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Abstract

RNA-targeting CRISPR-Cas can provide potential advantages over DNA editing, such as avoiding
pleiotropic effects of genome editing, providing precise spatiotemporal regulation and expanded
function including anti-viral immunity. Here, we report the use of CRISPR-Cas13 in plants to
reduce both viral and endogenous RNA. Unexpectedly, we discovered that crRNA designed to
guide Cas13 could, in the absence of the Cas13 protein, cause substantial reduction in RNA levels
as well. We demonstrate Cas13-independent guide-induced gene silencing (GIGS) in three plant
species, including stable transgenic Arabidopsis. We determined that GIGS utilizes endogenous
RNAi machinery despite the fact that crRNA are unlike canonical triggers of RNAi such as
miRNA, hairpins or long double-stranded RNA. These results suggest that GIGS offers a novel
and flexible approach to RNA reduction with potential benefits over existing technologies for crop
improvement. Our results demonstrate that GIGS is active across a range of plant species, evidence
similar to recent findings in an insect system, which suggests that GIGS is potentially active across
many eukaryotes.
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Introduction

Genome editing technologies such as CRISPR-Cas9 (clustered regularly interspaced short
palindromic repeats and CRISPR associated protein), CRISPR-Casl12, and newly identified
systems, enable unprecedented opportunities for genome engineering '*. However, DNA editing
technologies involving double-strand break repair can result in the creation of unintended DNA
mutations>®, potentially hindering applications. The derivative Cas9 protein, termed PRIME-
editor, enables more precise editing and overcomes the unintended consequences resulting from
the creation of double-strand breaks 7. Despite these technical advances in genome engineering,
there remains a potentially fundamental limitation to DNA editing, where the alteration of a gene
results in unintended and unpredictable phenotypes. This will occur for genes with pleiotropic
effects 8. Additionally, many target traits for improvement are polygenic in nature, and multi-gene
genome editing will compound the problem of generating unwanted phenotypes®. One approach
to overcome these limitations is spatiotemporally genome editing, such as demonstrated with the
CRISPR tissue-specific knockout system (CRISPR-TSKO), in which DNA is edited in specific
cell types!?. This approach will likely serve a role in future application of genome engineering, but
the generation of mosaic genotypes caused by differences in the rate and penetrance of cell-specific
editing, especially in polyploid crops, may limit the utility of this approach.

An alternative approach is the manipulation of RNA as it plays a central role in cellular
dynamics, mediating genotype-phenotype relationship in eukaryotes. Manipulating RNA has
potential advantages over DNA editing, such as circumventing negative pleiotropy, where an RNA
product can be specifically spatiotemporally regulated. To manipulate complex traits, the targeting
of multi-copy genes or multi-gene pathways through RNA manipulation offers more flexibility
and precision than DNA editing approaches. Further, RNA manipulation can also be used to target
RNA viruses for engineered immunity '!. Current RNA degradation technologies involving RNA
interference (RNA1) suffer from off-target silencing 2, potentially introducing the same pleiotropic
and unintended phenotypes as DNA editing.

To overcome these limitations, we sought to develop the class II type VI CRISPR-Cas13
system for use in plants, where the Casl3 nuclease specifically binds target single-stranded
(ss)RNA in a CRISPR RNA (crRNA) guided manner '*~15, Recent reports have established the use
of Cas13 as an introduced anti-viral immune system in plants '8, Here we report the discovery
that crRNA guides alone, in the absence of Casl3, cause the reduction of both viral and
endogenous plant mRNA in a sequence dependent manner. Mechanistically, our results suggest
this guide-induced gene silencing (GIGS) functions through endogenous components of the RNAi
pathway and are dependent on Argonaute protein(s). The use of compact, multi-guide crRNA to
elicit selective RNA reduction provides a new avenue, along with Casl3-dependent approaches,
to precisely manipulate plant traits.

Results
crRNA guides alone, in the absence of Cas13, can elicit target RNA reduction
To test the Cas13 system in plants, we synthesized the coding sequence for two Casl3a proteins,

termed LbaCas13a (from Lachnospiraceae bacterium) and LbuCas13a (Leptotrichia buccalis) for
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83  expression in plants. We tested their function in planta by targeting the plant infecting Turnip
84  mosaic virus (TuMV) expressing GFP by co-expressing Casl3, crRNA targeting TuMV, and
85  TuMV expressing GFP in Nicotiana benthamiana leaves using Agrobacterium-mediated transient
86  expression'®?’, The Casl3 proteins were expressed with a single-guide crRNA containing
87  antisense sequence to one region of the TuMV genome (single-guide), a multi-guide crRNA
88  containing sequence against three regions of the genome (multi-guide), or an empty-guide, which
89  contained the direct repeat (DR) crRNA sequence alone (Fig. 1a). Expression of either Casl3a
90 protein with the single- or multi-guide crRNA reduced viral accumulation by 72 hours post
91  inoculation (hpi) (Supplementary Fig. 1a). Virus accumulation was reduced by approximately 90%
92 at 120 hpi, and TuMYV interference by Casl3a was dependent on the expression of a crRNA with
93  complementary sequence (Supplementary Fig. 1b-d).
94 In CRISPR-Cas experiments, the negative control characterizing cells expressing the
95  sgRNA or crRNA alone, without Cas, are generally omitted due to the assumption of Cas-
96  dependence. Interestingly, we observed that expression of a single-guide or multi-guide crRNA
97  alone, in the absence of the Cas13a protein, inhibited viral accumulation as evidenced by reduced
98  viral genome and derived protein accumulation (Fig. 1b and Supplementary Fig. 2a). Viral RNA
99  was also directly quantified using two independent NanoString nCounter probes, which allowed
100  direct RNA quantification without the creation of complementary (c)DNA. Probes against two
101  different regions of the TuMV genome confirmed that the single-guide and multi-guide caused
102 virus interference when expressed with Cas13a, but also when expressed alone, in the absence of
103  Casl3a (Fig. lc and Supplementary Fig. 2b). The NanoString quantification indicated that
104  LbuCasl3a plus guides provided greater viral interference compared to the single- or multi-guide
105  alone. Among the samples expressing guide crRNA alone, the multi-guide consistently caused the
106  greatest TuMV reduction compared to the single-guides (Fig. 1b,c and Supplementary Fig. 2a,b)
107 To determine whether GIGS can function systemically, GIGS-mediated TuMV
108 interference was tested using the tobacco rattle virus (TRV) expression system?!. Plants were co-
109  inoculated with TuMV expressing GFP and TRV, which systemically produced single- and multi-
110 guide crRNA in the absence of Cas13 (Supplementary Fig. 3a). At 7 days post inoculation (dpi),
111 GFP-fluorescence from TuMV was observed in the upper systemic leaves of plants co-inoculated
112 with either TRV expressing an empty-guide or a non-targeting (NT)-guide, which showed that
113 systemic TRV delivery alone did not interfere with TuMYV replication, movement, or translation
114 (Fig. 1d). Samples expressing the two single-guides, s-guide 1 and s-guide 3, also accumulated
115  visible GFP fluorescence in upper, non-inoculated leaves, indicating the spread of TuMV.
116  Interestingly however, TRV expressing either single-guide 2 or the multi-guide caused a
117  significant reduction in GFP-fluorescence in the upper systemic leaves (Fig. 1d, and
118  Supplementary Fig. 3b). Quantitative assessment of TuMV accumulation in systemic leaves by
119  gPCR showed an approximately 90% reduction in TuMV accumulation in samples expressing
120  single-guide 2 and the multi-guide (i.e. GIGS) (Supplementary Fig. 3¢). Moreover, qPCR revealed
121 an approximate 30% to 40% reduction in TuMV levels when TRV expressed single-guide 1 or -
122 guide 3, which was not obvious from visual inspection of GFP fluorescence. This may reflect
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123 complicated translation mechanisms viruses employ, such as internal ribosome entry?, in which
124 the viral molecule was targeted by GIGS and partially interfered with, while intact GFP open
125  reading frame sequence was still translated. These results indicate that GIGS can cause systemic
126  TuMV interference, but that crRNA target sequences vary in effectiveness. Variation for crRNA
127  effectiveness has been reported for Cas13-dependent RNA targeting, likely caused by secondary
128  structure and accessibility of the target RNA?,

129 Viruses manipulate host physiology and have unique features unlike host derived
130  RNAs?*?°, making it possible that the GIGS phenomena is limited to viral RNA. To test this
131  hypothesis, we targeted endogenous phytoene desaturase (PDS) mRNA with single-guide and
132 multi-guide crRNA with and without LbuCasl3a (Supplementary Fig. 4). Agrobacterium-
133 mediated expression of single- and multi-guide ctRNA with and without LbuCas13 caused a
134 significant reduction in PDS transcript levels compared to expressing LbuCas13a alone or with a
135 NT-guide (Fig. le). The resulting mRNA reduction (75-85%) was consistent across the tested
136  samples, comparable to a PDS-hairpin construct known to induce RNAIi (Fig. le). The reduction
137  in PDS mRNA was confirmed by northern blot, which showed a clear reduction for PDS signal
138  for both LbuCas13a-dependent and GIGS compared to expressing LbuCas13a alone, with a NT-
139  guide, or from an untreated leaf (Supplementary Fig. 5a). Direct RNA quantification by
140  NanoString further confirmed a significant reduction for the PDS transcript for samples expressing
141  the PDS targeting guides with or without the expression of Cas13a (Supplementary Fig. 5b). These
142 results establish that GIGS acts on both viral RNA and endogenous transcripts.

143 To test if GIGS acts systemically on endogenous genes, TRV expressing guides targeting
144  endogenous PDS mRNA were infiltrated into N. benthamiana (Supplementary Fig. 6). Under the
145  hypothesis that GIGS can act systemically on endogenous genes, the prediction is that TRV-
146  delivered guides result in photobleaching in TRV-infected tissues. Three single-guide crRNA,
147  targeting different regions of PDS, did not exhibit significant photobleaching (Fig. 1f). However,
148  two multi-guides targeting different PDS regions displayed substantial photobleaching in systemic
149  leaf tissue (Fig. 1f and Supplementary Fig. 7a). Interestingly, the visible photobleaching pattern
150  induced by the anti-sense fragment (i.e. RNA1i) and that induced by GIGS were not the same (Fig.
151  1fand Supplementary Fig. 7a). While the antisense RNAi photobleaching was strong in the upper,
152  youngest leaves, GIGS induced photobleaching was not visible in the upper most leaves, and the
153  photobleaching occurred in more distinct segments causing a patchy appearance. Quantifying the
154  photobleaching to confirm the phenomena, SPAD meter readings showed a significant reduction
155  inchlorophyll content for samples expressing the multi-guide crRNAs and containing the antisense
156  PDS fragment (Supplementary Fig. 7b). Plants that expressed single-guide 2 were yellow and also
157  showed a reduced SPAD reading (Supplementary Fig. 7a,b). Quantifying PDS transcripts with
158  gPCR showed that the PDS transcript level was reduced (30-45%) for the three single-guides, and
159  toa greater extent by the multi-guides (65-70%) and the antisense construct (85%) (Supplementary
160  Fig. 7c). It is not clear why single-guide 1 and 3 caused a reduction in PDS mRNA levels, but did
161  not result in visible photobleaching or SPAD meter reductions, but we note that the reduced PDS
162  mRNA levels are consistent with that seen using Agrobacterium-mediated spot infiltration (e.g.
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163  Fig. le and Supplementary Fig. 5). Collectively, we found that GIGS induced by multi-guides
164  caused a greater reduction in target transcript levels compared to that induced by single-guides for

165  both virus and endogenous RNA targeting.
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166  Figure 1. Cas13 and GIGS reduce viral and endogenous target RNA in N. benthamiana.

167  a, Schematic overview of the Cas13 transgene system. Guide crRNA responsible for RNA target
168  specificity contain a single 28 nucleotide (nt) spacer antisense to the target RNA (single-guide, s-
169  guide), multiple 28 nt spacers (multi-guide, m-guide), or lack the spacer (empty-guide). A diagram
170  showing the genome of turnip mosaic virus (TuMV) expressing GFP and indicating the location
171  the three targeting sites for the guide crRNA. b, The accumulation of GFP was assessed at 120
172 hours post inoculation based on GFP fluorescence. Areas of agroinfiltration are shown in dashed
173 white circles. Individual treatments are labeled with numbers and shown schematically below the
174  photographs. ¢, Nanostring RNA quantification for Casl3 and TuMV levels corresponding to
175  labeled treatments for N. benthamiana spot infiltration. Samples expressed Cas13 (+) or not (-). d,
176  Representative images of N. benthamiana plants under UV light at 7 days post inoculation. The
177  systemic movement of TuMV is evident based on the accumulation of GFP fluorescence for
178  empty-guide expressing TRV (TR Vempty). Single-guide 2 and multi-guide, TR Vi.guide 2, and TRV -
179 guide respectively, stopped systemic TuMV infection. e, Quantitative PCR for the endogenous
180 transcript PDS following N. benthamiana leaf spot infiltration. f, Representative single leaf images
181  of N. benthamiana following TRV-mediated systemic delivery of guide crRNA targeting the PDS
182  transcript. Empty and non-target guides (NT-guide) did not cause photobleaching (white sectors),
183  while the antisense and multi-guide (m-guide) did induce visible photobleaching.

184

185  GIGS functions in multiple plant species and is heritable in Arabidopsis

186  An important question is whether GIGS is limited to N. benthamiana or is more broadly active in
187  plants. To test this, multi-guide crRNA were developed to target PDS in tomato (Solanum
188  Ilycopersicum), which were delivered using TRV, along with a NT-guide and an antisense PDS
189  control. We observed visible photobleaching in upper leaves of S. lycopersicum plants following
190  systemic movement of TRV expressing a multi-guide targeting S. lycopersicum PDS, although the
191  photobleaching was not as widespread as that produced by the antisense PDS construct (Fig. 2a).
192 Quantifying chlorophyll levels and the PDS transcript indicated that photobleached tissue from
193  GIGS and antisense expressing TRV both had substantially lower levels compared to the control
194  (Fig. 2b,c). These results show that GIGS is active outside of N. benthamiana, possibly extending
195  to other plants in the Solanaceae family.

196 Another important question is whether GIGS requires bacterial or viral machinery (i.e.
197  proteins) introduced during transient expression or if GIGS functions in stable transgenics through
198  plant endogenous machinery. To test these hypotheses, and further test the generality of GIGS in
199  plants, we transformed Arabidopsis thaliana (Col-0) with single-guide and multi-guide crRNA
200  targeting the pleiotropic regulatory gene TRANSPARENT TESTA GLABRAI (TTGI), both with
201  and without LbuCasl3a. The 77GI gene encodes a WDA40 repeat protein, which interacts with
202 MYB and bHLH transcription factors required for normal trichome and root hair development,
203  along with seed proanthocyanidin and vegetative anthocyanin production’-2%. The average
204  trichome counts for multiple independent T plants that expressed LbuCas13a with either single-
205  guide or multi-guide crRNA had significantly fewer trichomes compared to wild-type, and
206  importantly, plants expressing single-guides and the multi-guide crRNA, without Cas13, also had
207  significantly fewer trichomes on average (Supplementary Fig. 8a). The 77GI transcript was
208  quantified in T plants and was highly variable across the transformed lines (Supplementary Fig.
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209  8b). Individual plants were selected, self-fertilized and seeds from T, plants showed reduced total
210  flavonoids in both Cas13 and GIGS lines, consistent with reduced 77G1 (Supplementary Fig. 8c).
211 We assessed whether GIGS would function in progeny inheriting guides by characterizing
212 individual lines in the T> and Ts; generations for alteration of 77GI-dependent phenotypes.
213 Trichome counts of the seventh leaf (from ten plants per line) indicated that two GIGS lines (i.e.
214 expressing only a multi-guide crRNA targeting 77G /), and one of the hairpin expressing lines had
215  significantly fewer trichomes compared to the transformation control expressing Casl3a alone
216  (Fig. 2d). Individual transformed lines were subjected to sucrose and light stress to induce leaf
217  anthocyanin production, and we again observed that two lines expressing multi-guide crRNA
218  targeting T7G1 (i.e. GIGS) displayed significantly reduced leaf anthocyanin levels, along with a
219  hairpin expressing line (Fig. 2e,f). Quantification of total seed flavonoids showed a significant but
220  modest reduction compared to the control line, for both Cas13 expressing and GIGS lines along
221  with both hairpin expressing lines (Fig. 2g). Total flavonoid quantification also measures products
222 upstream of 77GI regulation, which can confound the impact of 77G/ reduction. To more
223 accurately assess the impact of 77G /1 reduction, we measured seed proanthocyanidins, which are
224 controlled downstream of 77GI. This analysis identified a more substantial impact for 77G1
225  reduction, where the level of proanthocyanidins were significantly reduced (Fig. 2h), and were
226  consistent with the results from the total flavonoid quantification (Fig. 2g).

227 These results indicate heritable phenotypes for multiple traits mediated by both Cas13 and
228  GIGS in stable transgenic Arabidopsis when targeting the pleiotropic regulator 77G/. We do note
229  there was substantial phenotypic variation among lines with the same construct, despite significant
230  reduction in 77G1 levels (Fig. 21). This is in part explained by variation in transgene expression
231 and translation (Supplementary Fig. 9). In addition, more complicated mechanisms such as
232 asynchronous 77G1 expression and Cas13 or GIGS expression at the individual cell level, or the
233 effect of incomplete 77G1 silencing on trait manifestation (i.e. kinetics of silencing to produce a
234 phenotype)?-°. Optimizing Casl3 and GIGS approaches will be an important step to deliver
235  robust biotechnology platforms for plant research and crop improvement, particularly for tissue-
236  or temporal-specific expression that is difficult to manipulate precisely with CRISPR-Cas9.
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237  Figure 2. Cas13 and GIGS function across plant species and are heritable.

238  a, Representative images of tomato leaves following TRV systemic movement and photobleaching
239  induced by GIGS (TRVm.guide) and an antisense transcript (TRVaspps). TRV expressing a non-
240  targeting guide crRNA (TRVnr-guide) does not induce photobleaching. b, Measurements of
241  chlorophyll content from SPAD meter readings for three independent plants. SPAD meter readings
242  were taken from leaf sections showing photobleaching, and individual reading are shown as black
243 points with the mean and standard deviation shown as a bar plot. ¢, qPCR measurement of the PDS
244  transcript standardized to the EF/o transcript and relative to the NT-guide sample. Three
245  independent samples were analyzed and individual data are shown as black points with the mean
246  and standard deviation shown as bar plots. (d-i), Data for independent transgenic Arabidopsis
247  lines. Data for plants expressing LbuCas13a are shown in dark blue and plants not expressing the
248  protein are shown in light blue. Control lines expressing a hairpin construct against the 77G1
249  transcript are shown in grey. d, Trichome counts from the seventh leaf of T> Arabidopsis lines.
250  Ten plants were counted per independent line, listed below graph, with the individual counts
251  shown as black points and the distribution represented as a violin plot. e, Leaf anthocyanin
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252  quantification from T; seedlings following sucrose treatment. Representative wells follow
253  extraction shown below each bar plot. f, Representative plantlets following sucrose treatment
254  showing anthocyanin pigmentation (i.e. purple color). g, Total flavonoids extracted from seeds
255  collected from T plants. Five independent seeds lots were analyzed per line, shown as black
256 points. h, Seed proanthocyandin quantification from the same plants analyzed in (g). i,
257  Quantification of the 77G/ transcript from three T2 and three Ts plants per line, individual data
258  shown as black points. Statistical comparisons were made between the transformation control (no
259  guide) and each treatment using a one-sided Mann-Whitney U-test with Benjamini-Hochberg (BH)
260  multiple testing correction. Samples with p-values less than 0.05 (*), and 0.01 (**) are indicated.
261

262  Multi-guide crRNA induce secondary small RNA production

263  We sought to understand the mechanism giving rise to GIGS (i.e. guide crRNA reducing viral and
264  endogenous RNA levels). Given that crRNA are composed of short antisense sequences, it is
265  possible that GIGS functions through components of the endogenous RNA interference (RNA1)
266  pathway. However, the structure of crRNA used here are not similar to hairpin RNA, small
267  interfering RNA (siRNA), or micro RNA (miRNA), therefore it is not obvious how crRNA might
268  enter or induce RNAi*!32. Alternatively, it is possible that GIGS elicits other endogenous endo- or
269  exonucleolytic RNA degradation pathways*. Since small RNA (sRNA) usually in the range of
270  21- to 24-nucleotides (nt) are a hallmark for RNAi, we reasoned that if GIGS functions through
271  RNAI, abundant SRNA should be observed®*. To assess this, we conducted small (s)RNA-seq from
272 N. benthamiana samples expressing single and multi-guide crRNA against the endogenous PDS
273 transcript. Uniquely mapped sRNA for the single-guide samples showed a single sharp peak at the
274  PDS transcript, which corresponds to the location of the crRNA guide sequence, regardless of
275  Casl3 expression (Fig. 3a). Likewise, the samples expressing the multi-guide crRNA had three
276  distinct peaks of mapped sRNA, each corresponding to the location of the targeting guide
277  sequence. However, in these samples we also identified many sSRNA mapping to the PDS transcript
278  that were independent from the multi-guide target sequence (Fig. 3b). Interestingly, these SRNA
279  were identified only between the 5’ and 3’ boundaries of crRNA targeting sites and do not appear
280  to extend past this region (Fig. 3b). This was similar to the SRNA mapping from the samples
281  expressing the PDS hairpin, which produced ample sSRNA between the two ends of the hairpin
282  fragment (Fig. 3c). While the most abundant peaks for the multi-guide crRNA samples
283  corresponded to the guide targets themselves, the identification of thousands of sRNA reads
284  between these target regions suggest the production of secondary sSRNA. We do note the presence
285  of background sRNA in the samples where Cas13 was expressed with a NT-guide, which may
286  indicate background read mapping or potentially RNA contamination during library preparation,
287  but the signal was low (Fig. 3d). Supporting the idea that GIGS results in the production of
288  secondary sRNA through RNAi, we identified more 21 nt SRNA (i.e. siRNA) mapped to the PDS
289  transcript during GIGS (i.e. without the Cas13 protein) than when Cas13 was expressed with the
290  guide (Fig. 3e).

291 To further determine SRNA production during GIGS, a second sRNA-seq experiment was
292 conducted by expressing either a single-guide or one of two multi-guide crRNA in the absence of
293  Casl3 using the TRV vector in N. benthamiana. The uniquely mapped sRNA from the single-
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294  guide had a clear but small peak corresponding to the guide target sequence, along with other
295  background mapped sRNA (Fig. 3f). In contrast, mapped sSRNA from the sample expressing a PDS
296 antisense fragment produced many sRNA, which mapped between the ends of the antisense
297  fragment (Fig. 3g). Both multi-guide crRNAs showed three sharp peaks of mapped sRNA, with
298  each peak corresponding to a guide targeting region (Fig. 3h,i). Importantly, these samples clearly
299  have many mapped sRNA that are outside of the multi-guide targeted region, which are not present
300 in the controls, and were not expressed as part of the multi-guide crRNA sequence (Fig. 3h-k). We
301 interpret these SRNA to represent secondary SRNA generated in response to multi-guide GIGS.
302  Consistent with these secondary sSRNA being generated via components of the RNA1 pathway, the
303  length of SRNA mapped to the PDS transcript are predominantly 21 nt for the two multi-guide and
304 antisense fragment samples (Fig. 31). These results suggest that siRNA and RNAi are likely
305 involved in mediating GIGS.
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307  Figure 3. Multi-guide induced GIGS results in SRNA generation.

308 (a-d), Uniquely mapped small RNA (sRNA) read counts to the PDS transcript collected five days
309  post agro-mediated spot infiltration. Read counts are log» of counts per million +1 (logo CPM) and
310  shown relative to the transcription start site (TSS) till the end of the predicted mRNA (2216 bp).
311  Individual treatments are labeled above each graph, and one of the two replicate samples per
312 treatment is plotted. The position of the expressed single- and multi-guide crRNA are shown as
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313 vertical dashed line(s). The region spanning the hairpin construct is shown as a grey window. (e),
314  Proportion of 21-, 22-, and 24-nt SRNA mapped to the PDS transcript averaged between the two
315  replicates. (f-1), similar layout as described in (a-¢) but here RNA was collected from systemic
316  leaves two-weeks following TRV expression. The treatments are listed above each graph.

317

318  GIGS RNA reduction functions through Argonaute

319  Under the hypothesis that GIGS requires endogenous RNAi machinery, target mRNA reduction
320  would be dependent on Argonaute (AGO) RNA-binding protein(s)*>. AGO proteins are required
321  to form the RNA Induced Silencing Complex (RISC), which carries out the biochemical slicing or
322  translational inhibition of target mRNA3%37, To achieve AGO mediated endonuclease activity,
323 perfect complementary base pairing is required at positions 10 and 11 of the AGO-bound siRNA
324  with the target mRNA (i.e. central duplex region)*®%°, Therefore, if GIGS is dependent on AGO,
325  multi-guide crRNA designed to have mismatches at base-pairs 10 and 11 should be blocked for
326  GIGS (i.e. no target mRNA reduction). To test this, multi-guide crRNA that contained specific
327  two base pair mismatches to the PDS mRNA were delivered to N. benthamiana using TRV (Fig.
328  4a). The results showed that multi-guide crRNA against PDS with mismatches at the critical region
329  for AGO endonuclease activity (i.e. base pairs 10,11) did not cause photobleaching, while negative
330  control mismatches (i.e. positions 5,6 or 21,22) still elicited photobleaching (Fig. 4a, Supplemental
331  Fig. 10 for whole plant images). The chlorophyll content as measured by SPAD meter was not
332 significantly different between the NT-guide control and the multi-guide with mismatches at
333  positions 10,11 (mg 1[mm10,11]) (Fig. 4c). The perfect complementary multi-guide, along with
334 the guide containing mismatches at positions 5,6 and 21,22 had significantly reduced SPAD meter
335 readings, along with the antisense PDS construct (Fig. 4c). Quantification of PDS transcripts by
336 qPCR confirmed no reduction for samples expressing the multi-guide with position 10,11
337  mismatches, while all other treatments significantly reduced the level of the PDS transcript (Fig.
338  4d). We note that the mismatches at 5,6 and 21,22 did affect silencing, as the perfectly
339  complementary multi-guide crRNA gave the strongest photobleaching. These mismatches may
340  interfere with other RISC functions, such as target recognition and target mRNA turnover$4°,
341  However, it is clear that mismatches at 10,11 abolish GIGS, while the other mismatches diminish
342 it, suggesting that GIGS functions through one or more endogenous AGO proteins. Additionally,
343  these results suggest that GIGS is mediated by RNA endonuclease reduction and not translational
344  inhibition of target mRNA*!.

345
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346  Figure 4. Guide mismatches at position 10 and 11 abolish GIGS, indicating AGO
347  dependence. (a), Illustration of multi-guide expression from TRV targeting the PDS transcript.
348  For each of the 28 nt guides (crRNA1, crRNA2, crRNA 3) a variant m-guide 1 was designed. For
349 mg 1[mm5,6], each crRNA contained two base pair mismatches at positions 5,6, for mg
350  1[mml10,11] mismatches at positions 10,11, and mg 1[mm21,22] contained mismatches at
351  positions 21,22. (b), Representative images of leaves following TRV systemic delivery of m-guide
352 1 targeting PDS, in addition to the three variants of m-guide 1. TRV expressing a non-targeting
353  guide (NT-guide) and TRV with a region of antisense sequence to PDS (asPDS) served as controls.
354  (c¢), SPAD meter readings from photobleached (loss of green color) leaf samples. Data collected
355 from a total of six independent leaves from two experiments. (d), Quantification of the PDS
356  transcript using qPCR for the same samples as measured in (c). Data standardized to an
357  endogenous transcript and normalized to TRV expressing NT-guide. Statistical comparisons were
358 made between the NT-guide and each treatment using a one-sided Mann-Whitney U-test with
359  Benjamini-Hochberg (BH) multiple testing correction. Samples with p-values less than 0.05 (*),
360 and 0.01 (**) are indicated. n.s., non-significant difference (p > 0.05).
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366  GIGS also occurs with Cas9 designed crRNA

367  The Casl3 guide crRNA are composed of the Cas13 specific direct repeat (DR) domain and the
368 antisense target sequence *?, and they do not contain double-stranded RNA corresponding to the
369  target sequence as would be found in a hairpin, short-hairpin or miRNA transgene. It was therefore
370  not clear if a sequence or structure of Cas13 designed crRNA were required to elicit GIGS. It was
371  recently reported that crRNA guides from the Cas13b system cause target mRNA reduction in the
372  absence of Cas13b, termed Casl3b-independent silencing in mosquito **. That report does not
373  provide functional data that elucidate the mechanism, but the authors postulate that Casl3b-
374  independent silencing is related to RNAi. Importantly, the Cas13b DR sequence is different than
375  the Cas13a DR sequence used here. Additionally, the structure of the crRNA are different, where
376  the Cas13b DR is located at the 3’ end of the crRNA following the target guide sequence, while
377  the Casl3a crRNA used here have a 5° DR prior to the target sequence *?. These results suggest
378  that GIGS is not dependent on a specific Cas13 DR sequence or structure. To directly investigate
379  this hypothesis, we tested if GIGS was active for other guide crRNA, such as for the CRISPR-
380  Cas9 system. Using the Casl3 single-guide (s-guide 2) that caused a slight yellowing in the leaf
381 and PDS mRNA reduction (Fig. 1d,e), we designed a corresponding 28 nt Cas9 sgRNA (Fig. 5a,
382  sgRNA 1). When the Cas9 designed sgRNA was delivered by TRV, we observed subtle yellowing
383  in the leaves compared to TRV expressing a NT-guide, similar to that produced by the Casl3
384  crRNA design (Fig. 5b). Importantly, a control Cas9 designed sgRNA containing 50% mismatches
385  to the PDS sequence showed no yellowing, indicating that the subtle phenotype was specific (Fig.
386  5b and Supplementary Fig. 11 for whole plant images). This visible phenotype was corroborated
387 by SPAD meter readings that indicated an approximately 28% reduction in chlorophyll content
388  compared to the control expressing a NT-guide, which was similar to the reduction observed for
389  the Casl3 designed s-guide (Fig. 5¢). Molecular quantification indicated significant but variable
390  PDS transcript reduction compared to the NT-guide and the 50% mismatch sgRNA controls (Fig.
391  5d).

392
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394  Figure S. GIGS is also evident for sgRNA guides designed for Cas9

395  (a), Schematic of guide designs targeting PDS transcript for Cas13 s-guide 2, and Cas9 sgRNA 2.
396  Each guide contains 28 nt antisense to the PDS transcript (sequence shown). The Cas9 sgRNA
397  control contained 50% mismatch sequence to the PDS transcript (sgRNA 2 [50% mm]). Mismatch
398  nucleotides are colored red, while shared nucleotides between the three guides are black. The
399  Casl3 crRNA contains the 37 bp direct repeat (DR) sequence at the 5° end. The Cas9 sgRNA
400  contains the 78 bp trans-activating crRNA (tracrRNA, depicted as a line) at the 3’ end. (b),
401  Representative images of leaves following TRV systemic delivery of single-guide 2 (s-guide 2)
402  targeting PDS, and a Cas9 designed sgRNA designed to contain the same 28 bp targeting PDS as
403  in s-guide 2. An sgRNA 2 control contained the sequence in sgRNA 2, but with 50% mismatches
404  to the PDS transcript (sgRNA 2[50%mm]). Control sgRNA containing non-targeting guide
405  sequence (NT-sgRNA). Photobleaching is seen in the asPDS sample, while interveinal yellowing
406 is visible in the samples expressing s-guide 2 and sgRNA 2. (¢), SPAD meter readings from
407  photobleached leaf samples as described for (b). Data collected from a total of six independent
408 leaves from two experiments. (d) Quantification of the PDS transcript using qPCR for the same
409  samples as measured in (c). Data standardized to an endogenous transcript and normalized to TRV
410  expressing NT-sgRNA. Statistical comparisons were made between the NT-sgRNA and each
411  treatment using a one-sided Mann-Whitney U-test with Benjamini-Hochberg (BH) multiple testing
412 correction. Samples with p-values less than 0.05 (*), and 0.01 (**) are indicated. n.s., non-
413  significant difference (p > 0.05).
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416  Discussion

417  The rapid pace of biotechnological innovation for trait manipulation is advancing science and has
418  incredible potential to benefit society. CRISPR-based approaches for RNA manipulation offer new
419  approaches for trait manipulation, but they are currently less well understood compared to DNA-
420  targeting CRISPR. Through the course of our work to develop Casl3 for use in plants, we
421  unexpectedly discovered that the guide crRNA designed for the Cas13a system can reduce viral
422  and endogenous RNA in the absence of the Cas13 protein (i.e. GIGS). There is a question of why
423 this was not previously reported in plants. One explanation is that previous reports of Casl3
424  function in plants and other systems have not included a guide-alone control (e.g. stable transgenic
425  line expressing guide crRNA alone) such as the experiments described for stable transgenic rice
426 7, rice protoplasts'>, and experiments in animal systems!>#443, One experiment did test for guide
427  crRNA-alone effects against TuMV in N. benthamiana, but reported no impact on viral
428  accumulation!®. The report only included visible assessment, but no further molecular
429  characterization such as quantifying the level of TuMV or confirming expression of the crRNA,
430 and therefore the data are not conclusive, and the effect of GIGS may have gone unnoticed.
431  Another report in N. benthamiana testing Casl3 variants also expressed guide-alone crRNA
432  targeting the tobacco mosaic virus and no GIGS phenotype was reported '8. The experiment did
433 not include data confirming expression of the crRNA, which could explain the difference, or the
434  discrepancy may be due to other technical differences.

435 An important distinction for the experiments reported here, is our use of multi-guide
436  crRNA in the absence of Casl3. To our knowledge, this control has never been reported in any
437  eukaryotic system to-date. Our results suggest that multi-guides in the absence of Cas13 produce
438  substantially more target RNA reduction compared to single-guides alone. Further research is
439  needed to replicate this effect and understand why targeting discontinuous regions produce
440  significantly more RNA reduction. Our extensive characterization of the GIGS phenomena in N.
441  benthamiana, demonstration in tomato, verification in stably transformed A. thaliana, and
442  evidence provided for a Cas9 designed crRNA, collectively show that guides cause target mRNA
443  reduction on their own. Our results in plants are also consistent with the report of Casl3-
444  independent transcript silencing in mosquito*. We posit that the findings described in mosquito
445  represent the same GIGS phenomena reported here, which suggests that GIGS functions broadly
446  across eukaryotes.

447 We found that GIGS elicits the production of SRNA with sequence corresponding to the
448  targeted mRNA. Interestingly, multi-guide crRNA stimulated more sSRNA production than single-
449  guides, with the majority of SRNA corresponding to the crRNA target sequence, but we also found
450  secondary sRNA targeting intervening regions with sequence not expressed in the crRNA. Given
451  that sSRNA are a hallmark of RNAI, it is likely that GIGS functions through endogenous
452  components of RNAi. Further supporting this hypothesis, we found that sequence mismatches at
453  positions 10,11 relative to the 5° crRNA guide sequence, abolished the observed GIGS phenotypes
454  and nearly eliminated target mRNA reduction. We infer these results to show that GIGS is
455  dependent on the endonuclease activity of Argonaute. Interestingly, for Cas13 based crRNA to
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456  associate with AGO, it is likely they would first require processing. One possibility for the
457  biogenesis of siRNA from a crRNA could be the processing of the crRNA-mRNA duplex. This
458  could be carried out by one or more Dicer or Dicer-like endogenous ribonuclease III (RNase I11)
459  enzyme(s)*. While Dicer is conserved across eukaryotes, the gene family has differentially
460 expanded, with a single copy present in vertebrates, two copies present in insects, and up to four
461  Dicers in plants 4748, Tt is possible that the duplication and diversification of the Dicer superfamily
462  across eukaryotes will affect their competence for GIGS. Differences in Dicer substrate processing
463  have been documented in eukaryotes*-°, and further mechanistic understanding is needed for
464  multi-guide crRNA-mRNA processing. Aside from GIGS, it will also be important to determine
465  if Casl3-mediated mRNA cleavage products interact with RNAi machinery to create feedback
466  between the two RNA degradation systems.

467 The work presented here suggests that GIGS can achieve target RNA silencing using a
468  guide sequence that is shorter than conventional hairpin and antisense constructs used in plants
469 5132, This property could be particularly helpful in constructing compact multigene silencing
470  cassettes expressed as a single transcript, which would significantly expand the capabilities of user
471  defined RNA reduction schemes. In principle, multi-guide multi-target silencing could afford a
472  higher target specificity compared to multi-gene RNAi given the significantly shorter expressed
473  sequences, while avoiding the need to express a Cas13 transgene. Thus, GIGS based transcriptome
474  engineering could provide a flexible cis-genic approach for plant biotechnology.

475
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527 MATERIALS AND METHODS

528  Designing CRISPR-Cas13a machinery for in planta expression

529  To develop prokaryotic CRISPR-Casl3a machinery as a platform for in planta transcript-
530 silencing, sequences of LbuCasl3a and LbaCasl3a effectors were N. benthamiana codon
531  optimized along with 3x-FLAG tag or 3x-HA tag at the N-terminus, and custom synthesized
532 (Genscript, Piscataway, NJ) (Supplementary Table S1). These fragments were assembled using
533  HiFi DNA assembly (New England Biolabs, Ipswich, MA). The integrity of the constructs was
534 confirmed by Sanger sequencing (Genewiz, South Plainfield, NJ).

535 Turnip mosaic virus engineered to express GFP (TuMV-GFP)?° and the endogenous
536  phytoene desaturase (PDS) gene were selected as targets for CRISPR-Cas13a interference. For
537  crRNA designs, Lba- or LbuCas13a specific direct repeats with 28 nucleotide spacer sequences
538 complementary to the target were expressed by the Arabidopsis thaliana U6 promoter
539  (Supplementary Table S2). For TuMV targeting, three single crRNAs targeting different regions
540  of TuMV namely 5’untranslated region (5° UTR), Helper component Proteinase (HcPro), viral
541  genome linked protein (Vpg), and a poly crRNA containing aforementioned individual crRNAs in
542  an array were designed and constructed (Fig. 1 and Supplementary Table S3). Similar to TuMV,
543  the PDS transcript was targeted using three single crRNAs namely, s-guide 1, s-guide 2, and s-
544  guide 3 and a multi-guide crRNA containing the three single guides (Supplementary Tables S3
545 and S4). To create mismatch guides corresponding to PDS multi-guide crRNA, the nucleotide
546  sequence was altered at positions 5-6 bp, 10-11bp, and 21-22 bp from the 5 end of each crRNA
547  (Supplementary Table S4). A non-targeting crRNA was designed as a negative control. To create
548  the sgRNA2 construct, we assembled the single-guide 2 target sequence with the transactivating
549  crRNA (tracrRNA). The same strategy was used to construct sgRNA2 [50%mm)] in which single-
550  guide 2 crRNA had mismatches at every-other nucleotide. The NT-sgRNA negative control
551  contained the Cas9 tracrRNA sequence and a non-plant target sequence (Supplementary Table
552 S4).

553

554  Cloning of CRISPR-Cas13a machinery

555 A backbone harboring AtU6 promoter sequence with one Lbu or Lba specific direct repeat
556  sequence and Bsal Golden Gate site was custom synthesized (IDT, Coralville, IA) for expressing
557  crRNAs. This backbone was cloned into entry vector pENTR (Thermo Scientific, Waltham MA)
558 using Topo cloning. Spacer sequences were ordered as oligos and cloned using Bsal Golden Gate
559  site. Gateway assembly (Invitrogen) was used to clone the promoter and crRNA cassette into the
560  destination vector pGWB413 containing or lacking Cas13a effector (Supplementary Table S1).
561

562  Cloning crRNA for TRYV systemic delivery

563  For systemic expression of crRNA using TRV, pea early browning virus (PEBV) promoter
564  sequence with LbuCasl3a specific direct repeat and Bsal Golden gate site were custom
565  synthesized (IDT, Coralville, IA) and cloned into Gateway entry vector PCRS (Supplementary
566  Table S1). Three single guide and multi-guide crRNA sequences targeting NbPDS, and a multi-
567  guide crRNA targeting SIPDS were ordered as oligos and cloned using Golden gate assembly
568  (Supplementary Table S5). The cassette harboring PEBV promoter and TuMV, NbPDS, or SIPDS
569  targeting crRNAs was PCR amplified with primers having EcoRI and Mlul restriction sites and
570  cloned into EcoRI and Mlul digested pTRV2 vector (Supplementary Table 6).
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571  Cloning of intron hairpin RNAi (hpRNAI) cassette

572 For cloning of PDS hpRNAIi construct, a 197 bp sequence of PDS gene was custom synthesized
573  assense and antisense arm along with PDK intron sequence with 25 bp overhang complementarity
574  to pGWB413 vector (Supplementary Table S1). All the fragments were assembled using HiFi DNA
575  assembly (New England Biolabs, Ipswich, MA) expressed by the 35S promoter.

576

577  Agro-infiltration of N. benthamiana and Solanum lycopersicum

578  N. benthamiana plants were grown and maintained in growth chamber at 23°C with 16-hour day
579 and 8 hour light cycle and 70% humidity. Four-week-old plants were used for leaf spot
580 agroinfiltration to test Casl3a interference against TuMV-GFP. Binary constructs harboring
581  Casl3a homologs with or without crRNA (targeting TuMV or PDS transcript), TuMV-GFP
582  infectious clone (a gift from Dr. James Carrington) were individually transformed into chemically
583  competent Agrobacterium tumefaciens strain GV3101. Single colonies for each construct were
584  inoculated into LB medium with antibiotics and grown overnight at 28 °C. Next day, the cultures
585  were centrifuged and suspended in agroinfiltration buffer (10mM MgCl12, 10mM MES buffer pH
586 5.7 and 100uM acetosyringone), and incubated at ambient temperature for 2-3 hours. For TuMV
587 interference assay, Agrobacterium cells harboring Casl3a with crRNA targeting TuMV were
588 infiltrated at an OD600 of 1.0 into adaxial side of four-week-old N. benthamiana leaves using a
589 1.0 ml needleless syringe. Two days later, Agrobacterium cells harboring TuMV-GFP were
590 infiltrated into same areas at an OD600 of 0.3. After five days, interference activity of Casl3a
591  against the TuUMV-GFP was assayed by visualizing GFP in infiltrated leaves under UV light using
592  ahand-held UV lamp (Fisher Scientific, Waltham, MA) and a Nikon camera.

593 For PDS silencing, leaves of four-week-old N. benthamiana plants were infiltrated with
594  Agrobacterium cultures harboring LbuCas13a with crRNAs targeting PDS and leaf samples were
595  collected at 5 days post inoculation. For TRV mediated crRNA delivery, assays used three-week-
596  old N. benthamiana plants. A single colony of Agrobacterium harboring crRNAs targeting PDS
597  were inoculated into LB medium with antibiotics and grown overnight at 28 °C. Next day, the
598  cultures were centrifuged and resuspended into infiltration buffer at an OD600 of 0.6. The cultures
599  were incubated at ambient temperature for 2-3 hours and infiltrated into N. benthamiana. Two
600 upper leaves were collected two-weeks after TRV infiltration. Control plant infiltrated with TRV
601  expressing an RNAIi antisense fragment were used to help track systemic TRV movement.
602 Infiltration of tomato plants was performed similarly to N. benthamiana except that Agrobacterium
603  cells were resuspended into infiltration buffer at an OD600 Of 2.0. The cultures were incubated at
604  ambient temperature for 2-3 hours and infiltrated into three-week-old tomato plants. Data was
605  collected two-weeks after TRV infiltration in the lower leaves.

606

607  RNA isolation, cDNA synthesis, QRT-PCR and northern blotting

608  Total RNA was isolated from Agro-infiltrated leaf samples and upper leaf tissue following
609  systemic TRV movement using Trizol (Ambion) 4. For first strand cDNA synthesis, DNase
610 treated 1 pg total RNA was reverse transcribed using either random hexamers or oligo(dT20) and
611  SuperScript II reverse transcriptase (Thermo Fisher Scientific) according to the manufacturer’s
612  instructions. Quantitative PCR was performed using SYBR Select Master Mix (Applied
613  Biosystem) and gene specific primers (Supplementary table) for PDS and TuMV. EFlo gene was
614  used as internal house-keeping reference for PDS and TuMV gRT-PCR ° The experiments were
615  repeated three times with three biological and two technical replicates. Relative expression values
616  were plotted using ggplot2 in R %7, For detection of PDS transcript, 20 pg of total RNA was
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617  separated on a denaturing 1.2% agarose gel and blotted on a Hybond-N+ (Roche) membrane. RNA
618  was crosslinked using UV light and hybridized with a DIG labelled probe (PCR DIG probe
619  synthesis kit, Sigma). For detection of LbuCas13a the membrane was stripped and probed with
620  DIG labelled Casl13a specific probe and signal detected on a Licor Odyssey imaging system (LI-
621  COR Bioscience, Lincoln, NE).

622

623  Real time quantification of PDS and TuMYV transcripts using Nanocounting technology

624  For direct RNA quantification of PDS and TuMV transcripts using NanoString technology, we
625  collected sequence data for different N. benthamiana genes including PDS, three house-keeping
626  genes for normalization (PP2aa2, EFla, RPL23a), LbuCasl3a, HCPro and coat protein
627  (Supplementary Table 7). The sequence information was utilized to design two probes for each
628  target gene. Total RNA samples (300 ng total RNA) and probe master mix were supplied to the
629  Huntsman Cancer Institute, University of Utah for Nanostring quantification following
630  manufacturer specifications. The nano-counting data was analyzed using the nSolver software.
631

632  Western blotting

633  For western blotting, total protein was isolated from Agrobacterium infiltrated leaves using
634  extraction buffer (50mM Tris-Cl, 1% B-Mercaptoethanol and protease inhibitor cocktail (Roche,
635  Basel, Switzerland)). Total proteins were boiled with loading buffer (100mM Tris-Cl, 20%
636  Glycerol, 4% SDS, 10% p-Mercaptoethanol and 0.2mg/ml bromophenol blue) and resolved on
637  12% SDS-PAGE gel. The proteins were transferred from SDS-PAGE gel to PVDF membrane (GE
638  healthcare, Chicago, IL). Membrane blocking and antibody incubations were performed using
639 iBind western device (Thermo Fisher Scientific, Waltham, MA) according to the instrument
640  manual. Finally, the membrane was treated with ECL Select western blotting detection reagent
641  (GE healthcare, Chicago, IL) and signal was detected with Licor Odyssey imaging system (LI-
642  COR Bioscience, Lincoln, NE).

643

644  Small RNA sequencing and analysis

645  Two separate small RNA sequencing experiments were conducted. For results shown in (Fig. 3a-
646 e), Casl3 and crRNA guides and controls were expressed in N. benthamiana leaves using
647  agrobacterium spot infiltration as described. Total RNA was extracted from infiltrated leaves using
648  Trizol following manufactures guidelines. For results shown in (Fig. 3f-1), crRNA guides and
649  controls were expressed from TRV using agrobacterium infiltration as described. Total RNA was
650  extracted from upper leaves following systemic TRV movement using Trizol. Total RNA samples
651  were sent to the Beijing Genomics Institute (BGI Group, Hong Kong). Twenty-four small RNA
652  libraries were constructed following the DNBseq small RNA library protocol. Briefly, small RNA
653  were isolated from PAGE gel corresponding to size 18-30 nt. Adapters were ligated and first strand
654  synthesis performed according to DNBseq small RNA library protocol. Libraries were PCR
655  amplified and size selected and sequenced on the DNBseq platform (BGI Tech Solutions, Hong
656  Kong, China).

657 Small RNA reads for both experiments were trimmed °%%, and aligned using STAR
658  (v2.7.3a) % to a modified version of the N. benthamiana genome (v1.0.1)%!. The modifications
659  included removing all contigs with less than 70K nt, adding the coding sequence of LbuCas13a as
660  a contig, and masking one of the two paralogs coding for PDS. The coding sequence for PDS on
661  contig Niben101Scf14708, position 12885-21779 (gene23) was masked in order to ensure unique
662  mapping to a single PDS locus on contig Niben101Scf01283, position 197129-205076 (gene
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663  2002). Uniquely mapped read counts for the exons were extracted per base-pair using samtools
664  (v1.3)%? and bedtools ‘coverage’ (v2.29.2) . To compare between sequenced samples, mapped
665 reads were normalized to library size (i.e. total uniquely mapped reads per library) using the
666  equation (number of reads mapped at a nucleotide position * (1 / number of uniquely mapped reads
667 in library) * 1M), referred to as counts per million (CPM). The size distribution of uniquely
668  mapped reads were analyzed for 21, 22, and 24 nt SRNA. The average number of uniquely mapped
669  sRNA to the PDS transcript was calculated for the duplicate samples for each size class. The
670  proportion of each size class was determined by the equation, ((average number of reads per size
671  class / sum of average number of reads per size class)*100). Analyses were carried out using
672  Python3 (v3.8.2) libraries NumPy (v1.18.1), Pandas (1.0.3) and plotted with Matplotlib (v3.2.1)
673 %67 Processed files, additional information and the reference genome used for mapping are
674  provided through the GEO> Series accession number GSE171980.

675  (https://www.ncbi.nIm.nih.gov/geo/query/acc.cgi?acc=GSE171980).

676

677  Generating stable transgenic Arabidopsis plants

678  TTGI-targeting three single guides (guide-1, -2, -3) and a multi-guide crRNA (Supplementary
679  Table 8), and non-targeting (NT) oligos were annealed and ligated into pENTR backbone
680  containing Bsal Golden gate site. Gateway assembly was used to transfer guide crRNA to
681  pGWB413 destination vector with or without 3xHA-LbuCas13a. Stable transgenic Arabidopsis
682  plants expressing 77G1 guides with or without LbuCas13a were generated using Agrobacterium-
683  mediated floral dip % Similarly, stable Arabidopsis controls with a NT crRNA, a 197 bp hairpin
684  construct against 77G1 (a gift from Dr. Steven Strauss), and no guide transformation control (only
685  3xFLAG-LbuCasl3a) were generated. One month after floral dip, T: seeds were collected and
686  stored at 4°C.

687

688  Arabidopsis phenotyping

689  Transformed T Arabidopsis seedlings were identified using rapid selection protocol ®. Selection
690 was conducted on 2 MS media with a Kanamycin concentration of 100 pg/ml. Positive
691  transformants (n = 36) for each 77GI crRNA with or without LbuCasl3a and 77G/ hairpin
692  controls were transferred to soil and grown under optimal conditions. Control Arabidopsis Col-0
693  plants were germinated on 2 MS media without Kanamycin and transferred to soil. Seventh leaf
694  from ten individual plants for each construct was imaged under a dissecting microscope equipped
695  with a Nikon camera and trichomes were counted using multi-point feature in ImageJ software 7°.
696  For each construct, RNA was extracted from 10" leaf of five individual plants with varying leaf
697  trichomes to quantify 77GI expression using qRT-PCR. AtEFla was used as internal house-
698  keeping control for normalizing 77G1 expression (Supplementary Table 6). Selected individual
699  plants for each construct were self-pollinated to collect T> seed. Five technical replicates of each
700  selected plant/line were used for analyzing total flavonoids, in 5 mg seed, using modified
701  aluminum chloride (AICI3) colorimetric method 7!. Total flavonoids content was estimated using
702  the following formula: flavonoids (mg/g) = concentration obtained through quercetin calibration
703  curve x (volume of extract/seed weight).

704 To determine the inheritance of GIGS and Casl3-mediated gene silencing, 10 T2 plants
705  from selected T: lines were transferred to soil after Kanamycin selection. Seventh leaf from 10
706  individual T> plants was imaged for counting leaf trichomes. Statistical comparisons between the
707  transformation control (no guide) and each selected line was performed. 77GI expression in the
708  top rosette leaf from three individual T plants was analyzed using qRT-PCR. Five individual T>
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709  plants for each line were self-pollinated to collect T3 seed. Total flavonoid content was analyzed
710 in T3 seeds from five independent seed lots (five biological replicates). Similarly,
711  proanthocyanidins content was measured using DMACA-HCI method from three seed lots 7.
r712 Proanthocyanidins were measured at 640_nm and reported as per gram of seed weight. Total
713 flavonoid and proanthocyanidin analyses were repeated twice, the averaged values for each seed
714 lot were used for statistical comparisons. Absorbance of flavonoids and anthocyanin was measured
715  wusing Thermo Spectronic 3 UV-Visible Spectrophotometer. While absorbance of
716  proanthocyanidins was measured through Synergy H1 Hybrid Multi-Mode Microplate Reader
717  (Agilent Technologies, Winooski, Vermont).

718 For leaf anthocyanin quantification, one-week-old T3 seedlings after Kanamycin selection
719  were transferred into %2 MS media + 3% sucrose and subjected to light stress (500 umol m™2 s™!)
720  for one week. 200 mg of leaf tissue was used for quantifying anthocyanin 7°. Anthocyanin analysis
721  was repeated twice with 5 replicates in each batch. Anthocyanin content was calculated by using
722  following formula (absorbance/35,000% dilution factorx647 x 1,000 per mg of sample extracted
723  (in mg g-1 fresh weight). Representative plantlets following sucrose treatment showing
724  anthocyanin pigmentation were imaged with a dissecting microscope equipped with a Nikon
725  camera. To test 77G1 expression in T3 generation, seventh leaf from three individual plants was
726  analyzed using qRT-PCR. To determine the expression of LbuCas13a, RT-PCR was conducted on
727  cDNA synthesized for qRT-PCR. Western blot analysis with HA-tag antibody was conducted on
728  one-week-old T seedlings post Kanamycin selection.

729

730

731
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