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Abstract
Background: The objective of this study was to determine if mechanistic target of

rapamycin (mMTOR) inhibition with or without AMP-activated protein kinase (AMPK)
activation can protect against primary, age-related OA.

Design: Dunkin-Hartley guinea pigs develop mild primary OA pathology by 5-months of
age that progresses to moderate OA by 8-months of age. At 5-months, guinea pigs
sacrificed as young control (n=3) or were fed either a control diet (n=8), a diet enriched
with the mTOR-inhibitor rapamycin (Rap, 14ppm, n=8), or Rap with the AMPK-activator
metformin (Rap+Met, 1000ppm, n=8) for 12 weeks. Knee joints were evaluated by OARSI
scoring, micro-computed tomography, and immunohistochemistry. Glenohumeral
articular cartilage was collected for western blotting.

Results: Rap and Rap+Met treated guinea pigs displayed lower body weight than control.
Rap and Rap+Met inhibited articular cartlage mTORC1 but not mTORC2 signaling.
Rap+Met, but not Rap alone, stimulated AMPK. Despite lower body weight and articular
cartilage mTORC1 inhibition, Rap and Rap+Met treated guinea pigs had greater OA
severity in the medial tibial plateau due to articular cartilage structural damage and/or
proteoglycan loss. Rap and Rap+Met increased plasma glucose compared to control.
Plasma glucose concentration was positively correlated with proteoglycan loss,
suggesting hyperglycemic stress may have contributed to worsened OA.

Conclusions: This is the first study to show that Rap induced increase in plasma glucose
was associated with greater OA severity. Further, articular cartilage mTORC1 inhibition
and bodyweight reduction by dietary Rap and Rap+Met did not protect against primary
OA during the prevailing hyperglycemia.

Key Words: Aging, mTOR, AMPK, Dunkin Hartley Guinea Pig, Primary Osteoarthritis
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Background

Primary, age-related osteoarthritis (OA) is estimated to account for as many as 90%
of all knee OA cases in humans (1). However, preclinical research commonly relies on
experimental models of secondary OA. Although primary and secondary OA share similar
pathological outcomes, there is a growing body of evidence to suggest they are driven by
distinct mechanisms. Retrospective analysis of differentially expressed genes from
separate cohorts of primary and secondary OA patients relative to their healthy controls
found that only 10% of differentially upregulated and 35% of differentially downregulated
genes in OA vs non-OA samples are conserved between primary and secondary OA
(2,3). Therefore, 65-90% of differentially expressed genes may be unique to primary
versus secondary OA. Additionally, transgenic animal models have revealed that several
genes are differentially involved in the progression of primary and secondary OA (4-9).
For example, deletion of Panx3 protects against secondary OA yet dramatically worsens
primary OA (4), and deletion of JNK1/2 accelerates the development of primary OA while
having no effect on secondary OA progression (9). Together, these studies reinforce that
unique mechanisms underpin these two forms of OA.

Age is one of the greatest risk factors for nearly every chronic disease, including
primary OA. Two evolutionarily conserved kinases, mechanistic target of rapamycin
(mTOR) and AMP-activated protein kinase (AMPK), are energy sensing pathways
similarly dysregulated during aging and OA (10-13). The mTOR inhibitor rapamycin (Rap)
can extend lifespan in mice and delay the onset of several age-related morbidities (12,14).
The anti-diabetic drug metformin (Met) can activate AMPK and, when added to Rap,

extends lifespan to a greater extent than historical cohorts of mice treated with Met or
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87 Rap alone (15). Additionally, Met is the first drug being tested to slow age-related multi-
88  morbidity in humans (16). While the prospect of lifespan extension is tantalizing,
89 extending lifespan without delaying the onset or slowing the progression of the most
90 debilitating age-associated conditions could be viewed as detrimental. Therefore, it is
91 imperative to understand if purported lifespan-extending therapies that target the
92  fundamental biology of aging are also capable of delaying the onset of chronic diseases,
93  such as primary OA.

94 MTOR exists as complex | (nMTORC1) and complex Il (ImTORC2). mTORC1 regulates
95 cellular proliferation, protein synthesis, senescence, and survival while mTORC2
96 functions downstream of insulin signaling on substrates such as PI3K-Akt (12). In articular
97 cartilage, mTORC1 activity increases with age and is sufficient to induce OA in young
98 male mice (10). In non-articular tissues, acute or intermittent Rap selectively inhibits
99  mTORC1 while chronic Rap administration for durations greater than 14 days also inhibits
100 mTORC2 activity (17). Cartilage-specific deletion of mMTOR and systemic or intra-articular
101 injections of Rap and the mTORC1/2 inhibitor Torin 1 lower secondary OA in young-male
102  mice and rabbits (18—21). While these findings support mTOR-based therapeutics for OA,
103 the completed studies were exclusively in injury-induced models of OA and have not been
104  investigated in primary, age-related OA.
105 Recently, it has been proposed that the positive effects of mTOR inhibition on OA
106  pathology may be diminished by feedback activation of PI3K and has raised questions
107  about the need for a dual treatment strategy that inhibits both mTOR and upstream PI3K
108  signaling (22,23). In addition to activating AMPK, Met has pleotropic effects including

109 inhibition of PI3K signaling in rheumatoid arthritis fibroblast-like synoviocytes (24).
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110  Moreover, Met and other AMPK-activators have chondroprotective effects against
111  inflammatory-induced protease expression in vitro (25,26) and protect against injury-
112 induced OA in young male mice and rhesus monkeys (27). Treatment with Met is also is
113 associated with a lower rate of medial tibiofemoral cartilage volume loss and risk of total
114  knee replacement in obese patients (28). However, Met as an adjuvant therapy to Rap
115  has not been investigated in primary OA.

116 The Dunkin-Hartley guinea pig is a well-characterized outbred model of primary OA.
117  The progression of OA in guinea pigs is related to bodyweight (29) and shares a similar
118 age-related and spatial progression to humans (30). Mild OA pathology develops by 5
119  months in guinea pigs that progresses to moderate OA by 8-9 months of age (30-32).
120  Therefore, at 5 months of age we treated guinea pigs with lifespan-extending doses of
121  Rap or a combination of Rap+Met for 12 weeks to slow the progression from mild to
122 moderate OA. This study is the first to evaluate if lifespan extending treatments can

123 modify primary OA, the most prevalent form of OA observed in older adults.
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124 Methods

125  Animal Use

126 All tissues were collected at the University of lllinois Urbana-Champaign and
127  approved by the Institutional Animal Care and Use Committee. Data collection and
128 analysis were completed at University of Wisconsin-Madison and William S. Middleton
129  Memorial Veterans Hospital. Because male Dunkin-Hartley guinea pigs develop more
130  severe OA pathology than female (33), we used male animals to maximize the potential
131  for the interventions to slow the progression of OA. Therefore, similar to previous work
132 (34), male Dunkin-Hartley guinea pigs (Charles River) were singly housed in clear plastic,
133  flat bottomed cages (Thoren, Model #6) with bedding. Guinea pigs were single housed to
134 measure food consumption. 12-hour light/dark cycles were used beginning at 0600.
135  Guinea pigs acclimated for 2-3 weeks and were provided standard chow diet (Evigo 2040)
136  fortified with vitamin C (1050 ppm) and Vitamin D (1.5 IU/kg) and water ad libitum until 5
137 months of age. Guinea pigs were then sacrificed to serve as young control (n=3),
138  randomized to continue the standard diet (n=8), or receive standard diets enriched with
139  encapsulated rapamycin (14 ppm, n=8) or the combination of encapsulated rapamycin
140  and metformin (14 ppm, 1000 ppm, n=8) for 12 weeks. Guinea pigs were randomized to
141  match bodyweight between groups prior to beginning treatment. Diets were enriched with
142  microencapsulated rapamycin (Rapamycin holdings) and/or metformin (AK Scientific,
143  1506) at concentrations previously shown to extend lifespan in mice (14,15,35). Food
144  consumption was recorded on Monday, Wednesday, and Friday between 8 and 9 AM,
145 and body weight was recorded before feeding on Monday. Guinea pigs treated with Rap

146  or Rap+Met diet had ad libitum access to food. Dietary Rap treatment has been shown to
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147  significantly reduce bodyweight in mice (36,37). Therefore, we matched food
148  consumption in the control group to the Rap diets to minimize the influence of food intake
149  on dependent variables. One guinea pig in the Rap+Met group was euthanized early due
150 to awound on the gums which led to suppressed appetite and infection. Tissues from this
151  animal were not collected for analysis. It could not be determined if this was due to a
152 laceration or an oral ulcer, the latter of which is a known side effect of mTOR inhibitors
153 (38).

154

155 Tissue Collection

156 Two animals were sacrificed daily between 7 and 10 AM. Food and water were
157 removed from the cages 2-4 hours before euthanasia. Animals were anesthetized in a
158  chamber containing 5% isoflurane gas in oxygen and maintained using a face mask with
159 1.5-3% isoflurane. Blood was collected by cardiac venipuncture followed by excision of
160  the heart. The right hind limb was removed at the coxofemoral joint, fixed in 10% neutral
161  buffered formalin (NBF) for 48 hours, and transferred to 70% ethanol until processed for
162  histology. Glenohumeral cartilage was collected, snap frozen in liquid nitrogen, and stored
163  at-80C for further analysis. Because testicular atrophy has been observed following Rap
164  treatment (39), the left testicle was preserved in 10% NBF and weighed. Although tissues
165 are commonly weighed before fixation, previous work demonstrates that fixation
166  negligibly effects testicle weight in similarly sized rodents (40).

167

168

169
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170  Analysis of Experimental Diets and Blood

171 Samples of diets enriched with Rap, Met or the combination of Rap+Met, and
172 aliquots of whole blood (n=4 per group) were sent to the Bioanalytical Pharmacology Core
173  at the San Antonio Nathan Shock Center to confirm drug concentrations in the diet and
174  in circulation. Analysis was performed using tandem HPLC-MS as described previously
175  (14,41,42). Frozen aliquots of plasma were thawed to measure glucose and lactate
176 concentrations using the YSI Biochemistry Analyzer (YSI 2900).

177

178  Micro Computed Tomography (UCT)

179 Right hind limbs from half of each treatment group (n=4 per group) were scanned
180 using a Rigaku CT Lab GX130 at 120 puA and 110 kV for 14 minutes, achieving a pixel
181  size of 49 um. Scans were first processed in Amira 6.7 (ThermoFisher) where epicondylar
182  width was measured and a series of dilation, erosion, filling, and image subtraction
183  functions were used to isolate trabecular and cortical bone as described previously (43).
184  Scans were then resliced 4 times along axes perpendicular to medial and lateral tibial
185 and femoral articular surfaces and binarized using identical thresholds. NIH ImageJ
186  software and Boned plugin were used to quantify thickness, spacing, and volume fraction
187  measurements. Cortical thickness was measured by placing polygonal regions of interest
188  (ROI) in resliced scans to encompass the articular surfaces in each joint compartment.
189  Trabecular thickness, spacing, and bone volume fraction were measured by placing
190 transverse ROls (2.4x2.4x1mm) in the trabecular bone of each joint compartment.

191

192
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193  Histology

194  Knee joints were decalcified in a 5% ethylenediaminetetraacetic acid, changed every 2-
195 3 days for 6 weeks. Joints were then cut in a coronal plane along the medial collateral
196  ligament, paraffin embedded and sectioned at Sum increments for Toluidine Blue

197  staining and immunohistochemistry (IHC). Slides were scanned using the Hamamatsu
198  NanoZoomer Digital Pathology System, providing 460nm resolution. Scan focus points
199  were set manually along the articular cartilage. Imaged slides were then scored by two
200  blinded reviewers for OA severity following OARSI Modified Mankin guidelines as

201  described (32). Briefly, toluidine blue stained histology slides were assigned scores for
202  severity of articular cartilage structural damage (0-8), proteoglycan loss as assessed by
203  absence of toluidine blue staining (0-6), disruption of chondrocyte cellularity (0-3), and
204  tidemark integrity (0-1), with a total possible score of 18 per joint compartment (Total
205  OARSI Score). One guinea pig each from the Rap and Met groups were unable to be
206  analyzed due to off-axis transection before embedding. One control animal was a

207  statistical outlier as detected by Grubb’s test and was excluded from the study.

208  Therefore, n=7 per group were used for histopathological analysis.

209

210  Immunohistochemistry

211 Antigen retrieval was performed in 10mM sodium citrate for 7 hours at 60C.
212 Endogenous peroxidase activity was quenched using 3% H2O2 for 15min before blocking
213 in 5% normal goat serum diluted in TBST for 1 hour at RT. Slides were incubated
214 overnight in 200-300 uL of either p-RPS6 (1:200 dilution; Cell Signaling, 4858) or a rabbit

215 IgGisotype control (Cell Signaling, 3900) diluted to match primary antibody concentration.
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216  Primary antibodies against p-Akt Serd473 (1:100 dilution; 4060) and p-AMPK Thr172
217  (1:200 dilution; 50081) from Cell Signaling were attempted, but reactivity was not seen in
218 guinea pig articular cartilage. 150-200uL of goat anti-rabbit secondary antibody (Cell
219  Signaling, 8114) was added for 1 hour at room temperature followed by exposure in 3,3'-
220  diaminobenzadine (DAB; Cell Signaling, 8059) for 10 minutes. Slides were then
221  counterstained using hematoxylin, dehydrated, and cleared through graded ethanol and
222 xylene, coverslipped using Permount (Electron Microscopy Sciences), and viewed and
223  imaged under a brightfield microscope. No DAB staining was seen following incubation
224 with the IgG control or secondary antibody alone, confirming specificity of the primary
225  antibody. For quantification, ROIs were placed to encompass areas of staining in the
226  medial tibial articular cartilage, and cells were counted to determine the percent-positive
227  cells. For intensity-based quantification, a color deconvolution for DAB staining was
228 appliedinImaged, and mean integrated intensity was quantified by averaging two p-RPS6
229  replicates and subtracting background staining of IgG controls.

230

231  Western Blot

232 Cartilage was removed from the glenohumeral joint using a scalpel and placed in
233 reinforced Eppendorf tubes containing 500 mg of ceramic beads (Fisher, 15-340-160)
234 and 200 pL of RIPA buffer with protease and phosphatase inhibitors (Sigma,
235 5892970001), and homogenized by 2, 30-second cycles at 6 m/s in the Omni
236  BeadRuptor. Homogenate was transferred to microcentrifuge tubes and spun at 10,000g
237  for 10 min at 4C. Supernatants were diluted to equal concentration following a BCA assay.

238 Samples were prepared in reducing conditions with B-mercaptoethanol in 4x Laemmli

10
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239  Sample Buffer (BioRad, 1610747) and heated at 95C for 5 minutes. 10 ug of protein was
240 separated on 4-15% TGX precast gels (BioRad, 4561083) and transferred to PVDF
241 membranes (BioRad, 1620177). Membranes were blocked in TBST with 5% bovine
242 serum albumin (Sigma, A9647) for 1 hour at RT and incubated overnight at 4C in primary
243 antibodies against p-RPS6 Ser235/236 (4858), RPS6 (2217) p-Akt Serd473 (4060), Akt
244  (4685), P-AMPK Thr172 (50081), AMPK (2532), and LC3B (3868) from Cell Signaling
245  and ADAMTSS5 (ab41037), MMP-13 (ab39012), and b-Actin (ab8226) from Abcam. HRP-
246  conjugated anti-Rabbit (Cell Signaling) or anti-Mouse (Abcam) secondary antibodies
247  were diluted 1:5,000 for all proteins except b-Actin (1:10,000 dilution). All membranes
248  were imaged using a UVP BioSpectrum 500 (UVP) following 5-minute incubation in a 2:1
249  combination of SuperSignal Pico (Fisher, 34577) and Femto (Fisher, PI34095)
250  chemiluminescent substrates except b-Actin which received Pico alone. Densitometric
251 analysis was performed using VisionWorks (Analytikjena). Phosphorylated proteins are
252  expressed relative to their total protein and other targets are expressed relative to b-Actin.
253

254  Statistical Analysis

255 Previous work demonstrated that a sample size of n=6 is adequately powered to
256  detect changes between groups in guinea pigs (34). Therefore, we a priori determined
257 our sample size (n=7-8 per group) to be appropriate to detect differences between
258 treatment groups. All data were subjected to normality testing via the Shapiro-Wilk test.
259  Comparisons of normally distributed data were performed using two-way unpaired t-tests
260 or one-way ANOVA followed by Holm-Sidak’s multiple comparison test. Data with non-

261  Gaussian distribution were compared using non-parametric Mann-Whitney tests or the

11
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Kruskal-Wallis test followed by Dunn’s multiple comparisons test. A two-way repeated
measures ANOVA (time x treatment) was performed to determine differences in food
consumption and body weight. Upon a significant interaction, Holm-Sidak’s multiple
comparisons test was used. Because we were interested in determining if treatments
impacted the trajectory of OA pathogenesis compared to aged controls, differences in all
other variables besides plasma glucose were made using one-way ANOVA comparing
treatment groups to 8-month controls. Due to previous reports that Met can rescue the
hyperglycemic effects of Rap (37), comparisons were made between all groups for
plasma glucose. Pearson’s R was used to determine correlation between variables. P-
values <0.05 were considered statistically significant. Data are presented as scatter plots

with mean or mean * standard deviation (SD).

12
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279  Results

280  Influence of rapamycin and rapamycin+metformin on guinea pig physical and metabolic
281  characteristics

282 Figure 1A shows the average daily food consumption per week of standard diet or
283  standard diet enriched with Rap or Rap+Met. The average daily intakes of Rap and Met
284  based on food consumption and dietary concentration are reported in Table 1. Compared
285  to control, there was decreased food consumption in guinea pigs receiving Rap+Met
286 during week 2 (P=0.04). There were no significant differences between
287 treatments. Despite largely matching food intake, there was a significant effect for
288 treatment (P=0.004) and an interaction between time and treatment (P<0.0001) on
289  bodyweight. Rap+Met (P=0.01) and Rap-treated guinea pigs (P=0.02) were smaller than
290  control starting at week 3 and week 4, respectively, until the end of the study (Figure 1B).
291 At sacrifice, Rap (P=0.002) and Rap+Met-treated guinea pigs (P=0.001) were 15% and
292 22% smaller than control.

293 Treatment with Rap (396+61 mg/dL; P<0.0001) and Rap+Met (334+53 mg/dL;
294  P=0.007) increased plasma glucose compared to control (234+55 mg/dL), and the
295  addition of Met to Rap decreased plasma glucose compared to Rap alone (P=0.05; Figure
296 1C). Lactate concentration trended to be elevated by 66% in Rap+Met-treated guinea
297  pigs, only (P=0.07; Figure 1D). Testicle weight in guinea pigs receiving Rap (P=0.006)
298 and Rap+Met (P=0.0003) were 27% and 44% lower than control, respectively, suggesting
299 gonadal atrophy (Figure 1E). We analyzed blood for the circulating Rap and Met
300 concentrations ~3-hours after food had been removed from the cage (Table 2). This

301 timing aligns with a measurement of peak circulating Rap and Met. We saw that

13


https://doi.org/10.1101/2021.05.21.445179
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.21.445179; this version posted June 14, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

302 experimental diets were sufficient to increase Rap and Met concentrations in the blood,
303 and that Rap values were not different when providing diets individually or in combination.
304 There was no Rap or Met detected in circulation in control animals.

305

306 Rapamycin and rapamycin+metformin treatment exacerbated the age-related
307  progression of OA

308 Consistent with the age-related progression of mild to moderate OA in guinea pigs,
309 we observed an increase in medial tibial total OARSI score from 5 to 8 months (P=0.03;
310  Figure S1A-B). Surprisingly, Rap and Rap+Met treatment resulted in a ~2-fold increase
311 in total OARSI score in the medial tibial plateau compared to 8 month old, age-matched
312 control (P=0.02 for both Rap and Rap+Met; Figure 2B). This was driven by increased
313  scores for articular cartilage structure (P=0.02 for Rap, P=0.11 for Rap+Met; Figure 2C)
314 and proteoglycan loss (P=0.02 for Rap and Rap+Met; Figure 2D). There was no
315  significant effect of Rap or Rap+Met on the OARSI score for the lateral tibia or medial or
316 lateral femur (Figure S1C).

317

318  OA pathology was correlated to plasma glucose, bodyweight, and testicle weight

319 Because Rap and Rap+Met treated guinea pigs displayed several side effects of
320 Rap, including increased plasma glucose, testicular atrophy, decreased bodyweight, and
321 worsened OA pathology, we evaluated the relationship between these variables and
322  measures of OA severity across all guinea pigs. Plasma glucose was positively correlated
323  to proteoglycan loss (R?=0.19; P=0.04; Figure 3A), and total OARSI score was negatively

324  correlated with both bodyweight (R?=0.19; P=0.04; Figure 3B) and testicle weight

14
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325 (R?=0.20; P=0.04; Figure 3C). However, because testicle weight and bodyweight were
326 also related (data not shown), the individual contribution of these variables cannot be
327  resolved.

328

329  Effects of rapamycin and rapamycin+tmetformin on mTOR, AMPK, and protease
330 expression

331 To evaluate mTORC1 signaling in articular cartilage, we measured the
332 phosphorylation of ribosomal protein S6 (P-RPS6) at Ser235/236 using IHC and western
333  blotting. Representative images of P-RPS6 IHC are shown in Figure 4A. P-RPS6 was
334 decreased by 90-95% in the medial tibial articular cartilage of Rap and Rap+Met treated
335 guinea pigs as assessed by percentage of P-RPS6-positive cells (P=0.001 for Rap,
336 P=0.01 for Rap+Met; Figure 4B), and by staining intensity (P=0.02 for both; Figure 4C).
337 mTORC1 inhibition was further supported by an 81% lower ratio of phosphorylated to
338 total RPS6 in glenohumeral cartilage from Rap (P=0.005; Figure 4E). Rap+Met trended
339 to decrease RPS6 phosphorylation by 48% (P=0.06). There were no signficant effect on
340 the phosphorylation of the mTORC2 substrate Akt at Ser473 in Rap or Rap+Met
341 compared to control (Figure 4F; P=0.11). AMPK activity was measured using western blot
342  to assess phosphorylation of AMPK at Thr172 (P-AMPK). P-AMPK was not changed by
343 Rap alone (P=0.83; Figure 4G) but was elevated 77% by Rap+Met (P=0.05). Rap or
344 Rap+Met did not significantly change the conversion of LC3B | to Il (P>0.99 for both;
345 Figure 4H) nor a disintegrin and metalloproteinase with thrombospondin motifs 5

346 (ADAMTSS; Figure 41; P=0.97 for Rap, P=0.35 for Rap+Met). Matrix metalloproteinase
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347 13 (MMP13) was unchanged by Rap (P>0.99) but trended higher in Rap+Met (P=0.09;
348  Figure 4J).

349

350 Rapamycin and rapamycin+metformin decreased subchondral and diaphyseal bone
351  thickness

352 Representative microCT images shown in Figure 5A were used to quantify the
353  effect of experimental diets on subchondral bone parameters. Mean subchondral cortical
354  thickness was decreased by Rap and Rap+Met in the medial (29%, P=0.003 for Rap;
355  23%, P=0.007 for Rap+Met) and lateral (21% for Rap; 20% for Rap+Met; P=0.01 for both)
356 tibia (Figure 5B). Rap and Rap+Met decreased trabecular spacing by 15% and 16%,
357 respectively, in the lateral tibia only (P=0.006 for both; Figure S2B). Trabecular thickness,
358 trabecular spacing in other compartments, and bone volume fraction were not affected by
359 any experimental diet (Figures S2A-C). Further investigation revealed that cortical
360 thickness at the femoral diaphysis was decreased by Rap (P=0.001) and Rap+Met
361 (P=0.01; Fig 5C), and this change was proportionate to the decrease observed in the
362 medial tibial subchondral bone (Figure 5D). Further, medial tibial cortical thickness was
363 correlated to bodyweight (R>=0.47, P=0.01; Figure 5E), suggesting the smaller body
364 mass of Rap and Rap+Met treated guinea pigs may have contributed to decreased
365 cortical thickness. Femoral epicondylar width (Figure 5F) was not statistically different
366 between groups (Rap, P=0.42; Rap+Met, P=0.45), suggesting our treatments did not
367 affect skeletal development.

368

369
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370  Discussion

371 The purpose of this study was to test if dietary Rap or Rap+Met could delay the
372 onset of age-related OA in the outbred Dunkin-Hartley guinea pig. We found that at
373  concentrations shown to extend lifespan, dietary Rap and Rap+Met inhibited mTORC1
374  but not mTORC2 signaling in articular cartilage, and Rap+Met increased AMPK
375  phosphorylation. Surprisingly, guinea pigs treated with Rap, with or without Met,
376  developed greater age-related OA compared to control. Guinea pigs receiving Rap and
377 Rap+Met also displayed increased plasma glucose, which correlated with proteoglycan
378 loss. These findings indicate that off-target side effects of Rap are associated with greater
379  OA pathology. Further, in the face of these Rap-induced side effects, mTORC1 inhibition
380 may not slow the progression of age-related OA in Dunkin Harltey guinea pigs.

381 Despite inhibiting mTORC1 in articular cartilage, our findings indicate that guinea
382  pigs treated with Rap, with or without Met, had exacerbated age-related OA in the medial
383 tibial plateau. Further, Rap and Rap+Met treated guinea pigs had greater total OARSI
384  scores even though they weighed less, which is contrary to previous work where lower
385 body weight was accompanied by lower OA scores in guinea pigs (29). Although there is
386  precedent that mTORC1 inhibition by intra-articular injection of Rap is associated with
387 exacerbated temporomandibular joint (TMJ) OA (44), our findings were opposite of our
388 original hypothesis and previous results using Rap in secondary models of knee OA
389  (18,19). The guinea pigs in the current study received a dose of Rap that achieved similar
390 circulating Rap concentrations shown to extend lifespan in mice (14). Additionally, the
391 dose of Rap in guinea pigs was similar to the dose shown to protect against secondary

392  OAin mice (0.7 vs 1 mg/kg/day in guinea pigs vs. mice) (18). These findings suggest that
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393 dose of Rap was not a likely factor contributing to differences between studies. In our
394 study, Rap and Rap+Met treatment inhibited mTORC1 but not mTORC2 in articular
395 cartilage. Previous work has shown that deleting articular cartilage mTOR (21) or treating
396  with Rap (18,19) or Torin-1 (20) can attenuate secondary OA in mice and rabbits. These
397 non-selective genetic and pharmacological methods likely disrupt the entire mTOR kinase
398 and therefore could inhibit both mMTORC1 and mTORC2 signaling. However, this remains
399  speculative as mTORC2 signaling was not evaluated in these previous studies, and it
400  continues to be unknown if mMTORC2 inhibition is necessary for protection against either
401  primary or secondary OA. In support of the notion that targeting mTORC2 modifies OA,
402  inhibition of the mTORC2 substrate Akt protects against PTEN-deletion-induced OA by
403  decreasing cellular senescence and oxidative stress (45). Further investigation is needed
404  to resolve the role of each mTOR complex in the initiation, progression, and treatment of

405  both primary and secondary OA.

406 Despite its lifespan-extending effects, chronic Rap treatment is commonly
407 associated with several metabolic and immunological side effects including glucose
408 intolerance, insulin resistance, hypertriglyceridemia, immunosuppression, testicular
409  atrophy, lower body weight, and cataracts (17,39,46). Consistent with this, we showed
410 that 12-weeks of dietary Rap and Rap+Met was accompanied by increased plasma
411  glucose, testicular atrophy, and lower body weight. Despite increasing AMPK activity in
412  articular cartilage and partially restoring glucose levels compared to Rap alone, the
413  addition of Met to Rap did not offer protection against the detrimental effects of dietary
414  Rap on OA pathology. The glucose lowering effects of Met are in line with previous studies

415 where Met alleviated Rap-induced glucose intolerance only in female mice (37).
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416  However, our OA pathology findings are in contrast to previous studies that showed Met
417  attenuated hyperglycemia-induced OA in mice (55). In our study, medial tibial
418  proteoglycan loss was correlated with plasma glucose, and we propose that Rap-induced
419  hyperglycemia may have contributed to worsened OA following dietary Rap treatment. In
420  support of this hypothesis, diabetic mice show accelerated OA after injury, and
421  chondrocytes cultured in high glucose media display decreased expression of Collagen
422 Il and increased MMP13 and inflammatory mediators IL-6 and NFkB (47,48). However,
423  intermittent intraperitoneal injections of Rap lowered glucose and mitigated diabetes
424  accelerated secondary OA (49). It is possible that Rap did offer partial protection against
425  hyperglycemic stress but still resulted in greater OA pathology than control, as was
426  observed by Ribeiro et al. (50). However, this remains speculative as we did not have a
427  group exposed to hyperglycemic stress alone. Previous work suggests Rap can have
428  divergent effects where it is beneficial in some diabetic models but causes adverse side
429  effects in metabolically healthy models (17,51). Collectively, these data indicate that the
430 adverse metabolic side-effects of dietary Rap treatment are associated with a deleterious
431  impact on primary OA pathology and could limit the utility of systemic Rap as a healthspan

432  extending treatment.

433 Rap has been implicated in attenuating secondary OA by increasing autophagy
434  and decreasing protease expression (18,19). While autophagy is a highly dynamic
435  process, the static marker of autophagy, LC3B, is commonly used as a surrogate for
436  autophagic flux. In our study, we saw no effect by any treatment on LC3B or ADAMTSS5,
437  while Rap+Met trended to increase MMP13 in glenohumeral cartilage. Therefore, the

438 inability to increase markers of autophagy and decrease proteases may be one
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439  contributing factor to why our lifespan-extending treatments did not protect and even
440  worsened OA during aging and hyperglycemia. However, because proteoglycan loss was
441 observed independent of increased protease expression in Rap-treated guinea pigs,
442  decreased extracellular matrix (ECM) protein synthesis may have contributed to
443  proteoglycan loss. More work is needed to determine the molecular and cellular

444  mechanisms responsible for the deleterious effects of Rap and Rap+Met.

445 Treatment with Rap and Rap+Met also decreased subchondral cortical bone
446  thickness in the medial and lateral tibia and the femoral diaphysis. As bone growth in
447  guinea pigs ceases by 4 months (52), and epicondylar width was not different between
448  groups, the differences in bone thickness were likely not the result of disrupted
449  development. Decreased subchondral thickness was only observed in the tibia. Intra-
450  articular injection of Rap into the TMJ caused subchondral bone loss by inhibiting pre-
451  osteoblast proliferation (44), and Rap treatment also decreased osteoblast differentiation
452  and bone matrix synthesis (53), which supports the idea that Rap can act directly on the
453  bone to decrease thickness. However, we also found that subchondral thickness was
454  highly correlated to bodyweight. This is in line with Wolff's law and agrees with previous
455  findings where bodyweight restriction decreased cortical bone thickness in the femoral
456  diaphysis (54). Therefore, both local and systemic effects of Rap likely contributed to

457  reduced cortical bone thickness.

458 Although we provide new insight into the role of mTOR during primary OA
459  progression, we recognize some study limitations. While the guinea pig is an excellent
460  model of primary OA, it is not a widespread model for biomedical research and molecular

461  probes are seldom designed for reactivity with guinea pig tissue. Due to reactivity issues
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462  with IHC in guinea pig cartilage (Figure S3), some of our analyses relied on western blot
463  from glenohumeral cartilage. Although guinea pigs also develop mild glenohumeral
464  OA(30), this is not the site at which we measured OA pathology. Our study could not
465  conclusively determine if the deleterious effects of Rap stemmed from its direct effects on
466  the joint or off-target effects on other tissues. However, our data suggest hyperglycemia
467 induced by off-target actions of Rap was associated with worsened age-related OA. The
468  Dunkin Hartley guinea pig is an outbred model of primary OA which leads to inherent
469  variability. While this could be perceived as a limitation, we contend that the variability
470 and the choice of animal model adds translational value since this more closely
471  recapitulates the genetic diversity and OA heterogeneity in humans. We acknowledge
472  that although the sample size used in our study was in line with previous studies using
473  guinea pigs, the varability could have possibly limited our ability to detect more subtle
474  differences between groups. However, this does not detract from the findings that guinea
475  pigs treated with both Rap and Rap+Met had worse OA. Further, the presence of largely
476  overlapping and consistent deleterious outcomes in both groups receiving Rap increases
477  our confidence that the side effects accompanying Rap contribute to worsened primary
478  OA.

479

480  Conclusion

481 In summary, we have shown that at doses previously shown to extend lifespan, dietary
482 Rap and Rap+Met caused hyperglycemia and was associated with aggravated OA in
483  Dunkin Hartley guinea pigs despite inhibiting mTORCH1 in articular cartilage. Treatments

484  that extend lifespan without a proportional delay in age-related chronic diseases and
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485  disabilities is counter to the concept of healthspan extension. Our findings that guinea
486  pigs treated with Rap had worse OA pathology raises concerns regarding the efficacy of
487 dietary Rap as a life- and healthspan-extending agent. Additional work is needed to
488 investigate the role of alternative routes of administration or Rap anaologs that may
489  capture the positive benefits of Rap while minimizing off-target effects. Our data also
490  reveal that the contribution of mTOR in articular cartilage and chondrocyte metabolism is
491 incompletely understood and additional research is needed to clarify the individual and
492  combined role of MTORC1 and mTORC2 signaling in both primary and secondary OA.
493
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767  Figure Legends

768  Figure 1: Characterization of animals on experimental diets. Food consumption (A)
769  and bodyweight (B) of guinea pigs were recorded for the duration of the study (data
770  presented as mean with shaded bands representing SD). Plasma glucose (C), lactate
771 (D), and testicle weight (E) are shown. **P<0.01 vs Con, ***P<0.001 vs Con, ****P<0.0001
772 vs Con.

773

774  Figure 2: Rapamycin and rapamycin plus metformin worsened primary OA.
775  Representative images of histology from the medial tibia are shown for each group (A;
776  scale bars are 0.5mm and 0.25mm in 5x and 10x images, respectively). Histological
777  images were graded for total OARSI score (B; n=7 per group). The individual scores for
778  articular cartilage structure (C), proteoglycan loss (D) and cellularity (E) are also shown.
779  *P<0.05 vs Con.

780

781  Figure 3: Proteoglycan loss correlated with hyperglycemia. Correlations between
782  proteoglycan loss and plasma glucose (A), bodyweight and total OARSI score (B), and
783  testicle weight and total OARSI score (C) are shown. Shaded bands represent 95% CI.
784

785  Figure 4: Rapamycin and rapamycin plus metformin inhibited mTORC1 but had no
786  effect on mTORC2 or autophagy. IHC was performed on the medial tibia for P-RPS6
787  (A; n=7 per group) and quantified as percent positive cells (B) and mean integrated
788 intensity (C). Red arrowheads indicate cells staining positive for P-RPS6. Western blot
789  was performed on glenohumeral cartilage (D) for P-RPS6 (E), P-Akt (F), P-AMPK (G),
790 LC3B (H), ADAMTSS (I), and MMP-13 (J). n=8 per group for Rap and n=7 per group for
791  Con and Rap+Met. Images are outlined in black to show that, while each band is from the
792  same blot, bands were selected for presentation to best represent the mean change.
793  *P<0.05 vs Con, **P<0.01 vs Con.

794

795  Figure 5: Decreased subchondral bone thickness in rapamycin and rapamycin plus
796 metformin treated guinea pigs. Representative microCT sagittal cross sections from
797  the medial aspect of the joint are shown (A). Subchondral cortical thickness was
798  measured in the medial and lateral tibial plateaus and femoral condyles (B), and cortical
799  thickness was measured in the femoral diaphysis (C). Medial tibial cortical thickness
800 relative to femoral diaphyseal cortical thickness was found to be similar between groups
801 (D). Medial tibial cortical thickness was highly correlated to bodyweight (E). Femoral
802  epicondylar width was found to be similar between groups (F). N=4 per group. Shaded
803  bands represent 95% CI. *P<0.05 vs Con, **P<0.01 vs Con.
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804 Individual Tables and Figures
805

806 Table 1: Average consumption of rapamycin and metformin. Using the concentration
807  of rapamycin and metformin from the diet analysis, the average doses were calculated

808  for each group. N=7-8 per group. Data are presented as mean + SD.

Experimental Diet
Rapamycin Rapamycin+Metformin

Rapamycin consumed
(mg/kg/day)
Metformin consumed
(mg/kg/day)

0.72 £0.09 0.68 £ 0.08
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Table 2: Concentrations of rapamycin and metformin in circulation. Whole blood

was collected ~3 hours after food had been removed from the cages of guinea pigs and

was analyzed for rapamycin and metformin concentration by tandem HPLC/MS. N=4 per
group. Data are presented as mean with + SD.
Experimental Diet
Control Rapamycin Rapamycin+Metformin
Circulating rapamycin
(ng/mL) 04+0 72+8 78 £10
Circulating metformin
(ng/mL) 2+0 - 282 + 54
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972
973  Supplementary Material

974  Supplementary Figure Legends

975  Figure S1: OA pathology increased from 5- to 8-months of age. Total OARSI scores
976  are shown from the lateral tibia, medial femur, and lateral femur (A). Histological images
977  of knee joints from 5- and 8-month-old guinea pigs (B; scale bars are 0.5mm and 0.25mm
978 in 5x and 10x images, respectively) were graded for total OARSI score and individual
979  OARSI criteria (C). N=3 for 5-month and N=7 for 8-month. *P<0.05 vs Con.

980

981 Figure S2: Trabecular bone changes in response to experimental diets. Trabecular
982  thickness (A), spacing (B), and bone volume fraction (C) were measured using microCT.
983  N=4 per group. *P<0.05 vs Con.

984

985 Figure S3: Antibody reactivity with guinea pig articular cartilage was limited.
986  Immunohistochemical staining was performed, and no reactivity was observed using
987  primary antibodies against P-Akt Ser473 or P-AMPK Thr172.
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