

1 **RNA silencing by CRISPR in plants does not require Cas13**

2 Sharma VK¹, Marla S¹, Zheng WG¹, Mishra D¹, Huang J¹, Zhang W¹, Morris GP², Cook DE^{1*}

3 1 Department of Plant Pathology, Kansas State University, Manhattan KS, USA

4 2 Department of Soil and Crop Science, Colorado State University, Fort Collins CO, USA

5

6 *Correspondence (decook@ksu.edu)

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25 Key words: CRISPR-Cas13, Virus interference, Transcript targeting, RNA-silencing, guide-
26 induced gene silencing

27 **Abstract**

28 RNA-targeting CRISPR-Cas can provide potential advantages over DNA editing, such as avoiding
29 pleiotropic effects of genome editing, providing precise spatiotemporal regulation and expanded
30 function including anti-viral immunity. Here, we report the use of CRISPR-Cas13 in plants to
31 reduce both viral and endogenous RNA. Unexpectedly, we discovered that crRNA designed to
32 guide Cas13 could, in the absence of the Cas13 protein, cause substantial reduction in RNA levels
33 as well. We demonstrate Cas13-independent guide-induced gene silencing (GIGS) in three plant
34 species, including stable transgenic *Arabidopsis*. We determined that GIGS utilizes endogenous
35 RNAi machinery despite the fact that crRNA are unlike canonical triggers of RNAi such as
36 miRNA, hairpins or long double-stranded RNA. These results suggest that GIGS offers a novel
37 and flexible approach to RNA reduction with potential benefits over existing technologies for crop
38 improvement. Our results demonstrate that GIGS is active across a range of plant species, evidence
39 similar to recent findings in an insect system, which suggests that GIGS is potentially active across
40 many eukaryotes.

41

42 **Introduction**

43 Genome editing technologies such as CRISPR-Cas9 (clustered regularly interspaced short
44 palindromic repeats and CRISPR associated protein), CRISPR-Cas12, and newly identified
45 systems, enable unprecedented opportunities for genome engineering¹⁻⁴. However, DNA editing
46 technologies involving double-strand break repair can result in the creation of unintended DNA
47 mutations^{5,6}, potentially hindering applications. The derivative Cas9 protein, termed PRIME-
48 editor, enables more precise editing and overcomes the unintended consequences resulting from
49 the creation of double-strand breaks⁷. Despite these technical advances in genome engineering,
50 there remains a potentially fundamental limitation to DNA editing, where the alteration of a gene
51 results in unintended and unpredictable phenotypes. This will occur for genes with pleiotropic
52 effects⁸. Additionally, many target traits for improvement are polygenic in nature, and multi-gene
53 genome editing will compound the problem of generating unwanted phenotypes⁹. One approach
54 to overcome these limitations is spatiotemporally genome editing, such as demonstrated with the
55 CRISPR tissue-specific knockout system (CRISPR-TSKO), in which DNA is edited in specific
56 cell types¹⁰. This approach will likely serve a role in future application of genome engineering, but
57 the generation of mosaic genotypes caused by differences in the rate and penetrance of cell-specific
58 editing, especially in polyploid crops, may limit the utility of this approach.

59 An alternative approach is the manipulation of RNA as it plays a central role in cellular
60 dynamics, mediating genotype-phenotype relationship in eukaryotes. Manipulating RNA has
61 potential advantages over DNA editing, such as circumventing negative pleiotropy, where an RNA
62 product can be specifically spatiotemporally regulated. To manipulate complex traits, the targeting
63 of multi-copy genes or multi-gene pathways through RNA manipulation offers more flexibility
64 and precision than DNA editing approaches. Further, RNA manipulation can also be used to target
65 RNA viruses for engineered immunity¹¹. Current RNA degradation technologies involving RNA
66 interference (RNAi) suffer from off-target silencing¹², potentially introducing the same pleiotropic
67 and unintended phenotypes as DNA editing.

68 To overcome these limitations, we sought to develop the class II type VI CRISPR-Cas13
69 system for use in plants, where the Cas13 nuclease specifically binds target single-stranded
70 (ss)RNA in a CRISPR RNA (crRNA) guided manner¹³⁻¹⁵. Recent reports have established the use
71 of Cas13 as an introduced anti-viral immune system in plants¹⁶⁻¹⁸. Here we report the discovery
72 that crRNA guides alone, in the absence of Cas13, cause the reduction of both viral and
73 endogenous plant mRNA in a sequence dependent manner. Mechanistically, our results suggest
74 this guide-induced gene silencing (GIGS) functions through endogenous components of the RNAi
75 pathway and are dependent on Argonaute protein(s). The use of compact, multi-guide crRNA to
76 elicit selective RNA reduction provides a new avenue, along with Cas13-dependent approaches,
77 to precisely manipulate plant traits.

78

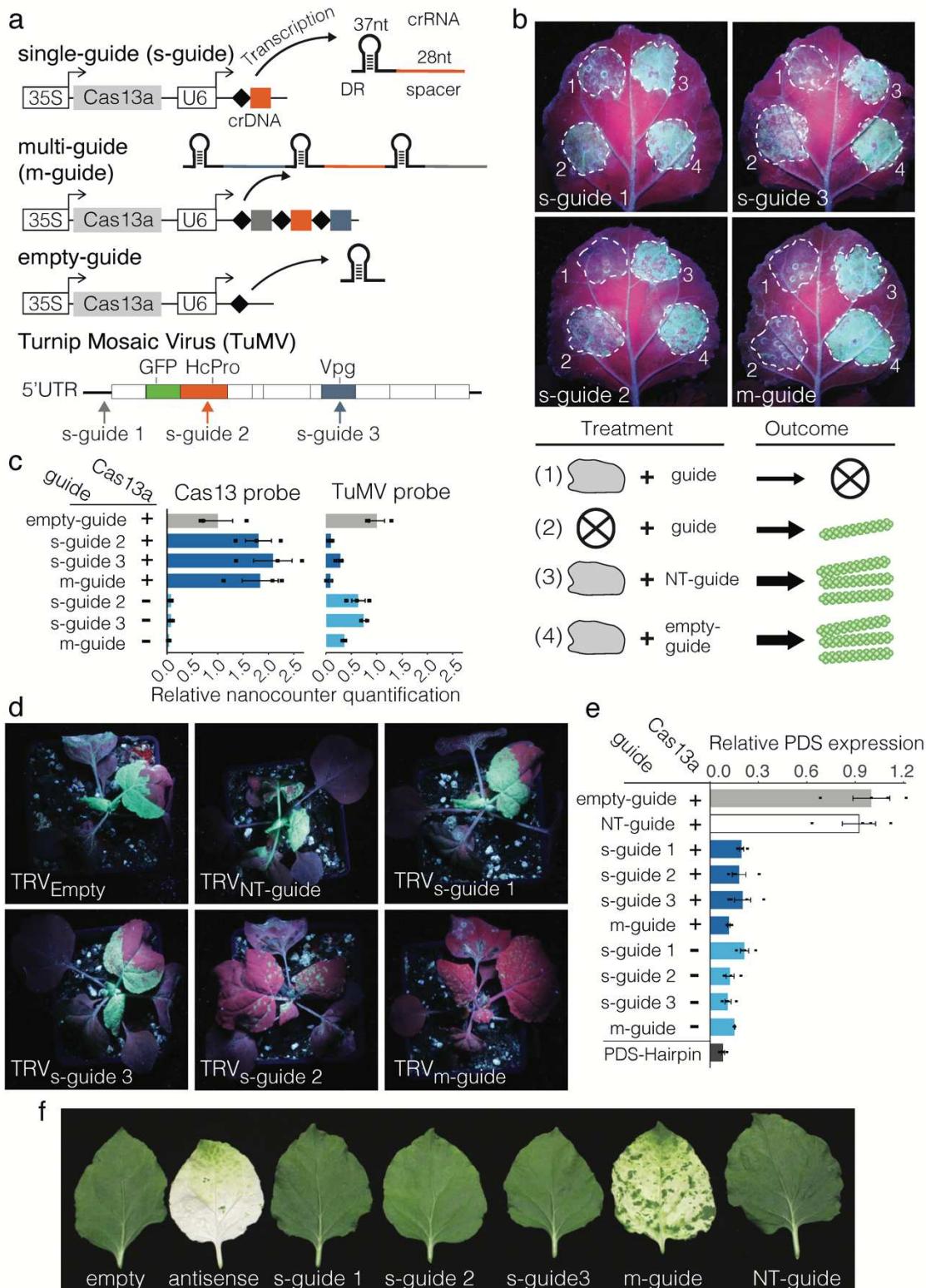
79 **Results**

80 **crRNA guides alone, in the absence of Cas13, can elicit target RNA reduction**

81 To test the Cas13 system in plants, we synthesized the coding sequence for two Cas13a proteins,
82 termed LbaCas13a (from *Lachnospiraceae bacterium*) and LbuCas13a (*Leptotrichia buccalis*) for

83 expression in plants. We tested their function *in planta* by targeting the plant infecting Turnip
84 mosaic virus (TuMV) expressing GFP by co-expressing Cas13, crRNA targeting TuMV, and
85 TuMV expressing GFP in *Nicotiana benthamiana* leaves using *Agrobacterium*-mediated transient
86 expression^{19,20}. The Cas13 proteins were expressed with a single-guide crRNA containing
87 antisense sequence to one region of the TuMV genome (single-guide), a multi-guide crRNA
88 containing sequence against three regions of the genome (multi-guide), or an empty-guide, which
89 contained the direct repeat (DR) crRNA sequence alone (Fig. 1a). Expression of either Cas13a
90 protein with the single- or multi-guide crRNA reduced viral accumulation by 72 hours post
91 inoculation (hpi) (Supplementary Fig. 1a). Virus accumulation was reduced by approximately 90%
92 at 120 hpi, and TuMV interference by Cas13a was dependent on the expression of a crRNA with
93 complementary sequence (Supplementary Fig. 1b-d).

94 In CRISPR-Cas experiments, the negative control characterizing cells expressing the
95 sgRNA or crRNA alone, without Cas, are generally omitted due to the assumption of Cas-
96 dependence. Interestingly, we observed that expression of a single-guide or multi-guide crRNA
97 alone, in the absence of the Cas13a protein, inhibited viral accumulation as evidenced by reduced
98 viral genome and derived protein accumulation (Fig. 1b and Supplementary Fig. 2a). Viral RNA
99 was also directly quantified using two independent NanoString nCounter probes, which allowed
100 direct RNA quantification without the creation of complementary (c)DNA. Probes against two
101 different regions of the TuMV genome confirmed that the single-guide and multi-guide caused
102 virus interference when expressed with Cas13a, but also when expressed alone, in the absence of
103 Cas13a (Fig. 1c and Supplementary Fig. 2b). The NanoString quantification indicated that
104 LbuCas13a plus guides provided greater viral interference compared to the single- or multi-guide
105 alone. Among the samples expressing guide crRNA alone, the multi-guide consistently caused the
106 greatest TuMV reduction compared to the single-guides (Fig. 1b,c and Supplementary Fig. 2a,b)


107 To determine whether GIGS can function systemically, GIGS-mediated TuMV
108 interference was tested using the tobacco rattle virus (TRV) expression system²¹. Plants were co-
109 inoculated with TuMV expressing GFP and TRV, which systemically produced single- and multi-
110 guide crRNA in the absence of Cas13 (Supplementary Fig. 3a). At 7 days post inoculation (dpi),
111 GFP-fluorescence from TuMV was observed in the upper systemic leaves of plants co-inoculated
112 with either TRV expressing an empty-guide or a non-targeting (NT)-guide, which showed that
113 systemic TRV delivery alone did not interfere with TuMV replication, movement, or translation
114 (Fig. 1d). Samples expressing the two single-guides, s-guide 1 and s-guide 3, also accumulated
115 visible GFP fluorescence in upper, non-inoculated leaves, indicating the spread of TuMV.
116 Interestingly however, TRV expressing either single-guide 2 or the multi-guide caused a
117 significant reduction in GFP-fluorescence in the upper systemic leaves (Fig. 1d, and
118 Supplementary Fig. 3b). Quantitative assessment of TuMV accumulation in systemic leaves by
119 qPCR showed an approximately 90% reduction in TuMV accumulation in samples expressing
120 single-guide 2 and the multi-guide (i.e. GIGS) (Supplementary Fig. 3c). Moreover, qPCR revealed
121 an approximate 30% to 40% reduction in TuMV levels when TRV expressed single-guide 1 or -
122 guide 3, which was not obvious from visual inspection of GFP fluorescence. This may reflect

123 complicated translation mechanisms viruses employ, such as internal ribosome entry²², in which
124 the viral molecule was targeted by GIGS and partially interfered with, while intact GFP open
125 reading frame sequence was still translated. These results indicate that GIGS can cause systemic
126 TuMV interference, but that crRNA target sequences vary in effectiveness. Variation for crRNA
127 effectiveness has been reported for Cas13-dependent RNA targeting, likely caused by secondary
128 structure and accessibility of the target RNA²³.

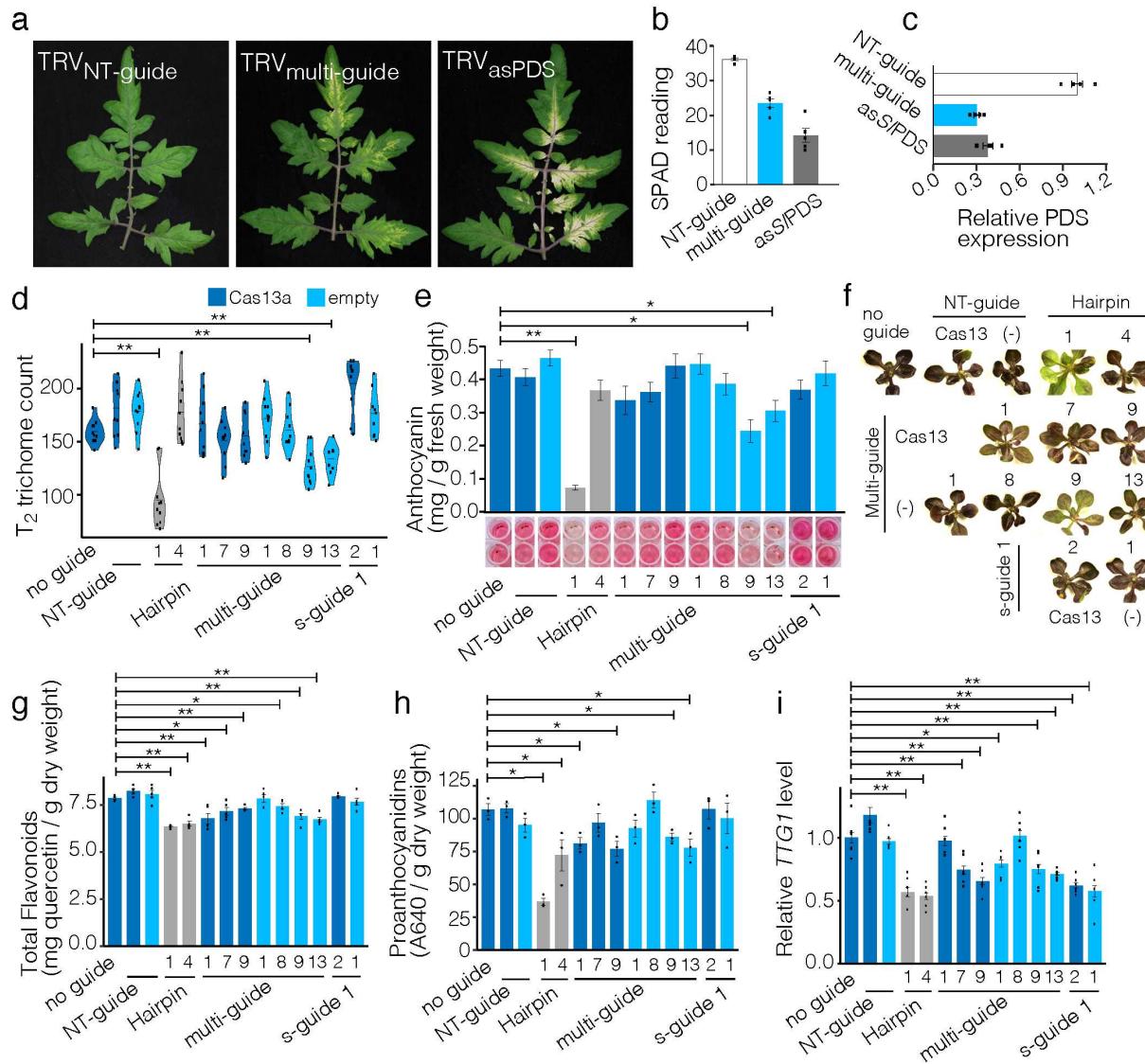
129 Viruses manipulate host physiology and have unique features unlike host derived
130 RNAs^{24,25}, making it possible that the GIGS phenomena is limited to viral RNA. To test this
131 hypothesis, we targeted endogenous phytoene desaturase (*PDS*) mRNA with single-guide and
132 multi-guide crRNA with and without LbuCas13a (Supplementary Fig. 4). *Agrobacterium*-
133 mediated expression of single- and multi-guide crRNA with and without LbuCas13 caused a
134 significant reduction in *PDS* transcript levels compared to expressing LbuCas13a alone or with a
135 NT-guide (Fig. 1e). The resulting mRNA reduction (75-85%) was consistent across the tested
136 samples, comparable to a *PDS*-hairpin construct known to induce RNAi (Fig. 1e). The reduction
137 in *PDS* mRNA was confirmed by northern blot, which showed a clear reduction for *PDS* signal
138 for both LbuCas13a-dependent and GIGS compared to expressing LbuCas13a alone, with a NT-
139 guide, or from an untreated leaf (Supplementary Fig. 5a). Direct RNA quantification by
140 NanoString further confirmed a significant reduction for the *PDS* transcript for samples expressing
141 the *PDS* targeting guides with or without the expression of Cas13a (Supplementary Fig. 5b). These
142 results establish that GIGS acts on both viral RNA and endogenous transcripts.

143 To test if GIGS acts systemically on endogenous genes, TRV expressing guides targeting
144 endogenous *PDS* mRNA were infiltrated into *N. benthamiana* (Supplementary Fig. 6). Under the
145 hypothesis that GIGS can act systemically on endogenous genes, the prediction is that TRV-
146 delivered guides result in photobleaching in TRV-infected tissues. Three single-guide crRNA,
147 targeting different regions of *PDS*, did not exhibit significant photobleaching (Fig. 1f). However,
148 two multi-guides targeting different *PDS* regions displayed substantial photobleaching in systemic
149 leaf tissue (Fig. 1f and Supplementary Fig. 7a). Interestingly, the visible photobleaching pattern
150 induced by the anti-sense fragment (i.e. RNAi) and that induced by GIGS were not the same (Fig.
151 1f and Supplementary Fig. 7a). While the antisense RNAi photobleaching was strong in the upper,
152 youngest leaves, GIGS induced photobleaching was not visible in the upper most leaves, and the
153 photobleaching occurred in more distinct segments causing a patchy appearance. Quantifying the
154 photobleaching to confirm the phenomena, SPAD meter readings showed a significant reduction
155 in chlorophyll content for samples expressing the multi-guide crRNAs and containing the antisense
156 *PDS* fragment (Supplementary Fig. 7b). Plants that expressed single-guide 2 were yellow and also
157 showed a reduced SPAD reading (Supplementary Fig. 7a,b). Quantifying *PDS* transcripts with
158 qPCR showed that the *PDS* transcript level was reduced (30-45%) for the three single-guides, and
159 to a greater extent by the multi-guides (65-70%) and the antisense construct (85%) (Supplementary
160 Fig. 7c). It is not clear why single-guide 1 and 3 caused a reduction in *PDS* mRNA levels, but did
161 not result in visible photobleaching or SPAD meter reductions, but we note that the reduced *PDS*
162 mRNA levels are consistent with that seen using *Agrobacterium*-mediated spot infiltration (e.g.

163 Fig. 1e and Supplementary Fig. 5). Collectively, we found that GIGS induced by multi-guides
 164 caused a greater reduction in target transcript levels compared to that induced by single-guides for
 165 both virus and endogenous RNA targeting.

166 **Figure 1. Cas13 and GIGS reduce viral and endogenous target RNA in *N. benthamiana*.**
167 **a**, Schematic overview of the Cas13 transgene system. Guide crRNA responsible for RNA target
168 specificity contain a single 28 nucleotide (nt) spacer antisense to the target RNA (single-guide, s-
169 guide), multiple 28 nt spacers (multi-guide, m-guide), or lack the spacer (empty-guide). A diagram
170 showing the genome of turnip mosaic virus (TuMV) expressing GFP and indicating the location
171 the three targeting sites for the guide crRNA. **b**, The accumulation of GFP was assessed at 120
172 hours post inoculation based on GFP fluorescence. Areas of agroinfiltration are shown in dashed
173 white circles. Individual treatments are labeled with numbers and shown schematically below the
174 photographs. **c**, Nanostring RNA quantification for Cas13 and TuMV levels corresponding to
175 labeled treatments for *N. benthamiana* spot infiltration. Samples expressed Cas13 (+) or not (-). **d**,
176 Representative images of *N. benthamiana* plants under UV light at 7 days post inoculation. The
177 systemic movement of TuMV is evident based on the accumulation of GFP fluorescence for
178 empty-guide expressing TRV (TRV_{empty}). Single-guide 2 and multi-guide, TRV_{s-guide 2}, and TRV<sub>m-
179 guide</sub> respectively, stopped systemic TuMV infection. **e**, Quantitative PCR for the endogenous
180 transcript *PDS* following *N. benthamiana* leaf spot infiltration. **f**, Representative single leaf images
181 of *N. benthamiana* following TRV-mediated systemic delivery of guide crRNA targeting the *PDS*
182 transcript. Empty and non-target guides (NT-guide) did not cause photobleaching (white sectors),
183 while the antisense and multi-guide (m-guide) did induce visible photobleaching.
184

185 **GIGS functions in multiple plant species and is heritable in *Arabidopsis***


186 An important question is whether GIGS is limited to *N. benthamiana* or is more broadly active in
187 plants. To test this, multi-guide crRNA were developed to target *PDS* in tomato (*Solanum*
188 *lycopersicum*), which were delivered using TRV, along with a NT-guide and an antisense PDS
189 control. We observed visible photobleaching in upper leaves of *S. lycopersicum* plants following
190 systemic movement of TRV expressing a multi-guide targeting *S. lycopersicum PDS*, although the
191 photobleaching was not as widespread as that produced by the antisense PDS construct (Fig. 2a).
192 Quantifying chlorophyll levels and the *PDS* transcript indicated that photobleached tissue from
193 GIGS and antisense expressing TRV both had substantially lower levels compared to the control
194 (Fig. 2b,c). These results show that GIGS is active outside of *N. benthamiana*, possibly extending
195 to other plants in the *Solanaceae* family.

196 Another important question is whether GIGS requires bacterial or viral machinery (i.e.
197 proteins) introduced during transient expression or if GIGS functions in stable transgenics through
198 plant endogenous machinery. To test these hypotheses, and further test the generality of GIGS in
199 plants, we transformed *Arabidopsis thaliana* (Col-0) with single-guide and multi-guide crRNA
200 targeting the pleiotropic regulatory gene *TRANSPARENT TESTA GLABRA1* (*TTG1*), both with
201 and without LbuCas13a. The *TTG1* gene encodes a WD40 repeat protein, which interacts with
202 MYB and bHLH transcription factors required for normal trichome and root hair development,
203 along with seed proanthocyanidin and vegetative anthocyanin production²⁶⁻²⁸. The average
204 trichome counts for multiple independent T₁ plants that expressed LbuCas13a with either single-
205 guide or multi-guide crRNA had significantly fewer trichomes compared to wild-type, and
206 importantly, plants expressing single-guides and the multi-guide crRNA, without Cas13, also had
207 significantly fewer trichomes on average (Supplementary Fig. 8a). The *TTG1* transcript was
208 quantified in T₁ plants and was highly variable across the transformed lines (Supplementary Fig.

209 8b). Individual plants were selected, self-fertilized and seeds from T₁ plants showed reduced total
210 flavonoids in both Cas13 and GIGS lines, consistent with reduced *TTG1* (Supplementary Fig. 8c).

211 We assessed whether GIGS would function in progeny inheriting guides by characterizing
212 individual lines in the T₂ and T₃ generations for alteration of *TTG1*-dependent phenotypes.
213 Trichome counts of the seventh leaf (from ten plants per line) indicated that two GIGS lines (i.e.
214 expressing only a multi-guide crRNA targeting *TTG1*), and one of the hairpin expressing lines had
215 significantly fewer trichomes compared to the transformation control expressing Cas13a alone
216 (Fig. 2d). Individual transformed lines were subjected to sucrose and light stress to induce leaf
217 anthocyanin production, and we again observed that two lines expressing multi-guide crRNA
218 targeting *TTG1* (i.e. GIGS) displayed significantly reduced leaf anthocyanin levels, along with a
219 hairpin expressing line (Fig. 2e,f). Quantification of total seed flavonoids showed a significant but
220 modest reduction compared to the control line, for both Cas13 expressing and GIGS lines along
221 with both hairpin expressing lines (Fig. 2g). Total flavonoid quantification also measures products
222 upstream of *TTG1* regulation, which can confound the impact of *TTG1* reduction. To more
223 accurately assess the impact of *TTG1* reduction, we measured seed proanthocyanidins, which are
224 controlled downstream of *TTG1*. This analysis identified a more substantial impact for *TTG1*
225 reduction, where the level of proanthocyanidins were significantly reduced (Fig. 2h), and were
226 consistent with the results from the total flavonoid quantification (Fig. 2g).

227 These results indicate heritable phenotypes for multiple traits mediated by both Cas13 and
228 GIGS in stable transgenic *Arabidopsis* when targeting the pleiotropic regulator *TTG1*. We do note
229 there was substantial phenotypic variation among lines with the same construct, despite significant
230 reduction in *TTG1* levels (Fig. 2i). This is in part explained by variation in transgene expression
231 and translation (Supplementary Fig. 9). In addition, more complicated mechanisms such as
232 asynchronous *TTG1* expression and Cas13 or GIGS expression at the individual cell level, or the
233 effect of incomplete *TTG1* silencing on trait manifestation (i.e. kinetics of silencing to produce a
234 phenotype)^{29,30}. Optimizing Cas13 and GIGS approaches will be an important step to deliver
235 robust biotechnology platforms for plant research and crop improvement, particularly for tissue-
236 or temporal-specific expression that is difficult to manipulate precisely with CRISPR-Cas9.

237 **Figure 2. Cas13 and GIGS function across plant species and are heritable.**

238 **a**, Representative images of tomato leaves following TRV systemic movement and photobleaching

239 induced by GIGS (TRV_{m-guide}) and an antisense transcript (TRV_{asPDS}). TRV expressing a non-

240 targeting guide crRNA (TRV_{NT-guide}) does not induce photobleaching. **b**, Measurements of

241 chlorophyll content from SPAD meter readings for three independent plants. SPAD meter readings

242 were taken from leaf sections showing photobleaching, and individual reading are shown as black

243 points with the mean and standard deviation shown as a bar plot. **c**, qPCR measurement of the *PDS*

244 transcript standardized to the *EF1α* transcript and relative to the NT-guide sample. Three

245 independent samples were analyzed and individual data are shown as black points with the mean

246 and standard deviation shown as bar plots. **(d-i)**, Data for independent transgenic *Arabidopsis*

247 lines. Data for plants expressing LbuCas13a are shown in dark blue and plants not expressing the

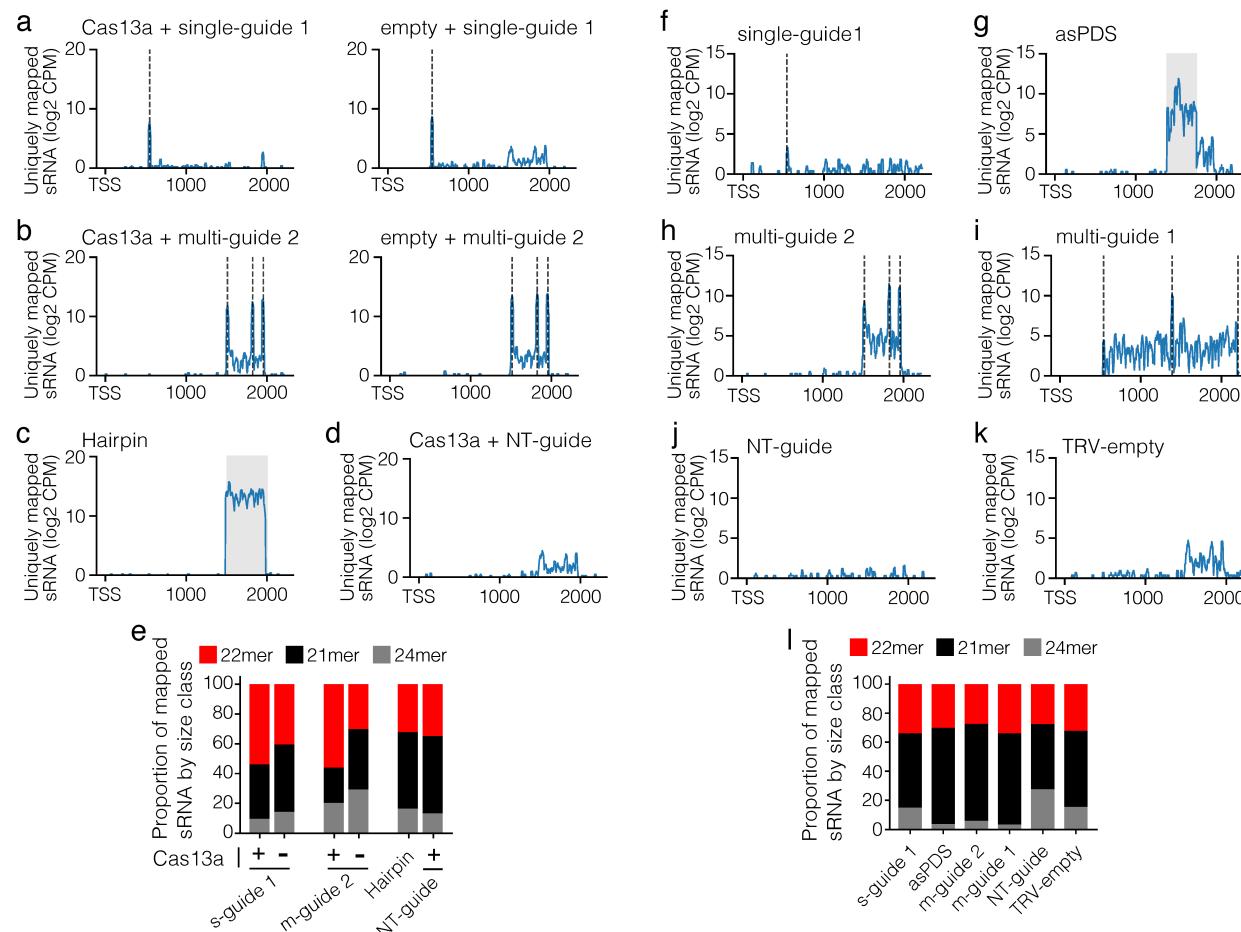
248 protein are shown in light blue. Control lines expressing a hairpin construct against the *TTG1*

249 transcript are shown in grey. **d**, Trichome counts from the seventh leaf of T₂ *Arabidopsis* lines.

250 Ten plants were counted per independent line, listed below graph, with the individual counts

251 shown as black points and the distribution represented as a violin plot. **e**, Leaf anthocyanin

252 quantification from T₃ seedlings following sucrose treatment. Representative wells follow
253 extraction shown below each bar plot. **f**, Representative plantlets following sucrose treatment
254 showing anthocyanin pigmentation (i.e. purple color). **g**, Total flavonoids extracted from seeds
255 collected from T₂ plants. Five independent seeds lots were analyzed per line, shown as black
256 points. **h**, Seed proanthocyanidin quantification from the same plants analyzed in (g). **i**,
257 Quantification of the *TTG1* transcript from three T₂ and three T₃ plants per line, individual data
258 shown as black points. Statistical comparisons were made between the transformation control (no
259 guide) and each treatment using a one-sided Mann-Whitney U-test with Benjamini-Hochberg (BH)
260 multiple testing correction. Samples with p-values less than 0.05 (*), and 0.01 (**) are indicated.
261


262 **Multi-guide crRNA induce secondary small RNA production**

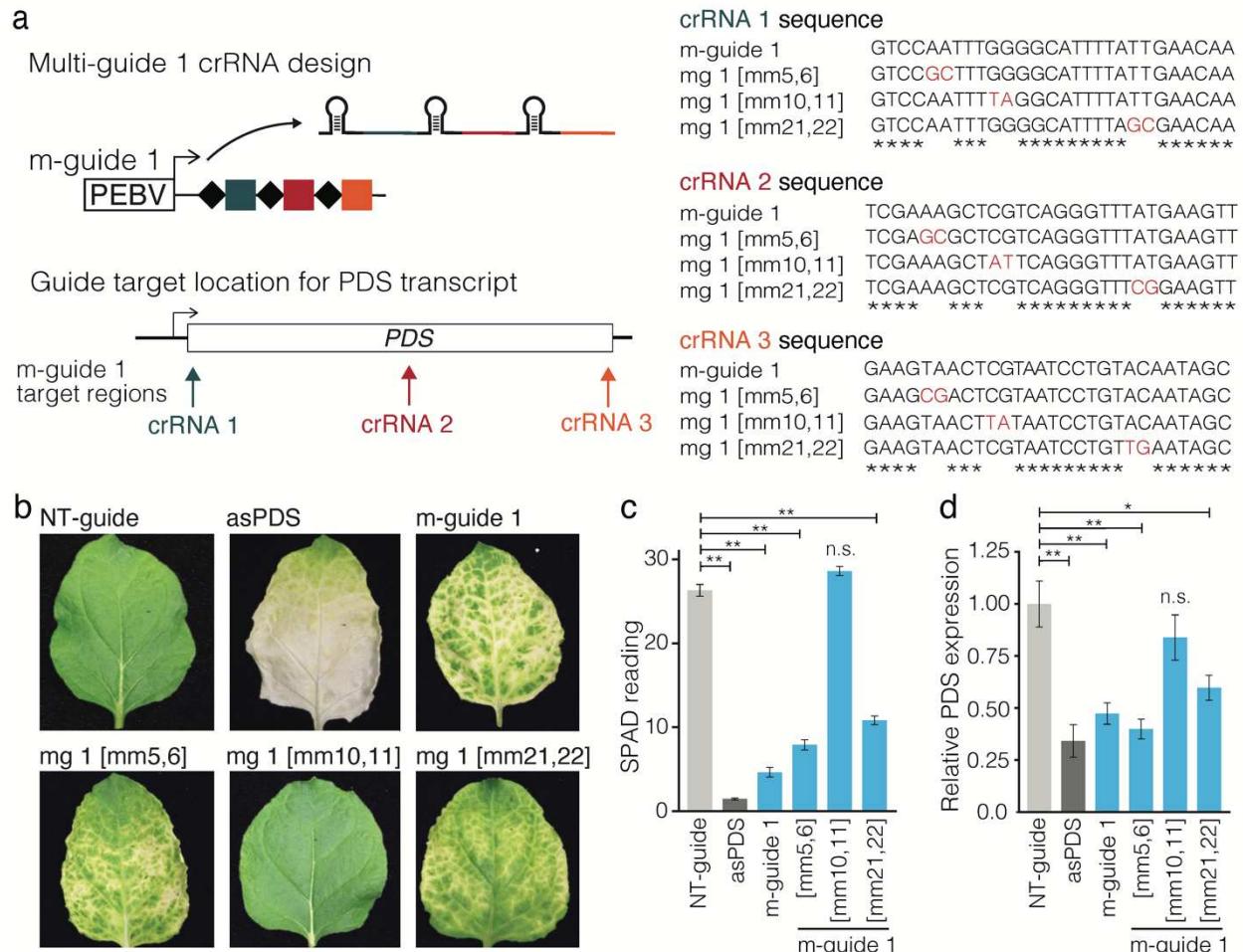
263 We sought to understand the mechanism giving rise to GIGS (i.e. guide crRNA reducing viral and
264 endogenous RNA levels). Given that crRNA are composed of short antisense sequences, it is
265 possible that GIGS functions through components of the endogenous RNA interference (RNAi)
266 pathway. However, the structure of crRNA used here are not similar to hairpin RNA, small
267 interfering RNA (siRNA), or micro RNA (miRNA), therefore it is not obvious how crRNA might
268 enter or induce RNAi^{31,32}. Alternatively, it is possible that GIGS elicits other endogenous endo- or
269 exonucleolytic RNA degradation pathways³³. Since small RNA (sRNA) usually in the range of
270 21- to 24-nucleotides (nt) are a hallmark for RNAi, we reasoned that if GIGS functions through
271 RNAi, abundant sRNA should be observed³⁴. To assess this, we conducted small (s)RNA-seq from
272 *N. benthamiana* samples expressing single and multi-guide crRNA against the endogenous *PDS*
273 transcript. Uniquely mapped sRNA for the single-guide samples showed a single sharp peak at the
274 *PDS* transcript, which corresponds to the location of the crRNA guide sequence, regardless of
275 Cas13 expression (Fig. 3a). Likewise, the samples expressing the multi-guide crRNA had three
276 distinct peaks of mapped sRNA, each corresponding to the location of the targeting guide
277 sequence. However, in these samples we also identified many sRNA mapping to the *PDS* transcript
278 that were independent from the multi-guide target sequence (Fig. 3b). Interestingly, these sRNA
279 were identified only between the 5' and 3' boundaries of crRNA targeting sites and do not appear
280 to extend past this region (Fig. 3b). This was similar to the sRNA mapping from the samples
281 expressing the *PDS* hairpin, which produced ample sRNA between the two ends of the hairpin
282 fragment (Fig. 3c). While the most abundant peaks for the multi-guide crRNA samples
283 corresponded to the guide targets themselves, the identification of thousands of sRNA reads
284 between these target regions suggest the production of secondary sRNA. We do note the presence
285 of background sRNA in the samples where Cas13 was expressed with a NT-guide, which may
286 indicate background read mapping or potentially RNA contamination during library preparation,
287 but the signal was low (Fig. 3d). Supporting the idea that GIGS results in the production of
288 secondary sRNA through RNAi, we identified more 21 nt sRNA (i.e. siRNA) mapped to the *PDS*
289 transcript during GIGS (i.e. without the Cas13 protein) than when Cas13 was expressed with the
290 guide (Fig. 3e).

291 To further determine sRNA production during GIGS, a second sRNA-seq experiment was
292 conducted by expressing either a single-guide or one of two multi-guide crRNA in the absence of
293 Cas13 using the TRV vector in *N. benthamiana*. The uniquely mapped sRNA from the single-

294 guide had a clear but small peak corresponding to the guide target sequence, along with other
295 background mapped sRNA (Fig. 3f). In contrast, mapped sRNA from the sample expressing a PDS
296 antisense fragment produced many sRNA, which mapped between the ends of the antisense
297 fragment (Fig. 3g). Both multi-guide crRNAs showed three sharp peaks of mapped sRNA, with
298 each peak corresponding to a guide targeting region (Fig. 3h,i). Importantly, these samples clearly
299 have many mapped sRNA that are outside of the multi-guide targeted region, which are not present
300 in the controls, and were not expressed as part of the multi-guide crRNA sequence (Fig. 3h-k). We
301 interpret these sRNA to represent secondary sRNA generated in response to multi-guide GIGS.
302 Consistent with these secondary sRNA being generated via components of the RNAi pathway, the
303 length of sRNA mapped to the *PDS* transcript are predominantly 21 nt for the two multi-guide and
304 antisense fragment samples (Fig. 3l). These results suggest that siRNA and RNAi are likely
305 involved in mediating GIGS.

306

307


Figure 3. Multi-guide induced GIGS results in sRNA generation.

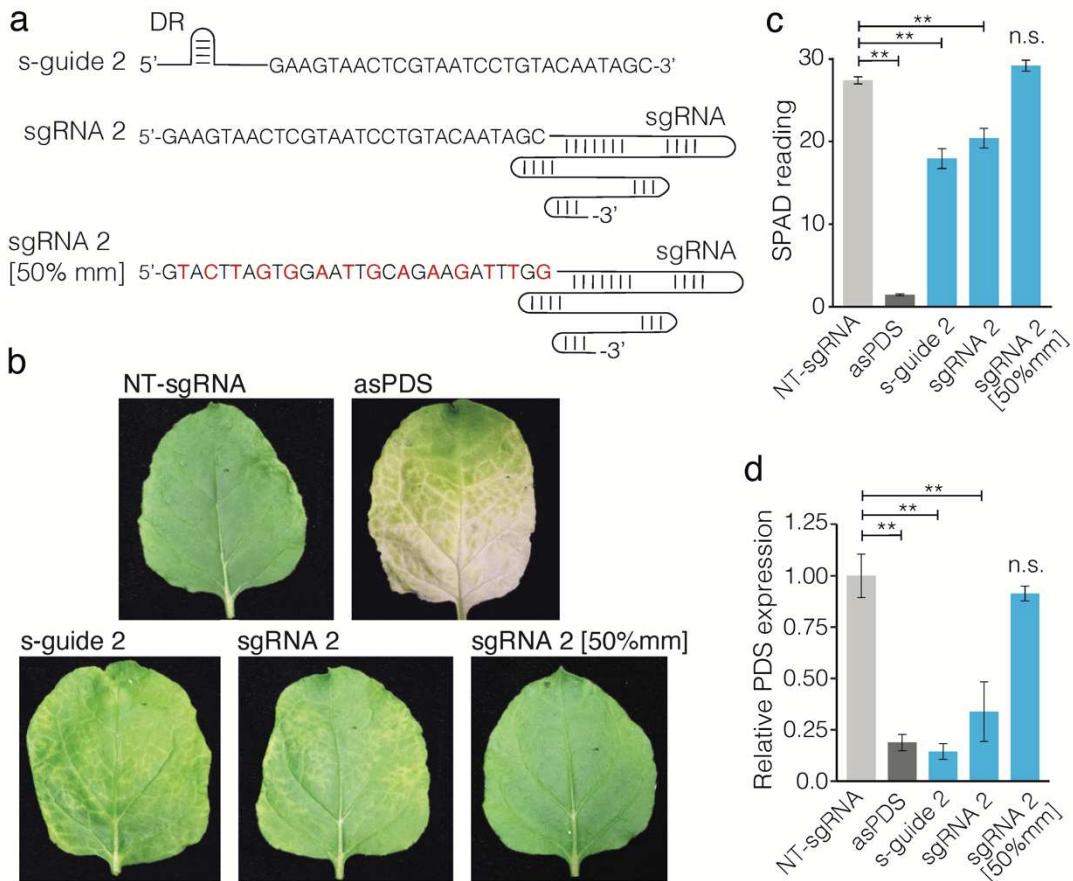
308 **(a-d)**, Uniquely mapped small RNA (sRNA) read counts to the *PDS* transcript collected five days
309 post agro-mediated spot infiltration. Read counts are \log_2 of counts per million +1 (\log_2 CPM) and
310 shown relative to the transcription start site (TSS) till the end of the predicted mRNA (2216 bp).
311 Individual treatments are labeled above each graph, and one of the two replicate samples per
312 treatment is plotted. The position of the expressed single- and multi-guide crRNA are shown as

313 vertical dashed line(s). The region spanning the hairpin construct is shown as a grey window. (e),
314 Proportion of 21-, 22-, and 24-nt sRNA mapped to the *PDS* transcript averaged between the two
315 replicates. (f-l), similar layout as described in (a-e) but here RNA was collected from systemic
316 leaves two-weeks following TRV expression. The treatments are listed above each graph.
317

318 **GIGS RNA reduction functions through Argonaute**

319 Under the hypothesis that GIGS requires endogenous RNAi machinery, target mRNA reduction
320 would be dependent on Argonaute (AGO) RNA-binding protein(s)³⁵. AGO proteins are required
321 to form the RNA Induced Silencing Complex (RISC), which carries out the biochemical slicing or
322 translational inhibition of target mRNA^{36,37}. To achieve AGO mediated endonuclease activity,
323 perfect complementary base pairing is required at positions 10 and 11 of the AGO-bound siRNA
324 with the target mRNA (i.e. central duplex region)³⁸⁻⁴⁰. Therefore, if GIGS is dependent on AGO,
325 multi-guide crRNA designed to have mismatches at base-pairs 10 and 11 should be blocked for
326 GIGS (i.e. no target mRNA reduction). To test this, multi-guide crRNA that contained specific
327 two base pair mismatches to the PDS mRNA were delivered to *N. benthamiana* using TRV (Fig.
328 4a). The results showed that multi-guide crRNA against *PDS* with mismatches at the critical region
329 for AGO endonuclease activity (i.e. base pairs 10,11) did not cause photobleaching, while negative
330 control mismatches (i.e. positions 5,6 or 21,22) still elicited photobleaching (Fig. 4a, Supplemental
331 Fig. 10 for whole plant images). The chlorophyll content as measured by SPAD meter was not
332 significantly different between the NT-guide control and the multi-guide with mismatches at
333 positions 10,11 (mg 1[mm10,11]) (Fig. 4c). The perfect complementary multi-guide, along with
334 the guide containing mismatches at positions 5,6 and 21,22 had significantly reduced SPAD meter
335 readings, along with the antisense PDS construct (Fig. 4c). Quantification of *PDS* transcripts by
336 qPCR confirmed no reduction for samples expressing the multi-guide with position 10,11
337 mismatches, while all other treatments significantly reduced the level of the *PDS* transcript (Fig.
338 4d). We note that the mismatches at 5,6 and 21,22 did affect silencing, as the perfectly
339 complementary multi-guide crRNA gave the strongest photobleaching. These mismatches may
340 interfere with other RISC functions, such as target recognition and target mRNA turnover^{38,40}.
341 However, it is clear that mismatches at 10,11 abolish GIGS, while the other mismatches diminish
342 it, suggesting that GIGS functions through one or more endogenous AGO proteins. Additionally,
343 these results suggest that GIGS is mediated by RNA endonuclease reduction and not translational
344 inhibition of target mRNA⁴¹.
345

346 **Figure 4. Guide mismatches at position 10 and 11 abolish GIGS, indicating AGO**
347 **dependence.** (a), Illustration of multi-guide expression from TRV targeting the *PDS* transcript.
348 For each of the 28 nt guides (crRNA1, crRNA2, crRNA 3) a variant m-guide 1 was designed. For
349 mg 1[mm5,6], each crRNA contained two base pair mismatches at positions 5,6, for mg
350 1[mm10,11] mismatches at positions 10,11, and mg 1[mm21,22] contained mismatches at
351 positions 21,22. (b), Representative images of leaves following TRV systemic delivery of m-guide
352 1 targeting PDS, in addition to the three variants of m-guide 1. TRV expressing a non-targeting
353 guide (NT-guide) and TRV with a region of antisense sequence to PDS (asPDS) served as controls.
354 (c), SPAD meter readings from photobleached (loss of green color) leaf samples. Data collected
355 from a total of six independent leaves from two experiments. (d), Quantification of the *PDS*
356 transcript using qPCR for the same samples as measured in (c). Data standardized to an
357 endogenous transcript and normalized to TRV expressing NT-guide. Statistical comparisons were
358 made between the NT-guide and each treatment using a one-sided Mann-Whitney U-test with
359 Benjamini-Hochberg (BH) multiple testing correction. Samples with p-values less than 0.05 (*),
360 and 0.01 (***) are indicated. n.s., non-significant difference (p > 0.05).


361
362
363
364
365

366 **GIGS also occurs with Cas9 designed crRNA**

367 The Cas13 guide crRNA are composed of the Cas13 specific direct repeat (DR) domain and the
368 antisense target sequence ⁴², and they do not contain double-stranded RNA corresponding to the
369 target sequence as would be found in a hairpin, short-hairpin or miRNA transgene. It was therefore
370 not clear if a sequence or structure of Cas13 designed crRNA were required to elicit GIGS. It was
371 recently reported that crRNA guides from the Cas13b system cause target mRNA reduction in the
372 absence of Cas13b, termed Cas13b-independent silencing in mosquito ⁴³. That report does not
373 provide functional data that elucidate the mechanism, but the authors postulate that Cas13b-
374 independent silencing is related to RNAi. Importantly, the Cas13b DR sequence is different than
375 the Cas13a DR sequence used here. Additionally, the structure of the crRNA are different, where
376 the Cas13b DR is located at the 3' end of the crRNA following the target guide sequence, while
377 the Cas13a crRNA used here have a 5' DR prior to the target sequence ⁴². These results suggest
378 that GIGS is not dependent on a specific Cas13 DR sequence or structure. To directly investigate
379 this hypothesis, we tested if GIGS was active for other guide crRNA, such as for the CRISPR-
380 Cas9 system. Using the Cas13 single-guide (s-guide 2) that caused a slight yellowing in the leaf
381 and *PDS* mRNA reduction (Fig. 1d,e), we designed a corresponding 28 nt Cas9 sgRNA (Fig. 5a,
382 sgRNA 1). When the Cas9 designed sgRNA was delivered by TRV, we observed subtle yellowing
383 in the leaves compared to TRV expressing a NT-guide, similar to that produced by the Cas13
384 crRNA design (Fig. 5b). Importantly, a control Cas9 designed sgRNA containing 50% mismatches
385 to the *PDS* sequence showed no yellowing, indicating that the subtle phenotype was specific (Fig.
386 5b and Supplementary Fig. 11 for whole plant images). This visible phenotype was corroborated
387 by SPAD meter readings that indicated an approximately 28% reduction in chlorophyll content
388 compared to the control expressing a NT-guide, which was similar to the reduction observed for
389 the Cas13 designed s-guide (Fig. 5c). Molecular quantification indicated significant but variable
390 *PDS* transcript reduction compared to the NT-guide and the 50% mismatch sgRNA controls (Fig.
391 5d).

392

393

394

Figure 5. GIGS is also evident for sgRNA guides designed for Cas9

395 (a), Schematic of guide designs targeting *PDS* transcript for Cas13 s-guide 2, and Cas9 sgRNA 2.
396 Each guide contains 28 nt antisense to the *PDS* transcript (sequence shown). The Cas9 sgRNA
397 control contained 50% mismatch sequence to the *PDS* transcript (sgRNA 2 [50% mm]). Mismatch
398 nucleotides are colored red, while shared nucleotides between the three guides are black. The
399 Cas13 crRNA contains the 37 bp direct repeat (DR) sequence at the 5' end. The Cas9 sgRNA
400 contains the 78 bp trans-activating crRNA (tracrRNA, depicted as a line) at the 3' end. (b),
401 Representative images of leaves following TRV systemic delivery of single-guide 2 (s-guide 2)
402 targeting *PDS*, and a Cas9 designed sgRNA designed to contain the same 28 bp targeting *PDS* as
403 in s-guide 2. An sgRNA 2 control contained the sequence in sgRNA 2, but with 50% mismatches
404 to the *PDS* transcript (sgRNA 2 [50%mm]). Control sgRNA containing non-targeting guide
405 sequence (NT-sgRNA). Photobleaching is seen in the asPDS sample, while interveinal yellowing
406 is visible in the samples expressing s-guide 2 and sgRNA 2. (c), SPAD meter readings from
407 photobleached leaf samples as described for (b). Data collected from a total of six independent
408 leaves from two experiments. (d) Quantification of the *PDS* transcript using qPCR for the same
409 samples as measured in (c). Data standardized to an endogenous transcript and normalized to TRV
410 expressing NT-sgRNA. Statistical comparisons were made between the NT-sgRNA and each
411 treatment using a one-sided Mann-Whitney U-test with Benjamini-Hochberg (BH) multiple testing
412 correction. Samples with p-values less than 0.05 (*), and 0.01 (***) are indicated. n.s., non-
413 significant difference (p > 0.05).

414

415

416 **Discussion**

417 The rapid pace of biotechnological innovation for trait manipulation is advancing science and has
418 incredible potential to benefit society. CRISPR-based approaches for RNA manipulation offer new
419 approaches for trait manipulation, but they are currently less well understood compared to DNA-
420 targeting CRISPR. Through the course of our work to develop Cas13 for use in plants, we
421 unexpectedly discovered that the guide crRNA designed for the Cas13a system can reduce viral
422 and endogenous RNA in the absence of the Cas13 protein (i.e. GIGS). There is a question of why
423 this was not previously reported in plants. One explanation is that previous reports of Cas13
424 function in plants and other systems have not included a guide-alone control (e.g. stable transgenic
425 line expressing guide crRNA alone) such as the experiments described for stable transgenic rice
426¹⁷, rice protoplasts¹⁵, and experiments in animal systems^{15,44,45}. One experiment did test for guide
427 crRNA-alone effects against TuMV in *N. benthamiana*, but reported no impact on viral
428 accumulation¹⁶. The report only included visible assessment, but no further molecular
429 characterization such as quantifying the level of TuMV or confirming expression of the crRNA,
430 and therefore the data are not conclusive, and the effect of GIGS may have gone unnoticed.
431 Another report in *N. benthamiana* testing Cas13 variants also expressed guide-alone crRNA
432 targeting the tobacco mosaic virus and no GIGS phenotype was reported¹⁸. The experiment did
433 not include data confirming expression of the crRNA, which could explain the difference, or the
434 discrepancy may be due to other technical differences.

435 An important distinction for the experiments reported here, is our use of multi-guide
436 crRNA in the absence of Cas13. To our knowledge, this control has never been reported in any
437 eukaryotic system to-date. Our results suggest that multi-guides in the absence of Cas13 produce
438 substantially more target RNA reduction compared to single-guides alone. Further research is
439 needed to replicate this effect and understand why targeting discontinuous regions produce
440 significantly more RNA reduction. Our extensive characterization of the GIGS phenomena in *N.*
441 *benthamiana*, demonstration in tomato, verification in stably transformed *A. thaliana*, and
442 evidence provided for a Cas9 designed crRNA, collectively show that guides cause target mRNA
443 reduction on their own. Our results in plants are also consistent with the report of Cas13-
444 independent transcript silencing in mosquito⁴³. We posit that the findings described in mosquito
445 represent the same GIGS phenomena reported here, which suggests that GIGS functions broadly
446 across eukaryotes.

447 We found that GIGS elicits the production of sRNA with sequence corresponding to the
448 targeted mRNA. Interestingly, multi-guide crRNA stimulated more sRNA production than single-
449 guides, with the majority of sRNA corresponding to the crRNA target sequence, but we also found
450 secondary sRNA targeting intervening regions with sequence not expressed in the crRNA. Given
451 that sRNA are a hallmark of RNAi, it is likely that GIGS functions through endogenous
452 components of RNAi. Further supporting this hypothesis, we found that sequence mismatches at
453 positions 10,11 relative to the 5' crRNA guide sequence, abolished the observed GIGS phenotypes
454 and nearly eliminated target mRNA reduction. We infer these results to show that GIGS is
455 dependent on the endonuclease activity of Argonaute. Interestingly, for Cas13 based crRNA to

456 associate withAGO, it is likely they would first require processing. One possibility for the
457 biogenesis of siRNA from a crRNA could be the processing of the crRNA-mRNA duplex. This
458 could be carried out by one or more Dicer or Dicer-like endogenous ribonuclease III (RNase III)
459 enzyme(s)⁴⁶. While Dicer is conserved across eukaryotes, the gene family has differentially
460 expanded, with a single copy present in vertebrates, two copies present in insects, and up to four
461 Dicers in plants^{47,48}. It is possible that the duplication and diversification of the Dicer superfamily
462 across eukaryotes will affect their competence for GIGS. Differences in Dicer substrate processing
463 have been documented in eukaryotes^{49,50}, and further mechanistic understanding is needed for
464 multi-guide crRNA-mRNA processing. Aside from GIGS, it will also be important to determine
465 if Cas13-mediated mRNA cleavage products interact with RNAi machinery to create feedback
466 between the two RNA degradation systems.

467 The work presented here suggests that GIGS can achieve target RNA silencing using a
468 guide sequence that is shorter than conventional hairpin and antisense constructs used in plants
469^{51,52}. This property could be particularly helpful in constructing compact multigene silencing
470 cassettes expressed as a single transcript, which would significantly expand the capabilities of user
471 defined RNA reduction schemes. In principle, multi-guide multi-target silencing could afford a
472 higher target specificity compared to multi-gene RNAi given the significantly shorter expressed
473 sequences, while avoiding the need to express a Cas13 transgene. Thus, GIGS based transcriptome
474 engineering could provide a flexible *cis*-genic approach for plant biotechnology.

475
476
477
478
479
480

481 **Acknowledgments**

482 We thank Bart PHJ Thomma for providing helpful comments during preparation of this
483 manuscript. This work was supported by the Defense Advanced Research Projects Agency (grant
484 no. D17AP00034) to D.E.C. The funder had no role in the study design, data collection and
485 analysis, decision to publish, or preparation of the manuscript.

486

487 **Data Accessibility**

488 Original and processed files for the small RNA sequencing data described in this research have
489 been deposited in NCBI's Gene Expression Omnibus (GEO)⁵³, and are accessible through GEO
490 Series accession number GSE171980, also accessible through BioProject PRJNA721612.
491 (<https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE171980>).

492

493 **Conflict of Interest**

494 Kansas State University Research Foundation has applied for a patent relating to the described
495 work.

496

497 **Author Contributions**

498 D.E.C conceived the project. V.K.S., S.M., W.G.Z., D.M., G.P.M. and D.E.C. designed the
499 experiments. V.K.S., S.M., W.G.Z., D.M., J.H., and W.Z. performed the experiments. V.K.S.,
500 S.M., W.G.Z., D.M., G.P.M. and D.E.C. analyzed the experiments. All authors contributed to
501 writing the manuscript.

502

503 **Supplementary Data**

504 Figure S1. Cas13a mediated efficient virus interference.

505 Figure S2. CRISPR inhibits TuMV with and without the Cas13 protein.

506 Figure S3. GIGS can function systemically to achieve virus interference.

507 Figure S4. Guide crRNA design and target sites for endogenous mRNA reduction by GIGS.

508 Figure S5. Endogenous mRNA reduction mediated by Cas13-dependent and GIGS expression.

509 Figure S6. Guide targets and experimental design for systemic endogenous mRNA reduction by
510 GIGS.

511 Figure S7. Systemic endogenous mRNA reduction by GIGS.

512 Figure S8. Cas13-dependent and GIGS T1 transformed *A. thaliana* lines display phenotypes
513 consistent with *TTG1* reduction.

514 Figure S9. Expression and translation products of Cas13 transgenic *Arabidopsis*.

515 Figure S10. Guide crRNA with mismatches at base pairs 10,11 do not elicit GIGS.

516 Figure S11. Cas9 sgRNA can elicit GIGS photobleaching in *N. benthamiana*.

517

518 Table S1. Plasmids and gene sequences

519 Table S2. Backbones for cloning and expression of crRNA

520 Table S3. crRNA sequences for targeting of TuMV

521 Table S4. crRNA sequences for targeting of *Nicotiana benthamiana* *PDS*

522 Table S5. crRNA sequences for targeting of tomato *PDS*

523 Table S6. Oligo sequences used in this study

524 Table S7. Probe sequences for Nano-counting

525 Table S8. crRNA sequences for targeting of *Arabidopsis TTG1*

526

527 **MATERIALS AND METHODS**

528 **Designing CRISPR-Cas13a machinery for *in planta* expression**

529 To develop prokaryotic CRISPR-Cas13a machinery as a platform for *in planta* transcript-
530 silencing, sequences of LbuCas13a and LbaCas13a effectors were *N. benthamiana* codon
531 optimized along with 3x-FLAG tag or 3x-HA tag at the N-terminus, and custom synthesized
532 (Genscript, Piscataway, NJ) (Supplementary Table S1). These fragments were assembled using
533 HiFi DNA assembly (New England Biolabs, Ipswich, MA). The integrity of the constructs was
534 confirmed by Sanger sequencing (Genewiz, South Plainfield, NJ).

535 Turnip mosaic virus engineered to express GFP (TuMV-GFP)²⁰ and the endogenous
536 phytoene desaturase (*PDS*) gene were selected as targets for CRISPR-Cas13a interference. For
537 crRNA designs, Lba- or LbuCas13a specific direct repeats with 28 nucleotide spacer sequences
538 complementary to the target were expressed by the *Arabidopsis thaliana* U6 promoter
539 (Supplementary Table S2). For TuMV targeting, three single crRNAs targeting different regions
540 of TuMV namely 5' untranslated region (5' UTR), Helper component Proteinase (HcPro), viral
541 genome linked protein (Vpg), and a poly crRNA containing aforementioned individual crRNAs in
542 an array were designed and constructed (Fig. 1 and Supplementary Table S3). Similar to TuMV,
543 the *PDS* transcript was targeted using three single crRNAs namely, s-guide 1, s-guide 2, and s-
544 guide 3 and a multi-guide crRNA containing the three single guides (Supplementary Tables S3
545 and S4). To create mismatch guides corresponding to *PDS* multi-guide crRNA, the nucleotide
546 sequence was altered at positions 5-6 bp, 10-11bp, and 21-22 bp from the 5' end of each crRNA
547 (Supplementary Table S4). A non-targeting crRNA was designed as a negative control. To create
548 the sgRNA2 construct, we assembled the single-guide 2 target sequence with the transactivating
549 crRNA (tracrRNA). The same strategy was used to construct sgRNA2 [50%mm] in which single-
550 guide 2 crRNA had mismatches at every-other nucleotide. The NT-sgRNA negative control
551 contained the Cas9 tracrRNA sequence and a non-plant target sequence (Supplementary Table
552 S4).

553

554 **Cloning of CRISPR-Cas13a machinery**

555 A backbone harboring AtU6 promoter sequence with one Lbu or Lba specific direct repeat
556 sequence and *Bsa*I Golden Gate site was custom synthesized (IDT, Coralville, IA) for expressing
557 crRNAs. This backbone was cloned into entry vector *pENTR* (Thermo Scientific, Waltham MA)
558 using Topo cloning. Spacer sequences were ordered as oligos and cloned using *Bsa*I Golden Gate
559 site. Gateway assembly (Invitrogen) was used to clone the promoter and crRNA cassette into the
560 destination vector *pGWB413* containing or lacking Cas13a effector (Supplementary Table S1).

561

562 **Cloning crRNA for TRV systemic delivery**

563 For systemic expression of crRNA using TRV, pea early browning virus (PEBV) promoter
564 sequence with LbuCas13a specific direct repeat and *Bsa*I Golden gate site were custom
565 synthesized (IDT, Coralville, IA) and cloned into Gateway entry vector *PCR8* (Supplementary
566 Table S1). Three single guide and multi-guide crRNA sequences targeting *NbPDS*, and a multi-
567 guide crRNA targeting *SIPDS* were ordered as oligos and cloned using Golden gate assembly
568 (Supplementary Table S5). The cassette harboring PEBV promoter and TuMV, *NbPDS*, or *SIPDS*
569 targeting crRNAs was PCR amplified with primers having *Eco*RI and *Mlu*I restriction sites and
570 cloned into *Eco*RI and *Mlu*I digested *pTRV2* vector (Supplementary Table 6).

571 **Cloning of intron hairpin RNAi (hpRNAi) cassette**

572 For cloning of PDS hpRNAi construct, a 197 bp sequence of PDS gene was custom synthesized
573 as sense and antisense arm along with PDK intron sequence with 25 bp overhang complementarity
574 to *pGWB413* vector (Supplementary Table S1). All the fragments were assembled using HiFi DNA
575 assembly (New England Biolabs, Ipswich, MA) expressed by the 35S promoter.
576

577 **Agro-infiltration of *N. benthamiana* and *Solanum lycopersicum***

578 *N. benthamiana* plants were grown and maintained in growth chamber at 23°C with 16-hour day
579 and 8 hour light cycle and 70% humidity. Four-week-old plants were used for leaf spot
580 agroinfiltration to test Cas13a interference against TuMV-GFP. Binary constructs harboring
581 Cas13a homologs with or without crRNA (targeting TuMV or *PDS* transcript), TuMV-GFP
582 infectious clone (a gift from Dr. James Carrington) were individually transformed into chemically
583 competent *Agrobacterium tumefaciens* strain GV3101. Single colonies for each construct were
584 inoculated into LB medium with antibiotics and grown overnight at 28 °C. Next day, the cultures
585 were centrifuged and suspended in agroinfiltration buffer (10mM MgCl₂, 10mM MES buffer pH
586 5.7 and 100μM acetosyringone), and incubated at ambient temperature for 2-3 hours. For TuMV
587 interference assay, *Agrobacterium* cells harboring Cas13a with crRNA targeting TuMV were
588 infiltrated at an OD600 of 1.0 into adaxial side of four-week-old *N. benthamiana* leaves using a
589 1.0 ml needleless syringe. Two days later, *Agrobacterium* cells harboring TuMV-GFP were
590 infiltrated into same areas at an OD600 of 0.3. After five days, interference activity of Cas13a
591 against the TuMV-GFP was assayed by visualizing GFP in infiltrated leaves under UV light using
592 a hand-held UV lamp (Fisher Scientific, Waltham, MA) and a Nikon camera.

593 For PDS silencing, leaves of four-week-old *N. benthamiana* plants were infiltrated with
594 *Agrobacterium* cultures harboring LbuCas13a with crRNAs targeting PDS and leaf samples were
595 collected at 5 days post inoculation. For TRV mediated crRNA delivery, assays used three-week-
596 old *N. benthamiana* plants. A single colony of *Agrobacterium* harboring crRNAs targeting *PDS*
597 were inoculated into LB medium with antibiotics and grown overnight at 28 °C. Next day, the
598 cultures were centrifuged and resuspended into infiltration buffer at an OD600 of 0.6. The cultures
599 were incubated at ambient temperature for 2-3 hours and infiltrated into *N. benthamiana*. Two
600 upper leaves were collected two-weeks after TRV infiltration. Control plant infiltrated with TRV
601 expressing an RNAi antisense fragment were used to help track systemic TRV movement.
602 Infiltration of tomato plants was performed similarly to *N. benthamiana* except that *Agrobacterium*
603 cells were resuspended into infiltration buffer at an OD600 of 2.0. The cultures were incubated at
604 ambient temperature for 2-3 hours and infiltrated into three-week-old tomato plants. Data was
605 collected two-weeks after TRV infiltration in the lower leaves.
606

607 **RNA isolation, cDNA synthesis, qRT-PCR and northern blotting**

608 Total RNA was isolated from Agro-infiltrated leaf samples and upper leaf tissue following
609 systemic TRV movement using Trizol (Ambion)⁵⁴. For first strand cDNA synthesis, DNase
610 treated 1 μg total RNA was reverse transcribed using either random hexamers or oligo(dT20) and
611 SuperScript II reverse transcriptase (Thermo Fisher Scientific) according to the manufacturer's
612 instructions. Quantitative PCR was performed using SYBR Select Master Mix (Applied
613 Biosystem) and gene specific primers (Supplementary table) for *PDS* and TuMV. *EF1α* gene was
614 used as internal house-keeping reference for PDS and TuMV qRT-PCR⁵⁵. The experiments were
615 repeated three times with three biological and two technical replicates. Relative expression values
616 were plotted using ggplot2 in R^{56,57}. For detection of *PDS* transcript, 20 μg of total RNA was

617 separated on a denaturing 1.2% agarose gel and blotted on a Hybond-N+ (Roche) membrane. RNA
618 was crosslinked using UV light and hybridized with a DIG labelled probe (PCR DIG probe
619 synthesis kit, Sigma). For detection of LbuCas13a the membrane was stripped and probed with
620 DIG labelled Cas13a specific probe and signal detected on a Licor Odyssey imaging system (LI-
621 COR Bioscience, Lincoln, NE).

622

623 **Real time quantification of PDS and TuMV transcripts using Nanocounting technology**

624 For direct RNA quantification of PDS and TuMV transcripts using NanoString technology, we
625 collected sequence data for different *N. benthamiana* genes including *PDS*, three house-keeping
626 genes for normalization (*PP2aa2*, *EF1 α* , *RPL23a*), LbuCas13a, HCPPro and coat protein
627 (Supplementary Table 7). The sequence information was utilized to design two probes for each
628 target gene. Total RNA samples (300 ng total RNA) and probe master mix were supplied to the
629 Huntsman Cancer Institute, University of Utah for Nanostring quantification following
630 manufacturer specifications. The nano-counting data was analyzed using the nSolver software.

631

632 **Western blotting**

633 For western blotting, total protein was isolated from *Agrobacterium* infiltrated leaves using
634 extraction buffer (50mM Tris-Cl, 1% β -Mercaptoethanol and protease inhibitor cocktail (Roche,
635 Basel, Switzerland)). Total proteins were boiled with loading buffer (100mM Tris-Cl, 20%
636 Glycerol, 4% SDS, 10% β -Mercaptoethanol and 0.2mg/ml bromophenol blue) and resolved on
637 12% SDS-PAGE gel. The proteins were transferred from SDS-PAGE gel to PVDF membrane (GE
638 healthcare, Chicago, IL). Membrane blocking and antibody incubations were performed using
639 iBind western device (Thermo Fisher Scientific, Waltham, MA) according to the instrument
640 manual. Finally, the membrane was treated with ECL Select western blotting detection reagent
641 (GE healthcare, Chicago, IL) and signal was detected with Licor Odyssey imaging system (LI-
642 COR Bioscience, Lincoln, NE).

643

644 **Small RNA sequencing and analysis**

645 Two separate small RNA sequencing experiments were conducted. For results shown in (Fig. 3a-e),
646 Cas13 and crRNA guides and controls were expressed in *N. benthamiana* leaves using
647 agrobacterium spot infiltration as described. Total RNA was extracted from infiltrated leaves using
648 Trizol following manufactures guidelines. For results shown in (Fig. 3f-l), crRNA guides and
649 controls were expressed from TRV using agrobacterium infiltration as described. Total RNA was
650 extracted from upper leaves following systemic TRV movement using Trizol. Total RNA samples
651 were sent to the Beijing Genomics Institute (BGI Group, Hong Kong). Twenty-four small RNA
652 libraries were constructed following the DNBseq small RNA library protocol. Briefly, small RNA
653 were isolated from PAGE gel corresponding to size 18-30 nt. Adapters were ligated and first strand
654 synthesis performed according to DNBseq small RNA library protocol. Libraries were PCR
655 amplified and size selected and sequenced on the DNBseq platform (BGI Tech Solutions, Hong
656 Kong, China).

657

658 Small RNA reads for both experiments were trimmed ^{58,59}, and aligned using STAR
659 (v2.7.3a) ⁶⁰ to a modified version of the *N. benthamiana* genome (v1.0.1)⁶¹. The modifications
660 included removing all contigs with less than 70K nt, adding the coding sequence of LbuCas13a as
661 a contig, and masking one of the two paralogs coding for PDS. The coding sequence for *PDS* on
662 contig Niben101Scf14708, position 12885-21779 (gene23) was masked in order to ensure unique
mapping to a single *PDS* locus on contig Niben101Scf01283, position 197129-205076 (gene

663 2002). Uniquely mapped read counts for the exons were extracted per base-pair using samtools
664 (v1.3)⁶² and bedtools ‘coverage’ (v2.29.2)⁶³. To compare between sequenced samples, mapped
665 reads were normalized to library size (i.e. total uniquely mapped reads per library) using the
666 equation (number of reads mapped at a nucleotide position * (1 / number of uniquely mapped reads
667 in library) * 1M), referred to as counts per million (CPM). The size distribution of uniquely
668 mapped reads were analyzed for 21, 22, and 24 nt sRNA. The average number of uniquely mapped
669 sRNA to the PDS transcript was calculated for the duplicate samples for each size class. The
670 proportion of each size class was determined by the equation, ((average number of reads per size
671 class / sum of average number of reads per size class)*100). Analyses were carried out using
672 Python3 (v3.8.2) libraries NumPy (v1.18.1), Pandas (1.0.3) and plotted with Matplotlib (v3.2.1)
673⁶⁴⁻⁶⁷. Processed files, additional information and the reference genome used for mapping are
674 provided through the GEO⁵³ Series accession number GSE171980.
675 (<https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE171980>).

676
677 **Generating stable transgenic *Arabidopsis* plants**
678 *TTG1*-targeting three single guides (guide-1, -2, -3) and a multi-guide crRNA (Supplementary
679 Table 8), and non-targeting (NT) oligos were annealed and ligated into *pENTR* backbone
680 containing *Bsa*I Golden gate site. Gateway assembly was used to transfer guide crRNA to
681 *pGWB413* destination vector with or without 3xHA-LbuCas13a. Stable transgenic *Arabidopsis*
682 plants expressing *TTG1* guides with or without LbuCas13a were generated using *Agrobacterium*-
683 mediated floral dip⁶⁸ Similarly, stable *Arabidopsis* controls with a NT crRNA, a 197 bp hairpin
684 construct against *TTG1* (a gift from Dr. Steven Strauss), and no guide transformation control (only
685 3xFLAG-LbuCas13a) were generated. One month after floral dip, T₁ seeds were collected and
686 stored at 4°C.
687

688 **Arabidopsis phenotyping**
689 Transformed T₁ *Arabidopsis* seedlings were identified using rapid selection protocol⁶⁹. Selection
690 was conducted on ½ MS media with a Kanamycin concentration of 100 µg/ml. Positive
691 transformants (*n* = 36) for each *TTG1* crRNA with or without LbuCas13a and *TTG1* hairpin
692 controls were transferred to soil and grown under optimal conditions. Control *Arabidopsis* Col-0
693 plants were germinated on ½ MS media without Kanamycin and transferred to soil. Seventh leaf
694 from ten individual plants for each construct was imaged under a dissecting microscope equipped
695 with a Nikon camera and trichomes were counted using multi-point feature in ImageJ software⁷⁰.
696 For each construct, RNA was extracted from 10th leaf of five individual plants with varying leaf
697 trichomes to quantify *TTG1* expression using qRT-PCR. *AtEF1α* was used as internal house-
698 keeping control for normalizing *TTG1* expression (Supplementary Table 6). Selected individual
699 plants for each construct were self-pollinated to collect T₂ seed. Five technical replicates of each
700 selected plant/line were used for analyzing total flavonoids, in 5 mg seed, using modified
701 aluminum chloride (AlCl₃) colorimetric method⁷¹. Total flavonoids content was estimated using
702 the following formula: flavonoids (mg/g) = concentration obtained through quercetin calibration
703 curve × (volume of extract/seed weight).

704 To determine the inheritance of GIGS and Cas13-mediated gene silencing, 10 T₂ plants
705 from selected T₁ lines were transferred to soil after Kanamycin selection. Seventh leaf from 10
706 individual T₂ plants was imaged for counting leaf trichomes. Statistical comparisons between the
707 transformation control (no guide) and each selected line was performed. *TTG1* expression in the
708 top rosette leaf from three individual T₂ plants was analyzed using qRT-PCR. Five individual T₂

709 plants for each line were self-pollinated to collect T₃ seed. Total flavonoid content was analyzed
710 in T₃ seeds from five independent seed lots (five biological replicates). Similarly,
711 proanthocyanidins content was measured using DMACA-HCl method from three seed lots ⁷².
712 Proanthocyanidins were measured at 640 nm and reported as per gram of seed weight. Total
713 flavonoid and proanthocyanidin analyses were repeated twice, the averaged values for each seed
714 lot were used for statistical comparisons. Absorbance of flavonoids and anthocyanin was measured
715 using Thermo Spectronic 3 UV-Visible Spectrophotometer. While absorbance of
716 proanthocyanidins was measured through Synergy H1 Hybrid Multi-Mode Microplate Reader
717 (Agilent Technologies, Winooski, Vermont).

718 For leaf anthocyanin quantification, one-week-old T₃ seedlings after Kanamycin selection
719 were transferred into ½ MS media + 3% sucrose and subjected to light stress (500 $\mu\text{mol m}^{-2} \text{s}^{-1}$)
720 for one week. 200 mg of leaf tissue was used for quantifying anthocyanin ⁷³. Anthocyanin analysis
721 was repeated twice with 5 replicates in each batch. Anthocyanin content was calculated by using
722 following formula (absorbance/35,000 \times dilution factor \times 647 \times 1,000 per mg of sample extracted
723 (in mg g⁻¹ fresh weight). Representative plantlets following sucrose treatment showing
724 anthocyanin pigmentation were imaged with a dissecting microscope equipped with a Nikon
725 camera. To test *TTG1* expression in T₃ generation, seventh leaf from three individual plants was
726 analyzed using qRT-PCR. To determine the expression of LbuCas13a, RT-PCR was conducted on
727 cDNA synthesized for qRT-PCR. Western blot analysis with HA-tag antibody was conducted on
728 one-week-old T₃ seedlings post Kanamycin selection.

729
730
731

732 **REFERENCES**

- 733 1. Mali, P. *et al.* RNA-Guided Human Genome Engineering via Cas9. *Science* **339**, 823–826
734 (2013).
- 735 2. Li, J.-F. *et al.* Multiplex and homologous recombination–mediated genome editing in
736 *Arabidopsis* and *Nicotiana benthamiana* using guide RNA and Cas9. *Nature Biotechnology*
737 **31**, 688–691 (2013).
- 738 3. Woo, J. W. *et al.* DNA-free genome editing in plants with preassembled CRISPR-Cas9
739 ribonucleoproteins. *Nat Biotechnol* **33**, 1162–1164 (2015).
- 740 4. Pausch, P. *et al.* CRISPR-CasΦ from huge phages is a hypercompact genome editor. *Science*
741 **369**, 333–337 (2020).
- 742 5. van Schendel, R., Roerink, S. F., Portegijs, V., van den Heuvel, S. & Tijsterman, M.
743 Polymerase Θ is a key driver of genome evolution and of CRISPR/Cas9-mediated
744 mutagenesis. *Nat Commun* **6**, (2015).
- 745 6. Kosicki, M., Tomberg, K. & Bradley, A. Repair of double-strand breaks induced by
746 CRISPR–Cas9 leads to large deletions and complex rearrangements. *Nature Biotechnology*
747 **36**, 765–771 (2018).
- 748 7. Anzalone, A. V. *et al.* Search-and-replace genome editing without double-strand breaks or
749 donor DNA. *Nature* **576**, 149–157 (2019).
- 750 8. Solovieff, N., Cotsapas, C., Lee, P. H., Purcell, S. M. & Smoller, J. W. Pleiotropy in
751 complex traits: challenges and strategies. *Nature Reviews Genetics* **14**, 483–495 (2013).
- 752 9. Nelson, R., Wiesner-Hanks, T., Wisser, R. & Balint-Kurti, P. Navigating complexity to
753 breed disease-resistant crops. *Nature Reviews Genetics* **19**, 21–33 (2018).
- 754 10. Decaestecker, W. *et al.* CRISPR-TSKO: A Technique for Efficient Mutagenesis in Specific
755 Cell Types, Tissues, or Organs in *Arabidopsis*. *The Plant Cell* **31**, 2868–2887 (2019).
- 756 11. Freije, C. A. *et al.* Programmable Inhibition and Detection of RNA Viruses Using Cas13.
757 *Molecular Cell* **76**, 826–837.e11 (2019).
- 758 12. Jackson, A. L. & Linsley, P. S. Recognizing and avoiding siRNA off-target effects for target
759 identification and therapeutic application. *Nat Rev Drug Discov* **9**, 57–67 (2010).
- 760 13. Abudayyeh, O. O. *et al.* C2c2 is a single-component programmable RNA-guided RNA-
761 targeting CRISPR effector. *Science* **353**, (2016).
- 762 14. East-Seletsky, A. *et al.* Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA
763 processing and RNA detection. *Nature* **538**, 270–273 (2016).
- 764 15. Abudayyeh, O. O. *et al.* RNA targeting with CRISPR–Cas13. *Nature* **550**, 280–284 (2017).
- 765 16. Aman, R. *et al.* RNA virus interference via CRISPR/Cas13a system in plants. *Genome*
766 *Biology* **19**, 1 (2018).
- 767 17. Zhang, T. *et al.* Establishing CRISPR/Cas13a immune system conferring RNA virus
768 resistance in both dicot and monocot plants. *Plant Biotechnol J* **17**, 1185–1187 (2019).
- 769 18. Mahas, A., Aman, R. & Mahfouz, M. CRISPR-Cas13d mediates robust RNA virus
770 interference in plants. *Genome Biol* **20**, (2019).
- 771 19. Sharma, V., Zheng, W., Huang, J. & Cook, D. E. CRISPR-Cas RNA Targeting Using
772 Transient Cas13a Expression in *Nicotiana benthamiana*. *Methods Mol Biol* **2170**, 1–18
773 (2021).
- 774 20. Garcia-Ruiz, H. *et al.* *Arabidopsis* RNA-Dependent RNA Polymerases and Dicer-Like
775 Proteins in Antiviral Defense and Small Interfering RNA Biogenesis during Turnip Mosaic
776 Virus Infection. *The Plant Cell* **22**, 481–496 (2010).

777 21. Dinesh-Kumar, S. P., Anandalakshmi, R., Marathe, R., Schiff, M. & Liu, Y. Virus-induced
778 gene silencing. *Methods Mol Biol* **236**, 287–294 (2003).

779 22. Basso, J., Dallaire, P., Charest, P. J., Devantier, Y. & Laliberté, J. F. Evidence for an internal
780 ribosome entry site within the 5' non-translated region of turnip mosaic potyvirus RNA. *J
781 Gen Virol* **75** (Pt 11), 3157–3165 (1994).

782 23. Wessels, H.-H. *et al.* Massively parallel Cas13 screens reveal principles for guide RNA
783 design. *Nature Biotechnology* **38**, 722–727 (2020).

784 24. Lucas, W. J. Plant viral movement proteins: Agents for cell-to-cell trafficking of viral
785 genomes. *Virology* **344**, 169–184 (2006).

786 25. Jaafar, Z. A. & Kieft, J. S. Viral RNA structure-based strategies to manipulate translation.
787 *Nature Reviews Microbiology* **17**, 110–123 (2019).

788 26. Walker, A. R. *et al.* The TRANSPARENT TESTA GLABRA1 Locus, Which Regulates
789 Trichome Differentiation and Anthocyanin Biosynthesis in Arabidopsis, Encodes a WD40
790 Repeat Protein. *The Plant Cell* **11**, 1337–1349 (1999).

791 27. Ramsay, N. A. & Glover, B. J. MYB–bHLH–WD40 protein complex and the evolution of
792 cellular diversity. *Trends in Plant Science* **10**, 63–70 (2005).

793 28. Xu, W., Dubos, C. & Lepiniec, L. Transcriptional control of flavonoid biosynthesis by
794 MYB–bHLH–WDR complexes. *Trends Plant Sci* **20**, 176–185 (2015).

795 29. Zhang, B. & Schrader, A. TRANSPARENT TESTA GLABRA 1-Dependent Regulation of
796 Flavonoid Biosynthesis. *Plants (Basel)* **6**, (2017).

797 30. Jensen, K. J., Moyer, C. B. & Janes, K. A. Network Architecture Predisposes an Enzyme to
798 Either Pharmacologic or Genetic Targeting. *Cell Syst* **2**, 112–121 (2016).

799 31. Axtell, M. J. Classification and Comparison of Small RNAs from Plants. *Annual Review of
800 Plant Biology* **64**, 137–159 (2013).

801 32. Borges, F. & Martienssen, R. A. The expanding world of small RNAs in plants. *Nature
802 Reviews Molecular Cell Biology* **16**, 727–741 (2015).

803 33. Houseley, J. & Tollervey, D. The many pathways of RNA degradation. *Cell* **136**, 763–776
804 (2009).

805 34. Baulcombe, D. RNA silencing in plants. *Nature* **431**, 356–363 (2004).

806 35. Fang, X. & Qi, Y. RNAi in Plants: An Argonaute-Centered View. *The Plant Cell* **28**, 272–
807 285 (2016).

808 36. Baumberger, N. & Baulcombe, D. C. Arabidopsis ARGONAUTE1 is an RNA Slicer that
809 selectively recruits microRNAs and short interfering RNAs. *PNAS* **102**, 11928–11933
810 (2005).

811 37. Rivas, F. V. *et al.* Purified Argonaute2 and an siRNA form recombinant human RISC.
812 *Nature Structural & Molecular Biology* **12**, 340–349 (2005).

813 38. Ameres, S. L., Martinez, J. & Schroeder, R. Molecular Basis for Target RNA Recognition
814 and Cleavage by Human RISC. *Cell* **130**, 101–112 (2007).

815 39. Wee, L. M., Flores-Jasso, C. F., Salomon, W. E. & Zamore, P. D. Argonaute Divides Its
816 RNA Guide into Domains with Distinct Functions and RNA-Binding Properties. *Cell* **151**,
817 1055–1067 (2012).

818 40. Becker, W. R. *et al.* High-Throughput Analysis Reveals Rules for Target RNA Binding and
819 Cleavage by AGO2. *Molecular Cell* **75**, 741–755.e11 (2019).

820 41. Iwakawa, H. & Tomari, Y. Molecular insights into microRNA-mediated translational
821 repression in plants. *Mol Cell* **52**, 591–601 (2013).

822 42. O'Connell, M. R. Molecular Mechanisms of RNA Targeting by Cas13-containing Type VI
823 CRISPR–Cas Systems. *Journal of Molecular Biology* **431**, 66–87 (2019).

824 43. Tng, P. Y. L. *et al.* Cas13b-dependent and Cas13b-independent RNA knockdown of viral
825 sequences in mosquito cells following guide RNA expression. *Commun Biol* **3**, (2020).

826 44. Konermann, S. *et al.* Transcriptome Engineering with RNA-Targeting Type VI-D CRISPR
827 Effectors. *Cell* **173**, 665–676.e14 (2018).

828 45. Huynh, N., Depner, N., Larson, R. & King-Jones, K. A versatile toolkit for CRISPR-Cas13-
829 based RNA manipulation in *Drosophila*. *Genome Biology* **21**, 279 (2020).

830 46. Bernstein, E., Caudy, A. A., Hammond, S. M. & Hannon, G. J. Role for a bidentate
831 ribonuclease in the initiation step of RNA interference. *Nature* **409**, 363–366 (2001).

832 47. Margis, R. *et al.* The evolution and diversification of Dicers in plants. *FEBS Letters* **580**,
833 2442–2450 (2006).

834 48. Mukherjee, K., Campos, H. & Kolaczkowski, B. Evolution of animal and plant dicers: early
835 parallel duplications and recurrent adaptation of antiviral RNA binding in plants. *Mol Biol
836 Evol* **30**, 627–641 (2013).

837 49. MacRae, I. J. *et al.* Structural Basis for Double-Stranded RNA Processing by Dicer. *Science*
838 **311**, 195–198 (2006).

839 50. Park, J.-E. *et al.* Dicer recognizes the 5' end of RNA for efficient and accurate processing.
840 *Nature* **475**, 201–205 (2011).

841 51. Thomas, C. L., Jones, L., Baulcombe, D. C. & Maule, A. J. Size constraints for targeting
842 post-transcriptional gene silencing and for RNA-directed methylation in *Nicotiana
843 benthamiana* using a potato virus X vector. *The Plant Journal* **25**, 417–425 (2001).

844 52. Liu, E. & Page, J. E. Optimized cDNA libraries for virus-induced gene silencing (VIGS)
845 using tobacco rattle virus. *Plant Methods* **4**, 5 (2008).

846 53. Edgar, R., Domrachev, M. & Lash, A. E. Gene Expression Omnibus: NCBI gene expression
847 and hybridization array data repository. *Nucleic Acids Res* **30**, 207–210 (2002).

848 54. Sharma, V. K., Basu, S. & Chakraborty, S. RNAi mediated broad-spectrum transgenic
849 resistance in *Nicotianabenthamiana* to chilli-infecting begomoviruses. *Plant Cell Rep* **34**,
850 1389–1399 (2015).

851 55. Liu, D. *et al.* Validation of Reference Genes for Gene Expression Studies in Virus-Infected
852 *Nicotiana benthamiana* Using Quantitative Real-Time PCR. *PLOS ONE* **7**, e46451 (2012).

853 56. Wickham, H. *ggplot2: Elegant Graphics for Data Analysis*. (Springer-Verlag New York,
854 2016).

855 57. R Core Team. *R: A Language and Environment for Statistical Computing*. (R Foundation for
856 Statistical Computing, 2020).

857 58. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads.
858 *EMBnet.journal* **17**, 10–12 (2011).

859 59. Krueger, F. *Trim Galore*. (2019).

860 60. Dobin, A. *et al.* STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* **29**, 15–21
861 (2013).

862 61. Bombarely, A. *et al.* A Draft Genome Sequence of *Nicotiana benthamiana* to Enhance
863 Molecular Plant-Microbe Biology Research. *MPMI* **25**, 1523–1530 (2012).

864 62. Li, H. *et al.* The Sequence Alignment/Map format and SAMtools. *Bioinformatics* **25**, 2078–
865 2079 (2009).

866 63. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic
867 features. *Bioinformatics* **26**, 841–842 (2010).

868 64. Millman, K. J. & Aivazis, M. Python for Scientists and Engineers. *Computing in Science*
869 *Engineering* **13**, 9–12 (2011).

870 65. Harris, C. R. *et al.* Array programming with NumPy. *Nature* **585**, 357–362 (2020).

871 66. McKinney, W. Data Structures for Statistical Computing in Python. in *Proceedings of the*
872 *9th Python in Science Conference* (eds. Walt, S. van der & Millman, J.) 56–61 (2010).
873 doi:10.25080/Majora-92bf1922-00a.

874 67. Hunter, J. D. Matplotlib: A 2D Graphics Environment. *Computing in Science Engineering* **9**,
875 90–95 (2007).

876 68. Clough, S. J. & Bent, A. F. Floral dip: a simplified method for Agrobacterium -mediated
877 transformation of *Arabidopsis thaliana*. *The Plant Journal* **16**, 735–743 (1998).

878 69. Harrison, S. J. *et al.* A rapid and robust method of identifying transformed *Arabidopsis*
879 *thaliana* seedlings following floral dip transformation. *Plant Methods* **2**, 19 (2006).

880 70. Rueden, C. T. *et al.* ImageJ2: ImageJ for the next generation of scientific image data. *BMC*
881 *Bioinformatics* **18**, 529 (2017).

882 71. Mishra, D., Shekhar, S., Agrawal, L., Chakraborty, S. & Chakraborty, N. Cultivar-specific
883 high temperature stress responses in bread wheat (*Triticum aestivum* L.) associated with
884 physicochemical traits and defense pathways. *Food Chem* **221**, 1077–1087 (2017).

885 72. Shan, X. *et al.* A functional homologue of *Arabidopsis* TTG1 from *Freesia* interacts with
886 bHLH proteins to regulate anthocyanin and proanthocyanidin biosynthesis in both *Freesia*
887 *hybrida* and *Arabidopsis thaliana*. *Plant Physiol Biochem* **141**, 60–72 (2019).

888 73. Airoldi, C. A., Hearn, T. J., Brockington, S. F., Webb, A. A. R. & Glover, B. J. TTG1
889 proteins regulate circadian activity as well as epidermal cell fate and pigmentation. *Nat*
890 *Plants* **5**, 1145–1153 (2019).

891