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Abstract 

Intracellular processes such as cytoskeletal organization and organelle dynamics exhibit 

massive subcellular heterogeneity. Although recent advances in fluorescence microscopy 

allow researchers to acquire an unprecedented amount of live cell image data at high 

spatiotemporal resolutions, the traditional ensemble-averaging of uncharacterized 

subcellular heterogeneity could mask important activities. Moreover, the curse of 

dimensionality of these complex dynamic datasets prevents access to critical mechanistic 

details of subcellular processes. Here, we establish an unsupervised machine learning 

framework called DeepHACKS (Deep phenotyping of Heterogeneous Activities in the 

Coordination of cytosKeleton at the Subcellular level) for <deep phenotyping,= which 

identifies rare subcellular phenotypes specifically sensitive to molecular perturbations. 

DeepHACKS dissects the heterogeneity of subcellular time-series datasets by allowing 

bi-directional LSTM (Long-Short Term Memory) neural networks to extract fine-grained 

temporal features by integrating autoencoders with conventional machine learning 

outcomes. We applied DeepHACKS to subcellular protrusion dynamics in 

pharmacologically perturbed epithelial cells, revealing fine differential responses of 
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leading edge dynamics specific to each perturbation. Particularly, DeepHACKS in 

conjunction with blebistantin treatment revealed the emergence of rare subcellular and 

single-cell phenotypes driven by <bursting= protrusion. This suggests that the temporal 

features directly learned from  leading edge dynamics enable fine-grained identification 

of drug-related phenotypes, which may not be accessible from static cell images. In 

summary, our study provides an analytical framework for detailed and quantitative 

understandings of molecular mechanisms hidden in their heterogeneity. DeepHACKS 

can be potentially applied to analyze various time-series data measured from other 

subcellular processes. 

 

Introduction 

Recent advances in fluorescence microscopy allow researchers to acquire an 

unprecedented amount of live cell image data at high spatiotemporal resolutions; however, 

Intracellular dynamics such as cytoskeletal, membrane, and organelle dynamics exhibit 

massive subcellular heterogeneity, which makes it challenging to fully understand rich 

microscopy datasets1. Moreover, the traditional ensemble-averaging of uncharacterized 

subcellular heterogeneity could lead to the loss of critical mechanistic details. For instance, 

if some cytoskeletal dynamics in only a small subcellular region in a rare cellular 

subpopulation specifically respond to given perturbations, it will be easily overlooked by 

the human eye and conventional assays based on ensemble averaging.  

In cancer genomics, detecting rare mutations and cell types by deep sequencing has 

been critical to the understanding of tumor heterogeneity. However, little effort has been 

made for <deep phenotyping=2,3 in cell biology, which identifies detailed and rare 

phenotypes of subcellular and cellular processes from microscopy datasets. Particularly, 

deep phenotyping of subcellular processes can enable us to access critical mechanistic 

details of molecular processes masked by subcellular dynamic heterogeneity. Over the 

last decade, image analysis software has facilitated the quantitative measurements of 

molecular and cellular events from microscopy images at high spatiotemporal resolutions. 

Still, characterizing phenotypes from their heterogeneity has been mainly focused on 

static images at a cellular level without capitalizing rich spatiotemporal information.  
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For effective phenotyping from high dimensional datasets, it is necessary to project raw 

data onto low-dimensional manifolds to avoid the curse of dimensionality, where statistical 

analyses cannot reach statistical significance in high dimensions due to the sparsity of 

data. Therefore, in conventional machine learning settings, the hand-crafted features are 

extracted for dimensional reduction.  Our previous unsupervised ML pipeline4 relied on 

the hand-crafted time-series feature, ACF (Auto-Correlation Function), to deconvolve the 

time series heterogeneity from live cell movies 4. Hand-crafted features, however, depend 

strongly on prior knowledge and are limited in representing large complex datasets 

comprehensively, preventing the discovery of fine-grained <deep= phenotypes.  

Over the last decade, deep learning (DL) had risen to be a mainstream ML method, 

overcame the performance of traditional ML, and surpassed the human capabilities in 

many areas 5,6. Unlike conventional ML, DL does not use hand-crafted features, but rather 

it learns the data representation (features) directly from raw data 7,8. The learned features 

by DL are better positioned to capture more accurate information from complex datasets, 

enabling us to unravel the heterogeneity of the data in great detail for deep phenotyping. 

One drawback of the DL approach, however, is that DL requires large datasets to prevent 

overfitting, where neural networks fit their training data but are not generalized well. Also, 

DL is considered to be a black-box approach where the interpretability of learned features 

is limited. Therefore, the outcomes may not be compatible with human intuition.  

To address these challenges, we developed a self-supervised DL framework integrated 

with conventional unsupervised ML, called DeepHACKS (Deep phenotyping of 

Heterogeneous Activities in the Coordination of cytosKeleton at the Subcellular level). 

DeepHACKS allows us to deconvolve the phenotypic heterogeneity of subcellular time-

series dataset in a self-supervised manner where DL-based features learning is 

regularized by traditional ML outcomes. Due to the fine-grained nature of learned 

temporal features, DeepHACKS allowed deep phenotyping of subcellular dynamics from 

live cell movies, meaning that we can identify the rare subcellular and single-cell 

phenotypes, specifically sensitive to molecular perturbations. 

We applied DeepHACKS to cell edge dynamics, in which the leading edges of migrating 

epithelial cells undergo protrusion and retraction cycles under pharmacological 
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perturbation. Growing numbers of studies show the vital roles of cell protrusion, including 

in tissue regeneration9,10, cancer invasiveness and metastasis11-13, and 

microenvironmental surveillance of leukocytes14. It has been demonstrated that long-term 

migratory behaviors of Dictyostelium can be predicted by the short-term morphological 

changes over the second timescales15. It was shown that the coordination between 

protrusion and retraction determines metastatic potency16, and influences phenotypic 

switching of cell migration17. Morphodynamic phenotypic-biomarker can be used for the 

diagnosis of metastatic potential of breast and prostate cancer 18.   

Cell protrusion and retraction involve precise coordination of actin regulators to 

collectively organize actin cytoskeleton4,19-21. Dissecting such dynamics has been a 

challenging task due to substantial morphodynamic heterogeneity4,20,21. DeepHACKS 

quantitatively identified the deep phenotypes of subcellular protrusion from highly 

heterogeneous and non-stationary-edge dynamics of migrating epithelial cells, revealing 

fine differential responses of leading-edge dynamics specific to perturbations. Particularly, 

DeepHACKS revealed the emergence of rare protrusion subcellular and cellular 

phenotypes upon blebbistatin. Our study suggests that the temporal features directly 

learned from leading-edge dynamics enable fine-grained identification of drug-related 

subcellular phenotypes, which can not be accessible from static cell images.  

 

Results 

DeepHACKS: deep phenotyping of subcellular protrusion. 

To deconvolve the heterogeneity of subcellular protrusion activities at the fine 

spatiotemporal resolution, we developed a computational analysis pipeline, DeepHACKS 

(Fig. 1), which leverages DL to learn the features in a self-supervised manner using the 

outcomes from conventional unsupervised learning analysis. Since subcellular protrusion 

occurs over varying periods of time and creates heterogeneous temporal lengths, we 

advanced our ML algorithms to include the time series with heterogeneous temporal 

lengths. DeepHACKS consists of four main components: i) Predefined feature 

(Autocorrelation Function; ACF)-based clustering, ii) Deep feature learning, iii) Fine-

grained subcellular phenotype identification (Deep Phenotyping), iv) Single-cell 
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phenotyping based on subcellular phenotypes. We used the ACF-based clustering to 

obtain the preliminary cluster labels as the prior information, which is injected into deep 

feature learning in a self-supervised manner to automatically learn features for deep 

phenotyping.  

We prepared our sample videos of PtK1 epithelial cells in control and drug-perturbed 

conditions. Then, we segmented the cell membrane boundary of each frame in each 

movie and locally divide cell edges into small probing windows with a size 500 by 

500nm19,20. Then time series of protrusion velocities were acquired by averaging 

velocities of pixels in each probing window (Fig. 1a.1-2). After detecting the protrusion 

onset, the time-series protrusion velocities were aligned as a temporal fiduciary (Fig. 

1a.3-4)20. After that, following the same procedure in our previous study4, we denoised 

the time series velocity profile using Empirical Mode Decomposition (EMD)22 to reduce 

noise. 

Since the temporal lengths of protrusion velocity time series are heterogeneous, 

calculating the similarity between samples of different temporal lengths is not 

straightforward. To produce conventional ML-based results (Fig. 1b), we assume that the 

time series protrusions are dissimilar if the lengths of them are too different. Therefore, 

instead of calculating the similarity distance among the whole samples, only the distance 

among samples within similar lengths is calculated.  Then, auto-correlation functions 

(ACFs) as the time series features were used in discovering the novel phenotypes in our 

previous study (ACF-based clustering, Fig. 1b.8)4. To calculate the ACF-based distance 

among time series with similar temporal lengths, we padded random noise to the later 

part of the time series to make the same time length (Fig. 1a.5). We followed the previous 

ML pipeline, including SAX (Symbolic Aggregate approximation)23 (Fig. 1b.7) and 

Euclidean-based ACF distance. We pooled all the distance similarity together for partial 

similarity distance and applied the community detection clustering algorithm24 to 

determine the distinct clusters of protrusion dynamics (Fig. 1b.9), which serve as the pre-

phenotypes for the next step of deep feature learning. 

Then, we performed feature learning by leveraging deep learning (Deep Features-based 

clustering, Fig. 1c). First, we preprocess the time series by rescaling them to the range [-
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1, 1] to eliminate the effect of large velocity magnitude (Fig. 1a.6). Autoencoder25 has 

been widely used for feature learning by minimizing the difference between input and 

output as reconstructed input. One weakness of basic autoencoder, however, is that the 

features is difficult to interpret since there is no prior information included during the 

training process. Therefore, many structures26-29 based on autoencoder such as 

variational autoencoder26 have been proposed. In our feature learning, in order to inject 

the prior information on the hidden layers, we added another classification branch to make 

the autoencoder learn features that are consistent with our conventional unsupervised 

ML analysis. We used bidirectional Long-Short Term Memory (bi-LSTM) structure30,31. 

Particularly, LSTM specializing in time series data can handle variable-length time series 

since it does not require a fixed length of time series. By Integrating these concepts, we 

developed the feature learning framework called Guided Bi-LSTM autoencoder. By 

optimizing the total loss comprising the loss functions of the autoencoder and the 

classifier, we trained Guided Bi-LSTM autoencoder using our dataset, including more 

than 30,000 time-series samples. Then, we applied Principal Compound Analysis (PCA) 

to reduce the feature dimension and selected the first 15 principal components, which 

explained more than 95% of the variance.  

We used these features to perform clustering analysis to refine the preliminary clustering 

results with ACF features (Fig. 1d). We generate the different clustering results by varying 

the balancing weight between the losses of the autoencoder and the classifier and then 

determine the optimal clustering by evaluating the sensitivity of the clustering results to 

the reference drug perturbation. Then using the same deep features (features learned 

from deep learning), we perform sub-clustering analyses for the clusters identified in the 

previous step. We call these sub-clusters <deep phenotypes= while calling the parent 

clusters <coarse phenotypes= (Fig. 1d). Then, the deep phenotypes were compared in 

control and pharmacologically perturbed conditions. Finally, we used the proportions of 

subcellular protrusion phenotypes as single-cell features to perform clustering analysis to 

identify single-cell protrusion phenotypes (Fig. 1d). 

Pre-identification of subcellular protrusion phenotypes by ACF features.  
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Previously, we used ACF features and density-peak clustering32 to deconvolve the 

heterogeneity of subcellular protrusion velocity time-series, which led to five distinct 

clusters 4. Instead, we used the community detection algorithm33 since it can handle the 

partial similarity distance matrix from unequal temporal lengths. Using Silhouette value34, 

we evaluated the optimal number of clusters (Fig. 2a). We chose the optimal one as six, 

which were confirmed visually by the ordered distance maps and the silhouette plots of 

the clustering results.  One difference from our previous results was that we were able to 

split the previous <fluctuation= cluster into the clusters of <steady= (Cluster I) and <bursting= 

(Cluster II) protrusions (Fig. 2b). Cluster II showed that edge velocity was changed 

dramatically within 100 seconds. Therefore, we named it 8Bursting Protrusion9. Since 

Cluster III-V exhibited periodic edge velocity, we named them 8Periodic Protrusion9 and 

Cluster VI named 8Acceleration Protrusion9 as we did in our previous work4. 

Using these updated clustering results, we repeated the analysis of the CK666 (Arp2/3 

inhibitor) perturbation to these protrusion phenotypes. Consistently with the previous 

results, the analysis showed that CK666 significantly reduced the proportion of the 

accelerating protrusion phenotype (Cluster VI) only in comparison to the inactive control 

(CK689) (p=0.013 by bootstrap resampling) (Fig. 2c-f and SFig. 1a). Next, we investigate 

the effects of blebbistatin using the clustering results. First, the velocity profile in Cluster 

II (Bursting Protrusion) was substantially elevated by blebbistatin treatment (Fig. 2g). 

Moreover, the quantification of the proportion of the clusters showed that Cluster II was 

significantly increased by the blebbistatin treatment (p=0.004 by bootstrap resampling) 

(Fig. 2h-j and SFig. 1b), while CK666 did not show significant effects (Fig. 2f). This 

suggests that there exist subcellular regions where downregulation of myosin II promotes 

bursting protrusion.  

Self-supervised deep feature learning for subcellular protrusion phenotyping  

Using the labels from the previous ACF-based clustering results, we trained a Guided Bi-

LSTM autoencoder (Fig. 3a). The reconstruction, classification, and total losses decrease 

as the training epoch increases (Fig. 3b-d). The visual comparison between the input and 

the output confirmed that the autoencoder training was effective (Fig. 3h-i). After the 

dimensional reduction of the autoencoder features by PCA (Fig. 3e), we applied 
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community detection to find distinct clusters. We varied the weight parameter balancing 

the losses of the autoencoder and the classifier and evaluated each clustering results 

based on the effect sizes of accelerating protrusion (Cluster VI) between CK689 and 

CK666 (Fig. 3f), and bursting protrusion (Cluster II) between DMSO and blebbistatin (Fig. 

3g). The effect sizes of accelerating protrusion (Cluster VI) reached maximum 

distinctively when the weight parameter is 25, while there is little pattern of the effect size 

variations of bursting protrusion (Cluster II). This means that finding the optimal weight 

parameter is critical for the analysis of accelerating protrusion. In contrast, the wide range 

of the weight parameters is suitable for the analysis of bursting protrusion. Therefore, we 

chose parameter 25. With the weight parameter, 25, even though the average temporal 

patterns of protrusion velocities from ACF and Deep feature (DF)-based clustering are 

identical (Fig. 3j), the tSNE feature visualization revealed their significant differences (Fig. 

3k and n). The quality of the clustering from the DF was substantially better than the ACF-

based clustering based on the order-distance map and silhouette values (Fig. 3l, m, o, 

and p). This feature refinement will enable us to perform a more detailed analysis of each 

protrusion phenotype in the downstream steps. 

Deep Phenotypes of Accelerating Protrusion. 

In the CK666 perturbation experiments where we optimized the deep feature learning, we 

were able to identify similar clustering patterns using the deep features (DF) (Fig. 4a) to 

those from the ACF (Fig. 2c). Also, the drug effects of CK666 on Cluster I and VI (Fig. 

4a-d and SFig. 2a) are consistent with the previous ACF-based results (Fig. 2f) (ACF-

based clustering, p-value=0.045 for Cluster I and 0.013 for Cluster VI;  DF-based 

clustering, p-value = 0.016 for Cluster I and 0.0069 for Cluster VI by bootstrap resampling). 

The smaller p-values in DF-based clustering are expected because we selected the 

weight parameter, which gave the maximal effector size for Cluster VI. 

To validate the results, we applied the same deep features to a different drug, 

Cytochalasin D (CyD), that was shown to affect accelerating protrusion previously4. 

Cytochalasin D significantly reduced the proportion of Cluster VI (CyD50: p-value = 0.027; 

CyD100: p-value = 0.013 by bootstrap resampling) (Fig. 4e-i and SFig. 2b). Also, 

Cytochalasin D significantly increased the proportion of Cluster I (CyD50: p-value = 0.021; 
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CyD100: p-value = 0.023 by bootstrap resampling).  Consistently with CK666, we found 

that the DF-based clustering analysis provided smaller p-values than the previous ACF-

based analysis 4, demonstrating that the DF can provide more sensitive and robust 

statistical analyses. 

Next, we performed deep phenotyping of accelerating protrusions (Cluster VI). The 

previously identified phenotypes are sub-divided to further identify fine-grained 

phenotypes that are more sensitive to drug perturbation. We isolated the samples from 

Cluster VI and performing a sub-clustering analysis. The t-SNE suggests that there could 

exist sub-clusters which could be more sensitive to CK666 (Fig. 5a) and Cytochalasin D 

(Fig. 5b). The Silhouette value indicated that the optimal number of deep phenotypes of 

accelerating protrusion was three (SFig. 3a). The deep phenotypes identified in Cluster 

VI displayed subtle but visually distinct behaviors (Fig. 5c): We identified one weak 

accelerating cluster (Cluster VI-1) and two strong clusters (Cluster VI-2 and 3). Cluster 

VI-2 exhibited a brief pause of acceleration before 100s, while Cluster VI-3 had constant 

acceleration.  With this deep phenotyping, Cluster VI-1 was not significantly affected using 

proportion test by CK666 (p-value: 0.0694, bootstrap resampling) and low doses of CyD 

(CyD50: p-value = 0.0505; CyD100: p-value = 0.2543, bootstrap resampling). In contrast, 

the proportions of Cluster VI-2 and 3 were significantly decreased by CK666 (p-value = 

0.0049 for VI-2, 0.0012 for VI-3, bootstrap resampling) and CyD (CyD50: p-value = 0.3698 

for VI-2, 0.0193 for VI-3; CyD100: p-value = 0.0165 for VI-2, 0.0011 for VI-3, bootstrap 

resampling). Moreover, the effect of CK666 and CyD on Cluster VI-3 was stronger than 

Cluster VI-2. For blebbistatin treatment experiment, there was no significant effect on any 

deep phenotypes of acceleration. These sub-clustering results suggest that DF can be 

used for deep phenotyping for more accurate drug characterization. 

Deep Phenotypes of Bursting Protrusion. 

We also performed the deep phenotyping to Cluster II (Bursting Protrusion) to uncover 

more detailed effects of blebbistatin. With the DF, Cluster II was not significantly affected 

by CK666 (p-value = 0.4577; bootstrap sampling) and CyD (CyD50: p-value = 0.0707, 

CyD100: p-value  =  0.1455; bootstrap sampling). In contrast, blebbistatin significantly 

increased (p-value = 0.0004; by bootstrap resampling) the proportion of Cluster II, 
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consistent with the previous ACF-based results (Fig. 6a and c). The t-SNE plot of the DF 

distribution (Fig. 6b and SFig. 2c) displays that blebbistatin did not affect Cluster II 

uniformly, but rather the subset of Cluster II was highly elevated. Therefore, we performed 

a sub-clustering analysis of Cluster II. DF-based sub-clustering identified five clusters 

based on the silhouette values (Fig.6d). These deep phenotypes (Cluster II-1~5) 

identified in Cluster II were shown displayed distinct behaviors. We found that Cluster II-

1 was significantly increased by blebbistatin (p-value < 0.0001, bootstrap sampling) while 

the other Cluster II-2~5 were not affected (Fig. 6j). This deep phenotyping of Bursting 

Protrusion isolated Cluster II-1, the only deep phenotypes susceptible to blebbistatin 

treatment. These results suggest that our deep phenotyping can help to isolate specific 

phenotypes for better quantitation of drug actions. 

In contrast to blebbistatin, CK666 treatment did not affect any deep phenotypes of Cluster 

II significantly. CyD treatment decreased  the proportion of Cluster II-2 and 5 significantly 

(p-value < 0.0001 for II-2 and CyD100, p-value = 0.0059 for II-5 and CyD50) and 

increased the proportion of Cluster II-3 and 4 significantly (p-value = 0.004 for Cluster II-

3 and CyD100, p-value = 0.0149 for Cluster II-4 and CyD100). Due to the opposite effects 

of CyD on the deep phenotypes of Busting protrusion, the original bursting phenotype 

(Cluster II) was not shown to be significantly affected by CyD (Fig. 4i). Taken together, 

we performed deep phenotyping to identify subtle temporal patterns in our protrusion time 

series dataset and precisely associate them with specific drug perturbations by sensitive 

statistical analyses. 

Single-cell protrusion phenotypes 

Based on the subcellular protrusion phenotypes, we characterized single-cell phenotypes. 

The proportions of subcellular protrusion phenotypes in individual cells were used as 

cellular features for single-cell protrusion phenotypes. We applied manifold learning, 

UMAP35, to these single-cell feature distributions and then performed clustering analysis 

using community detection. The silhouette plots with the varying number of clusters 

indicated that the optimal number of cell clusters is nine. UMAP 2D visualization (Fig. 7a), 

the proportion plots of each cluster (Fig. 7b), the ordered-distance plot (Fig. 7d), and 

silhouette plot (SFig. 3b) demonstrated that the identified cell clusters are highly distinct. 
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Each cell cluster was characterized by the mean proportions of subcellular protrusion 

phenotypes (Fig. 7d).  Particularly, Bursting Cells (Cell Cluster 7) and Accelerating Cells 

(Cell Cluster 9) have high levels of Bursting and Accelerating Protrusion, respectively. 

Strong-Bursting/Accelerating Cells (Cell Cluster 8) have high levels of both Bursting and 

Accelerating Protrusion. Mid-Bursting/Accelerating Cells (Cell Cluster 6) have medium 

levels of them. In Table 1, we summarized the characteristics of these cell clusters and 

their phenotypic names. 

We also quantified the proportions of deep phenotypes sensitive to blebbistatin (Cluster 

II-1; Bursting-1) and CK666 (Cluster VI-2/3; Accelerating 2/3) in each cell cluster (Fig. 

7e). Bursting Cells have high levels of Cluster II-1 (blebbistatin-sensitive) and low levels 

of Cluster VI-2/3 (CK666/CyD-sensitive). Conversely, Accelerating Cells have a low level 

of Cluster II-1 and high levels of Cluster VI-2/3. Intriguingly, Strong-Bursting/Accelerating 

Cells have high levels of both Cluster II-1 and VI-2/3, while they have fewer Cluster VI-1 

(CK666/CyD-insensitive) than Accelerating Cells. As summarized in Table 1, as cells 

have more proportions of bursting or accelerating protrusion, they tend to have more 

corresponding drug-sensitive deep phenotypes. This suggests that the identified cell 

phenotypes have differential sensitivities to CK666, CyD, and blebbistatin. To confirm this, 

we first pooled the cell phenotypes as follows: Cell Cluster #3, 6, 7, and 8 into Bursting 

Cell Group; Cell Cluster #6, 8, and 9 into Accelerating Cell Group; Cell Cluster #1 and 2 

into Steady Cell Group. Since Steady Protrusion was affected by the drugs oppositely to 

Bursting or Accelerating Protrusion in the previous analysis (Fig. 4d and I, and 6c), we 

quantified the proportional differences between the cells of Bursting and Steady Cell 

Groups or Accelerating and Steady Cell Groups. We found that CK666 significantly 

decreased the proportion of Accelerating Cell Group over Steady Cell Group while it did 

not significantly change that of  Bursting Cell Group over Steady Cell Group (Fig. 7f). 

Intriguingly, CyD/blebbistatin significantly decreased/increased the proportions of both 

Bursting and Accelerating Cell Groups over Steady Cell Group (Fig. 7g-h) even though 

they did not affect Bursting/Accelerating Protrusion in the previous subcellular analysis 

where every cell phenotype was considered (Fig. 4i and 6c). This demonstrates that both 

subcellular and cellular phenotyping is necessary to fully understand the heterogeneity of 

cellular drug responses. 
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Table 1. Summary of single-cell phenotyping 

Cell 
Cluster # 

Dominant  
Protrusion  

Cell Phenotype Drug-Sensitive Deep Phenotypes 
Cluster II-1 
(blebbistatin) 

Cluster VI-2/3 
(CK666/CyD) 

1 Steady  Steady Cell1 Low Low 
2 Steady  Steady Cell2 Low Low 
3 Steady & 

Periodic #1 
Periodic Cell1 Mid Low 

4 Steady & 
Periodic #2 

Periodic Cell2 Low Low 

5 Steady & 
Periodic #3 

Periodic Cell3 Low Low 

6 Steady, Bursting, 
& Accelerating  

Mid-Bursting/ 
Accelerating Cell 

Mid Mid 

7 Bursting  Bursting Cell High Low 
8 Bursting & 

Accelerating  
Strong-Bursting/ 
Accelerating Cell 

High High 

9 Accelerating  Accelerating Cell Low High 
 

Discussion 

We developed a DL-based self-supervised learning framework, DeepHACKS, that can 

deconvolve the heterogeneity of dynamic phenotypes of cell protrusion, which will enable 

us to achieve detailed understandings of molecular mechanisms hidden in subcellular 

and cellular heterogeneity. DeepHACKS takes advantage of deep feature learning to 

identify rare deep phenotypes susceptible to specific molecular perturbations. The 

framework can provide a new avenue for better quantifying the effects of drug actions 

more precisely and comprehensively. Using this method, we refined the drug effects of 

the previously found 8acceleration protrusion9. Furthermore, we identified a novel 

protrusion phenotype called 8bursting protrusion9, which was specifically enhanced by 

myosin inhibitor blebbistatin. Myosin can down-regulate leading edge dynamics by 

assembling large focal adhesion, increasing cortical contractility, and increasing actin 

retrograde flow, and it has been reported that blebbistatin promotes protrusions in 2D36 

and 3D37,38 environments. Our analysis suggests that identifying such specific subcellular 

phenotypes will enable us to understand the heterogeneity of cell motility and 
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morphodynamics and specifically characterize drug effects at subcellular and cellular 

levels. 

While deep learning achieved many successes in cellular image analyses, its application 

to cellular dynamics has been limited. Here, we collected more than 30,000 protrusion 

velocity time series and proposed a Bi-LSTM autoencoder framework to automatically 

extract temporal features for dynamic phenotyping. Furthermore, we integrated the 

conventional ML outcomes with a Bi-LSTM autoencoder to learn the features useful for 

our specific purposes. Integrating prior information with deep learning26-29 is vital for 

building high-performance machine learning systems. It is particularly crucial for 

unsupervised learning, where there can be numerous outcomes depending upon selected 

features.  Here, we developed an effective deep learning framework to learn rich features 

based on prior information. The features learned automatically from our framework 

enabled deep phenotyping to capture better characteristics of drug effects. 

Based on the subcellular phenotypes characterized by DeepHACKS, we were able to 

identify single-cell dynamic phenotypes. This result revealed previously unknown nine 

different single-cell phenotypes of protrusion dynamics with differential drug sensitivities. 

Also, we demonstrated that multi-scale analysis encompassing subcellular to cellular 

scales would provide us with more complete pictures of the heterogeneity of drug actions. 

Our study suggests that there can exist a surprising amount of phenotypic heterogeneity 

in cellular dynamics at subcellular and single-cell levels. Therefore, we expect our deep 

learning framework, DeepHACKS will unravel such dynamic heterogeneity to identify 

deep phenotypes and accelerate understanding of the mechanism of heterogeneous 

cellular or subcellular activities with unprecedented precision. 

 

Figure Legends 

Figure 1. Schematic representation of the computational pipeline. (a) Time series 

data generation and preprocessing. (1-2) Live cell imaging and local sampling. Time-

lapse movies of the leading edge of migrating cells treated with/without different drugs 

were taken at 5 sec per frame, and then probing windows (500 x 500nm) were generated 
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to track the cell edge movement and local velocities were calculated per window. (3-4). 

Event registration and time series selection. The velocity profile per window was divided 

into protrusion and retraction events based on protrusion onset. Then all the protrusion 

intervals with a length longer than 50 sec are selected, and the samples with longer 

protrusion duration are truncated to 250s for further analysis. (5-6) Random noise padding 

and velocity transformation. The raw velocity profiles were non-linearly scaled to [-1, 1] 

for the purpose of convenient training and eliminating the effect of larger values. (b) Pre-

phenotyping by conventional ML. ACF-based clustering pipeline was applied to the 

collected data to identify the protrusion phenotypes. (c) Deep feature Learning. A Guided 

autoencoder integrates an LSTM-autoencoder and multiple-layer perceptron (MLP) 

classifier. The optimal weight to balance the contributions of two branches was searched 

exhaustively and chosen based on drug perturbation analyses. The deep features from 

the bi-LSTM encoder were extracted for further phenotyping. (d) Phenotyping. Subellular 

phenotypes were identified by clustering analysis using deep features. Coarse 

phenotypes can be divided into deep phenotypes for more precise drug characterization. 

Subcellular phenotypes are used for single-cell phenotyping. 

Figure 2. Pre-identification of subcellular protrusion phenotypes. (a) Silhouette plot 

that determines the optimal number of clusters. The community detection clustering 

method was applied with varying numbers of nearest neighbors. The maximum silhouette 

value determined the number of clusters, six. (b) Average temporal patterns of protrusion 

time series in the clusters whose temporal length is larger than 250s with a 95% 

confidence interval registered at protrusion onset (t = 0). (c-f) Effects of Arp2/3 inhibitor, 

CK666 on the subcellular protrusion phenotypes. Averaged protrusion velocity time series 

in each cluster registered at protrusion onset in CK689 or CK666-treated cells (c).  t-SNE 

plots of autocorrelation functions of protrusion velocity time series overlaid with the 

density of data in the cells treated with CK689 (d) and CK666 (e). Comparison of the 

proportion for each cluster per cell between CK689 (50 M, inactive control compound) 

and CK666 (50 M) (f).  (g-j) Effects of myosin-II inhibitor, blebbistatin on the subcellular 

protrusion phenotypes. Averaged protrusion velocity time series in each cluster registered 

at protrusion onset in DMSO or blebbistatin-treated cells (g).  t-SNE plots of 

autocorrelation functions of protrusion velocity time series overlaid with the density of data 
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in the cells treated with DMSO (h) and blebbistatin (i). Comparison of the proportion for 

each cluster per cell between DMSO  and blebbistatin (20 M) (j).  Solid lines indicate 

population averages, and shaded error bands indicate 95% confidence intervals of the 

mean computed by bootstrap sampling. The error bars indicate 95% confidence interval 

of the mean of the cluster proportions. * p<0.05, and ** p < 0.01 indicate the statistical 

significance by bootstrap sampling. 

Figure 3. Deep feature learning from protrusion velocity time-series. (a) Deep 

feature learning of Guided bi-LSTM autoencoder. (b-d) The training performance of 

feature learning. Total loss (b), auto-encoder loss (c) and classification loss (d). (e) 

Principal component analysis on the deep features. (f) Effect sizes of the difference 

between CK689 and CK666 in Cluster VI with varying weight parameters. (g) Effect sizes 

of the difference between DMSO and blebbistatin in Cluster II with varying weight 

parameters. (h-i) Visual comparison between the input of scaled velocities (h) and 

reconstructed output from autoencoder (i). (j-o) Comparison between ACF and DF-based 

clustering. Average protrusion velocity time series registered at protrusion onset (t=0) (j). ).  

Solid lines indicate population averages, and shaded error bands indicate 95% 

confidence intervals of the mean computed by bootstrap sampling. t-SNE plot of ACF (k) 

and DF (n). Ordered distance map from ACF-based clustering (i) and DF-based clustering 

(o). Silhouette plots from ACF-based clustering (m) and DF-based clustering (p). 

Figure 4. Effects of CK666 and Cytochalasin D on subcellular protrusion 

phenotypes. (a, e) Average velocity time series registered at protrusion onset (t=0) in 

each cluster of the cells treated with CK689 or CK666 (a) and DMSO or Cytochalasin D 

(CyD50: 50 nM, CyD100: 100nM) (e). Solid lines indicate population averages, and 

shaded error bands indicate 95% confidence intervals of the mean computed by bootstrap 

sampling. (b-c, f-h) t-SNE plot overlaid with the density of the deep features of the cells 

treated with CK689 or CK666 (b-c) and DMSO or Cytochalasin D (f-h). (d, i) Comparison 

of the proportion for each cluster per cell between CK689 (n= 10)  and CK666 (n= 10) (d), 

and DMSO (n= 22) and Cytochalasin D (n=16 for 50 nM, n= 20 for 100 nM) (i). The error 

bars indicate a 95% confidence interval of the mean of the cluster proportions. *p<0.05, 

**p<0.01 indicate the statistical significance by bootstrap sampling.  
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Figure 5. Deep phenotypes in accelerating protrusion. (a-b) t-SNE plots overlaid with 

the density of the deep features from accelerating protrusion (Cluster VI) for 

CK689/CK666-treated (a) or DMSO/Cytochalasin D treated cells. (c-d) Average 

protrusion velocity time series (c) registered at protrusion onset (t=0) and t-SNE plot for 

three deep phenotypes of accelerating protrusion. (e, g, i) Average velocity time series 

registered at protrusion onset (t=0) of the deep phenotypes of accelerating protrusion 

from the cells treated with CK689/CK666 (e), DMSO/Cytochalasin D (g), and 

DMSO/blebbistatin (i). Solid lines indicate population averages, and shaded error bands 

indicate 95% confidence intervals of the mean estimated by bootstrap sampling. (f, h, j) 

Comparison of the proportion for each deep phenotypes per cell between CK689 and 

CK666 (f), DMSO and Cytochalasin D (g), DMSO and blebbistatin (j). . The error bars 

indicate a 95% confidence interval of the mean of the cluster proportions. *p < 0.05, 

**p<0.01 indicate the statistical significance by bootstrap sampling.  

Figure 6. Deep phenotypes in bursting protrusion.  

(a) Average velocity time series registered at protrusion onset (t=0) in DF-based clusters 

of the cells treated with DMSO or blebbistatin. (b) t-SNE plot overlaid with the density of 

the deep features of the cells treated with DMSO or blebbistatin. (c) Comparison of the 

proportion for each cluster per cell between DMSO and blebbistatin. (d) Average velocity 

time series registered at protrusion onset (t=0) of five deep phenotypes of bursting 

protrusion.  (e-g) Average velocity time series registered at protrusion onset (t=0) of the 

deep phenotypes of bursting protrusion from the cells treated with CK689/CK666 (e), 

DMSO/Cytochalasin D (f), and DMSO/blebbistatin (g). (f- j) Comparison of the proportion 

for each deep phenotypes of bursting protrusion per cell between CK689 and CK666 (h), 

DMSO and Cytochalasin D (i), DMSO and blebbistatin (j). Solid lines indicate population 

averages, and shaded error bands indicate 95% confidence intervals of the mean 

computed by bootstrap sampling. The error bars indicate a 95% confidence interval of the 

mean of the cluster proportions. *p<0.05, **p<0.01, ***p<0.001 indicate the statistical 

significance by bootstrap sampling.  

Figure 7. Single-cell phenotyping based on subcellular characterization. (a-b). 

UMAP (a) and heatmap (b) of clustered single-cell proportions of subcellular protrusion 
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phenotypes. (c) The ordered distance map of single-cell clustering. (d) Average 

subcellular protrusion proportions in each cell phenotype. (e) Average proportions of the 

deep phenotypes of bursting (Cluster II) and accelerating (Cluster VI) protrusions in each 

cell phenotype. (f-h) Comparison of the proportional differences between Bursting and 

Steady Cell Groups, and Accelerating and Steady Cell Groups in the conditions of 

CK689/CK666 (f), DMSO/Cytochalasin D (g), DMSO/blebbistatin (h). *p<0.05, ***p<0.001 

indicate the statistical significance by bootstrap sampling. 

 

Methods and Methods 

Experimental Description 

The cell culture and live cell imaging procedures were followed according to the previous 

studies (Lee, 2015, Wang, 2018). For the drug treatment experiments, we cultured PtK1 

cells on 27mm glass-bottom dishes (Thermo Scientific cat. #150682) for two days and 

stained them with 55µgml-1 CellMask Deep Red (Invitrogen) following the manufacturer9s 

protocol. Then we monitored the cell using microscopy. For Arp2/3 inhibition experiments, 

cells were incubated with 50 µM of CK666 or CK689 (EMD Millipore) for an hour before 

imaging. For Cytochalasin D experiments, cells were incubated with DMSO or 

Cytochalasin D (50 or 100 nM) (Sigma) for half an hour before imaging. For myosin 

inhibition experiments, cells were incubated with 20 µM blebbistatin  (EMD millipore, cat. 

# 023389) for a half-hour before imaging.  

Unsupervised Learning Using ACF feature 

1. Calculation of partial similarity matrix 

1) After the velocity time series are denoised by Empirical Mode Decomposition 

(EMD), we pooled the time series whose temporal lengths are similar within the 

threshold (6 frames; 30 seconds).  

2) We pad random noise to the end of each time series to make the length equal to 

the longest one. We generate the random noise from the gaussian distribution with 

the mean estimated by the average value of the last five time points. Then, the 
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missing part will be padded with random noise with the estimated mean and 

standard deviation. 

3) To reduce the dimensionality of time series, we represented the time series data 

by Symbolic ApproXimate representation (SAX)39 as described in our previous 

study4.  

4) We calculate the Euclidean distance based on the autocorrelation coefficient. 

5) Repeat from steps 1) to 4) until all the samples are calculated. 

6) The final distance similarity matrix is the average mean of distance similarity matrix 

and its transpose to guarantee that the similarity matrix is symmetric. 

2. Clustering: We applied community detection method33 to the similarity matrix. First, 

we made a K-nearest neighbor graph based on similarity distance. Then, we calculated 

the adjacency matrix and identified the communities using the R package igraph. The 

number of clusters was estimated based on the silhouette values of clustering results. 

Deep Feature Learning by Guided bi-LSTM Autoencoder 

1. Velocity time series preprocessing 

In this step, we will perform nonlinear scaling of protrusion velocity to reduce the effect of 

large magnitude of protrusion velocity since the large magnitude may come from less 

accurate measurement. The majority of velocity magnitude should be less than 10µm/min 

based on our experience. Therefore, we manually designed a sigmoidal mapping function, 2 (1 + �−0.3�) 2 1⁄ . After this sigmoidal scaling, the range of the velocity becomes [-1, 1]. 

2. Model Training 

We randomly split the dataset into three parts: training, validation, and test sets with a 

ratio: 0.49, 0.21, 0.3. The training set was used to fit the parameters of the model, while 

the validation set was used to select the model with the best fit (the lowest value of the 

objective function). The details of our proposed guided Bi-LSTM autoencoder were shown 

in Fig. 2a. Mainly we utilized three layers of bidirectional long short-term memory (bi-

LSTM) as an encoder to extract the features and combined another three layers of bi-

LSTM as a decoder to reconstruct the input. In order to make the representative features 

consistent with the clustering results from the ACF-based clustering, we added a 
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multilayer perception (MLP) classifier to guide the training process. The total loss includes 

two loss functions: reconstruction loss using the mean squared error function from the 

autoencoder and the classification loss using the multiple-categorical cross-entropy 

function from the MLP. Furthermore, in order to optimize the balance between cross-

entropy from autoencoder and mean squared error from cluster labels, we trained the 

model with different weights from 1 to 50 and selected the best weight that provides the 

most discriminative features for CK666 perturbation. We used a training set to fit the 

parameters with the batch size 128 and 237 epochs. During the training, we monitored 

the loss in the validation set and use the model parameters for the best performance with 

the validation set. We used the bi-LSTM encoder to extract the features for the 

subsequent analysis. TensorFlow was used to implement the guided bi-LSTM 

autoencoder in Python 3 in Ubuntu 18.04. 

Phenotyping Using Deep Features 

We extracted the features from the trained bi-LSTM encoder and then applied Principal 

Component Analysis (PCA) for the dimensional reduction of the learned features. Based 

on the percentage of the explained variance, the first 15 principal components are used 

for clustering analysis. 

After the feature reduction, the dataset was split into paired experiments: CK689/CK666, 

DMSO/CyD50/CyD100, DMSO/Bleb. For each paired experiment, we calculated the 

sample similarity using Euclidean distance and then apply community detection on the 

selected samples with 51 frames. To evaluate the optimal number of clusters, we applied 

the external criteria: Davies-Bouldin Index (DBI) and silhouette value to estimate the 

optimal numbers in each experiment on the pooled control samples. We found that the 

optimal number of clusters was six.  

Deep phenotyping Using Deep Features 

After the initial clustering, we further sub-divided the phenotypes of Bursting Protrusion 

(Cluster II) and Accelerating Protrusion (cluster VI) into deep phenotypes using the deep 

features. We first pooled all the samples from the target phenotypes from different paired 

experiments and then applied the community detection to determine the deep phenotypes 
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based on the Euclidean distance. The optimal number of clusters was determined by the 

maximum silhouette value.  

Drug Perturbation Quantification  

To evaluate the effect of drug perturbation, we first overlaid the velocity profiles between 

control and drug-treatment experiment together for each cluster or phenotype and then 

visually checked the changes of velocity magnitude by drug perturbation. Then, we 

quantitatively measured the cluster proportion to represent the drug effect. We quantified 

the proportions of phenotypes in each cell from both conditions.  Then the distributions of 

the proportion were estimated by resampling original cell samples using bootstrp() in 

Matlab 10000 times. Then, p-values were calculated by estimating the probability that 

proportion in one condition is greater or less than the other condition. The confidence 

intervals of each experiment were estimated by Matlab build-in function bootci(); 

Cluster Visualization 

For each paired experiment, we applied t-SNE (t-distribution stochastic neighboring 

embedding) for visualization with the default parameter (PC number:15, perplexity:30). 

The sample densities on two-dimensional t-SNE mappings were estimated using the 

crowdedness of each sample below the radius threshold, which was implemented as 

scatplot in MATLAB by Alex Sanchez. 
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SFig. 1. t-SNE plots of ACF features in the conditions of (a) CK689 vs CK888 and

(b) DMSO vs blebbistatin
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SFig. 2. t-SNE plots of DF (Deep Features) in the conditions of (a) CK689 vs 

CK888, (b) DMSO vs Cytochalasin D, and (c) DMSO vs blebbistatin
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a

b

SFig. 3. (a) Silhouette  plot that determine the optimal number of clusters for deep 

phenotyping accelerating protrusion. The maximum silhouette  value determined 

the number of cluster, three. (b) Silhouette map of the results of single-cell 

phenotyping
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