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Abstract

Intracellular processes such as cytoskeletal organization and organelle dynamics exhibit
massive subcellular heterogeneity. Although recent advances in fluorescence microscopy
allow researchers to acquire an unprecedented amount of live cell image data at high
spatiotemporal resolutions, the traditional ensemble-averaging of uncharacterized
subcellular heterogeneity could mask important activities. Moreover, the curse of
dimensionality of these complex dynamic datasets prevents access to critical mechanistic
details of subcellular processes. Here, we establish an unsupervised machine learning
framework called DeepHACKS (Deep phenotyping of Heterogeneous Activities in the
Coordination of cytosKeleton at the Subcellular level) for “deep phenotyping,” which
identifies rare subcellular phenotypes specifically sensitive to molecular perturbations.
DeepHACKS dissects the heterogeneity of subcellular time-series datasets by allowing
bi-directional LSTM (Long-Short Term Memory) neural networks to extract fine-grained
temporal features by integrating autoencoders with conventional machine learning
outcomes. We applied DeepHACKS to subcellular protrusion dynamics in
pharmacologically perturbed epithelial cells, revealing fine differential responses of
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leading edge dynamics specific to each perturbation. Particularly, DeepHACKS in
conjunction with blebistantin treatment revealed the emergence of rare subcellular and
single-cell phenotypes driven by “bursting” protrusion. This suggests that the temporal
features directly learned from leading edge dynamics enable fine-grained identification
of drug-related phenotypes, which may not be accessible from static cell images. In
summary, our study provides an analytical framework for detailed and quantitative
understandings of molecular mechanisms hidden in their heterogeneity. DeepHACKS
can be potentially applied to analyze various time-series data measured from other
subcellular processes.

Introduction

Recent advances in fluorescence microscopy allow researchers to acquire an
unprecedented amount of live cell image data at high spatiotemporal resolutions; however,
Intracellular dynamics such as cytoskeletal, membrane, and organelle dynamics exhibit
massive subcellular heterogeneity, which makes it challenging to fully understand rich
microscopy datasets'. Moreover, the traditional ensemble-averaging of uncharacterized
subcellular heterogeneity could lead to the loss of critical mechanistic details. For instance,
if some cytoskeletal dynamics in only a small subcellular region in a rare cellular
subpopulation specifically respond to given perturbations, it will be easily overlooked by
the human eye and conventional assays based on ensemble averaging.

In cancer genomics, detecting rare mutations and cell types by deep sequencing has
been critical to the understanding of tumor heterogeneity. However, little effort has been
made for “deep phenotyping”??® in cell biology, which identifies detailed and rare
phenotypes of subcellular and cellular processes from microscopy datasets. Particularly,
deep phenotyping of subcellular processes can enable us to access critical mechanistic
details of molecular processes masked by subcellular dynamic heterogeneity. Over the
last decade, image analysis software has facilitated the quantitative measurements of
molecular and cellular events from microscopy images at high spatiotemporal resolutions.
Still, characterizing phenotypes from their heterogeneity has been mainly focused on
static images at a cellular level without capitalizing rich spatiotemporal information.
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For effective phenotyping from high dimensional datasets, it is necessary to project raw
data onto low-dimensional manifolds to avoid the curse of dimensionality, where statistical
analyses cannot reach statistical significance in high dimensions due to the sparsity of
data. Therefore, in conventional machine learning settings, the hand-crafted features are
extracted for dimensional reduction. Our previous unsupervised ML pipeline* relied on
the hand-crafted time-series feature, ACF (Auto-Correlation Function), to deconvolve the
time series heterogeneity from live cell movies 4. Hand-crafted features, however, depend
strongly on prior knowledge and are limited in representing large complex datasets
comprehensively, preventing the discovery of fine-grained “deep” phenotypes.

Over the last decade, deep learning (DL) had risen to be a mainstream ML method,
overcame the performance of traditional ML, and surpassed the human capabilities in
many areas 6. Unlike conventional ML, DL does not use hand-crafted features, but rather
it learns the data representation (features) directly from raw data 78. The learned features
by DL are better positioned to capture more accurate information from complex datasets,
enabling us to unravel the heterogeneity of the data in great detail for deep phenotyping.
One drawback of the DL approach, however, is that DL requires large datasets to prevent
overfitting, where neural networks fit their training data but are not generalized well. Also,
DL is considered to be a black-box approach where the interpretability of learned features

is limited. Therefore, the outcomes may not be compatible with human intuition.

To address these challenges, we developed a self-supervised DL framework integrated
with conventional unsupervised ML, called DeepHACKS (Deep phenotyping of
Heterogeneous Activities in the Coordination of cytosKeleton at the Subcellular level).
DeepHACKS allows us to deconvolve the phenotypic heterogeneity of subcellular time-
series dataset in a self-supervised manner where DL-based features learning is
regularized by traditional ML outcomes. Due to the fine-grained nature of learned
temporal features, DeepHACKS allowed deep phenotyping of subcellular dynamics from
live cell movies, meaning that we can identify the rare subcellular and single-cell

phenotypes, specifically sensitive to molecular perturbations.

We applied DeepHACKS to cell edge dynamics, in which the leading edges of migrating
epithelial cells undergo protrusion and retraction cycles under pharmacological


https://doi.org/10.1101/2021.05.25.445699
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.25.445699; this version posted May 27, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

perturbation. Growing numbers of studies show the vital roles of cell protrusion, including
in tissue regeneration®', cancer invasiveness and metastasis'''3, and
microenvironmental surveillance of leukocytes'. It has been demonstrated that long-term
migratory behaviors of Dictyostelium can be predicted by the short-term morphological
changes over the second timescales'®. It was shown that the coordination between
protrusion and retraction determines metastatic potency'®, and influences phenotypic
switching of cell migration'”. Morphodynamic phenotypic-biomarker can be used for the
diagnosis of metastatic potential of breast and prostate cancer 8.

Cell protrusion and retraction involve precise coordination of actin regulators to
collectively organize actin cytoskeleton*'9-2'. Dissecting such dynamics has been a
challenging task due to substantial morphodynamic heterogeneity2%2'. DeepHACKS
quantitatively identified the deep phenotypes of subcellular protrusion from highly
heterogeneous and non-stationary-edge dynamics of migrating epithelial cells, revealing
fine differential responses of leading-edge dynamics specific to perturbations. Particularly,
DeepHACKS revealed the emergence of rare protrusion subcellular and cellular
phenotypes upon blebbistatin. Our study suggests that the temporal features directly
learned from leading-edge dynamics enable fine-grained identification of drug-related
subcellular phenotypes, which can not be accessible from static cell images.

Results
DeepHACKS: deep phenotyping of subcellular protrusion.

To deconvolve the heterogeneity of subcellular protrusion activities at the fine
spatiotemporal resolution, we developed a computational analysis pipeline, DeepHACKS
(Fig. 1), which leverages DL to learn the features in a self-supervised manner using the
outcomes from conventional unsupervised learning analysis. Since subcellular protrusion
occurs over varying periods of time and creates heterogeneous temporal lengths, we
advanced our ML algorithms to include the time series with heterogeneous temporal
lengths. DeepHACKS consists of four main components: i) Predefined feature
(Autocorrelation Function; ACF)-based clustering, ii) Deep feature learning, iii) Fine-
grained subcellular phenotype identification (Deep Phenotyping), iv) Single-cell
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phenotyping based on subcellular phenotypes. We used the ACF-based clustering to
obtain the preliminary cluster labels as the prior information, which is injected into deep
feature learning in a self-supervised manner to automatically learn features for deep
phenotyping.

We prepared our sample videos of PtK1 epithelial cells in control and drug-perturbed
conditions. Then, we segmented the cell membrane boundary of each frame in each
movie and locally divide cell edges into small probing windows with a size 500 by
500nm'%20, Then time series of protrusion velocities were acquired by averaging
velocities of pixels in each probing window (Fig. 1a.1-2). After detecting the protrusion
onset, the time-series protrusion velocities were aligned as a temporal fiduciary (Fig.
1a.3-4)%0. After that, following the same procedure in our previous study*, we denoised
the time series velocity profile using Empirical Mode Decomposition (EMD)?? to reduce

noise.

Since the temporal lengths of protrusion velocity time series are heterogeneous,
calculating the similarity between samples of different temporal lengths is not
straightforward. To produce conventional ML-based results (Fig. 1b), we assume that the
time series protrusions are dissimilar if the lengths of them are too different. Therefore,
instead of calculating the similarity distance among the whole samples, only the distance
among samples within similar lengths is calculated. Then, auto-correlation functions
(ACFs) as the time series features were used in discovering the novel phenotypes in our
previous study (ACF-based clustering, Fig. 1b.8)*. To calculate the ACF-based distance
among time series with similar temporal lengths, we padded random noise to the later
part of the time series to make the same time length (Fig. 1a.5). We followed the previous
ML pipeline, including SAX (Symbolic Aggregate approximation)?® (Fig. 1b.7) and
Euclidean-based ACF distance. We pooled all the distance similarity together for partial
similarity distance and applied the community detection clustering algorithm?* to
determine the distinct clusters of protrusion dynamics (Fig. 1b.9), which serve as the pre-
phenotypes for the next step of deep feature learning.

Then, we performed feature learning by leveraging deep learning (Deep Features-based
clustering, Fig. 1¢). First, we preprocess the time series by rescaling them to the range [-
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1, 1] to eliminate the effect of large velocity magnitude (Fig. 1a.6). Autoencoder?® has
been widely used for feature learning by minimizing the difference between input and
output as reconstructed input. One weakness of basic autoencoder, however, is that the
features is difficult to interpret since there is no prior information included during the
training process. Therefore, many structures®6?® based on autoencoder such as
variational autoencoder?® have been proposed. In our feature learning, in order to inject
the prior information on the hidden layers, we added another classification branch to make
the autoencoder learn features that are consistent with our conventional unsupervised
ML analysis. We used bidirectional Long-Short Term Memory (bi-LSTM) structure3%31.
Particularly, LSTM specializing in time series data can handle variable-length time series
since it does not require a fixed length of time series. By Integrating these concepts, we
developed the feature learning framework called Guided Bi-LSTM autoencoder. By
optimizing the total loss comprising the loss functions of the autoencoder and the
classifier, we trained Guided Bi-LSTM autoencoder using our dataset, including more
than 30,000 time-series samples. Then, we applied Principal Compound Analysis (PCA)
to reduce the feature dimension and selected the first 15 principal components, which

explained more than 95% of the variance.

We used these features to perform clustering analysis to refine the preliminary clustering
results with ACF features (Fig. 1d). We generate the different clustering results by varying
the balancing weight between the losses of the autoencoder and the classifier and then
determine the optimal clustering by evaluating the sensitivity of the clustering results to
the reference drug perturbation. Then using the same deep features (features learned
from deep learning), we perform sub-clustering analyses for the clusters identified in the
previous step. We call these sub-clusters “deep phenotypes” while calling the parent
clusters “coarse phenotypes” (Fig. 1d). Then, the deep phenotypes were compared in
control and pharmacologically perturbed conditions. Finally, we used the proportions of
subcellular protrusion phenotypes as single-cell features to perform clustering analysis to
identify single-cell protrusion phenotypes (Fig. 1d).

Pre-identification of subcellular protrusion phenotypes by ACF features.
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Previously, we used ACF features and density-peak clustering®® to deconvolve the
heterogeneity of subcellular protrusion velocity time-series, which led to five distinct
clusters 4. Instead, we used the community detection algorithm32 since it can handle the
partial similarity distance matrix from unequal temporal lengths. Using Silhouette value34,
we evaluated the optimal number of clusters (Fig. 2a). We chose the optimal one as six,
which were confirmed visually by the ordered distance maps and the silhouette plots of
the clustering results. One difference from our previous results was that we were able to
split the previous “fluctuation” cluster into the clusters of “steady” (Cluster I) and “bursting”
(Cluster Il) protrusions (Fig. 2b). Cluster Il showed that edge velocity was changed
dramatically within 100 seconds. Therefore, we named it ‘Bursting Protrusion’. Since
Cluster 11I-V exhibited periodic edge velocity, we named them ‘Periodic Protrusion’ and

Cluster VI named ‘Acceleration Protrusion’ as we did in our previous work®.

Using these updated clustering results, we repeated the analysis of the CK666 (Arp2/3
inhibitor) perturbation to these protrusion phenotypes. Consistently with the previous
results, the analysis showed that CK666 significantly reduced the proportion of the
accelerating protrusion phenotype (Cluster VI) only in comparison to the inactive control
(CK689) (p=0.013 by bootstrap resampling) (Fig. 2c-f and SFig. 1a). Next, we investigate
the effects of blebbistatin using the clustering results. First, the velocity profile in Cluster
Il (Bursting Protrusion) was substantially elevated by blebbistatin treatment (Fig. 2g).
Moreover, the quantification of the proportion of the clusters showed that Cluster Il was
significantly increased by the blebbistatin treatment (p=0.004 by bootstrap resampling)
(Fig. 2h-j and SFig. 1b), while CK666 did not show significant effects (Fig. 2f). This
suggests that there exist subcellular regions where downregulation of myosin Il promotes

bursting protrusion.
Self-supervised deep feature learning for subcellular protrusion phenotyping

Using the labels from the previous ACF-based clustering results, we trained a Guided Bi-
LSTM autoencoder (Fig. 3a). The reconstruction, classification, and total losses decrease
as the training epoch increases (Fig. 3b-d). The visual comparison between the input and
the output confirmed that the autoencoder training was effective (Fig. 3h-i). After the
dimensional reduction of the autoencoder features by PCA (Fig. 3e), we applied
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community detection to find distinct clusters. We varied the weight parameter balancing
the losses of the autoencoder and the classifier and evaluated each clustering results
based on the effect sizes of accelerating protrusion (Cluster VI) between CK689 and
CK666 (Fig. 3f), and bursting protrusion (Cluster Il) between DMSO and blebbistatin (Fig.
3g). The effect sizes of accelerating protrusion (Cluster VI) reached maximum
distinctively when the weight parameter is 25, while there is little pattern of the effect size
variations of bursting protrusion (Cluster Il). This means that finding the optimal weight
parameter is critical for the analysis of accelerating protrusion. In contrast, the wide range
of the weight parameters is suitable for the analysis of bursting protrusion. Therefore, we
chose parameter 25. With the weight parameter, 25, even though the average temporal
patterns of protrusion velocities from ACF and Deep feature (DF)-based clustering are
identical (Fig. 3j), the tSNE feature visualization revealed their significant differences (Fig.
3k and n). The quality of the clustering from the DF was substantially better than the ACF-
based clustering based on the order-distance map and silhouette values (Fig. 3l, m, o,
and p). This feature refinement will enable us to perform a more detailed analysis of each
protrusion phenotype in the downstream steps.

Deep Phenotypes of Accelerating Protrusion.

In the CK666 perturbation experiments where we optimized the deep feature learning, we
were able to identify similar clustering patterns using the deep features (DF) (Fig. 4a) to
those from the ACF (Fig. 2c¢). Also, the drug effects of CK666 on Cluster | and VI (Fig.
4a-d and SFig. 2a) are consistent with the previous ACF-based results (Fig. 2f) (ACF-
based clustering, p-value=0.045 for Cluster | and 0.013 for Cluster VI; DF-based
clustering, p-value = 0.016 for Cluster | and 0.0069 for Cluster VI by bootstrap resampling).
The smaller p-values in DF-based clustering are expected because we selected the

weight parameter, which gave the maximal effector size for Cluster VI.

To validate the results, we applied the same deep features to a different drug,
Cytochalasin D (CyD), that was shown to affect accelerating protrusion previously*.
Cytochalasin D significantly reduced the proportion of Cluster VI (CyD50: p-value = 0.027;
CyD100: p-value = 0.013 by bootstrap resampling) (Fig. 4e-i and SFig. 2b). Also,
Cytochalasin D significantly increased the proportion of Cluster | (CyD50: p-value = 0.021;


https://doi.org/10.1101/2021.05.25.445699
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.25.445699; this version posted May 27, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

CyD100: p-value = 0.023 by bootstrap resampling). Consistently with CK666, we found
that the DF-based clustering analysis provided smaller p-values than the previous ACF-
based analysis 4, demonstrating that the DF can provide more sensitive and robust
statistical analyses.

Next, we performed deep phenotyping of accelerating protrusions (Cluster VI). The
previously identified phenotypes are sub-divided to further identify fine-grained
phenotypes that are more sensitive to drug perturbation. We isolated the samples from
Cluster VI and performing a sub-clustering analysis. The t-SNE suggests that there could
exist sub-clusters which could be more sensitive to CK666 (Fig. 5a) and Cytochalasin D
(Fig. 5b). The Silhouette value indicated that the optimal number of deep phenotypes of
accelerating protrusion was three (SFig. 3a). The deep phenotypes identified in Cluster
VI displayed subtle but visually distinct behaviors (Fig. 5¢): We identified one weak
accelerating cluster (Cluster VI-1) and two strong clusters (Cluster VI-2 and 3). Cluster
VI-2 exhibited a brief pause of acceleration before 100s, while Cluster VI-3 had constant
acceleration. With this deep phenotyping, Cluster VI-1 was not significantly affected using
proportion test by CK666 (p-value: 0.0694, bootstrap resampling) and low doses of CyD
(CyD50: p-value = 0.0505; CyD100: p-value = 0.2543, bootstrap resampling). In contrast,
the proportions of Cluster VI-2 and 3 were significantly decreased by CK666 (p-value =
0.0049 for VI-2, 0.0012 for VI-3, bootstrap resampling) and CyD (CyD50: p-value = 0.3698
for VI-2, 0.0193 for VI-3; CyD100: p-value = 0.0165 for VI-2, 0.0011 for VI-3, bootstrap
resampling). Moreover, the effect of CK666 and CyD on Cluster VI-3 was stronger than
Cluster VI-2. For blebbistatin treatment experiment, there was no significant effect on any
deep phenotypes of acceleration. These sub-clustering results suggest that DF can be
used for deep phenotyping for more accurate drug characterization.

Deep Phenotypes of Bursting Protrusion.

We also performed the deep phenotyping to Cluster Il (Bursting Protrusion) to uncover
more detailed effects of blebbistatin. With the DF, Cluster Il was not significantly affected
by CK666 (p-value = 0.4577; bootstrap sampling) and CyD (CyD50: p-value = 0.0707,
CyD100: p-value = 0.1455; bootstrap sampling). In contrast, blebbistatin significantly
increased (p-value = 0.0004; by bootstrap resampling) the proportion of Cluster I,
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consistent with the previous ACF-based results (Fig. 6a and ¢). The t-SNE plot of the DF
distribution (Fig. 6b and SFig. 2c) displays that blebbistatin did not affect Cluster Il
uniformly, but rather the subset of Cluster |l was highly elevated. Therefore, we performed
a sub-clustering analysis of Cluster Il. DF-based sub-clustering identified five clusters
based on the silhouette values (Fig.6d). These deep phenotypes (Cluster II-1~5)
identified in Cluster Il were shown displayed distinct behaviors. We found that Cluster II-
1 was significantly increased by blebbistatin (p-value < 0.0001, bootstrap sampling) while
the other Cluster 1I-2~5 were not affected (Fig. 6j). This deep phenotyping of Bursting
Protrusion isolated Cluster 1l-1, the only deep phenotypes susceptible to blebbistatin
treatment. These results suggest that our deep phenotyping can help to isolate specific

phenotypes for better quantitation of drug actions.

In contrast to blebbistatin, CK666 treatment did not affect any deep phenotypes of Cluster
I significantly. CyD treatment decreased the proportion of Cluster [I-2 and 5 significantly
(p-value < 0.0001 for II-2 and CyD100, p-value = 0.0059 for 1I-5 and CyD50) and
increased the proportion of Cluster 1I-3 and 4 significantly (p-value = 0.004 for Cluster II-
3 and CyD100, p-value = 0.0149 for Cluster |I-4 and CyD100). Due to the opposite effects
of CyD on the deep phenotypes of Busting protrusion, the original bursting phenotype
(Cluster II) was not shown to be significantly affected by CyD (Fig. 4i). Taken together,
we performed deep phenotyping to identify subtle temporal patterns in our protrusion time
series dataset and precisely associate them with specific drug perturbations by sensitive
statistical analyses.

Single-cell protrusion phenotypes

Based on the subcellular protrusion phenotypes, we characterized single-cell phenotypes.
The proportions of subcellular protrusion phenotypes in individual cells were used as
cellular features for single-cell protrusion phenotypes. We applied manifold learning,
UMAPS35, to these single-cell feature distributions and then performed clustering analysis
using community detection. The silhouette plots with the varying number of clusters
indicated that the optimal number of cell clusters is nine. UMAP 2D visualization (Fig. 7a),
the proportion plots of each cluster (Fig. 7b), the ordered-distance plot (Fig. 7d), and
silhouette plot (SFig. 3b) demonstrated that the identified cell clusters are highly distinct.
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Each cell cluster was characterized by the mean proportions of subcellular protrusion
phenotypes (Fig. 7d). Particularly, Bursting Cells (Cell Cluster 7) and Accelerating Cells
(Cell Cluster 9) have high levels of Bursting and Accelerating Protrusion, respectively.
Strong-Bursting/Accelerating Cells (Cell Cluster 8) have high levels of both Bursting and
Accelerating Protrusion. Mid-Bursting/Accelerating Cells (Cell Cluster 6) have medium
levels of them. In Table 1, we summarized the characteristics of these cell clusters and

their phenotypic names.

We also quantified the proportions of deep phenotypes sensitive to blebbistatin (Cluster
[I-1; Bursting-1) and CK666 (Cluster VI-2/3; Accelerating 2/3) in each cell cluster (Fig.
7e). Bursting Cells have high levels of Cluster II-1 (blebbistatin-sensitive) and low levels
of Cluster VI-2/3 (CK666/CyD-sensitive). Conversely, Accelerating Cells have a low level
of Cluster II-1 and high levels of Cluster VI-2/3. Intriguingly, Strong-Bursting/Accelerating
Cells have high levels of both Cluster 1l-1 and VI-2/3, while they have fewer Cluster VI-1
(CK666/CyD-insensitive) than Accelerating Cells. As summarized in Table 1, as cells
have more proportions of bursting or accelerating protrusion, they tend to have more
corresponding drug-sensitive deep phenotypes. This suggests that the identified cell
phenotypes have differential sensitivities to CK666, CyD, and blebbistatin. To confirm this,
we first pooled the cell phenotypes as follows: Cell Cluster #3, 6, 7, and 8 into Bursting
Cell Group; Cell Cluster #6, 8, and 9 into Accelerating Cell Group; Cell Cluster #1 and 2
into Steady Cell Group. Since Steady Protrusion was affected by the drugs oppositely to
Bursting or Accelerating Protrusion in the previous analysis (Fig. 4d and I, and 6¢), we
quantified the proportional differences between the cells of Bursting and Steady Cell
Groups or Accelerating and Steady Cell Groups. We found that CK666 significantly
decreased the proportion of Accelerating Cell Group over Steady Cell Group while it did
not significantly change that of Bursting Cell Group over Steady Cell Group (Fig. 7f).
Intriguingly, CyD/blebbistatin significantly decreased/increased the proportions of both
Bursting and Accelerating Cell Groups over Steady Cell Group (Fig. 7g-h) even though
they did not affect Bursting/Accelerating Protrusion in the previous subcellular analysis
where every cell phenotype was considered (Fig. 4i and 6c). This demonstrates that both
subcellular and cellular phenotyping is necessary to fully understand the heterogeneity of
cellular drug responses.
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Table 1. Summary of single-cell phenotyping

Cell Dominant Cell Phenotype Drug-Sensitive Deep Phenotypes
Cluster # | Protrusion Cluster II-1 Cluster VI-2/3
(blebbistatin) | (CK666/CyD)
1 Steady Steady Cell1 Low Low
2 Steady Steady Cell2 Low Low
3 Steady & Periodic Cell1 Mid Low
Periodic #1
4 Steady & Periodic Cell2 Low Low
Periodic #2
5 Steady & Periodic Cell3 Low Low
Periodic #3
6 Steady, Bursting, | Mid-Bursting/ Mid Mid
& Accelerating Accelerating Cell
7 Bursting Bursting Cell High Low
8 Bursting & Strong-Bursting/ High High
Accelerating Accelerating Cell
9 Accelerating Accelerating Cell Low High
Discussion

We developed a DL-based self-supervised learning framework, DeepHACKS, that can
deconvolve the heterogeneity of dynamic phenotypes of cell protrusion, which will enable
us to achieve detailed understandings of molecular mechanisms hidden in subcellular
and cellular heterogeneity. DeepHACKS takes advantage of deep feature learning to
identify rare deep phenotypes susceptible to specific molecular perturbations. The
framework can provide a new avenue for better quantifying the effects of drug actions
more precisely and comprehensively. Using this method, we refined the drug effects of
the previously found ‘acceleration protrusion’. Furthermore, we identified a novel
protrusion phenotype called ‘bursting protrusion’, which was specifically enhanced by
myosin inhibitor blebbistatin. Myosin can down-regulate leading edge dynamics by
assembling large focal adhesion, increasing cortical contractility, and increasing actin
retrograde flow, and it has been reported that blebbistatin promotes protrusions in 2D36
and 3D%"38 environments. Our analysis suggests that identifying such specific subcellular
phenotypes will enable us to understand the heterogeneity of cell motility and
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morphodynamics and specifically characterize drug effects at subcellular and cellular

levels.

While deep learning achieved many successes in cellular image analyses, its application
to cellular dynamics has been limited. Here, we collected more than 30,000 protrusion
velocity time series and proposed a Bi-LSTM autoencoder framework to automatically
extract temporal features for dynamic phenotyping. Furthermore, we integrated the
conventional ML outcomes with a Bi-LSTM autoencoder to learn the features useful for
our specific purposes. Integrating prior information with deep learning?62° is vital for
building high-performance machine learning systems. It is particularly crucial for
unsupervised learning, where there can be numerous outcomes depending upon selected
features. Here, we developed an effective deep learning framework to learn rich features
based on prior information. The features learned automatically from our framework
enabled deep phenotyping to capture better characteristics of drug effects.

Based on the subcellular phenotypes characterized by DeepHACKS, we were able to
identify single-cell dynamic phenotypes. This result revealed previously unknown nine
different single-cell phenotypes of protrusion dynamics with differential drug sensitivities.
Also, we demonstrated that multi-scale analysis encompassing subcellular to cellular
scales would provide us with more complete pictures of the heterogeneity of drug actions.
Our study suggests that there can exist a surprising amount of phenotypic heterogeneity
in cellular dynamics at subcellular and single-cell levels. Therefore, we expect our deep
learning framework, DeepHACKS will unravel such dynamic heterogeneity to identify
deep phenotypes and accelerate understanding of the mechanism of heterogeneous

cellular or subcellular activities with unprecedented precision.

Figure Legends

Figure 1. Schematic representation of the computational pipeline. (a) Time series
data generation and preprocessing. (1-2) Live cell imaging and local sampling. Time-
lapse movies of the leading edge of migrating cells treated with/without different drugs
were taken at 5 sec per frame, and then probing windows (500 x 500nm) were generated
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to track the cell edge movement and local velocities were calculated per window. (3-4).
Event registration and time series selection. The velocity profile per window was divided
into protrusion and retraction events based on protrusion onset. Then all the protrusion
intervals with a length longer than 50 sec are selected, and the samples with longer
protrusion duration are truncated to 250s for further analysis. (5-6) Random noise padding
and velocity transformation. The raw velocity profiles were non-linearly scaled to [-1, 1]
for the purpose of convenient training and eliminating the effect of larger values. (b) Pre-
phenotyping by conventional ML. ACF-based clustering pipeline was applied to the
collected data to identify the protrusion phenotypes. (¢) Deep feature Learning. A Guided
autoencoder integrates an LSTM-autoencoder and multiple-layer perceptron (MLP)
classifier. The optimal weight to balance the contributions of two branches was searched
exhaustively and chosen based on drug perturbation analyses. The deep features from
the bi-LSTM encoder were extracted for further phenotyping. (d) Phenotyping. Subellular
phenotypes were identified by clustering analysis using deep features. Coarse
phenotypes can be divided into deep phenotypes for more precise drug characterization.
Subcellular phenotypes are used for single-cell phenotyping.

Figure 2. Pre-identification of subcellular protrusion phenotypes. (a) Silhouette plot
that determines the optimal number of clusters. The community detection clustering
method was applied with varying numbers of nearest neighbors. The maximum silhouette
value determined the number of clusters, six. (b) Average temporal patterns of protrusion
time series in the clusters whose temporal length is larger than 250s with a 95%
confidence interval registered at protrusion onset (t = 0). (c-f) Effects of Arp2/3 inhibitor,
CK666 on the subcellular protrusion phenotypes. Averaged protrusion velocity time series
in each cluster registered at protrusion onset in CK689 or CK666-treated cells (c). t-SNE
plots of autocorrelation functions of protrusion velocity time series overlaid with the
density of data in the cells treated with CK689 (d) and CK666 (e). Comparison of the
proportion for each cluster per cell between CK689 (50 uM, inactive control compound)
and CK666 (50 uM) (f). (g-j) Effects of myosin-Il inhibitor, blebbistatin on the subcellular
protrusion phenotypes. Averaged protrusion velocity time series in each cluster registered
at protrusion onset in DMSO or blebbistatin-treated cells (g). t-SNE plots of
autocorrelation functions of protrusion velocity time series overlaid with the density of data
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in the cells treated with DMSO (h) and blebbistatin (i). Comparison of the proportion for
each cluster per cell between DMSO and blebbistatin (20 uM) (j). Solid lines indicate
population averages, and shaded error bands indicate 95% confidence intervals of the
mean computed by bootstrap sampling. The error bars indicate 95% confidence interval
of the mean of the cluster proportions. * p<0.05, and ** p < 0.01 indicate the statistical

significance by bootstrap sampling.

Figure 3. Deep feature learning from protrusion velocity time-series. (a) Deep
feature learning of Guided bi-LSTM autoencoder. (b-d) The training performance of
feature learning. Total loss (b), auto-encoder loss (c) and classification loss (d). (e)
Principal component analysis on the deep features. (f) Effect sizes of the difference
between CK689 and CK666 in Cluster VI with varying weight parameters. (g) Effect sizes
of the difference between DMSO and blebbistatin in Cluster |l with varying weight
parameters. (h-i) Visual comparison between the input of scaled velocities (h) and
reconstructed output from autoencoder (i). (j~0) Comparison between ACF and DF-based
clustering. Average protrusion velocity time series registered at protrusion onset (t=0) (j). ).
Solid lines indicate population averages, and shaded error bands indicate 95%
confidence intervals of the mean computed by bootstrap sampling. t-SNE plot of ACF (k)
and DF (n). Ordered distance map from ACF-based clustering (i) and DF-based clustering

(0). Silhouette plots from ACF-based clustering (m) and DF-based clustering (p).

Figure 4. Effects of CK666 and Cytochalasin D on subcellular protrusion
phenotypes. (a, e) Average velocity time series registered at protrusion onset (t=0) in
each cluster of the cells treated with CK689 or CK666 (a) and DMSO or Cytochalasin D
(CyD50: 50 nM, CyD100: 100nM) (e). Solid lines indicate population averages, and
shaded error bands indicate 95% confidence intervals of the mean computed by bootstrap
sampling. (b-c, f-h) t-SNE plot overlaid with the density of the deep features of the cells
treated with CK689 or CK666 (b-c) and DMSO or Cytochalasin D (f-h). (d, i) Comparison
of the proportion for each cluster per cell between CK689 (n= 10) and CK666 (n= 10) (d),
and DMSO (n= 22) and Cytochalasin D (n=16 for 50 nM, n= 20 for 100 nM) (i). The error
bars indicate a 95% confidence interval of the mean of the cluster proportions. *p<0.05,
**p<0.01 indicate the statistical significance by bootstrap sampling.
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Figure 5. Deep phenotypes in accelerating protrusion. (a-b) t-SNE plots overlaid with
the density of the deep features from accelerating protrusion (Cluster VI) for
CK689/CK666-treated (a) or DMSO/Cytochalasin D treated cells. (c-d) Average
protrusion velocity time series (c) registered at protrusion onset (t=0) and t-SNE plot for
three deep phenotypes of accelerating protrusion. (e, g, i) Average velocity time series
registered at protrusion onset (1=0) of the deep phenotypes of accelerating protrusion
from the cells treated with CK689/CK666 (e), DMSO/Cytochalasin D (g), and
DMSO/blebbistatin (i). Solid lines indicate population averages, and shaded error bands
indicate 95% confidence intervals of the mean estimated by bootstrap sampling. (f, h, j)
Comparison of the proportion for each deep phenotypes per cell between CK689 and
CKe666 (f), DMSO and Cytochalasin D (g), DMSO and blebbistatin (j). . The error bars
indicate a 95% confidence interval of the mean of the cluster proportions. *p < 0.05,
**p<0.01 indicate the statistical significance by bootstrap sampling.

Figure 6. Deep phenotypes in bursting protrusion.

(a) Average velocity time series registered at protrusion onset (t=0) in DF-based clusters
of the cells treated with DMSO or blebbistatin. (b) t-SNE plot overlaid with the density of
the deep features of the cells treated with DMSO or blebbistatin. (¢) Comparison of the
proportion for each cluster per cell between DMSO and blebbistatin. (d) Average velocity
time series registered at protrusion onset (t=0) of five deep phenotypes of bursting
protrusion. (e-g) Average velocity time series registered at protrusion onset (t=0) of the
deep phenotypes of bursting protrusion from the cells treated with CK689/CK666 (e),
DMSO/Cytochalasin D (f), and DMSO/blebbistatin (g). (f- j) Comparison of the proportion
for each deep phenotypes of bursting protrusion per cell between CK689 and CK666 (h),
DMSO and Cytochalasin D (i), DMSO and blebbistatin (j). Solid lines indicate population
averages, and shaded error bands indicate 95% confidence intervals of the mean
computed by bootstrap sampling. The error bars indicate a 95% confidence interval of the
mean of the cluster proportions. *p<0.05, **p<0.01, ***p<0.001 indicate the statistical
significance by bootstrap sampling.

Figure 7. Single-cell phenotyping based on subcellular characterization. (a-b).
UMAP (a) and heatmap (b) of clustered single-cell proportions of subcellular protrusion
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phenotypes. (¢) The ordered distance map of single-cell clustering. (d) Average
subcellular protrusion proportions in each cell phenotype. (e) Average proportions of the
deep phenotypes of bursting (Cluster Il) and accelerating (Cluster VI) protrusions in each
cell phenotype. (f-h) Comparison of the proportional differences between Bursting and
Steady Cell Groups, and Accelerating and Steady Cell Groups in the conditions of
CK689/CK666 (f), DMSO/Cytochalasin D (g), DMSO/blebbistatin (h). *p<0.05, ***p<0.001

indicate the statistical significance by bootstrap sampling.

Methods and Methods
Experimental Description

The cell culture and live cell imaging procedures were followed according to the previous
studies (Lee, 2015, Wang, 2018). For the drug treatment experiments, we cultured PtK1
cells on 27mm glass-bottom dishes (Thermo Scientific cat. #150682) for two days and
stained them with 55ugml-' CellMask Deep Red (Invitrogen) following the manufacturer’s
protocol. Then we monitored the cell using microscopy. For Arp2/3 inhibition experiments,
cells were incubated with 50 uM of CK666 or CK689 (EMD Millipore) for an hour before
imaging. For Cytochalasin D experiments, cells were incubated with DMSO or
Cytochalasin D (50 or 100 nM) (Sigma) for half an hour before imaging. For myosin
inhibition experiments, cells were incubated with 20 uM blebbistatin (EMD millipore, cat.
# 023389) for a half-hour before imaging.

Unsupervised Learning Using ACF feature
1. Calculation of partial similarity matrix

1) After the velocity time series are denoised by Empirical Mode Decomposition
(EMD), we pooled the time series whose temporal lengths are similar within the
threshold (6 frames; 30 seconds).

2) We pad random noise to the end of each time series to make the length equal to
the longest one. We generate the random noise from the gaussian distribution with
the mean estimated by the average value of the last five time points. Then, the
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missing part will be padded with random noise with the estimated mean and
standard deviation.

3) To reduce the dimensionality of time series, we represented the time series data
by Symbolic ApproXimate representation (SAX)3° as described in our previous
study*.

4) We calculate the Euclidean distance based on the autocorrelation coefficient.

5) Repeat from steps 1) to 4) until all the samples are calculated.

6) The final distance similarity matrix is the average mean of distance similarity matrix
and its transpose to guarantee that the similarity matrix is symmetric.

2. Clustering: We applied community detection method® to the similarity matrix. First,
we made a K-nearest neighbor graph based on similarity distance. Then, we calculated
the adjacency matrix and identified the communities using the R package igraph. The
number of clusters was estimated based on the silhouette values of clustering results.

Deep Feature Learning by Guided bi-LSTM Autoencoder

1. Velocity time series preprocessing

In this step, we will perform nonlinear scaling of protrusion velocity to reduce the effect of
large magnitude of protrusion velocity since the large magnitude may come from less
accurate measurement. The majority of velocity magnitude should be less than 10um/min
based on our experience. Therefore, we manually designed a sigmoidal mapping function,

2/(1 + e~9%3v) — 1. After this sigmoidal scaling, the range of the velocity becomes [-1, 1].
2. Model Training

We randomly split the dataset into three parts: training, validation, and test sets with a
ratio: 0.49, 0.21, 0.3. The training set was used to fit the parameters of the model, while
the validation set was used to select the model with the best fit (the lowest value of the
objective function). The details of our proposed guided Bi-LSTM autoencoder were shown
in Fig. 2a. Mainly we utilized three layers of bidirectional long short-term memory (bi-
LSTM) as an encoder to extract the features and combined another three layers of bi-
LSTM as a decoder to reconstruct the input. In order to make the representative features
consistent with the clustering results from the ACF-based clustering, we added a
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multilayer perception (MLP) classifier to guide the training process. The total loss includes
two loss functions: reconstruction loss using the mean squared error function from the
autoencoder and the classification loss using the multiple-categorical cross-entropy
function from the MLP. Furthermore, in order to optimize the balance between cross-
entropy from autoencoder and mean squared error from cluster labels, we trained the
model with different weights from 1 to 50 and selected the best weight that provides the
most discriminative features for CK666 perturbation. We used a training set to fit the
parameters with the batch size 128 and 237 epochs. During the training, we monitored
the loss in the validation set and use the model parameters for the best performance with
the validation set. We used the bi-LSTM encoder to extract the features for the
subsequent analysis. TensorFlow was used to implement the guided bi-LSTM
autoencoder in Python 3 in Ubuntu 18.04.

Phenotyping Using Deep Features

We extracted the features from the trained bi-LSTM encoder and then applied Principal
Component Analysis (PCA) for the dimensional reduction of the learned features. Based
on the percentage of the explained variance, the first 15 principal components are used

for clustering analysis.

After the feature reduction, the dataset was split into paired experiments: CK689/CK666,
DMSO/CyD50/CyD100, DMSO/Bleb. For each paired experiment, we calculated the
sample similarity using Euclidean distance and then apply community detection on the
selected samples with 51 frames. To evaluate the optimal number of clusters, we applied
the external criteria: Davies-Bouldin Index (DBI) and silhouette value to estimate the
optimal numbers in each experiment on the pooled control samples. We found that the

optimal number of clusters was six.

Deep phenotyping Using Deep Features

After the initial clustering, we further sub-divided the phenotypes of Bursting Protrusion
(Cluster Il) and Accelerating Protrusion (cluster VI) into deep phenotypes using the deep
features. We first pooled all the samples from the target phenotypes from different paired
experiments and then applied the community detection to determine the deep phenotypes
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based on the Euclidean distance. The optimal number of clusters was determined by the

maximum silhouette value.

Drug Perturbation Quantification

To evaluate the effect of drug perturbation, we first overlaid the velocity profiles between
control and drug-treatment experiment together for each cluster or phenotype and then
visually checked the changes of velocity magnitude by drug perturbation. Then, we
quantitatively measured the cluster proportion to represent the drug effect. We quantified
the proportions of phenotypes in each cell from both conditions. Then the distributions of
the proportion were estimated by resampling original cell samples using bootstrp() in
Matlab 10000 times. Then, p-values were calculated by estimating the probability that
proportion in one condition is greater or less than the other condition. The confidence
intervals of each experiment were estimated by Matlab build-in function bootci();

Cluster Visualization

For each paired experiment, we applied t-SNE (t-distribution stochastic neighboring
embedding) for visualization with the default parameter (PC number:15, perplexity:30).
The sample densities on two-dimensional t-SNE mappings were estimated using the
crowdedness of each sample below the radius threshold, which was implemented as
scatplot in MATLAB by Alex Sanchez.
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