and r = 0.47, respectively. Intraclass 

correlation coefficient (A, k) for the left and right hippocampus was ICC = 0.20 and ICC = 0.23, 

respectively, and for the left and right amygdala ICC = 0.09 and ICC = 0.07, respectively. 

FreeSurfer produced overall lower intraclass correlation values except for the caudate, where its 

values were similar compared to FSL Default and FSL Fast pipelines, for the left and right caudate 

ICC = 0.90 and ICC = 0.85, respectively. Pearson and intraclass correlation coefficient values for 

all structures are presented in Table 2. 

 

Dice score coefficient analysis 

Dice score coefficient values between manual segmentation and automated methods were good 

across the board. FSL-FIRST provided overall slightly higher scores than FreeSurfer. FSL Default 

and FSL Fast produced the highest values for the left and right hippocampus, DSC = 0.87 (SD = 

0.03) and DSC = 0.88 (SD = 0.03), respectively, for both pipelines. FreeSurfer yielded weaker 

results for the left and right hippocampus, DSC = 0.76 (SD = 0.05) and DSC = 0.78 (SD = 0.04), 

respectively. All automated techniques produced lower results for the amygdala than the 

hippocampus. FSL Default and FSL Fast had the highest score regarding the left and right 

amygdala, DSC = 0.73 (SD = 0.05) and DSC = 0.73 (SD = 0.06), respectively. FreeSurfers result 

for the left and right amygdala was DSC = 0.62 (SD = 0.07) and DSC = 0.60 (SD = 0.07), 

respectively. Dice score coefficient values for all structures and methods are presented in Table 3. 

 

Table 3 
Comparison of mean Dice score coefficient values between manual and automated segmentation techniques. 

 FSL-FIRST  FreeSurfer  

 Default Fast None  

DSC (SD)     

  L-hippocampus 0.87 (0.03) 0.87 (0.03) 0.83 (0.04) 0.76 (0.05) 

  R-hippocampus 0.88 (0.03) 0.88 (0.03) 0.83 (0.04) 0.78 (0.04) 

  L-amygdala 0.73 (0.05) 0.73 (0.05) 0.72 (0.05) 0.62 (0.07) 

  R-amygdala 0.73 (0.06) 0.73 (0.06) 0.71 (0.06) 0.60 (0.07) 

  L-thalamus 0.95 (0.02) 0.91 (0.01) 0.95 (0.02) 0.88 (0.02) 

  R-thalamus 0.95 (0.02) 0.91 (0.01) 0.95 (0.02) 0.89 (0.02) 

  L-putamen 0.98 (0.01) 0.95 (0.01) 0.98 (0.01) 0.86 (0.02) 

  R-putamen 0.98 (0.01) 0.95 (0.01) 0.98 (0.01) 0.85 (0.03) 

  L-GP 0.98 (0.01) 0.88 (0.03) 0.98 (0.01) 0.80 (0.05) 

  R-GP 0.97 (0.02) 0.87 (0.03) 0.97 (0.02) 0.79 (0.06) 

  L-caudate 0.88 (0.04) 0.88 (0.04) 0.86 (0.05) 0.87 (0.03) 

  R-caudate 0.90 (0.03) 0.89 (0.03) 0.90 (0.04) 0.87 (0.02) 

  L-accumbens 0.84 (0.05) 0.84 (0.05) 0.84 (0.05) 0.62 (0.07) 

  R-accumbens 0.84 (0.03) 0.84 (0.03) 0.83 (0.04) 0.65 (0.06) 

  L-cau+acc 0.89 (0.03) 0.89 (0.03) 0.90 (0.04) 0.87 (0.02) 

  R-cau+acc 0.84 (0.03) 0.84 (0.03) 0.83 (0.04) 0.65 (0.06) 

  Combined mean 0.89 0.87 0.88 0.77 

Comparison of Dice score coefficient (DSC) mean values between manual and automated segmentation techniques. L – left,        

R – right, SD – standard deviation, GP- Globus Pallidus, Cau+acc – score calculated with the combined area of the caudate and     

the nucleus accumbens, Combined mean – mean score of all structures. 
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Analysis of edits that were performed during manual segmentation  

The edits were documented on 40 randomly chosen subjects of the total 80 to describe the workflow 

and also to highlight important areas for quality control. The hippocampus and amygdala 

consistently required the most edits. The hippocampus had two typical errors that required major 

manual corrections in most subjects: The lateral anterior superior border was overestimated in 35 

and 36 subjects in the left and right hippocampus, respectively, and the inferior posterior area was 

too large in 30 and 32 subjects in the left and right hippocampus, respectively. The amygdala 

needed major edits on all subjects. The lateral superior border was overestimated in all subjects and 

the anterior side was underestimated in 33 and 35 subjects, for the left and right amygdala, 

respectively. The lateral inferior edge was too large in 21 on the left side and 18 on the right side. 

The thalami were overall slightly too big and needed minor edits throughout the structure, most 

notably on the medial posterior inferior edge, which was overestimated in 21 subjects for the left 

and in 19 for the right thalamus. The caudate received most edits on the lateral posterior inferior 

area, where the FSL None pipeline overestimated the border in 30 subjects for the left and in 26 for 

the right caudate. Notably the superior medial area of the right caudate was too large in 17 subjects, 

while on the left it was only overestimated in 3 subjects. All common edits are listed in Table 4. 

The putamen, GP and nucleus accumbens were more accurately segmented by FSL-FIRST than by 

FreeSurfer and only received minor and sporadic edits.  

 

Table 4 
Most common major edits to structures and areas using the FSL-None segmentations out of 40 randomly chosen 

images. 

 Edited areas  Number of subjects edited  

   

Hippocampus Left  Right  

Lateral anterior superior area overestimated 35 36 

Inferior posterior area overestimated 30 32 

Uneven anterior end 12 13 

   

Amygdala   

Lateral superior posterior area overestimated 39 40 

Anterior side underestimated 33 35 

Lateral inferior edge overestimated 21 18 

   

Thalamus   

Medial posterior inferior edge overestimated 21 19 

Anterior end overestimated 5 5 

Posterior inferior edge overestimated 3 2 

   

Caudate   

Lateral posterior inferior area overestimated 30 26 

Superior medial area overestimated 3 17 

Superior medial anterior edge underestimated 8 7 

Superior medial inferior edge underestimated 5 2 
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Figure 1. Scatter plots of automated segmentation methods against manual segmentation. 

 

 

Discussion  

In this study we compared two automated segmentation tools, FSL-FIRST and FreeSurfer, against 

manual segmentation, on subcortical areas in a paediatric population. We included in the 

comparisons, FSL-FIRST’s three different pipelines, FSL Default, FSL Fast and FSL None, each of 

which uses different boundary correction settings to determine the exact anatomical borders of 

structures. Our goal was to compare the accuracy of these automated segmentation methods to 

manual segmentation, which is currently considered the gold standard (Hashempour et al., 2019; 

Morey et al., 2009), and has been validated as such in previous articles in paediatric as well as adult 

populations (Schoemaker et al., 2016; Makowski et al., 2018). In our results, FSL Default and FSL 
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Fast pipelines performed overall more accurately than FSL None or FreeSurfer. We observed that 

automated methods tend to overestimate volumes in most structures, as was expected based on 

previous studies (Grimm et al., 2015; Hashempour et al., 2019; Nugent et al., 2013; Pipitone et al., 

2014). The overestimation was overall most prominent with FreeSurfer and FSL None, although 

there were some notable exceptions in specific structures, such as the caudate, where FreeSurfer 

slightly underestimated volumes. Excluding the FSL None pipeline, FSL-FIRST produced generally 

better agreement across the structures than FreeSurfer.  

 

Hippocampus and amygdala 

Both hippocampus and amygdala were overestimated by all automated segmentation methods in our 

study. Most accurate were FSL Default and FSL Fast pipelines with a moderate overestimation. 

FSL None and FreeSurfer overestimated both structures greatly. With all methods, the 

overestimation was more prominent in the amygdala than the hippocampus, which has also been 

documented in previous articles in adults as well as paediatric populations (Akudjedu et al. 2018; 

Doring et al., 2011; Pipitone et al., 2014; Schoemaker et al., 2016).  

FSL Default and FSL Fast had overall better correlations with manual segmentation than FSL None 

or FreeSurfer. For the hippocampus, all of FSL-FIRST’s pipelines exceeded the threshold 

coefficient of  r > 0.70, which has previously been suggested as the minimum for defining 

reliability between measures (Terwee et al., 2007). The Pearson correlation coefficients for the 

amygdala were lower, ranging from r = 0.61 to r = 0.67 with FSL-FIRST’s pipelines. FreeSurfers 
correlations were significantly weaker than FSL-FIRST’s for both hippocampus and amygdala, with 

amygdala having the lowest values. FSL Default and FSL Fast produced identical intraclass 

correlation (A, k) values, while FSL None and FreeSurfer showed very low to no correlation, 

indicating a large estimation bias. Automated segmentation of the hippocampus tends to have better 

consistency and reproducibility than the amygdala, which has been shown in multiple previous 

studies (Morey et al., 2009; Nugent et al., 2013; Pardoe et al., 2009; Schoemaker et al., 2016) that 

reported Pearson correlation coefficients ranging from r = 0.47 to r = 0.67 for the hippocampus and 

r = 0.24 to r = 0.35 for the amygdala using FSL-FIRST and r = 0.67 to r = 0.82 and r = 0.45 to r = 

0.61 for the hippocampus and amygdala, respectively, using FreeSurfer. Similar results were shown 

regarding the DSC with every automated method producing higher mean values for the 

hippocampus (DSC > 0.76) than the amygdala (DSC > 0.60) in our results. The studies conducted 

by Morey et al. and Pardoe et al. also included DSC analysis showing results of the hippocampus 

producing higher spatial overlap than the amygdala with both FSL-FIRST and FreeSurfer, which is 

in line with our findings. 

We found that FreeSurfer performed poorer than FSL-FIRST overall. This was an unexpected 

finding, as FreeSurfer has previously been reported to be overall more accurate and consistent than 

FSL-FIRST for both the hippocampus and amygdala for paediatric and adult populations (Morey et 

al., 2009; Schoemaker et al., 2016). Inter-rater variability may have contributed to these differences, 

as it is one of the key challenges with manual segmentation. The differences can be more 

pronounced in structures such as the amygdala, where the border around the structure may be 

difficult to distinguish visually. In these instances, the rater must rely on general anatomical 
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knowledge instead of the intensities of the MR image to determine the exact shape of the structure. 

This is even more significant in paediatric MR images, since they have different contrast and 

comparatively lower resolution than adult images (Gousias et al., 2012). Example segmentations of 

the hippocampus and amygdala are presented in Figure 2. 

 

 

Figure 2. Transversal view of the segmentations of the hippocampus and amygdala. Yellow – hippocampus, 

turquoise – amygdala. 

 

Thalamus 

The thalamus was most accurately segmented by FreeSurfer with only a slight overestimation. FSL 

Default and FSL None pipelines produced a larger overestimation while Fast underestimated the 

volume. Previous studies have shown results of FreeSurfer producing larger or similar volumes 

compared to FSL-FIRST (Hannoun, 2019; Makowski et al., 2018; Næss-schmidt et al., 2016). The 

discrepancy in results might be partly caused by inter-rater variability between the researchers in 

different studies. Despite having the most accurate mean volume, FreeSurfers Pearson correlation 

coefficient was significantly worse, r = 0.60, than any of FSL-FIRST’s pipelines, ranging from r = 

0.86 to r = 0.89, indicating a larger volumetric variation in individual segmentations. Intraclass 

correlation (A, k) was on similar levels with coefficients ranging from ICC = 0.66 to ICC = 0.72, 

with all methods, suggesting a low to moderate reproducibility rate with manual segmentation. One 

previous study (Makowski et al., 2018) also showed weaker Pearson correlations for both 

FreeSurfer and FSL-FIRST than our results, ranging from r = 0.37 to r = 0.44, but included a 

significantly smaller sample size of 30 adults and that may explain some of the differences. The 

DSC values were great for all methods in our study, DSC > 0.91 for FSL-FIRST and DSC > 0.88 

for FreeSurfer. A previous study done by Hannoun et al., including subjects aged between 1 and 18 

years, showed similar results with DSC = 0.86 for FSL-FIRST and DSC = 0.84 for FreeSurfer 

(Hannoun et al., 2019). Segmentations of the thalamus are presented in Figure 3 and Figure 4. 
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Figure 3.Transversal view of segmentations of the putamen, globus pallidus (GP), thalamus and caudate. 

Putamen – pink, GP – blue, thalamus – green, caudate – light blue. 

 

Putamen and globus pallidus 

The putamen was segmented more accurately than the GP by all methods in this study. FSL Default 

and FSL None as well as FreeSurfer overestimated the putamen slightly, while Fast produced an 

underestimation of a similar volume. Similar results were observed with the GP, but with a greater 

magnitude. A previous study yielded similar results with FreeSurfer producing a higher 

overestimations than FIRST and GP having a greater relative volume difference than the putamen 

(Velasco-Annis et al., 2018). FSL-FIRST had excellent correlations for both putamen and GP, 

ranging from r = 0.86 to r = 0.98 across all pipelines. FreeSurfer also had a strong correlation for 

the putamen but performed significantly weaker for the GP with coefficients of r = 0.49 and r = 

0.52 for the left and right GP. Intraclass correlation coefficients (A, k) were high across the board, 

with all methods yielding a coefficient of ICC > 0.80 for the putamen. For the GP, intraclass 

correlations were significantly lower for FSL Fast and FreeSurfer, while FSL Default and FSL None 

had great values of ICC > 0.80 for both structures, indicating a small estimation bias and good 

reproducibility with manual segmentation. A 2017 published study showed FreeSurfer having 

slightly better segmentation reproducibility for both the putamen and GP (Velasco-Annis et al., 

2018). Another study published in 2018 showed the opposite and indicated that for FSL-FIRST has 

better consistency for the GP segmentation (Makowski et al., 2018). Direct comparison of these 

results is not ideal since both studies were done on an adult population and included a sample size 

of 30 or less. The DSC results in our study were great across the board with FSL-FIRST producing 

excellent results of DSC > 0.90 for both the putamen and GP with all techniques. FreeSurfer’s 

results were lower, but still satisfactory, DSC > 0.79. A previous study showed similar results with 

FSL-FIRST (DSC > 0.90) producing slightly higher DSC values than FreeSurfer (DSC > 0.80) for 

the putamen (Perlaki et al., 2017). However, the age of the subjects was not specified so the results 

may not be adequately comparable with our findings. To our knowledge this is the first automated 

segmentation method validation study done on a paediatric population including the putamen and 

GP. Segmentations of the putamen and GP are presented in Figure 3. 
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Caudate and nucleus accumbens 

The caudate was overall segmented accurately whereas the nucleus accumbens was overestimated 

by all methods in our study. The caudate was segmented accurately by all methods excluding FSL 

None, which overestimated both the caudate and the nucleus accumbens significantly. FreeSurfer 

and FSL-FIRST’s other pipelines produced an accurate volume for the caudate with only a minor 

underestimation. The nucleus accumbens was overestimated by all methods, with FSL None and 

FreeSurfer yielding the highest volumes. Notable is also the more prominent overestimation of the 

right nucleus accumbens, compared to the left, which was present in all four automated methods. 

Previous research indicates a moderate overestimation of both the caudate and nucleus accumbens 

with both FSL-FIRST and FreeSurfer (Perlaki et al., 2017; Velasco-Annis et al., 2018) with similar 

volumetric values compared to our results. 

Pearson correlations coefficients were strong across all methods for the caudate, ranging from r = 

0.69 to r = 0.84, showing a strong relationship between manual segmentation and the automated 

methods. The nucleus accumbens has similar coefficient values regarding FSL-FIRST, but 

FreeSurfer produced significantly weaker correlations. The intraclass correlation coefficients (A, k) 

showed that FSL Default and FSL Fast had superior reproducibility compared to FSL None and 

FreeSurfer for the nucleus accumbens. The results are similar for the caudate with the exception of 

FreeSurfer performing just as good as FSL Default and FSL Fast, with ICC values ranging from 

ICC = 0.85 to ICC = 0.90, while FSL None’s coefficients were significantly lower at ICC = 0.37 

and ICC = 0.53 for the left and right caudate, respectively. The consistency and reproducibility of 

the caudate and nucleus accumbens have been documented in previous studies with slightly 

different results compared to our study (Perlaki et al., 2017; Velasco-Annis et al., 2018). The article 

by Velasco-Annis et al. suggested great reproducibility rates for the caudate with both FreeSurfer 

and FSL-FIRST, with ICC values ranging from ICC = 0.86 to ICC = 0.93, producing similar values 

for each method. The other study conducted by Perlaki et al. showed a slightly better reproducibility 

with FreeSurfer regarding the caudate and nucleus accumbens. The study by Perlaki et al. also 

showed results similar to ours regarding the DSC values with FSL-FIRST producing better slightly 

better values than FreeSurfer for the caudate (Perlaki et al., 2017).  

Overall, these variations in results may be explained with the difficult determination of the border 

between the caudate and nucleus accumbens. The intensities of the MR image are visually 

indistinguishable for these two structures, which may lead to inaccuracy in volumetric 

quantification. To assess this problem, we combined the volumes of both structures to eliminate 

possible errors caused by the similarity of intensities. Considering the relatively small volume of the 

nucleus accumbens, the results for combined volume were similar to the results derived from the 

caudate volumes. Segmentations of the caudate and nucleus accumbens are presented in Figure 4. 
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Figure 4. Sagittal view of the thalamus, caudate and nucleus accumbens. Thalamus – green, caudate – light 

blue, nucleus accumbens – orange. 

 

Limitations  

Our study presents a few limitations. Firstly, the sample size is limited due to the time-consuming 

manual segmentation process but likely sufficient for building study-specific templates, which is a 

potential goal for applied studies (Lee et al., 2019). Secondly, all manual segmentations were 

performed by a single rater which might lead to some systematic biases in delineation of anatomical 

borders in MR images. However, the expert review provides some safeguard for this. On a related 

note, the manual segmentation was done by editing models produced by FSL None which might 

potentially cause the manual segmentations to have a bias towards FSL-FIRST. 

 

 

Conclusions 

In this feasibility study, we determined the accuracy of two automated segmentation tools for T1-

weighted MR images, FSL-FIRST with three different boundary correction settings and FreeSurfer 

against manual segmentation in a paediatric, 5-year-old population (N = 80). Overall, the automated 

tools show promising accuracies, but the performance of all automated tools changed vastly based 

on the structure. Small structures such as the amygdala and nucleus accumbens were inaccurately 

segmented by all automated methods. On the other hand, the segmentation of the putamen and the 

caudate were performed accurately with most of the automated methods and yielded relatively good 

consistency and reproducibility with manual segmentation. The use of these automated 

segmentation tools in neuroimaging studies still presents challenges, and careful visual inspection 

of the automated segmentations is still strongly advised, since there are many factors, such as the 
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quality of the used MR-images that might impact the accuracy of the segmentations. Future 

research should investigate the benefits of using custom subcortical atlases to improve the accuracy 

and reliability of automated segmentation methods especially for the amygdala and hippocampus 

(Lee et al., 2019).  
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