

1 **Cryptic diversity within the *Poecilochirus carabi* mite**
2 **species complex phoretic on *Nicrophorus* burying**
3 **beetles: phylogeny, biogeography, and host specificity**

4 **Julia Canitz¹, Derek S. Sikes², Wayne Knee³, Julia Baumann⁴, Petra Haftaro¹,**
5 **Nadine Steinmetz¹, Martin Nave¹, Anne-Katrin Eggert⁵, Wenbe Hwang⁶, Volker**
6 **Nehring¹**

7 ¹ Institute for Biology I, University of Freiburg, Hauptstraße 1, Freiburg, Germany

8 ² University of Alaska Museum, University of Alaska Fairbanks, Fairbanks, Alaska,
9 99775, USA

10 ³ Canadian National Collection of Insects, Arachnids, and Nematodes, Agriculture and
11 Agri-Food Canada, 960 Carling Avenue, K.W. Neatby Building, Ottawa, Ontario,
12 K1A 0C6, Canada

13 ⁴ Institute of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria

14 ⁵ School of Biological Sciences, Illinois State University, Normal, IL 61790-4120, USA

15 ⁶ Department of Ecology and Environmental Resources, National Univ. of Tainan, 33
16 Shulin St., Sec. 2, West Central Dist, Tainan 70005, Taiwan

17 **Correspondence:** volker.nehring@biologie.uni-freiburg.de

18 Abstract

19 Coevolution is often considered a major driver of speciation, but evidence for this claim
20 is not always found because diversity might be cryptic. When morphological divergence
21 is low, molecular data are needed to uncover diversity. A taxon for which this holds true
22 are the mites, which are known for their extensive and often cryptic diversity. We
23 studied mites of the genus *Poecilochirus* that are phoretic on burying beetles (Silphidae:
24 *Nicrophorus*). *Poecilochirus* taxonomy is poorly understood. Most studies on this genus
25 focus on the evolutionary ecology of *Poecilochirus carabi* *sensu lato*, a complex of at
26 least two biological species. Based on molecular data of 230 specimens from
27 43 locations worldwide, we identified 24 genetic clusters that may represent species.
28 We estimate that these mites began to diversify during the Paleogene, when the clade
29 containing *P. subterraneus* branched off and the remaining mites diverged into two
30 further clades. One clade resembles *P. monospinosus* and *P. austroasiaticus*. The other
31 clade contains 17 genetic clusters resembling *P. carabi* *s.l.*. Among these are *P. carabi*
32 *sensu stricto*, *P. necrophori*, and potentially many additional cryptic species. Our
33 analyses suggest that these clades were formed in the miocene by large-scale geographic
34 separation. Diversification also seems to have happened on a smaller scale, potentially
35 due to adaptation to specific hosts or local abiotic conditions, causing some clusters to
36 specialize on certain beetle species. Our results suggest that biodiversity in this genus
37 was generated by multiple interacting forces shaping the tangled webs of life.

38 **Introduction**

39 Parasites are known for their high biodiversity (García-Varela et al., 2011; Huyse et al.,
40 2005; Magalhães et al., 2007). In all organisms, geographic separation can lead to
41 allopatric speciation, and ecological factors may cause disruptive selection and lead to
42 reproductive isolation in sympatry (Butlin et al., 2012). Ecological effects are amplified
43 by the interaction of parasites with their hosts: Any divergence in host populations can
44 potentially alter selection on the parasites and lead to divergence and even co-speciation
45 with their hosts (Hoberg et al., 1997). Further, reciprocal selection between hosts and
46 parasites may speed up evolution and lead to higher diversification rates among
47 populations (Paterson et al., 2010; Thompson, 2009; Yoder & Nuismer, 2010). These
48 processes can result in many parasite populations or species each specialized on just one
49 host species or population (García-Varela et al., 2011; Hunter & Rosario, 1988; Huyse
50 et al., 2005; Magalhães et al., 2007; Perotti & Braig, 2009). The diversity of parasites is
51 often cryptic, as they tend to live hidden lives and morphological adaptations to
52 parasitism may be similar for all hosts (García-Varela et al., 2011). Hence, the diversity
53 of parasites is likely underestimated.

54 The mite genus *Poecilochirus* G. & R. Canestrini, 1882 (Mesostigmata: Parasitidae)
55 consists of 20 morphologically described species (Hyatt, 1980; Perotti & Braig, 2009;
56 Ramaraju & Madanlar, 1998). Several species are phoretic as immatures
57 (deutonymphs). They attach to adult burying beetles (Silphidae: *Nicrophorus*) for
58 dispersal (Farish & Axtell, 1971; Schwarz & Koulianou, 1998). The beetles bury small
59 vertebrate carcasses, on which they raise their offspring. While the parental beetles
60 provide brood care, *Poecilochirus* mites dismount from their host beetles, feed on
61 microorganisms, fly eggs, and sometimes beetle eggs, develop into adults, and
62 reproduce (Brown & Wilson, 1992; Meierhofer et al., 1999; Schwarz & Müller 1992).

63 Deutonymphal mites disperse from the carcass by attaching to the parental beetles or
64 their adult offspring (Schwarz & Koulianou, 1998; Schwarz & Müller, 1992). At larger
65 carcasses, multiple beetle species can co-occur and mites can switch between host
66 individuals. Mites recognize their main host by olfactory cues and some prefer specific
67 *Nicrophorus* species over others (Korn, 1982; Müller & Schwarz, 1990). If the preferred
68 host species is not available, the mites will mount other host species, but their fitness
69 may be reduced when they reproduce along with the ‘wrong’ host species (Brown &
70 Wilson, 1994; Nehring et al., 2017). Such host switches may counteract host
71 specialization (Thompson, 2009).

72 There is no evidence that the mites affect host beetle fitness during the phoretic
73 dispersal. However, some observations suggest that mites may affect beetle fitness
74 during the reproduction phase. Depending on the environmental conditions, the mites
75 can either directly reduce beetle brood weight and offspring number (De Gasperin &
76 Kilner, 2015; Nehring et al., 2019; Schedwill et al., 2020), or have positive effects on
77 beetle fitness by helping to fend off other competitors such as blowflies, nematodes, or
78 other beetles (Springett, 1968; Sun et al., 2019; Wilson & Knollenberg, 1987). In any
79 case, whether the mites are parasites or mutualists, they have likely coevolved with the
80 host beetles.

81 *Poecilochirus* species can be distinguished morphologically based on body size, the
82 presence or absence of setae, the form and pattern of setae and the sternal shield, the
83 morphology of the chelicerae, and genital structures (Baker & Schwarz, 1997; Hyatt,
84 1980; Ramaraju & Madanlar, 1998; Wise et al., 1988). However, the taxonomy of the
85 genus is poorly understood, at least partly because morphological differences between
86 species are small (Mašán, 1999). The best-studied species is *Poecilochirus carabi*, but it
87 has been shown that this species actually consists of at least two reproductively isolated

88 populations that occur sympatrically in Central Europe and that have been named *P.*
89 *carabi* *sensu stricto* and *P. necrophori* (Baker & Schwarz, 1997; Hyatt, 1980; Müller &
90 Schwarz, 1990). Field and laboratory studies indicate that *P. necrophori* is a host
91 specialist primarily found on *Nicrophorus vespillo*, while *P. carabi* s.s. is prevalent on
92 at least three different *Nicrophorus* species (*N. vespilloides*, *N. investigator*, and *N.*
93 *humator*), but rarely on *N. vespillo* (Schwarz, 1996). Furthermore, two reproductively
94 isolated populations of *P. carabi* are specialized on two sympatric North American
95 *Nicrophorus* species (*N. tomentosus* and *N. orbicollis*) and differ in morphology
96 (Brown, 1989; Brown & Wilson, 1992), but their relationship to the European species is
97 unknown. Mites of these morphologically very similar but reproductively isolated and
98 ecologically well-defined populations are considered to belong to a cryptic species
99 complex, termed *P. carabi* *sensu lato* (Baker & Schwarz, 1990; Masan, 1999).

100 One might expect that *P. carabi* *s.l.* consists of more than these four cryptic species,
101 given that the holarctic genus *Nicrophorus* includes more than 60 species (Sikes et al.,
102 2002, 2016). Burying beetles originated in the Cretaceous (99–127 Ma) in Asia/Eurasia,
103 colonized the Western hemisphere and have likely back-migrated to Eurasia more than
104 once (Hatch, 1927; Peck & Anderson, 1985; Sikes & Venables, 2013). Today, most
105 species are restricted to single continents, and at most locations, multiple species occur
106 in sympatry (e.g. Brown & Wilson, 1992; Dekeirsschieter et al., 2011). Only *N.*
107 *vespilloides* and *N. investigator* occur in both the Western and Eastern hemispheres
108 (Sikes et al., 2008; Sikes et al., 2016). *Nicrophorus* species vary in their habitat
109 preferences. Some species inhabit woodlands and others open areas, and differences in
110 the diel activity and reproductive season have been reported for species on both
111 continents (Anderson 1982, Burke et al., 2020; Esh & Oxbrough, 2021; Majka, 2011;
112 Scott, 1998).

113 Molecular, phylogenetic, and divergence time analyses have been conducted for
114 *Nicrophorus* (Sikes et al., 2008, 2016; Sikes & Venables, 2013), but are missing for
115 *Poecilochirus* species. The scant genetic data that are available are primarily from
116 broader studies on the diversity and phylogenetics of Mesostigmata or Acari, with many
117 samples only identified to the genus level (Klompen et al., 2007; Rueda-Ramírez et al.,
118 2019; Young et al., 2019). The lack of molecular data on the diversity of this genus
119 prevents further insight into its ecology and evolutionary history.

120 In this study, we want to understand the evolutionary history of *Poecilochirus* mites that
121 are phoretic on *Nicrophorus* beetles, and *P. carabi* s.l. in particular, using molecular
122 analyses. Given the biodiversity and wide distribution of the host genus, and the
123 independent descriptions of reproductively isolated mite populations in Europe and
124 North America, we predicted that genetic diversity within the genus *Poecilochirus* is
125 currently underestimated. Based on the results of previous studies (Brown & Wilson,
126 1992; Müller & Schwarz, 1990), host specificity is expected to be evident in mite
127 genetics, as much of the mites' reproductive isolation is suggested to be caused by
128 diverging host preferences. We sequenced three genetic markers of *Poecilochirus* mites
129 collected with their *Nicrophorus* hosts on four different continents. We documented
130 their genetic diversity, reconstructed the phylogenetic relationships, and estimated
131 evolutionary divergence times to better understand the drivers of speciation in this mite
132 clade.

133 Materials and Methods

134 We collected *Poecilochirus* mites from burying beetles from North and South America,
135 Europe and Asia and used nuclear and mitochondrial DNA sequences to identify genetic
136 clusters. We then reconstructed phylogenetic relationships, and analyzed the
137 biogeography and host specificity of the main mite clusters.

138 Sampling

139 We focused on mites from burying beetles that morphologically resemble *P. carabi* in
140 their habitus and body size (body length ca. 1 mm; 218 individuals). Samples originated
141 from 43 different locations ranging from Alaska (USA), through Europe, Central Asia,
142 Japan and Melanesia (Figure S1). They were collected together with their host beetles,
143 including 31 *Nicrophorus* species and one carabid beetle (*Pterostichus melanarius*).
144 Specimens were sampled from the wild between 1998 and 2020, and were preserved
145 either in 96% ethanol, propylene glycol, or kept dry (Supplement Table S1). Several
146 specimens of the German populations (Mooswald, Freiburg) could be identified as *P.*
147 *necrophori* or *P. carabi* s.s. by host preference tests following the description of
148 Nehring et al. (2017).

149 In addition, specimens identified as *P. subterraneus* (n = 12) and *Macrocheles* sp. (n =
150 2) were added to the data set to serve as the outgroup in phylogenetic analyses
151 (Supplement Table S1). Mite vouchers are deposited in the Sikes Research Collection at
152 the University of Alaska Fairbanks, the Canadian National Collection of Insects,
153 Arachnids, and Nematodes, and the Acarological Collection at the University of Graz.

154 Molecular Methods

155 We extracted DNA from 232 mites. Two different methods were used for DNA
156 extraction. We applied either the Chloroform/Isopropanol method where the whole
157 individual was ground up in liquid nitrogen, or a non-destructive approach using the
158 DNeasy Blood and Tissue Kit (Qiagen). For the non-destructive method, we incubated
159 the entire specimen in 50 μ l lysis buffer (ATL buffer) and 10 μ l Proteinase K for
160 approximately 24h at 56°C. After 6–8h, additional 5 μ l Proteinase K were added.
161 Subsequently, we removed the undamaged specimens and followed the default protocol
162 of the DNeasy Kit. Mite voucher specimens following DNA extraction were preserved
163 in absolute ethanol.

164 A partial sequence of the Cytochrome Oxidase I gene (COI) was amplified using the
165 universal primer pair LCO1490 and HCO2198 (Folmer et al., 1994). Furthermore, the
166 ribosomal Internal Transcribed Spacer gene (ITS) was amplified. The primer pair used
167 for the ITS amplification was based on the sequences published by Navajas et al.
168 (1999), but we modified them slightly for better annealing (forward:
169 5'- AGTCGTAACAAGGTTCCGTAG-3'; reverse: 5'- GGGGGTAATCGCACTTGA
170 TTTC-3'). Additionally, the gene coding for the Large Subunit of the rRNA (LSU) was
171 amplified partly using the universal primer pair LSU-D1D2.fw2 and LSU-D1D2.rev2
172 (Sonnenberg et al., 2007). Amplification was performed with 30 thermocycler cycles.
173 PCR products were purified either by a polyethylene glycol (PEG)-based method or
174 enzymatically with ExoSAP-IT™ (ThermoFisher). We sent PCR products to Macrogen
175 Europe Inc. (Amsterdam, The Netherlands) for forward and/or reverse Sanger
176 sequencing.

177 Identification of genetic clusters

178 The COI, ITS, and/or LSU sequences of 230 *Poecilochirus* samples were aligned gene-
179 wise using default settings of the Geneious Prime implementation MAFFT v.7.450
180 (Katoh & Standley, 2013). Alignments were concatenated to a supermatrix in which
181 sequences of “N” symbolized missing data/genes. The supermatrix served as input for a
182 phylogenetic analysis with IQtree multicore version 1.6.12 (Nguyen et al., 2015). IQtree
183 estimates maximum-likelihood (ML) phylogenies using a fast and effective stochastic
184 search algorithm. We used IQtree’s model finder (Kalyaanamoorthy et al., 2017) to
185 select accurately best-fitting evolutionary models for each gene of the supermatrix. The
186 models TPM2u+F+I+G4, TIM3+F+G4, and HKY+F+G4 were chosen for the COI, ITS,
187 and LSU gene block, respectively. The phylogenetic analysis ran with 10,000 bootstrap
188 replicates using the ultra-fast bootstrap approximation for branch support (Minh et al.,
189 2013), and with a parametric approximate likelihood-ratio test (SH-aLTR) testing the
190 null hypothesis that assumes inferred branches with a length of 0 (Anisimova et al.,
191 2011). We set *P. subterraneus* as outgroup. The phylogenetic tree was visualized with
192 FigTree version 1.4.4 and edited using Inkscape 1.0.1. We also used the “Poisson Tree
193 Process” (PTP) model implemented in the tool multi-rate (m)PTP version 0.2.4 (Kapli
194 et al., 2017). The model is a tree-based approach for species delimitation. It suggests the
195 most likely number of species based on maximum likelihood and a Markov Chain
196 Monte Carlo (MCMC) algorithm to provide support values for each putative species
197 clade. Initially, the minimum branch length was calculated (--minbr_auto) based on the
198 input alignment. In a second step the resulting values and the phylogenetic tree were
199 input to the main mPTP analysis with the following parameters: --mcmc 100,000,000; --
200 mcmc_sample 10,000; --mcmc_burnin 500,000; --mcmc_runs 4; --mcmc_starrandom.
201 To illustrate the geographic distribution of the identified genetic clusters, the R
202 packages maptools v1.0-2 and scatterpie v0.1.5 (R Core Team, 2020) were used to plot

203 the relative abundance of the different clusters at each locality on a world map. To
204 support cluster delineation, uncorrected p-distances within and between clusters were
205 calculated based on the COI alignment using MEGA version 10.1.7 (Kumar, Stecher,
206 Li, Knyaz & Tamura, 2018).

207 **Morphological identification**

208 Mite specimens that were not destroyed during DNA extraction (n = 95) were mounted
209 and clarified in Heinze-PVA medium and stored in an oven at 50°C until total
210 clarification. Morphological and morphometric analyses of mites were performed using
211 differential interference contrast in a compound microscope (Reichert Diavar, Vienna).
212 Identification of mites was based on the key by Hyatt (1980) and the description of *P.*
213 *monospinosus* by Wise et al. (1988).

214 **Host specificity**

215 Host specificity was calculated as Shannon-Wiener Diversity (H') and Evenness. We
216 performed these calculations for three European and three North American clusters that
217 contained enough samples and host species. In addition, we used a χ^2 -test to investigate
218 if the frequency of host species occupied by a mite cluster deviates from the overall host
219 species frequency in the same geographical area. The host species frequency was
220 derived from the number of mites that we sequenced from each beetle species;
221 whenever possible, we had selected mites from different beetle individuals.
222 Subsequently, the χ^2 value of each cluster (χ^2_{cluster}) was set in relation to the theoretical
223 χ^2 maximum of the respective cluster (χ^2_{max}). A high quotient of $\chi^2_{\text{cluster}}/\chi^2_{\text{max}}$ suggests
224 host specificity of the mite clusters for that area. Calculations for the Shannon-Wiener
225 Index and Evenness were performed using the open source spreadsheet tool provided by
226 LibreOffice version 6.2.8.2., and χ^2 values were calculated with the R Stats package
227 v3.6.2.

228 Phylogenetic inference

229 We used 38 samples for which sequences of all three genes were available for
230 phylogenetic analyses. These samples covered 16 of the clusters previously identified.
231 We applied Maximum Likelihood (ML) and Bayesian Inference (BI) approaches and
232 used four different methods for assigning confidence levels to branches - SH-aLRT,
233 ultrafast bootstrapping (UFBoot), standard bootstrapping (SBS), and posterior
234 probability (PP). Phylogenetic analyses were carried out with IQTree (ML;
235 aLRT/UFBoot), RaxML version 8.2.4 (ML; SBS; Stamatakis, 2014), and MrBayes
236 3.2.7a (BI; PP; Ronquist et al., 2012). The input for all analyses is a concatenated
237 alignment generated with Geneious Prime. All analyses were conducted with the data
238 partitioned by gene. Best-fitting substitution models were found using IQtree. Models
239 were adjusted to the most similar substitution model RaxML and MrBayes can
240 integrate. For the IQtree analysis the same parameter settings were used as described
241 above. For the RaxML analysis, we chose the rapid bootstrapping algorithm (-f a) to
242 perform 10,000 bootstrap replicates and ML searches at once (-# 10,000; -T 20). For our
243 Bayesian approach, all prior parameters of MrBayes except for the model settings were
244 kept at default. We started MrBayes with 1,000,000 generations (ngen=1,000,000
245 samplefreq=5,000; printfreq=5,000; diagnfreq=1,000). Afterwards, parameter values
246 like effective sample size (ESS) were summarized and checked for reliability with
247 Tracer v. 1.7.1 (Rambaut et al., 2018). Trees were summarized with a burn-in of 10%.
248 All phylogenies and their support values were read and plotted with FigTree.
249 Illustrations and modifications were conducted with InkScape. In all analyses, *P.*
250 *subterraneus* specimens were used as the outgroup.

251 Divergence time analysis

252 For divergence time analysis, we combined the data of 25 *Poecilochirus* specimens with
253 additional Mesostigmata taxa (including our own *Macrocheles* sequences).
254 *Poecilochirus* samples were chosen by the availability and quality of COI and LSU
255 sequence and covered 12 of the genetic clusters. The complete dataset consists of 40
256 individuals, of which 26 represent the hyporder Parasitiae (one family), 13 the hyporder
257 Dermanyssiae (10 families) and one the infraorder Uropodina (two families), which
258 serves as the outgroup (Supplement Table S2). The analysis was conducted with Beast
259 v. 2.6.3 (Bouckaert et al., 2019). Beast2 includes the Fossilized-Birth-Death Process
260 model (FBD) which is an extended version of the Birth-Death Process (Stadler, 2010;
261 Stadler et al., 2018). Both models assume that every living lineage can experience
262 speciation at rate λ or go extinct at rate μ , but the FBD model allows the treatment of
263 known fossil calibration points as part of the tree prior at node times. Such priors can be
264 set with the graphical user interface Beauti2. We ran Beast2 under the FBD model using
265 fossil data available for five taxa (Supplement Table S3). Monophyly was fixed for
266 samples of the families Parasitidae, Macrochelidae and Digamasellidae, as well as for
267 the infraorder Gamasina, and the superfamilies Dermanyssoidae and Eviphidoidae. Our
268 analysis is based on the COI and LSU genes of which each represents a separate
269 partition. We set the substitution model to be unlinked and determined the GTR and
270 TN93 model for the COI and LSU partition, respectively. The Clock and Tree model
271 were set to be linked and the analysis ran with the Relaxed Clock Log Normal model.
272 We set the five fossil calibration points to the clade nodes where the fossils are assumed
273 to belong, and ran Beast2 with 1,000,000 generations. Trees were stored every 100
274 generations. Stationarity was reached when all ESS values were above 200 and data
275 were equally distributed in Tracer v. 1.7.1. The final divergence time phylogeny was
276 assembled with TreeAnnotator v2.6.3 (included in Beast2 package) using a burn-in of

277 10% and the maximum clade credibility as target tree type. Results were plotted using
278 FigTree and edited with InkScape.

279 **Biogeography and ancestral-area estimation**

280 The divergence time reconstruction was the basis for a biogeographical analysis. We
281 used the R package BioGeoBears (Matzke, 2014) which performs inferences of
282 biogeographic histories on phylogenies. With BioGeoBears, different models of how
283 biogeography may evolve on phylogenies can be tested on a given dated tree. Currently
284 the package includes the Dispersal-Extinction-Cladogenesis model (DEC), a likelihood
285 version of the Dispersal-Vicariance model (DIVALIKE) and the Bayesian Analysis of
286 Biogeography (BAYAREALIKE). Moreover, it provides an extended version for the
287 models by the consideration of additional free parameters like ‘j’ (“jump dispersal”) or
288 ‘x’ (geographical distances) while modeling. The “jump dispersal” parameter simulates
289 the founder-event speciation. It describes that at the time of cladogenesis one daughter
290 lineage inherits the ancestral range, and the other lineage occupies a new area through a
291 rare, long-distance colonization event and founds an instantly genetically isolated
292 population (Matzke, 2014; Zhang et al., 2017). Since the biogeography of *Poecilochirus*
293 is our focus, we pruned the dated tree to a subset containing only *Poecilochirus*
294 specimens (excl. *P. subterraneus*) and used it for the BioGeoBears analysis. We divided
295 the Northern Hemisphere in 6 areas: Western North America (W), Eastern North
296 America (N), Europe (E), Northern Asia + Japan (A), Southern Asia (S), and South East
297 Asia ranging to the Solomon Islands (I). In an initial analysis, we tested whether the
298 existence of only the Bering Land Bridge (BLB) or the North Atlantic Land Bridge
299 (NALB) and the BLB might fit the data better. Three model types were tested in three
300 different versions for each scenario (M0=DEC, DIVALIKE, BAYAREALIKE;
301 M1=DEC+J, DIVALIKE+J, BAYAREA+J, and M2=DEC+J+X, DIVALIKE+J+X,

302 BAYAREA+J+X), and the likelihood and Akaike Information Criterion with sample
303 correction (AICc) were compared between both scenarios. We continued with the
304 scenario showing the highest likelihood (lowest negative log likelihood value: -lnL) and
305 lowest AICc values in most of the models and compared nested models using a
306 Likelihood Ratio Test (same model type: M0 vs. M1 and M1 vs. M2). The AICc was
307 used to compare among model types (DEC vs. DIVALIKE).

308 A more likely scenario is obtained by running the biogeographical models under a time-
309 stratified analysis. In such an analysis, BioGeoBears can take into account geographical
310 changes and different difficulty levels for dispersal occurring over time. Our time-
311 stratified analysis included three time slices. We tried to represent the geographic
312 conditions of the Eocene/Oligocene, the Miocene, and present conditions. For this
313 scenario we ran the models DEC/DEC+J and DIVALIKE/DIVALIKE+J.

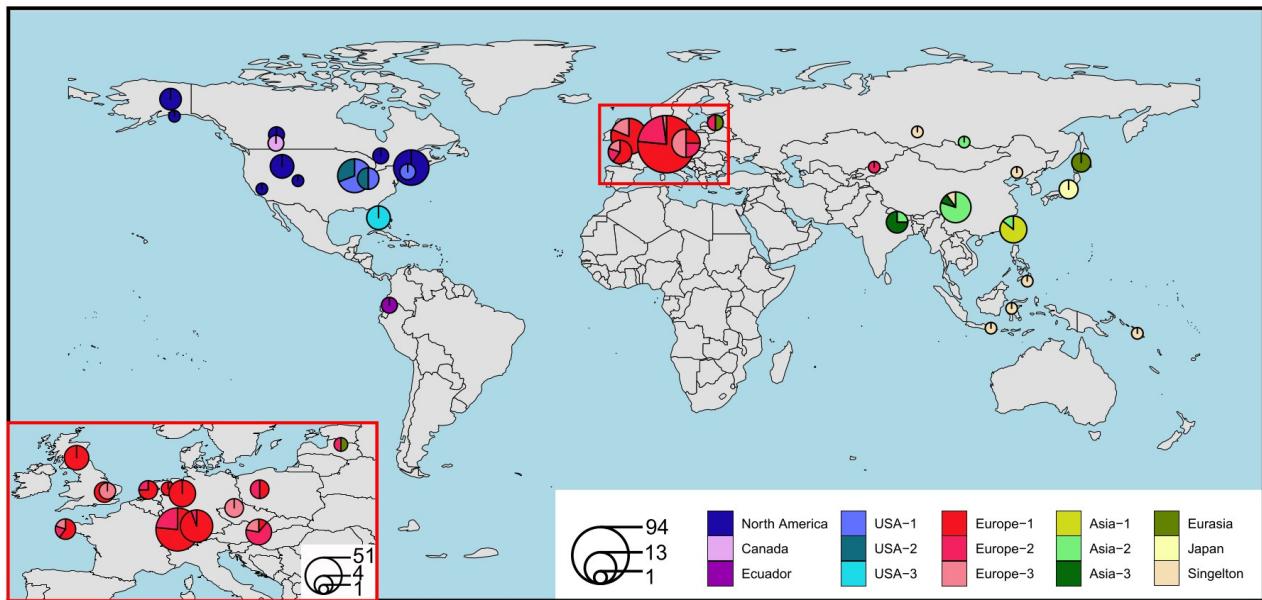
314 **Results**

315 **Sequence data**

316 We obtained 429 DNA sequences after editing and quality-checking. Of these, 193 COI,
317 136 ITS, and 79 LSU sequences belonged to mites that resemble *P. carabi*, 10 COI, 6
318 ITS, and 3 LSU sequences belonged to *P. subterraneus*, and one COI and one LSU
319 sequence were generated from two *Macrocheles* specimens (Supplement Table S1).
320 These sequence data have been submitted to GenBank under the accession numbers
321 MW890765 – MW890966 (COI), MW893012 – MW893060 and MW893063 –
322 MW893153 (ITS), and MW893154 – MW893193 and MW893196 – MW893239
323 (LSU). The average length of the COI, ITS and LSU sequences are 655bp, 509bp and
324 645bp, respectively. All sequences that were blasted against the NCBI database
325 matched published sequences from either *Poecilochirus* or Parasitidae, with low E-
326 values and a sequence coverage > 70%. *Macrocheles* samples matched with sequences
327 from *M. nataliae*.

328 **Identification of genetic clusters**

329 We identified 24 different genetic clusters by the IQtree approach that was based on a
330 concatenated supermatrix of the COI, ITS, and LSU genes obtained from 230
331 *Poecilochirus* mites (Table 1, Supplement Figure S2). Of these, 3 were clusters in the
332 outgroup *P. subterraneus*. The largest cluster in the ingroup consisted of 89 samples
333 (Europe-1), and seven clusters were represented by only one mite individual (=
334 singletons). Depending on the cluster, the number of different host species ranged from
335 1 to 8, and the number of sampling locations varied from 1 to 13 (Table 1).


Table 1: List of genetic clusters of *Poecilochirus*. The number of mite individuals, the host species with the number of mite individuals sequenced from each host species, and the country of occurrence with the number of its different localities are listed for each cluster.

	no. of mites	host species (no. mites found on each host species)	country of origin (no. of different sampling locations)
Clusters			
Asia-1	6	<i>N. nepalensis</i> (6)	Taiwan (1)
Asia-2	11	<i>N. concolor</i> (1), <i>N. melissae</i> (1), <i>N. nepalensis</i> (2), <i>N. schawalleri</i> (2), <i>N. sinensis</i> (2), <i>N. smefarka</i> (2), <i>N. vespilloides</i> (1)	China (1), Russia (1), Taiwan (1), India (1)
Asia-3	4	<i>N. melissae</i> (1), <i>N. nepalensis</i> (3)	India (1), China (1)
Canada	2	<i>N. hybridus</i> (2)	Canada (1)
Ecuador	2	<i>N. didymus</i> (2)	Ecuador (1)
Eurasia	6	<i>N. investigator</i> (2), <i>N. vespillo</i> (1), <i>N. vespilloides</i> (1)	Japan (1), Latvia (1)
Europe-1	89	<i>N. humator</i> (12), <i>N. interruptus</i> (6), <i>N. investigator</i> (6), <i>N. vespillo</i> (2), <i>N. vespilloides</i> (62), <i>Pterostichus melanarius</i> (1)	Germany (7), England (1), Austria (1), France (1), Scotland (1), The Netherlands (1), Poland (1)
Europe-2	27	<i>N. humator</i> (1), <i>N. interruptus</i> (6), <i>N. lunatus</i> (1), <i>N. vespillo</i> (16), <i>N. vespilloides</i> (3)	Germany (3), Poland (1), Kazakhstan (1), France (1), Latvia (1), The Netherlands (1), Austria (1)
Europe-3	10	<i>N. antennatus</i> (2), <i>N. germanicus</i> (2), <i>N. humator</i> (3), <i>N. interruptus</i> (2), <i>N. vespilloides</i> (1)	Czech Rep (1), France (1), Austria (1), England (1)
Japan	3	<i>N. quadripunctatus</i> (3)	Japan (1)
North America	31	<i>N. defodiens</i> (8), <i>N. hebes</i> (2), <i>N. investigator</i> (6), <i>N. nigrita</i> (2), <i>N. orbicollis</i> (4), <i>N. sayi</i> (3), <i>N. tomentosus</i> (4), <i>N. vespilloides</i> (2)	USA (6), Canada (2)
USA-1	13	<i>N. orbicollis</i> (7), <i>N. pustulatus</i> (1), <i>N. tomentosus</i> (5)	USA (3)
USA-2	6	<i>N. pustulatus</i> (6)	USA (2)
USA-3	5	<i>N. carolina</i> (5)	USA (1)
Singletons			
PH-N.apo	1	<i>N. apo</i>	Philippines
IND-N.ins	1	<i>N. insularis</i>	Indonesia (Bali)
SI-N.kie	1	<i>N. kieictus</i>	Solomon Islands
IDN-N.cha	1	<i>N. charon</i>	Indonesia (Sulawesi)
CH-N.jap	1	<i>N. japonicus</i>	China (Liaoning)
RUS-N.mor	1	<i>N. morio</i>	Russia
CH-N.con	1	<i>N. concolor</i>	China (Sichuan)
Outgroup <i>P. subterraneus</i>			
Psub-NA	5	<i>N. sayi</i> (5)	Canada (1); USA (1)
Psub-GER1	5	<i>N. humator</i> (5)	Germany (1)
Psub-GER2	2	<i>N. humator</i> (2)	Germany (1)

336 We named the clusters according to their main distribution area. All clusters but Asia-2
337 were represented by reliable branch support values (SH-aLRT > 80%; UFBoot > 95%).
338 The separation of Asia-1, IDN-N.ins and Asia-2 from the remaining singletons resulted
339 in less confident values (SH-aLRT=26%; UFBoot=53%). However, the close
340 relationships among Asia-1, Asia-2, IDN-N.ins, PH-N.apo and SI-N.kie were well
341 supported as a monophyletic group (SH-aLRT=81.6%; UFBoot=95%). Its sister group
342 is a clade formed by the North America and Eurasia clusters but with lower branch
343 support values (SH-aLRT=71.8%; UFBoot=91%). Branch support values of deeper
344 phylogenetic splits varied highly (SH-aLRT: 20.7--99.9%; UFBoot: 67-100%)
345 indicating a more fragile tree topology (Supplement Figure S2).

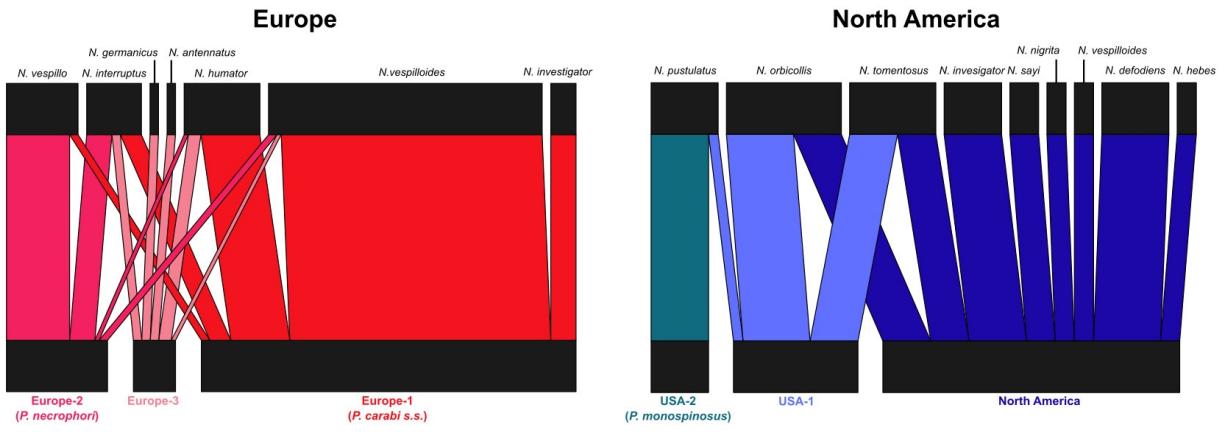
346 The mPTP species delimitation results were similar to those of the IQtree approach. The
347 four independent MCMC runs yielded the highest frequencies for species numbers
348 between 22 and 26 with the highest likelihood score for a multi-coalescent rate (-
349 lnL=1099.35) calculated for 23 species (including 3 *P. subterraneus* clusters,
350 Supplement Figure S3).

351 Mites in the three *P. subterraneus* clusters were collected in Europe (2 clusters) or
352 North America (Supplement Table S1). The remaining mite clusters were each
353 restricted to one of three major geographical regions (the European, Asian, and
354 American continent). In North America (USA and Canada), five different clusters
355 occurred. While the North America cluster was distributed from Alaska/Canada over the
356 Western to the Eastern USA, the USA-1 cluster was only found in the North-Eastern
357 part of the USA (Illinois, Ohio and Connecticut). The USA-2 cluster was only present
358 in Illinois and Ohio (Middle-Eastern USA), and the USA-3 cluster was restricted to
359 Florida (South-Eastern USA). The Canada cluster only appeared in Calgary/Alberta. In
360 South America the Ecuador cluster was found (Figure 1, Supplement Table S1).

Figure 1: Distribution of the *Poecilochirus* clusters without *P. subterraneus*. Pie charts show the relative proportion of the different clusters at each location. Each cluster is represented by another color (except singletons) and pie size reflects the sample size at each location. The European distribution is enlarged in the left bottom corner (red rectangle).

361 The clusters Europe-1, Europe-2, and Europe-3 were distributed across Europe whereby
362 the Europe-2 cluster also contained a sample from Kazakhstan. Samples of the Eurasia
363 cluster occurred in Latvia and Japan. All singletons and three additional genetic clusters
364 (Asia-1, Asia-2 and Asia-3) were distributed across the Asian continent. We identified a
365 distinct Japan cluster in addition to the Eurasia cluster on the Japanese Islands
366 (Figure 1).

367 The mean uncorrected p-distance within clusters was 0.78% ranging from 0.1% (Asia-
368 1) to 1.9% (Asia-3). Among clusters the overall mean p-distance was 15.48% with a
369 range between 6.03% (Asia-1/IND-N.ins) and 21.06% (Psub-GER1/USA-2). The p-
370 distance between the known species *P. carabi* s.s. and *P. necrophori* (Europe-1 vs.
371 Europe-2) was 10.21%, and that between *P. carabi*/*P. necrophori* and *P. monospinosus*
372 (Europe1/Europe2 vs. USA-2/USA-3) was on average 19.46%.


373 **Morphological identification**

374 We morphologically identified 95 large *Poecilochirus* specimens covering 19 different
375 genetic clusters. Of these, 90 specimens from 16 genetic clusters match the *P. carabi*
376 description of Hyatt (1980). The specimens from the Japan cluster differed slightly from
377 Hyatt's description by having a weakly sclerotized body and long podosomal and
378 opisthosomal shields (Supplement Tables S1 and S4).

379 Five specimens were identified as other species: The single intact specimen of the USA-
380 2 cluster (sample ID: oh-pus2) corresponded to the description of *Poecilochirus*
381 *monospinosus* Wise, Hennessey & Axtell, 1988. All individuals of the USA-3 cluster
382 resembled *P. monospinosus* as well but differ in the setal pattern. The CH-N.con
383 singleton morphologically resembled *Poecilochirus austroasiaticus* Vitzhum 1930, but
384 it was larger than reported by Hyatt (1980). These morphological results prompted our
385 definition of *P. carabi* s.l., which hereafter includes all genetic clusters, except USA-2,
386 USA-3, CH-N.con, and the three *P. subterraneus* clusters.

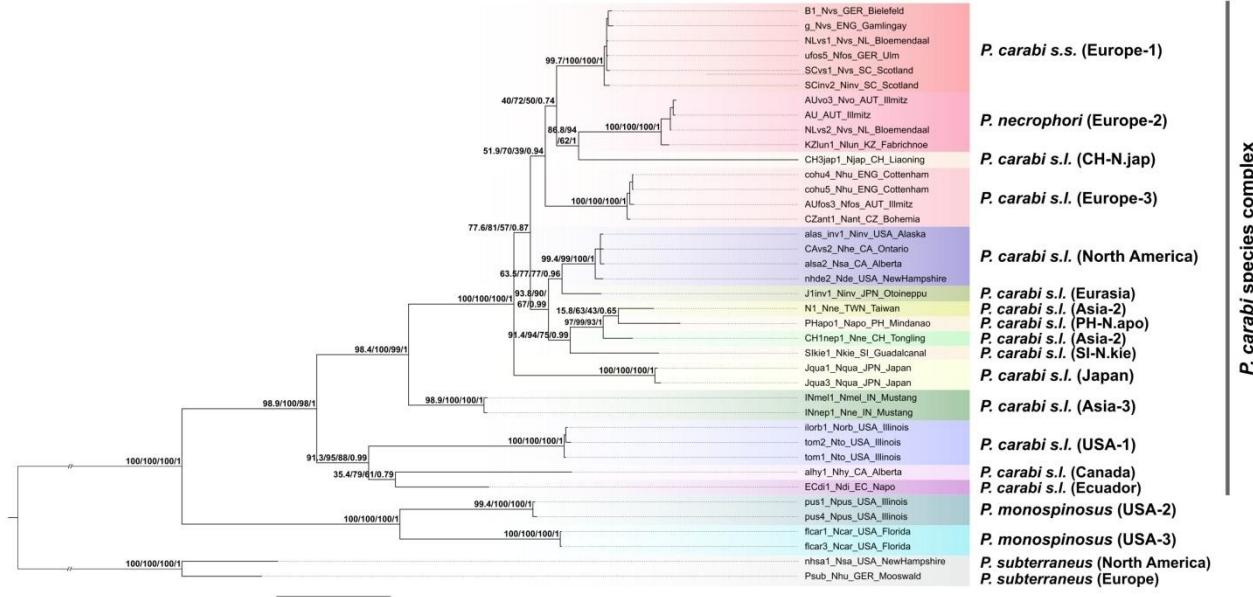
387 **Host specificity**

388 We focused on six clusters that contained more than six mite specimens each and that
389 were found in more than one location. Among the three European clusters, Europe-1
390 and Europe-3 were each associated with five, and Europe-2 with four *Nicrophorus*
391 species, respectively (Table 2; Figure 2).

Figure 2: Association network between host species and the six genetic clusters tested for host specificity. The map illustrates the weighted association between mite clusters and *Nicrophorus* species for the clusters Europe-1, Europe-2 and Europe-3, as well as the clusters USA-1, USA-2 and North America. The thicker the bars the more mite individuals are associated with the respective host species.

392 Both Shannon-Wiener Diversity Index and Evenness were highest for the cluster
393 Europe-1 and lowest for Europe-3 (Table 2). The association between the three North
394 American clusters and their host species is clearer, even though more host species were
395 involved. The clusters USA-2, USA-1 and North America were found on one, three and
396 eight *Nicrophorus* species, respectively (Table 2; Figure 2). Furthermore, a similar
397 pattern for both statistical indices was shown in North America where both values
398 decreased from the North America cluster over USA-1 to USA-2. Furthermore, the χ^2
399 ratio ranged from 0.003 to 0.082 in Europe and from 0.014 to 0.256 in North America
400 (Table 2). The higher the quotient, the more the samples from a cluster were
401 concentrated on specific host species.

Table 2: Host specificity indices for three European (n = 124) and three North American (n = 50) clusters. The number of mite specimens found on each host, the Shannon Wiener Diversity Index (H'), Evenness, χ^2 -value and χ^2 -Ratio are listed for each cluster.


Cluster	Host species †								H'	Even-ness	χ^2 (cluster)	$\chi^2_{(\text{cluster})}/\chi^2_{(\text{max})}$	
	N. vs	N. vo	N. hum	N. int	N. inv	N. ant	N. ger						
Europe-1	62	2	12	6	6	0	0	0.9 3	0.479	19.1 *	0.003		
Europe-2	3	16	1	6	0	0	0	0.5 4	0.277	55.0 *	0.035		
Europe-3	1	0	3	2	0	2	2	0.1 5	0.076	50.3 *	0.082		
	N. def	N. heb	N. inv	N. nig	N. orb	N. pus	N. say	N. tom	N. vs				
North America	7	2	6	2	5	0	3	4	2	1.5 2	0.690	10.7	0.014
USA-1	0	0	0	0	7	1	0	5	0	0.5 8	0.266	13.9	0.045
USA-2 (<i>P. monospinosus</i>)	0	0	0	0	0	6	0	0	0	0.2 5	0.116	36.9 *	0.256

402 * significant: $\chi^2_{(\text{cluster})} >$ critical value of 12.59 (df=6; $\alpha=0.05$) for the European clusters;
 403 $\chi^2_{(\text{cluster})} >$ critical value of 15.51 (df=8; $\alpha=0.05$) for the North American clusters

404 † N. vs = *N. vespilloides*, N. vo = *N. vespillo*, N. hum = *N. humator*, N. int = *N. interruptus*, N. inv
 405 = *N. investigator*, N. ant = *N. antennatus*, N. ger = *N. germanicus*, N. def = *N. defodiens*, N. heb
 406 = *N. hebes*, N. nig = *N. nigrita*, N. orb = *N. orbicollis*, N. pus = *N. pustulatus*, N. say = *N. sayi*, N.
 407 tom = *N. tomentosus*

408 Phylogenetic inference

409 The tree topologies inferred by the ML (IQtree and RaxML) and BI (MrBayes) analyses
 410 were consistent. The phylogeny comprised 37 mite individuals covering 16 genetic
 411 clusters. Two *P. subterraneus* samples served as the outgroup (Figure 3).

Figure 3: The phylogeny of *Poecilochirus carabi* s.l. inferred by MrBayes. Branch labels represent the branch support values obtained by the Likelihood Ratio Test/Ultrafast Bootstrapping/Standard Bootstrapping/Posterior Probability. Genetic clusters are indicated by colors. Basal branches are trimmed and the scale indicates the estimated substitutions per site. Species names are those of the best-fitting species description.

412 Monophyly of the previously defined genetic clusters was confirmed by SH-aLRT,
 413 UFBoot; SBS, and PP values. The topology depicted a basal separation into two clades
 414 (PP=1; aLRT/UFBoot/SBS=100). One clade consisted of mites identified likely as *P.*
 415 *monospinosus* (USA-2 and USA-3), while the other one included all clusters of *P.*
 416 *carabi* s.l.. Within this *P. carabi* s.l. clade, the most recent common ancestor of the
 417 USA-1, Canada, and Ecuador clusters split off first but the close relationship between
 418 the Canada and Ecuador cluster showed lower branch support (aLRT=35.4;
 419 UFBoot=79; SBS=61; PP=0.79). Subsequently, our tree shows first the Asia-3 and then
 420 the Japan cluster branching off, both with high support values (PP=1;
 421 aLRT/UFBoot/SBS>98). The remaining clusters diverged into two clades but this
 422 separation was less confident (aLRT=77.6; UFBoot=81; SBS=57; PP=0.87). While the
 423 close relationship between the North America/Eurasia and the Asian cluster had

424 consistent support through all but one branch value (aLRT=93.8; UFBoot=90; SBS=67;
425 PP=0.99), values within the European/CH-N.jap/RUS-N.mor clade were low and varied
426 among analyses (Figure 3).

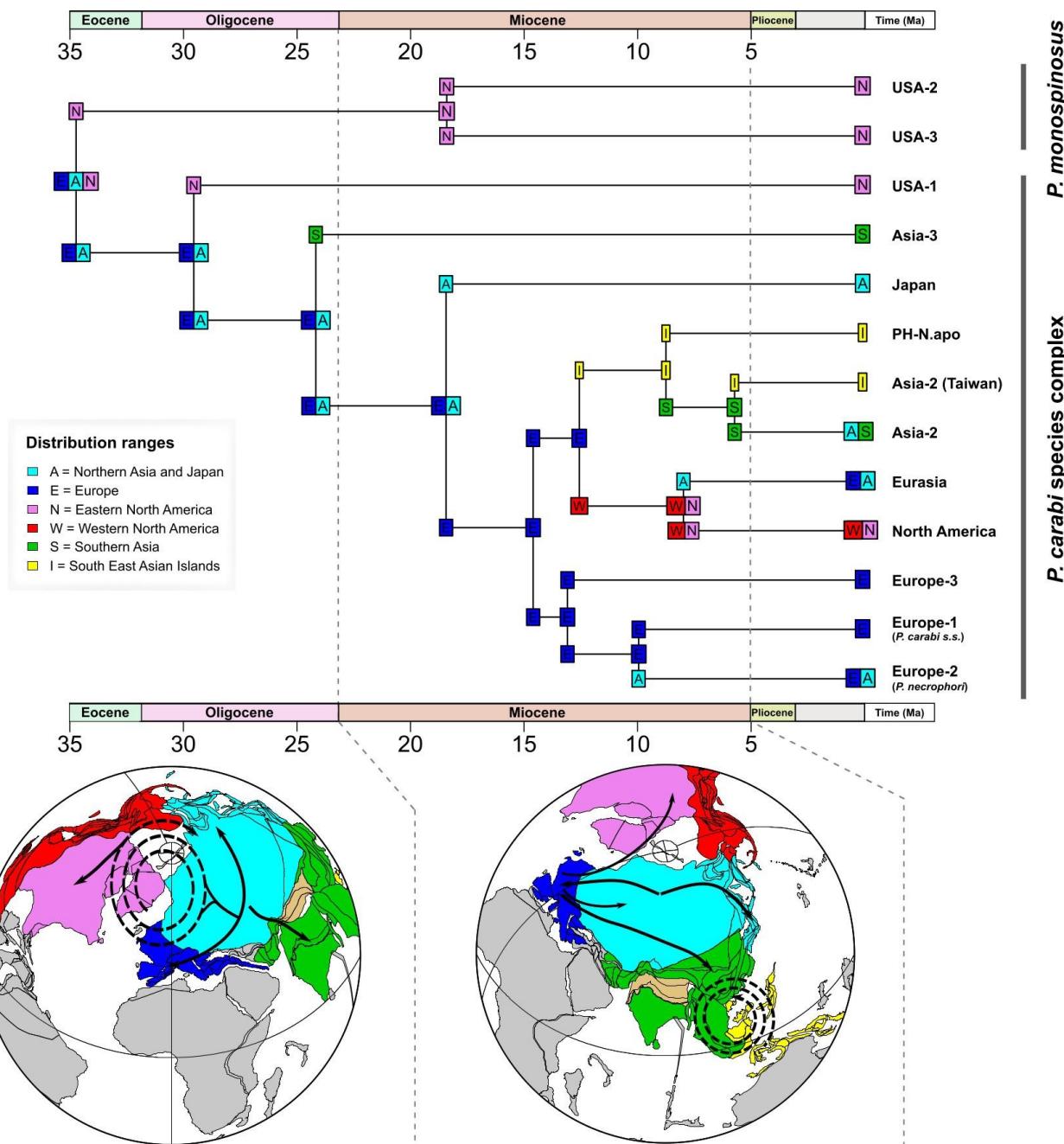
427 **Divergence time analysis**

428 The divergence time analysis was based on the COI and LSU gene alignment of 40
429 specimens covering 10 genetic clusters of *P. carabi* s.l., 2 clusters from each *P.*
430 *monospinosus* and *P. subterraneus*, respectively, and 15 additional Mesostigmata taxa.
431 Certain taxa were represented by chimeric sequences, meaning that the COI and LSU
432 sequences did not originate from the same individual but from the same genus or family
433 (Supplement Table S2).

434 The phylogenetic tree generated by Beast2 had high support values at all but two
435 branches (split between Phytoseiidae and Podocinidae: PP=0.79, and split among Asia-
436 2 samples: PP=0.81) (Supplement Figure S4). The relaxed-clock model suggested an
437 origin of the Mesostigmata in the Late Jurassic (156.2 Ma; 95% credibility intervals
438 [CI] 77 – 272 Ma; Supplement Figure S4) and the divergence into Parasitiae and
439 Dermanyssiae occurred approximately 40 million years later (114.0 Ma; 95% CI 66 –
440 189 Ma). Within the Parasitiae clade the first diversification occurred in the early
441 Eocene (53.2 Ma; 95% CI 26 – 90 Ma). The segregation of *P. subterraneus* was
442 suggested to occur in the mid Eocene (43.9 Ma; 95% CI 23 – 74 Ma). The *P.*
443 *monospinosus* clade branched off during the transition from the Eocene to the Oligocene
444 (34.7 Ma; 95% CI 18 – 59 Ma). Diversification of the *P. carabi* s.l. clade started in the
445 Oligocene with the separation of USA-1 (29.5 Ma; 95% CI 15 – 50 Ma). All remaining
446 divergence events occurred during the late Oligocene/Miocene (~ 5 – 25 Ma;
447 Supplement Figure S4).

448 Biogeography and ancestral-area estimation

449 Regarding the first two scenarios we tested (NALB/BLB vs. BLB-only), the
450 NALB/BLB scenario received higher log-likelihood and lower AICc values than the
451 BLB-only scenario in six out of nine models (Supplement Table S5). Hence, our data
452 better fit the assumption that mites dispersed via both the North Atlantic and Bering
453 Land Bridge. As the BAYAREALIKE model type yielded the lowest percentage value
454 of weighted AICc in both of these scenarios (< 4%; Supplement Table S5), we excluded
455 this model type from further analyses.


456 Within the NALB/BLB scenario, p-values of the LRT were significant when comparing
457 M0 and M1 (DEC: $p=0.04$; DIVALIKE: $p=0.04$), but were non-significant for the M1
458 and M2 comparison (DEC: $p=0.06$; DIVALIKE: $p=0.08$). Hence, the more complex
459 model including the parameter “x” which described the different levels of dispersal
460 difficulties (M2 model) was rejected for both model types.

461 Regarding the weighted AICc values, DEC+J and DIVALIKE+J yielded the highest
462 percentage with 39% and 45%, respectively (Supplement Table S6). In the third, the
463 time-stratified scenario, the comparison of nested models resulted in an acceptance of
464 the M1 model in all cases ($p_{(LRT)}<0.05$). The AICc and weighted AICc values were
465 lowest and highest, respectively, for the DIVALIKE+J model (Table 3).

Table 3: Statistics of the BioGeoBears analysis testing four different models in the time-stratified scenario with log likelihood, likelihood ratio test (LRT; $p(LRT)$), sample corrected AIC (AICc) and weighted AICc values.

model	-lnL	LRT	$p_{(LRT)}$	AICc	# param	# tips	Weighted AICc
DEC	-35.65	4.128	0.04	75.47	2	13	26%
DEC+J	-33.59			75.84	3	13	21%
DIVALIKE	-36.5	7.191	0.001	77.17	2	13	11%
DIVALIKE+J	-32.91			74.48	3	13	42%

466 A dispersal rate of $d < 0.001$, an extinction rate of $e = 0.55$, and a relative per-event weight
467 of founder-event speciation of $j = 1.28$ was estimated. The results suggest that dispersal
468 and vicariance as well as founder-event speciation played an important role for the
469 biogeographic pattern of the mites. The most likely ancestral distribution areas of the
470 time-stratified DIVALIKE+J model are visualized in Figure 4.

Figure 4: Ancestral state estimation of the DIVALIKE+J model inferred by the time-stratified scenario. Plate tectonic maps are illustrated for 25 Ma and for 12 Ma by the ODSN Plate Tectonic Reconstruction Service (<https://www.odsn.de/odsn/services/paleomap/paleomap.html>). Black arrows on the maps show dispersals with and without founder-event speciation.

471 The distribution of the last common ancestor of *P. carabi* s.l. and *P. monospinosus* was
 472 estimated to range from Eurasia (E and A) to Eastern North America (N). Vicariance
 473 was inferred in the branching off of the common ancestor of the USA-2 and the USA-3

474 cluster (EAN → EA+N), and of the ancestor of the Japan cluster (EA → E+A). Six
475 long-distance dispersals with founder-event speciation were suggested to explain the
476 origin of both the USA-1 and the Asia-3 cluster (EA → EA+N; EA → EA+S), the
477 divergence of the Europe-1/Europe-2 clusters (E → E+A) and the North
478 America/Eurasia clusters (WN → WN+A), and two cladogenesis events within the
479 Asian clade (I → I+S; S → S+I). However, the proportion of the most likely ancestral
480 states deviated just slightly at several cladogenesis events (Supplement Figure S5).

481 Discussion

482 Our study identified 24 distinct genetic *Poecilochirus* clusters including mites that
483 likely represent four different named species: *P. subterraneus*, *P. monospinosus*, *P.*
484 *carabi* s.s., and *P. necrophori*. The phylogenetic and species delimitation analyses
485 indicate that many of the genetic clusters found within these morphological species are
486 likely to be cryptic species, most of which are to our knowledge not formally described.
487 We cannot infer with certainty the geographical origin of *Poecilochirus* with our data
488 set, but mites appear to have migrated more than once between Asia, Europe and North
489 America. We also found indication that some mite clusters are specialized on particular
490 *Nicrophorus* species, which may have driven speciation, but this pattern appears to be
491 largely concealed by the effects of multiple migrations between continents. It is difficult
492 to separate these interwoven factors in the evolution of mite species, obfuscating our
493 understanding of the importance of coevolution with hosts and sympatric speciation in
494 *Poecilochirus*. However, we can state with certainty that all speciation events we could
495 infer happened more than five million years ago, with no indication of recent speciation
496 events or ongoing segregation among extant populations.

497 Cryptic diversity and host specificity of *Poecilochirus* mites

498 Cryptic species have been uncovered by molecular investigations across many mite
499 groups (Beaurepaire et al., 2015; Knee, Beaulieu, Skevington, Kelso, & Forbes, 2012;
500 Knee et al., 2012; Schäffer & Koblmüller, 2020) and based on our molecular analyses,
501 we propose that *P. carabi* s.l. consists of at least 17 genetic clusters. Genetically,
502 samples within each cluster are very similar (p-distance < 2%), but clusters differ
503 clearly and consistently from each other with a COI divergence of at least 6% between
504 clusters. Given that the well-studied biological species *P. necrophori* and *P. carabi* s.s.

505 (Baker & Schwarz, 1997; Müller & Schwarz, 1990; Nehring et al., 2017) are relatively
506 closely related within *P. carabi* s.l. and diverge by 10.21% in their COI sequences, we
507 suggest that most of the genetic clusters that we document, at least those for which we
508 sequenced enough replicates (e.g. Europe-3 or North America), represent separate
509 biological species, most of which are undescribed.

510 ***Poecilochirus subterraneus***

511 *Poecilochirus subterraneus* served as the outgroup in our study. The species has
512 previously been observed in Europe (mostly on different *Nicrophorus* species; Hyatt,
513 1980; Korn, 1983), North America (*N. investigator*, *N. nigrita*; Grossman & Smith,
514 2008; Sikes et al., 1996), and Asia (*N. quadripunctatus*, Satou et al., 2000). Here, we
515 sequenced American and European mites resembling the *P. subterraneus* description
516 and found that while mites from both continents clustered together in our dataset, they
517 segregated into three distinct clusters, one from North America and two from Europe.
518 While species delimitation may be unreliable because of limited sampling among the *P.*
519 *subterraneus* clusters, our data indicate that *P. subterraneus* might be more diverse than
520 previously thought.

521 **The clades *P. monospinosus* (USA-2 & USA-3) and
522 *P. cf. austroasiaticus* (CH-N.con)**

523 The mites that morphologically resemble the description of *P. monospinosus* fall into
524 two separate genetic clusters that we found on two different host species. USA-3 (n=5)
525 have been sampled from *N. carolina* in Florida only. We did not have any samples
526 available from other beetle species in Florida, thus we cannot speculate about any
527 potential specialization on *N. carolina*.

528 We found USA-2 mites only associated with *N. pustulatus*. This host association
529 persisted across two locations. In both, *N. pustulatus* occurs sympatrically with other
29

530 host species (*N. orbicollis*, *N. tomentosus*). In our data set, only one mite from another
531 genetic cluster was found on *N. pustulatus*. USA-2 was also the cluster with the second
532 lowest Shannon-Wiener index and evenness, and by far the highest χ^2 ratio, a measure
533 that takes into account the sampling data quality of the cluster in question. USA-2 thus
534 appears to be a strict monospecific host specialist on *N. pustulatus*. *Nicrophorus*
535 *pustulatus* has a unique ecology; it has been reported to reproduce on snake eggs and in
536 bird nests on dead nestlings, and it occurs predominantly in the forest canopy, while
537 other *Nicrophorus* species are typically found near the ground (DeMarco & Martin,
538 2020; Smith et al., 2007; Wetzlaufer et al., 2018). *Nicrophorus pustulatus* thus occupies
539 a distinct ecological niche that may isolate the mites, and possibly select for adaptations
540 specific to this niche. Other families of phoretic mites associated with *N. pustulatus*
541 showed no apparent host specificity for this beetle species (Knee, 2017; Knee et al.,
542 2012), indicating that this beetle's unique niche has not caused mite divergence in every
543 case. Previously, *P. monospinosus* had only been described from poultry manure,
544 preying on fly eggs and larvae – it has not been documented on beetle hosts (Wise et al.,
545 1988). This begs the question whether mites of the original description are an aberrant
546 lineage without beetle association or whether *P. monospinosus* is more general in its
547 host usage and occurs with and without beetles.

548 The mite individual from *N. concolor* found in Central China (Sichuan Province) is
549 particularly interesting because morphologically it resembles *P. austroasiaticus* more
550 than *P. carabi* s.s. or any other described species. A discovery of this species in Central
551 China and the association with *N. concolor* is an unexpected observation as so far *P.*
552 *austroasiaticus* has only been recorded in Siberia/Northwestern China and Europe on
553 animal corpses, or in association with silphid beetles including *N. investigator* (Hyatt,
554 1980; Makarova, 2013). According to the phylogenetic approach of cluster

555 identification (IQtree analysis), this singleton is closely related to the clade of *P.*
556 *monospinosus* (Supplement Figure S2).

557 **The European clusters: *P. carabi* s.s., *P. necrophori*, and a new clade**

558 We found three clusters that are almost exclusively distributed in Europe and are closely
559 related. We can unequivocally assign the clusters Europe-1 and Europe-2 to the species
560 *P. carabi* s.s. and *P. necrophori* because we tested the host preference of some mites
561 before killing them (Schwarz, 1996). Based on their association with different beetle
562 species, these mite clusters appear to either prefer or to avoid certain hosts, which is in
563 agreement with observations on the host range of the two reproductively isolated mite
564 species (Müller & Schwarz, 1990; Nehring et al., 2017; Schwarz, 1996; Schwarz et al.,
565 1998). Several *Nicrophorus* species occur sympatrically in Europe, and most of them
566 overlap in their seasonal reproductive period but differ in seasonal and diel activity and
567 habitat use (Dekeirsschieter et al., 2011; Esh & Oxbrough, 2021; Majka, 2011; Müller
568 & Eggert, 1987; Schwarz & Koulianou, 1998; Scott, 1998). Thus, as earlier work
569 already suggested (Schwarz, 1996), the European mite generalist (Europe-1 = *P. carabi*
570 s.s.) exploits several host species with different life history traits, while *P. necrophori*
571 (= Europe-2) is specialized on *N. vespillo*, which prefers open area habitats where other
572 *Nicrophorus* species are less abundant (Esh & Oxbrough, 2021).

573 We found a third cluster of mites from across Europe: Europe-3. At the moment, this
574 cluster is a curious case because it is widespread across Europe but was not found in
575 Germany, where most of our samples were collected. The three European clusters were
576 found in sympatry in some locations (France, Austria), indicating that they do not
577 necessarily competitively exclude each other. Sun and Kilner (2019) described a *P.*
578 *carabi* s.l. population from the United Kingdom that differs in its phenotype from *P.*
579 *carabi* s.s.. While this population may correspond to *P. necrophori*, it is tempting to

580 speculate that it is in fact our Europe-3 cluster, given that we did not find any *P.*
581 *necrophori* among the 16 mites from the UK.

582 **American samples of *P. carabi* s.l.**

583 The ecology and behavior of the North American *P. carabi* s.l. is quite well studied,
584 although not to the same extent as the European populations. Brown & Wilson (1992)
585 reported two reproductively isolated populations from Michigan that differed in
586 morphology, and their preference for host species of *Nicrophorus*. We were not able to
587 obtain any reference samples from Michigan but our analysis confirms the occurrence
588 of at least two genetic clusters from Northeastern America (USA-1, North America) in
589 addition to *P. monospinosus*. We also found evidence for further clusters from Canada
590 and South America.

591 The North America cluster was the most diverse in terms of host species numbers, and
592 the cluster did not appear to prefer any specific host species among those occurring
593 across its distribution range. Such a broad host range increases the independence of host
594 abundance, seasonal and diel activity, and other life history traits. In comparison, USA-
595 1 was found almost exclusively on *N. orbicollis* and *N. tomentosus* in the northeastern
596 USA, which might be an indication of local specialization on two host species. Being a
597 local specialist on two sympatric *Nicrophorus* beetles with different seasonal activity
598 (Brown & Wilson, 1992; Keller et al., 2019; Scott, 1998; Wilson, 1982) could expand
599 the reproductive period of the mites.

600 Some previously described populations of *P. carabi* s.l. from Michigan indeed
601 reproduced successfully using various host species, but others were local specialists
602 (Brown & Wilson, 1992, 1994; Wilson, 1982). In our data, we found no evidence of any
603 clusters being strict specialists for either *N. orbicollis* or *N. tomentosus*, as had been
604 reported by Brown and Wilson (1992) for the Michigan populations. While it is possible

605 that these Michigan populations belong to genetic clusters that we did not sample, it
606 may also be that genetic clusters are specialists in one community and less strict in their
607 host choice in another (Brown & Wilson, 1992).

608 **Asian diversity**

609 Our Asian samples cover a great number of sampling locations and host species, but we
610 could only analyze a few or one replicate individuals for most of the genetic clusters.
611 Thus, any ecological inference is impossible and we may have only scratched the
612 surface of the biodiversity of *Poecilochirus* mites that use *Nicrophorus* as hosts in Asia.

613 **Phylogenetic inference**

614 Our phylogeny provides a basic overview of the relationships among *Poecilochirus*
615 mites. Maximum likelihood and Bayesian Inference analyses reveal congruent tree
616 topologies without polytomous relationships among the clusters. We applied different
617 branch support methods (SH-aLRT, UFBoot, SBS, PP) as their accuracy is debated and
618 confidence levels can vary (Anisimova et al., 2011; Pyron et al., 2011). Relationships
619 between clusters are resolved at deeper levels and in some derived clades, as indicated
620 by well-supported branches across all methods. Support values of a medium range (50 <
621 SH-aLRT/UFBoot/SBS < 75; 0.5 < PP < 0.75) occur mainly in more derived
622 relationships and reveal higher values for posterior probabilities than for bootstrap
623 approximations. Such deviations occur because bootstrap values are a more
624 conservative support measure than Bayesian posterior probabilities which can produce a
625 higher false-positive rate (Anisimova et al., 2011; Cummings et al., 2003; Erixon et al.,
626 2003). According to the variation of support values at some branches, certain
627 phylogenetic relationships between European, Asian, and North American clusters
628 should be interpreted with caution. Low support values could result from
629 inconsistencies between the gene trees as we used a concatenated supermatrix of COI,

630 ITS, and LSU, with a partitioning approach. Branch lengths are analogous across the
631 analyses and express an adequate amount of genetic change between internal nodes.
632 Certain branches are in fact relatively long (e.g., USA-2, USA-3 and CH-N.jap). This
633 high level of genetic change could be due to an accelerated rate of evolution, a high
634 extinction rate leaving only one member of a radiation, or an underrepresented diversity
635 caused by incomplete taxon sampling.

636 However, the congruent tree topology inferred by all analyses, the medium to high
637 support values, the appropriate branch lengths, and the exclusive dichotomy all indicate
638 a high degree of robustness for this phylogeny. The genes we concatenated for this
639 phylogenetic reconstruction already provided sufficient genetic information individually
640 to distinguish between morphologically described species in other groups of mites
641 (Lehmitz & Decker, 2017; Lv et al., 2014; Schäffer & Koblmüller, 2020). In general,
642 the mites showed low morphological variability, despite their high genetic divergence,
643 but the combined approach of molecular and morphological techniques helps us to
644 better understand the species boundaries and cryptic diversity in this unique group of
645 mites.

646 **Evolutionary history and biogeography**

647 Our data suggest a split between the ancestors of *P. carabi* s.l. and the *P. monospinosus*
648 clade during the Eocene/Oligocene and a further radiation within *P. carabi* s.l. in the
649 Miocene. During this period, most of the *Nicrophorus* diversity already existed (Sikes
650 & Vernables, 2013). Although the geographic origin of their common ancestor cannot
651 be stated with certainty, the ancestral area of the *P. monospinosus* clade is clearly the
652 North American continent. *Poecilochirus carabi* s.l. might have originated in Eurasia
653 with an early dispersal to the New World (USA-1). The likelihood proportions of the
654 most likely ancestral areas differ only slightly at this cladogenesis event (Supplementary

655 Figure S5), but regardless of ancestral area, the mites moved between the New and Old
656 World during the Eocene/Oligocene. The Miocene diversification of *P. carabi* s.l. took
657 place in Eurasia with at least one colonization of the New World that is less debatable in
658 terms of dispersal direction (resulting in the North America clade). In both epochs
659 (Eocene/Oligocene and Miocene), a connection between Eurasia and North America by
660 the Bering and North Atlantic land bridges is assumed (Brikiatis, 2014; Denk et al.,
661 2010; Graham, 2018; Jiang et al., 2019; Tiffney, 1985). Although the Bering Land
662 Bridge is often considered the only relevant connection between the continents for floral
663 and faunal migration (Lee et al., 2020; Wen et al., 2016), the assumption that the mites
664 used both land bridges fits our data better. Hence, a closer look at the phylogenetic
665 relationships of beetles and mites occurring near the North Atlantic (e.g., Western
666 Europe; Eastern Canada) would be useful in assessing the role of a North Atlantic Land
667 Bridge and its suitability for the dispersal of small organisms. Regardless of the routes
668 on which the mites migrated between continents, Europe might be a pivotal starting
669 point for their dispersal during the Miocene.

670 In Southern Asia, mites colonized multiple areas. As this region experienced several
671 geological and climatic changes since the early Miocene that could have resulted in the
672 origin of new geographical barriers (e.g., sea level changes and aridification: Bird et al.,
673 2005; Miao et al., 2012; Zhisheng et al., 2001), vicariant speciation might have
674 contributed to the scattered pattern of Asian clusters.

675 We would like to emphasize that models including the “jump dispersal” parameter were
676 most-likely in all biogeographic scenarios, which highlights the importance of founder-
677 event speciation for the evolution of *Poecilochirus* mites. Furthermore, the results of the
678 tested biogeographic model types DEC+J and DIVALIKE+J deviate just slightly among

679 all analyses. This indicates that dispersal with extinction and vicariance are key
680 processes for understanding the historical biogeography of this species complex.

681 **Drivers of speciation**

682 Based on our phylogenetic analyses, geographic separation is responsible for the main
683 divergence among *P. carabi* s.l. lineages, while the specialization on certain beetle
684 species did not play a significant role on a global scale. Although host-parasite
685 relationships are seen as an important driver of sympatric speciation, co-speciation with
686 the host beetles can be largely ruled out for the *Poecilochirus* in our study since the
687 main mite diversification happened at least 40 million years after the radiation of the
688 burying beetles (~ 75 Ma, Sikes & Venables, 2013).

689 Because the mites are small and cannot fly, the widely separated distribution areas of
690 the mite clusters are likely due to beetle mobility rather than mite mobility. This may
691 have also facilitated founder events since beetles typically carry several mites, thus
692 increasing the probability that individuals arriving in new areas will be able to find a
693 mate. The holarctic species *N. vespilloides* and *N. investigator* are of particular interest
694 as both species dispersed either from the New to the Old World (*N. vespilloides*) or vice
695 versa (*N. investigator*) (Sikes et al., 2008; Sikes & Venables, 2013). Mites carried by
696 these beetle species appear in multiple genetic clusters, some of which are also closely
697 related (e.g. Eurasia and North America cluster). This suggests that both *Nicrophorus*
698 species played a major part in the dispersal and evolution of *P. carabi* s.l..

699 Within the continents, further radiation seems to have taken place, with some lineages
700 specializing on certain hosts (e.g USA-2, Europe-2) and others having a broader host
701 range (Europe-1, North America). In this context, European populations may have
702 radiated in sympatry. Their hosts use different microhabitats to which the mites may
703 have adapted. For example, *N. vespillo*, host to the specialized *P. necrophori*, is more

704 common in meadows, while *N. vespilloides* is more abundant in forested areas in
705 Germany, the UK, and Alaska (Majka, 2011; Scott, 1998, Sikes et al., 2016). This may
706 have caused genetic divergence among the mites, both through drift after spatial
707 separation and ecological adaptation. Since meadows are more sun-exposed, *N. vespillo*
708 and its mites may be adapted to warmer temperatures. When kept at the same
709 temperature, *N. vespilloides* develops quicker than *N. vespillo*, which may be the result
710 of countergradient variation across the two species (Conover & Schultz, 1995; Müller &
711 Schwarz, 1990). The mites they carry track this difference in their own development
712 time, which may either be a direct adaptation to temperature or an indirect one - because
713 mite development needs to be completed before beetle development for optimal
714 dispersal (Müller & Schwarz, 1990; Nehring et al 2017; see Brown & Wilson, 1992 for
715 a similar effect in American populations). Selection on mite development time (e.g. in
716 the event of a host switch) can lead to rapid adaptation in development time and
717 correlated changes in other traits through hitchhiking or pleiotropy (Schedwill et al.,
718 2018). These effects could cause reproductive isolation among the differentially
719 selected mite populations (Nosil & Harmon, 2009), and thus host specialization can
720 drive genetic divergence. Indeed, a relationship between genetic divergence and host
721 specificity has also been reported from other parasites, such as the honey bee parasite
722 *Varroa* (Beaurepaire et al., 2015) and *Macrocheles* species that are associated with
723 *Nicrophorus* beetles (Knee, 2017). Genetic clustering driven by host adaptation is also
724 found in feather mites that are phoretic on seabirds (Stefan et al., 2018). Host specificity
725 is often seen as a species-level trait. However, it should be considered that local
726 populations of one and the same species could encounter different host communities and
727 may thus specialize on different hosts, an excellent subject for future studies (Brown &
728 Wilson, 1992; Korallo-Vinarskaya et al., 2009; Thompson, 2009).

729 **Conclusions**

730 Our global analysis of the *P. carabi* species complex revealed a surprisingly high
731 genetic diversity. Our data support previous ecologically and morphologically defined
732 species clades for *P. necrophori*, *P. carabi* s.s., *P. monospinosus*, and *P. cf.*
733 *austroasiaticus*. In general, phylogenetic relationships between the mite clusters did not
734 match those of the beetles (Sikes & Venables, 2013).

735 Drivers of genetic diversification differ depending on the geographic scale. Globally,
736 spatial separation between continents can explain the deep splits between clades
737 relatively well, although back-migrations among continents are obvious. Within
738 continents, further diversification appears to have occurred that was independent of
739 separation by oceans (e.g. among Europe 1-3). While this may have happened due to
740 spatial separation on smaller scales that we cannot track, it may have also been driven
741 by ecological factors like adaptation to different host species. Separate mite clusters
742 may evolve in sympatry by ecological adaptation directly to local hosts or to the abiotic
743 environment the hosts live in. The former is most likely for the apparent host specialists
744 that we have identified in our dataset. It is still uncertain in which cases the mites may
745 adapt to the host species or just take any opportunity for dispersal and/or reproduction.
746 However, the close association and occurrence with their beetle hosts shaped the
747 evolution of *Poecilochirus* mites, and putative drivers depend on the host communities
748 as well as the features of their biotic and abiotic environment. A taxonomic revision of
749 the genus in future investigations would greatly facilitate our understanding of
750 speciation and biogeographic processes in this species complex and genus.

751 **Acknowledgments**

752 We are indebted to all colleagues who sent us mites they had collected: A Barsevskis, M
753 Brandley, J&I Brookhart, JM Carpenter, L DeCicco, R Enser, J Hajek, B Jarrett, L

754 Jingke, Z Kaszab, R Kilner, G Kushnak, T Larsen, R Leech, J Longino, R Madge, K
755 Maruyama, M Maruyama, D Mohagan, T Mousseau, JK Müller, P Naskrecki, M
756 Nishikawa, S Peck, J Peck, C Raithel, A Riedel, J Ruzicka, K Sagata, M Schilthuizen,
757 MP Scott, KS Sheldon, H Sipkova, J Smiley, PT Smiseth, RJ Smith, S Steiger, H
758 Sugaya, S Suzuki, M Ulyshen, A Urbański, D Wagner, S Werner, J Withrow, N Wood.
759 For help with expeditions to China, Nepal, and Japan we graciously thank: P Naskrecki,
760 and R Ziedler (China), D Manandhar, and S Peck (Nepal) and S Suzuki, M Ôhara, T
761 Nisimura, M Maruyama, and M Nagano (Japan). Funding to VN was provided by the
762 Freiburg Research Innovation Fund and the German Research Foundation (NE 1969/3-
763 1), and the Rapid Assessment Program (RAP) of Conservation International, a NSERC
764 Discovery grant, a National Science Foundation Grant (DEB-9981381), a University of
765 Connecticut Research Council grant, and a National Geographic Society grant
766 supported DSS's field work. We thank Karen Meusemann and Josef K Müller for
767 insightful discussions.

768 **Supplemental information**

769 **Supplement Table S1:** Overview of single samples with cluster assignment, sampling
770 time and location, host species, country, storage, morphological affiliation, and cluster
771 affiliation.

772 **Supplement Table S2:** Downloaded COI and LSU sequences of the Mesostigmata taxa
773 with accession number and references. Sequences are used for the divergence time
774 analysis.

775 **Supplement Table S3:** Fossil data used in the divergence time analysis. Listed are the
776 taxonomic state (superfamily, family and/or genus), age in million years ago [Ma].

777 **Supplement Table S4:** Morphometric measurements of specimens underwent DNA
778 extraction. Measurements are listed for the podosomal length and width, sternal plate
779 length, opithosomal length, the z1, s1, s2, r3, st4, the macroseta leg IV, and the length
780 of digitus mobilis. All measurements are in μm .

781 **Supplement Table S5:** Comparison table of likelihood and sample corrected Akaike
782 Information Criteria values (AICc) for the NALB/BLB and BLBonly scenarios inferred
783 by the BioGeoBears analysis.

784 **Supplement Table S6:** Statistics of the BioGeoBear analysis to test for the best fitting
785 biogeographic model considering the scenario NALB/BLB. Log likelihood values for
786 each model are calculated and nested models (M0 vs. M1 and M1 vs. M2) are tested
787 using the Likelihood ratio test (LRT) with its p-values. Non-nested model comparisons
788 are evaluated by the sample corrected Akaike Information Criteria (AICc).

789 **Supplement Figure S1:** Sample distribution. Coloration of the world map indicates the
790 annual temperature obtained from WorldClim data (Bioclimatic variable BIO1 – Annual
791 Mean Temperature, www.worldclim.org). Green shaded areas represent the current
792 distribution area of *Nicrophorus* and each dot represents one sample locality of the mite
793 sample set.

794 **Supplement Figure S2:** Phylogenetic reconstruction of the entire *Poecilochirus* dataset
795 obtained with IQtree. Branch labels represent SH-aLRT and ultrafast bootstrap values in
796 percentage. High branch support is suggested with SH-aLRT $\geq 80\%$ and UFBoot \geq
797 95%. Clades which show short branch length and/or polytomy have been collapsed.
798 Clade/Cluster labels are assigned to the right.

799 **Supplement Figure S3:** Species delimitation analysis performed with the mPTP tool.
800 The analysis is based on the entire *Poecilochirus* data set and its resulting IQtree
801 phylogeny. The analysis inferred a total of 23 species (including the 3 *P. subterraneus*
802 species). The diagram shows the likelihood distribution of the 4 MCMC runs over 10
803 million iterations.

804 **Supplement Figure S4:** Time-calibrated tree of the Mesostigmata taxa with the focus
805 on divergence times of the *P. carabi* species complex generated by Beast2. Represented
806 branch labels indicate posterior probabilities below 0.9, branches without labeling have
807 support values above 0.9. The chronogram tree shows mean node ages and node bars
808 represent a 95% credibility interval. Time scale on the bottom refers to millions of years
809 ago. Red circles depict fossil calibration points.

810 **Supplement Figure S5:** Illustration of the ancestral state estimation with proportions of
811 all ancestral states at each node depicted as pie charts. Values are calculated with the R
812 package BioGeoBears and represent the results of the DIVALIKE+J model conducted
813 by the time-stratified analysis. The legend shows all possible ancestral state
814 combinations allowed by the analysis settings.

815 **Author contributions**

816 JC conducted bioinformatic analyses, conceptualized and drafted the manuscript.

817 AKE, WK, DSS edited the manuscript

818 JC, PH, WK, MN, NS conducted molecular wet lab work and initial sequence analyses

819 JB identified and measured mite specimens

820 WH, PH, WK, VN, NS, DSS contributed mite specimens

821 VN conceived and supervised the project, co-wrote the manuscript

822 Data Accessibility

823 DNA sequences: Genbank accessions MW890765 – MW890966 (COI), MW893012 –
824 MW893060 and MW893063 – MW893153 (ITS), and MW893154 – MW893193 and
825 MW893196 – MW893239 (LSU) are provided at NCBI.

826 References

827 Anderson, R. S. 1982. Resource partitioning in the carrion beetle (Coleoptera:
828 Silphidae) fauna of southern Ontario: ecological and evolutionary considerations.
829 *Canadian Journal of Zoology* 60: 1314-1325.

830 Anisimova, M., Gil, M., Dufayard, J. F., Dessimoz, C., & Gascuel, O. (2011). Survey of
831 branch support methods demonstrates accuracy, power, and robustness of fast
832 likelihood-based approximation schemes. *Systematic Biology*, 60(5), 685–699.

833 Aoki, J. (1974) On the fossil mites in Mizunami amber from Gifu Prefecture, Central
834 Japan. *Bulletin of the Mizunami Fossil Museum*, 1, 397-399.

835 Arribas, P., Andújar, C., Moraza, M. L., Linard, B., Emerson, B. C., & Vogler, A. P.
836 (2020). Mitochondrial metagenomics reveals the ancient origin and phylodiversity of
837 soil mites and provides a phylogeny of the Acari. *Molecular Biology and Evolution*,
838 37(3), 683-694.

839 Baker, A. S., & Schwarz, H. H. (1997). Morphological differences between sympatric
840 populations of the *Poecilochirus carabi* complex (Acari Mesostigmata: Parasitidae)
841 associated with burying beetles (Silphidae: *Nicrophorus*). *Systematic Parasitology*,
842 37, 179–185.

843 Beaurepaire, A. L., Truong, T. A., Fajardo, A. C., Dinh, T. Q., Cervancia, C., & Moritz,
844 R. F. A. (2015). Host specificity in the honeybee parasitic mite, *Varroa* spp. in *Apis*
845 *mellifera* and *Apis cerana*. *PLoS ONE*, 10(8), 1–12.

846 Bird, M. I., Taylor, D., & Hunt, C. (2005). Palaeoenvironments of insular Southeast
847 Asia during the Last Glacial Period: a savanna corridor in Sundaland? *Quaternary*
848 *Science Review*, 24(20–21), 2228–2242.

849 Bouckaert, R., Vaughan, T. G., Barido-Sottani, J., Duchêne, S., Fourment, M.,
850 Gavryushkina, A., Heled, J., Jones, G., Kühnert, D., De Maio, N., Matschiner, M.,
851 Mendes, F. K., Müller, N. F., Ogilvie, H. A., Du Plessis, L., Popinga, A., Rambaut,
852 A., Rasmussen, D., Siveroni, I., ... Drummond, A. J. (2019). BEAST 2.5: An
853 advanced software platform for Bayesian evolutionary analysis. *PLoS Computational*
854 *Biology*, 15(4), 1–28. <https://doi.org/10.1371/journal.pcbi.1006650>

855 Brikiatis, L. (2014). The de geer, thulean and beringia routes: Key concepts for
856 understanding early cenozoic biogeography. *Journal of Biogeography*, 41(6), 1036–
857 1054.

858 Brown, J. M. (1989). Specialization in *Poecilochirus carabi*, a phoretic mite. Michigan
859 State University, East Lansing, Michigan, USA.

860 Brown, J. M., & Wilson, D. S. (1992). Local specialization of phoretic mites on
861 sympatric carrion beetle hosts. *Ecology*, 73(2), 463–478.

862 Brown, J. M., & Wilson, D. S. (1994). *Poecilochirus carabi*: Behavioral and Life-
863 History Adaptations to Different Hosts and the Consequences of Geographical Shifts
864 in Host Communities. In M. A. Houck (Ed.), *Mites: Ecological and Evolutionary*
865 *Analyses of Life-History Patterns* (1st ed., pp. 3–22). Capman & Hall Inc.

866 Burke, K., Wettlaufer, J., Beresford, D., & Martin, P. (2020). Habitat use of co-
867 occurring burying beetles (genus *Nicrophorus*) in southeastern Ontario. *Canadian*
868 *Journal of Zoology*, 98(9), 591–602.

869 Butlin, R., Debelle, A., Kerth, C., Snook, R. R., Beukeboom, L. W., Castillo Cajas, R.
870 F., Diao, W., Maan, M. E., Paolucci, S., Weissing, F. J., van de Zande, L., Hoikkala,
871 A., Geuverink, E., Jennings, J., Kankare, M., Knott, K. E., Tyukmaeva, V. I.,
872 Zoumadakis, C., Ritchie, M. G., ... Schilthuizen, M. (2012). What do we need to
873 know about speciation? *Trends in Ecology and Evolution*, 27(1), 27–39.

874 Conover, D. O., & Schultz, E. T. (1995). Phenotypic similarity and the evolutionary
875 significance of countergradient variation. *Trends in Ecology and Evolution*, 10(6),
876 248–252.

877 Cummings, M. P., Handley, S. A., Myers, D. S., Reed, D. L., Rokas, A., & Winka, K.
878 (2003). Comparing Bootstrap and Posterior Probability Values in the Four-Taxon
879 Case. *Systematic Biology*, 52(4), 477–487. <https://doi.org/10.1080/10635150309311>

880 De Gasperin, O., & Kilner, R. M. (2015). Friend or foe: Inter-specific interactions and
881 conflicts of interest within the family. *Ecological entomology*, 40(6), 787–795.

882 Dekeirsschieter, J., Verheggen, F., Lognay, G., & Haubrige, E. (2011). Large carrion
883 beetles (Coleoptera, Silphidae) in Western Europe: A review. *Biotechnologie,*
884 *Agronomie, Société et Environnement*, 15(3), 435–447.

885 DeMarco, K. V. B., & Martin, P. R. (2020). A case of a Pustulated Carrion Beetle
886 (*Nicrophorus pustulatus*, Coleoptera: Silphidae) burying live Tree Swallow
887 (*Tachycineta bicolor*, Passeriformes: Hirundinidae) nestlings under the nest. *The*
888 *Canadian Field-Naturalist*, 134(3), 217–221.

889 Denk, T., Grímsson, F., & Zetter, R. (2010). Episodic Migration of Oaks to Iceland:
890 Evidence for a North Atlantic “Land Bridge” in the latest Miocene. *American*
891 *Journal of Botany*, 97(2), 276–287.

892 Dunlop, J. A., Kortschán, J., Walter, D. E., & Perrichot, V. (2014). An ant-associated
893 mesostigmatid mite in Baltic amber. *Biology Letters*, 10(9), 20140531.

894 Dunlop, J. A., Kortschán, J., & Zwanzig, M. (2013). Fossil mesostigmatid mites
895 (Mesostigmata: Gamasina, Microgyniina, Uropodina), associated with longhorn
896 beetles (Coleoptera: Cerambycidae) in Baltic amber. *Naturwissenschaften*, 100(4),
897 337–344.

898 Esh, M., & Oxbrough, A. (2021). Macrohabitat associations and phenology of carrion
899 beetles (Coleoptera: Silphidae, Leiodidae: Cholevinae). *Journal of Insect*
900 *Conservation*, 25(1), 123–136. <https://doi.org/10.1007/s10841-020-00278-4>

901 Erixon, P., Svennblad, B., Britton, T., & Oxelman, B. (2003). Reliability of Bayesian
902 Posterior Probabilities and Bootstrap Frequencies in Phylogenetics. *Systematic
903 Biology*, 52(5), 665–673. <https://doi.org/10.1080/10635150390235485>

904 Farish, D. J., & Axtell, R. C. (1971). Phoresy redefined and examined in Macrocheles
905 muscaedomesticae (Acarina: Macrochelidae). *Acarologia*, 13(1), 16–29.

906 Folmer, O., Black, M., Hoeh, W., Lutz, R., & Vrijenhoek, R. (1994). DNA primers for
907 amplification of mitochondrial cytochrome c oxidase subunit I from diverse
908 metazoan invertebrates. *Molecular Marine Biology and Biotechnology*, 3(5), 294–
909 299.

910 García-Varela, M., De León, G. P. P., Aznar, F. J., & Nadler, S. A. (2011). Erection of
911 Ibirhynchus gen. nov. (Acanthocephala: Polymorphidae), based on molecular and
912 morphological data. *Journal of Parasitology*, 97(1), 97–105.

913 Graham, A. (2018). The role of land bridges, ancient environments, and migrations in
914 the assembly of the North American flora. *Journal of Systematics and Evolution*,
915 56(5), 405–429.

916 Grossman, J. D., & Smith, R. J. (2008). Phoretic mite discrimination among male
917 burying beetle (*Nicrophorus investigator*) hosts. *Annals of the Entomological Society
918 of America*, 101(1), 266–271.

919 Hatch, M. H. (1927). Studies on the Silphinae. *Journal of the New York Entomological
920 Society*, 35, 331–370.

921 Hirschmann, W. (1971). Fossil mite of the genus *Dendrolaelaps* (Acarina,
922 Mesostigmata, Digamasellidae) found in amber from Chiapas, Mexico. *Calif Univ
923 Publ Entomol.*

924 Hoberg, E. P., Brooks, D. R., & Siegel-Causey, D. (1997). Host-parasite co-speciation:
925 history, principles, and prospects. In *Host-parasite evolution: General principles
926 and avian models* (pp. 212–235).

927 Hunter, P. E., & Rosario, R. M. T. (1988). Associations of Mesostigmata with Other
928 Arthropods. *Annual Review of Entomology*, 33(1), 393–417.

929 Huyse, T., Poulin, R., & Théron, A. (2005). Speciation in parasites: A population
930 genetics approach. *Trends in Parasitology*, 21(10), 469–475.

931 Hyatt, K. H. (1980). Mites of the subfamily Parasitinae (Mesostigma: Parasitidae) in the
932 British Isles. *Bulletin of the British Museum (Natural History). Zoology*, 38(5), 237–
933 378.

934 Jiang, Y., Gao, M., Meng, Y., Wen, J., Ge, X.-J., & Nie, Z.-L. (2019). The importance
935 of the North Atlantic land bridges and eastern Asia in the post-boreotropical
936 biogeography of the Northern Hemisphere as revealed from the poison ivy genus
937 (*Toxicodendron*, Anacardiaceae). *Molecular Phylogenetics and Evolution*, 139,
938 106561. <https://doi.org/https://doi.org/10.1016/j.ympev.2019.106561>

939 Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., Von Haeseler, A., & Jermiin, L.
940 (2017). ModelFinder: fast model selection for accurate phylogenetic estimates.
941 *Nature Methods*, 14, 587–589.

942 Kapli, P., Lutteropp, S., Zhang, J., Kobert, K., Pavlidis, P., Stamatakis, A., & Flouri, T.
943 (2017). Multi-rate Poisson tree processes for single-locus species delimitation under
944 maximum likelihood and Markov chain Monte Carlo. *Bioinformatics*, 33(11), 1630–
945 1638. <https://doi.org/10.1093/bioinformatics/btx025>

946 Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment software
947 version 7: Improvements in performance and usability. *Molecular Biology and*
948 *Evolution*, 30(4), 772–780. <https://doi.org/10.1093/molbev/mst010>

949 Keller, M. L., Howard, D. R., & Hall, C. L. (2019). Spatiotemporal niche partitioning in
950 a specious silphid community (Coleoptera: Silphidae, *Nicrophorus*). *Science of*
951 *Nature*, 106(11–12). <https://doi.org/10.1007/s00114-019-1653-6>

952 Klimov, P. B., OConnor, B. M., Chetverikov, P. E., Bolton, S. J., Pepato, A. R.,
953 Mortazavi, A. L., Tolstikov, A.V., Bauchan, G. R. and Ochoa, R. (2018).
954 Comprehensive phylogeny of acariform mites (Acariformes) provides insights on the
955 origin of the four-legged mites (Eriophyoidea), a long branch. *Molecular*
956 *Phylogenetics and Evolution*, 119, 105-117.

957 Klompen, H., Lekveishvili, M., & Black IV, W. C. (2007). Phylogeny of parasitiform
958 mites (Acari) based on rRNA. *Molecular Phylogenetics and Evolution*, 43(3), 936–
959 951.

960 Knee, W. (2017). New *Macrocheles* species (Acari, Mesostigmata, Macrochelidae)
961 associated with burying beetles (Silphidae, *Nicrophorus*) in North America.
962 *ZooKeys*, 721, 1–32. <https://doi.org/10.3897/zookeys.721.21747>

963 Knee, W., Beaulieu, F., Skevington, J. H., Kelso, S., Cognato, A. I., & Forbes, M. R.
964 (2012). Species Boundaries and Host Range of Tortoise Mites (Uropodoidea)
965 Phoretic on Bark Beetles (Scolytinae), Using Morphometric and Molecular Markers.
966 *PLoS ONE*, 7(10), 1–15. <https://doi.org/10.1371/journal.pone.0047243>

967 Knee, W., Beaulieu, F., Skevington, J. H., Kelso, S., & Forbes, M. R. (2012). Cryptic
968 species of mites (Uropodoidea: *Uroobovella* spp.) associated with burying beetles
969 (Silphidae: *Nicrophorus*): The collapse of a host generalist revealed by molecular
970 and morphological analyses. *Molecular Phylogenetics and Evolution*, 65(1), 276–
971 286.

972 Korallo-Vinarskaya, N. P., Krasnov, B. R., Vinarski, M. V., Shenbrot, G. I., Mouillot,
973 D., & Poulin, R. (2009). Stability in abundance and niche breadth of gamasid mites
974 across environmental conditions, parasite identity and host pools. *Evolutionary*
975 *Ecology*, 23(3), 329–345.

976 Korn, W. (1982). Zur Fortpflanzung von *Poecilochirus carabi* G. und R. Canestrini
977 1882 (syn. *P. necrophori* Vitzt.) und *P. austroasiaticus* Vitzthum 1930 (Gamasina,
978 Eugamasidae). *SPIXIANA*, 5(3), 261–288.

979 Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: molecular
980 evolutionary genetics analysis across computing platforms. *Molecular biology and*
981 *evolution*, 35(6), 1547-1549.

982 Lee, G. E., Condamine, F. L., Bechteler, J., Pérez-Escobar, O. A., Scheben, A., Schäfer-
983 Verwimp, A., Pócs, T., & Heinrichs, J. (2020). An ancient tropical origin, dispersals
984 via land bridges and Miocene diversification explain the subcosmopolitan
985 disjunctions of the liverwort genus *Lejeunea*. *Scientific Reports*, 10(1), 1–13.
986 <https://doi.org/10.1038/s41598-020-71039-1>

987 Lehmitz, R., & Decker, P. (2017). The nuclear 28S gene fragment D3 as species marker
988 in oribatid mites (Acari, Oribatida) from German peatlands. *Experimental and*
989 *Applied Acarology*, 71(3), 259–276. <https://doi.org/10.1007/s10493-017-0126-x>

990 Lv, J., Wu, S., Yongning, Z., Chen, Y., Feng, C., Yuan, X., Guangle, J., Junhua, D.,
991 Caixia, W., Qin, W., Lin, M., & Lin, X. (2014). Assessment of four DNA fragments
992 (COI, 16S rDNA, ITS2, 12S rDNA) for species identification of the Ixodida (Acari:
993 Ixodida). *Parasites & Vectors*, 7(1), 93.

994 Magalhães, S., Forbes, M. R., Skoracka, A., Osakabe, M., Chevillon, C., & McCoy, K.
995 D. (2007). Host race formation in the Acari. *Experimental and Applied Acarology*,
996 42(4), 225–238. <https://doi.org/10.1007/s10493-007-9091-0>

997 Majka, C. G. (2011). The Silphidae (Coleoptera) of the maritime provinces of Canada.
998 *Journal of the Acadian Entomological Society*, 7.

999 Makarova, O. L. (2013). Gamasid mites (Parasitiformes, Mesostigmata) of the
1000 European arctic and their distribution patterns. *Entomological Review*, 93(1), 113–
1001 133. <https://doi.org/10.1134/S0013873813010156>

1002 Mašán, P. (1999). Mites (Acarina) associated with burying and carrion beetles
1003 (Coleoptera, Silphidae) and description of *Poecilochirus mrciaki* sp. n.
1004 (Mesostigmata, Gamasina). *Biologia, Bratislava* 54, 515-524.

1005 Matzke, N. J. (2014). Model selection in historical biogeography reveals that founder-
1006 event speciation is a crucial process in island clades. *Systematic Biology*, 63(6), 951–
1007 970.

1008 Meierhofer, I., Schwarz, H. H., & Müller, J. K. (1999). Seasonal variation in parental
1009 care, offspring development, and reproductive success in the burying beetle,
1010 *Nicrophorus vespillo*. *Ecological Entomology*, 24, 73–79.

1011 Miao, Y., Herrmann, M., Wu, F., Yan, X., & Yang, S. (2012). What controlled Mid-
1012 Late Miocene long-term aridification in Central Asia? - Global cooling or Tibetan
1013 Plateau uplift: A review. *Earth-Science Reviews*, 112(3–4), 155–172.

1014 Minh, B. Q., Nguyen, M. A. T., & Von Haeseler, A. (2013). Ultrafast approximation for
1015 phylogenetic bootstrap. *Molecular Biology and Evolution*, 30(5), 1188–1195.

1016 Müller, J. K., & Eggert, A. K. (1987). Effects of carrion-independent pheromone
1017 emission by male burying beetles (Silphidae: *Necrophorus*). *Ethology*, 76(4), 297–
1018 304.

1019 Müller, J. K., & Schwarz, H. H. (1990). Differences in carrier-preference and evidence
1020 of reproductive isolation between mites of *Poecilochirus carabi* (Acari, parasitidae)
1021 living phoretically on two sympatric *Necrophorus species* (Coleoptera, silphidae).
1022 *Zoologische Jahrbücher: Abteilung Für Systematik, Geographie Und Biologie Der*
1023 *Tiere*, 117(1), 23–30.

1024 Navajas, M., Lagnel, J., Fauvel, G., & De Moraes, G. (1999). Sequence variation of
1025 ribosomal Internal Transcribed Spacers (ITS) in commercially important
1026 Phytoseiidae mites. *Experimental and Applied Acarology*, 23(11), 851–859.
1027 <https://doi.org/10.1023/A:1006251220052>

1028 Navajas, M., Conte, Y. L., Solignac, M., Cros-Arteil, S., & Cornuet, J. M. (2002). The
1029 complete sequence of the mitochondrial genome of the honeybee ectoparasite mite
1030 *Varroa destructor* (Acari: Mesostigmata). *Molecular Biology and Evolution*, 19(12),
1031 2313-2317.

1032 Nehring, V., Müller, J. K., & Steinmetz, N. (2017). Phoretic *Poecilochirus* mites
1033 specialize on their burying beetle hosts. *Ecology and Evolution*, 7(24), 10743–10751.
1034 <https://doi.org/10.1002/ece3.3591>

1035 Nehring, V., Teubner, H., & König, S. (2019). Dose-independent virulence in phoretic
1036 mites that parasitize burying beetles. *International journal for parasitology*, 49(10),
1037 759-767.

1038 Nguyen, L. T., Schmidt, H. A., Von Haeseler, A., & Minh, B. Q. (2015). IQ-TREE: A
1039 fast and effective stochastic algorithm for estimating maximum-likelihood
1040 phylogenies. *Molecular Biology and Evolution*, 32(1), 268–274.

1041 Nosil, P., & Harmon, L. J. (2009). Niche dimensionality and ecological speciation.
1042 *Speciation and patterns of diversity*, 127-154.

1043 Paterson, S., Vogwill, T., Buckling, A., Benmayor, R., Spiers, A. J., Thomson, N. R.,
1044 Quail, M., Smith, F., Walker, D., Libberton, B., Fenton, A., Hall, N., & Brockhurst,
1045 M. (2010). Antagonistic coevolution accelerates molecular evolution. *Nature*, 464,
1046 275–278.

1047 Peck, S. B., & Anderson, R. S. (1985). Taxonomy, phylogeny and biogeography of the
1048 carrion beetles of Latin America (Coleoptera: Silphidae). *Quaestiones*
1049 *Entomologicae*, 21, 247–317.

1050 Perotti, M. A., & Braig, H. R. (2009). Phoretic mites associated with animal and human
1051 decomposition. *Experimental and Applied Acarology*, 49(1–2), 85–124.
1052 <https://doi.org/10.1007/s10493-009-9280-0>

1053 Ramaraju, K., & Madanlar, N. (1998). Four new *Poecilochirus* G. & R. Canestrini
1054 (Acarina: Parasitidae) species from Turkey. *Türkiye Entomoloji Dergisi*, 22(1), 3–17.

1055 Rambaut, A., Drummond, A. J., Xie, D., Baele, G., & Suchard, M. A. (2018). Posterior
1056 summarization in Bayesian phylogenetics using Tracer 1.7. *Systematic Biology*,
1057 67(5), 901–904. <https://doi.org/10.1093/sysbio/syy032>

1058 Ronquist, F., Teslenko, M., Van Der Mark, P., Ayres, D. L., Darling, A., Höhna, S.,
1059 Larget, B., Liu, L., Suchard, M. A., & Huelsenbeck, J. P. (2012). MrBayes 3.2:

1060 Efficient bayesian phylogenetic inference and model choice across a large model
1061 space. *Systematic Biology*, 61(3), 539–542.

1062 Rueda-Ramírez, D., Santos, J. C., Sourassou, N. F., Demite, P. R., Puerta-González, A.,
1063 & De Moraes, G. J. (2019). Complementary description of Africoseius lativentris and
1064 placement of Africoseius in Podocinidae (Acari, Mesostigmata) based on molecular
1065 and morphological evidences. *Systematic and Applied Acarology*, 24(12), 2369–
1066 2394.

1067 Santos, V. V. D., & Tixier, M. S. (2018). Integrative taxonomy approach for analysing
1068 evolutionary history of the tribe *Euseiini* Chant & McMurtry (Acari: Phytoseiidae).
1069 *Systematics and Biodiversity*, 16(3), 302–319.

1070 Satou, A., Nisimura, T., & Numata, H. (2000). Reproductive competition between the
1071 burying beetle *Nicrophorus quadripunctatus* without phoretic mites and the blow fly
1072 *Chrysomya pinguis*. *Entomological Science*, 3(2), 265–268.

1073 Schäffer, S., & Koblmüller, S. (2020). Unexpected diversity in the host-generalist
1074 oribatid mite *Paraleius leontonychus* (Oribatida, Scheloribatidae) phoretic on
1075 Palearctic bark beetles. *PeerJ*, 8. <https://doi.org/10.7717/peerj.9710>

1076 Schedwill, P., Geiler, A. M., & Nehring, V. (2018). Rapid adaptation in phoretic mite
1077 development time. *Scientific Reports*, 8(1), 1–10. <https://doi.org/10.1038/s41598-018-34798-6>

1079 Schedwill, P., Paschkewitz, S., Teubner, H., Steinmetz, N., & Nehring, V. (2020). From
1080 the host's point of view: Effects of variation in burying beetle brood care and brood
1081 size on the interaction with parasitic mites. *PloS one*, 15(1), e0228047.

1082 Schwarz, H. H. (1996). Host range and behavioral preferences in german sibling species
1083 of the *Poecilochirus carabi* complex (Acari: Mesostigmata: Parasitidae).
1084 *International Journal of Acarology*, 22(2), 135–140.

1085 Schwarz, H. H., & Koulianou, S. (1998). When to leave the brood chamber? Routes of
1086 dispersal in mites associated with burying beetles. *Experimental and Applied*
1087 *Acarology*, 22(11), 621–631.

1088 Schwarz, H. H., & Müller, J. K. (1992). The dispersal behaviour of the phoretic mite
1089 *Poecilochirus carabi* (Mesostigmata, Parasitidae): adaptation to the breeding biology
1090 of its carrier *Necrophorus vespilloides* (Coleoptera, Silphidae). *Oecologia*, 89(4),
1091 487–493.

1092 Schwarz, H. H., Starrach, M., & Koulianou, S. (1998). Host specificity and permanence
1093 of associations between mesostigmatic mites (Acari: Anactinotrichida) and burying
1094 beetles (Coleoptera: Silphidae: *Nicrophorus*). *Journal of Natural History*, 32(2),
1095 159–172.

1096 Scott, M. P. (1998). The ecology and behavior of burying beetles. *Annual Review of*
1097 *Entomology*, 43, 595–618. <https://doi.org/10.1146/annurev.ento.43.1.595>

1098 Sikes, D. S., Madge, R. B., & Newton, A. F. (2002). A catalog of Nicrophorinae
1099 (Coleoptera: Silphidae) of the world. In *Zootaxa* 65.

1100 Sikes, D. S., Trumbo, S. T., & Peck, S. B. (2016). Cryptic diversity in the New World
1101 burying beetle fauna: *Nicrophorus hebes* Kirby; new status as a resurrected name
1102 (Coleoptera: Silphidae: Nicrophorinae). *Arthropod Systematics and Phylogeny*,
1103 74(3), 299–309.

1104 Sikes, D. S., Vamosi, S. M., Trumbo, S. T., Ricketts, M., & Venables, C. (2008).
1105 Molecular systematics and biogeography of *Nicrophorus* in part-The *investigator*
1106 species group (Coleoptera: Silphidae) using mixture model MCMC. *Molecular*
1107 *Phylogenetics and Evolution*, 48(2), 646–666.

1108 Sikes, D. S., & Venables, C. (2013). Molecular phylogeny of the burying beetles
1109 (Coleoptera: Silphidae: Nicrophorinae). *Molecular Phylogenetics and Evolution*,
1110 69(3), 552–565.

1111 Smith, G., Trumbo, S. T., Sikes, D. S., Scott, M. P., & Smith, R. L. (2007). Host shift
1112 by the burying beetle, *Nicrophorus pustulatus*, a parasitoid of snake eggs. *Journal of*
1113 *Evolutionary Biology*, 20(6), 2389–2399.

1114 Sonnenberg, R., Nolte, A., & Tautz, D. (2007). An evaluation of LSU rDNA D1-D2
1115 sequences for their use in species identification. *Frontiers in Zoology*, 4(6), 1–12.

1116 Springett, B. P. (1968). Aspects of the relationship between burying beetles,
1117 *Necrophorus* spp. And the mite, *Poecilochirus necrophori* Vitz. *The Journal of*
1118 *Animal Ecology*, 417–424.

1119 Stadler, T. (2010). Sampling-through-time in birth-death trees. *Journal of Theoretical*
1120 *Biology*, 267(3), 396–404.

1121 Stadler, T., Gavryushkina, A., Warnock, R. C. M., Drummond, A. J., & Heath, T. A.
1122 (2018). The fossilized birth-death model for the analysis of stratigraphic range data
1123 under different speciation modes. *Journal of Theoretical Biology*, 447, 41–55.

1124 Stamatakis, A. (2014). RAxML version 8: A tool for phylogenetic analysis and post-
1125 analysis of large phylogenies. *Bioinformatics*, 30(9), 1312–1313.

1126 Stefan, L. M., Gómez-Díaz, E., Mironov, S. V., González-Solís, J., & McCoy, K. D.
1127 (2018). “More than meets the eye”: Cryptic diversity and contrasting patterns of
1128 host-specificity in feather mites inhabiting seabirds. *Frontiers in Ecology and*
1129 *Evolution*, 6(JUL), 1–16.

1130 Sun, S.-J., Horrocks, N. P. C., & Kilner, R. M. (2019). Conflict within species
1131 determines the value of a mutualism between species. *Evolution Letters*, 3(2), 185–
1132 197.

1133 Sun, S.-J., & Kilner, R. (2019). Cryptic host specialisation within *Poecilochirus carabi*
1134 mites explains population differences in the extent of co-adaptation with their
1135 burying beetle *Nicrophorus vespilloides* hosts. *BioRxiv*, 1223(3), 641936.

1136 Swafford, L., & Bond, J. E. (2010). The symbiotic mites of some Appalachian
1137 Xystodesmidae (Diplopoda: Polydesmida) and the complete mitochondrial genome
1138 sequence of the mite *Stylochyrus rarior* (Berlese) (Acari: Mesostigmata:
1139 Ologamasidae). *Invertebrate Systematics*, 23(5), 445–451.

1140 Thompson, J. N. (2009). The coevolving web of life. *American Naturalist*, 173(2), 125–
1141 140. <https://doi.org/10.1086/595752>

1142 Tiffney, B. H. (1985). The Eocene North Atlantic Land Bridge: Its importance in
1143 Tertiary and modern phytogeography of the Northern Hemisphere. *Journal of the*
1144 *Arnold Arboretum*, 66, 243–274.

1145 Wen, J., Nie, Z. L., & Ickert-Bond, S. M. (2016). Intercontinental disjunctions between
1146 eastern Asia and western North America in vascular plants highlight the
1147 biogeographic importance of the Bering land bridge from late Cretaceous to
1148 Neogene. *Journal of Systematics and Evolution*, 54(5), 469–490.

1149 Wettlaufer, J. D., Burke, K. W., Schizkoske, A., Beresford, D. V., & Martin, P. R.
1150 (2018). Ecological divergence of burying beetles into the forest canopy. *PeerJ*,
1151 2018(11), 1–18.

1152 Wilson, D. S. (1982). Genetic Polymorphism for Carrier Preference in a Phoretic Mite.
1153 *BioScience*, 32(6), 537–537.

1154 Wilson, D. S., & Knollenberg, W. G. (1987). Adaptive indirect effects: The fitness of
1155 burying beetles with and without their phoretic mites. *Evolutionary Ecology*, 1, 139–
1156 159.

1157 Wise, G. U., Hennessey, M. K., & Axtell, B. C. (1988). A New Species of Manure-
1158 Inhabiting Mite in the Genus *Poecilochirus* (Acari: Mesostigmata: Parasitidae)
1159 Predacious on House Fly Eggs and Larvae. *Entomological Society of America*, 81(2),
1160 209–224.

1161 Witaliński, W. (2000). *Aclerogamasus stenocornis* sp. n., a fossil mite from the Baltic
1162 amber (Acari: Gamasida: Parasitidae). *Genus*, 11(4), 619–626.

1163 Xin, T., Que, S., Zou, Z., Wang, J., Li, L., & Xia, B. (2016). Complete Mitochondrial
1164 Genome of *Euseius nicholsi* (Ehara et Lee) (Acari: Phytoseiidae). *Mitochondrial*
1165 *DNA Part A*, 27(3), 2167–2168.

1166 Yoder, J. B., & Nuismer, S. L. (2010). When does coevolution promote diversification?
1167 *American Naturalist*, 176(6), 802–817. <https://doi.org/10.1086/657048>

1168 Young, M. R., Proctor, H. C., deWaard, J. R., & Hebert, P. D. N. (2019). DNA barcodes
1169 expose unexpected diversity in Canadian mites. *Molecular Ecology*, 28(24), 5347–
1170 5359.

1171 Zhang, G., Basharat, U., Matzke, N., & Franz, N. M. (2017). Model selection in
1172 statistical historical biogeography of Neotropical insects - The *Exophthalmus* genus
1173 complex (Curculionidae: Entiminae). *Molecular Phylogenetics and Evolution*, 109,
1174 226–239.

1175 Zhisheng, A., Kutzbatch, J. E., Prell, W. L., & Porder, S. C. (2001). Evolution of Asian
1176 monsoons and phased uplift of the Himalaya- Tibetan plate since Late Miocene
1177 times. *Nature*, 411, 62–66.