
Light-weight Electrophysiology Hardware and

Software Platform for Cloud-Based Neural Recording

Experiments

Kateryna Voitiuk1∗ Jinghui Geng2∗ Matthew G. Keefe3

David F. Parks1 , Sebastian E. Sanso7, Nico Hawthorne2,

Daniel B. Freeman4 Mohammed A. Mostajo-Radji5,7,8

Tomasz J.Nowakowski3,5 Sofie R. Salama1,6,7 Mircea

Teodorescu2,7 David Haussler1,6,7

1Department of Biomolecular Engineering, University of California Santa Cruz, Santa

Cruz, CA 95060, USA
2Department of Electrical and Computer Engineering, University of California Santa

Cruz, Santa Cruz, CA 95060, USA
3Department of Anatomy, University of California San Francisco, San Francisco, CA

94143, USA
4Universal Audio Inc., Scotts Valley, CA, 95066, USA
5The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell

Research, University of California San Francisco, San Francisco, CA 94143, USA
6Howard Hughes Medical Institute, University of California, Santa Cruz, Santa Cruz,

CA, 95064, USA
7UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa

Cruz, CA 95060, USA
8Department of Neurology, University of California San Francisco, San Francisco, CA

94143, USA
∗ These authors contributed equally to this work

E-mail: kvoitiuk@ucsc.edu (K.V.), jgeng2@ucsc.edu (J.G.)

Abstract. Objective. Neural activity represents a functional readout of neurons that

is increasingly important to monitor in a wide range of experiments. Extracellular

recordings have emerged as a powerful technique for measuring neural activity because

these methods do not lead to the destruction or degradation of the cells being measured.

Current approaches to electrophysiology have a low throughput of experiments due to

manual supervision and expensive equipment. This bottleneck limits broader inferences

that can be achieved with numerous long-term recorded samples. Approach. We

developed Piphys, an inexpensive open source neurophysiological recording platform

that consists of both hardware and software. It is easily accessed and controlled

via a standard web interface through Internet of Things (IoT) protocols. Main

Results. We used a Raspberry Pi as the primary processing device and Intan

bioamplifier. We designed a hardware expansion circuit board and software to enable

voltage sampling and user interaction. This standalone system was validated with

primary human neurons, showing reliability in collecting real-time neural activity.

Significance. The hardware modules and cloud software allow for remote control

of neural recording experiments as well as horizontal scalability, enabling long-term
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observations of development, organization, and neural activity at scale.
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1. Introduction

Extracellular voltage recordings from in vitro cell cultures support the investigation of
neural activity and dynamics. These recordings allow us to assess information processing
in complex neuronal networks and enable discovery on a scale from single neuron
firing patterns to local and long-range functional connectivity, network synchrony, and
oscillatory activity [1–6].

Longitudinal recordings are essential to capture features of neurodevelopment and
dynamics: basic physiological properties of neuron development, how 2D and 3D cultures
grow and change activity patterns, and what rhythms the activity may follow [7–10].
Recordings across time are essential to study response to electrical or drug stimulus over
weeks and months. Wider application are used for drug discovery and genetic screens.

The further combination of longitudinal recordings and large numbers of parallel
experimental replicates allow investigations to progress significantly faster and makes
new experiments feasible [11]. Also, scaling up experiments generates the large volume
of data necessary for taking advantage of Machine Learning algorithms and creates a
faster turnaround between hypothesis, experiment, and re-testing [12]. In vitro culture
models serve as a flexible system that are much easier to scale up than animal models,
especially when paired with developments in robotic automation, microfluidics, and
probes [13–16].

Longitudinal recordings from multi-channel experiments demand vast amounts
of data and memory. The data is challenging to manage, especially since out-of-
the-box hardware and software are often offline. Storage on physical disks usually
requires manual monitoring to prevent running out of disk space and laborious transfer
of data for backup or processing. Furthermore, many recording systems require a
designated workspace for experiments with a physical computer nearby with cables
or wireless transmission to stream data. Several open-source efforts have been created
to provide more affordable and modifiable recording equipment [17–21]. However, no
software solutions exist to easily manage and control a large amount of electrophysiology
equipments and data at once.

Recent advances in commodity hardware allow for more affordable computing
devices. The Internet of Things allows many devices to come online when needed and
be relinquished when not needed, and protocols have been developed to effectively and
securely manage and communicate with these devices. Affordable, internet-connected
devices have already been developed for ECG, EEG, EMG, and heart rate variability
monitoring [22–27]. Furthermore, commodity cloud compute from major companies
as well as academic coalitions [28] has become widely available and many tools for
downstream analysis to process voltage recordings are already offered online [14, 29–
32]. However, data acquisition for in vitro cultures remains relatively isolated, as no
platform exists to stream data online to link with these analysis infrastructures. One
solution is to write software add-ons for existing data acquisition systems. However,
not all existing data acquisition systems are flexible or open in terms of data formats,
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programmability, and remote control. Additionally, channel count and price range are
not always suitable for the desired application.

To address these issues we created Piphys, an all-in-one electrophysiology and
processing system that can simultaneously record data from multiple channels in the µV
scale and stream it to the cloud. The user interacts with the device through a dashboard
website to view data and control experiment parameters. Both hardware and software
are made available as open source.

Figure 1. Cloud-based experiment paradigm: biological measurement and local

hardware are presented to the user through the cloud, such that experiment

management and control can be administrated remotely and may be automated by

a computer program.

Piphys is based on a Raspberry Pi computer and eliminates the need for a desktop
or laptop computer to manage an electrophysiology experiment or for an operator to
be present in the lab to start a recording. The Raspberry Pi comes with a Unix-based
operating system that can be easily programmed with many existing software libraries
and tools. Overall, the low price and extreme flexibility of the Raspberry Pi significantly
lowers the cost of the entire electrophysiology system, providing an opportunity for
broader education and research opportunities.

Piphys can be used with a wide range of electrode probes including, but not limited
to, rigid 2D and flexible 3D microelectrode arrays (MEAs) [33], silicon probes [34], and
tetrodes. The system is built for long-term experiments with the goal of full automation
using programs that can optimize experimental variables. Here we detail the Piphys
system’s functionality and validate its accuracy and reliability for measuring neural
activity.

2. Piphys System Design

The Piphys hardware records from neural tissue remotely using our versatile circuit
board connecting to Intan RHD series recording chips to perform highly sensitive analog
to digital conversion. Data from the Intan can be optionally preprocessed on-site using
a Raspberry Pi computer and streamed to a cloud service where deeper sorting and
analysis of detected spikes can be performed. Spike sorting analysis measures neural
activity changes over time in individual neurons and networks of neurons, using features
like spike waveform, frequency of activity, and correlation to the activity of nearby
neurons.
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Hardware design

Figure 2. Piphys hardware components. (a) Expansion shield (blue board)

attached on top of Raspberry Pi (green board). (b) Logic level connection. (c)

Example interface with standard 6-well electrode plate. (1) +5V logic, (2) +3.3V

logic, (3) +3.5V logic, (4) External supply inputs, (5) Raspberry Pi input/output pins

(bottom), (6) LVDS converter, (7) Intan RHD adapter, (8) Intan RHD 32-channel

recording headstage containing Intan RHD2132 bioamplifier chip, (9) Optional adapter

board to electrodes, (10) Multiple electrode types possible, (11) Raspberry Pi computer

(bottom).

Design elements (choice of platform) The key physical innovation in Piphys is a
hardware expansion board that enables a Raspberry Pi computer to interface with an
Intan RHD2132 bioamplifier chip to perform electrophysiology.

The Raspberry Pi Model 3 B+ is a low-cost, small-scale, single-board computer.
It has a quad-core ARM Cortex-A53 processor with an Input/Output system. It
can be programmed to interface with customized hardware with a standard data
communication protocol. It also has an expandable memory space configured by a
removable SD card.

The Intan RHD2132 bioamplifier chip is the key driver of the shield biopotential-
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sensing functionality. The chip amplifies voltage signals sensed by the electrodes and
converts the analog signals to digital values for storage inside the Raspberry Pi computer.

Circuit design An expansion shield connects the Raspberry Pi to the Intan RHD 32-
channel recording headstage containing the Intan RHD2132 bioamplifier chip. The chip
is configured to use low-voltage differential signaling (LVDS) to reduce the effects of noise
and electromagnetic interference (EMI) and allow increased cable length. However, the
Raspberry Pi communicates using complementary metal-oxide-semiconductor (CMOS)
level logic. To translate between the two signal types, the expansion shield uses the
SN65LVDT41 chip from Texas Instruments. The SN65LVDT41 chip has four LVDS
line drivers and one LVDS line receiver to control data lines required to communicate
with the Intan chip over its Serial Peripheral Interface (SPI).

Besides translation between signal types, the expansion shield provides different
levels of power derivative from the +5V source input. The +5V input powers both
the Pi and shield, and can be supplied either through the power barrel on the shield
or through the micro-USB on the Pi for flexibility. On the shield, the power source
is filtered through ferrite beads to remove high-frequency power line noise. The +5V
source is converted to a +3.5V source for the Intan RHD2132 bioamplifier chip and a
+3.3V for the SN65LVDT41 chip. Conversion is performed by low-noise linear voltage
regulators to smooth and isolate any fluctuations from the power supply.

Connection to electrodes Electrodes are connected to the Intan RHD 32-channel
recording headstage. For experiments reported here, we created a connection to a
commercially available 6-well multi-electrode array (MEA) plate from Axion Biosystems.
However, any other electrode system fitting an Omnetics 32-pin connector is compatible.
The design can be adapted to custom and commercial MEAs of different form factors
using adapter boards.

The Axion electrode plate mates its bottom contacts to spring finger pins on our
designed adapter board. The parts are aligned using a custom holder consisting of a
plastic interior surrounded by aluminum plates and compressed together by screws on
four corners. The plastic holder has a slot to hold the adapter board and a groove to align
the plate in the correct position. The aluminum plate casing prevents warping of the
plastic and ensures even pressure compressing the plate and connector on both sides.
The compressing holder provides consistent mating of spring finger pins to electrode
contacts on the plate.

Software design

The Piphys system runs custom software to perform: (1) communication with the Intan
RHD2132 bioamplifier chip, (2) buffering and file storage of recorded voltage data locally,
(3) real-time data streaming and plotting on the online dashboard, and (4) experiment
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Figure 3. Software overview. The software that runs on the local Raspberry Pi

device communicates with the Intan RHD2132 bioamplifier chip to stream and store

the digitized neural signal. Concurrently, it pushes the signal to Redis for real-time

visualization on the online dashboard. Datasets are also uploaded to S3 after each

recording for permanent storage and access. Experimental control such as ‘start’,

‘stop’, and variable configuration is sent from the dashboard through Amazon IoT to

the local device. Past experiment data can also be browsed using records from S3.

control from the dashboard. In order to stream data, interact with data being recorded,
and control the device, we deployed Redis, Amazon IoT, and S3 as described in Methods.

To perform an electrophysiology recording, the user can configure the sampling rate
and start the experiment from the dashboard. Once started, the neural cell activity is
firstly digitized and sampled by the Intan RHD2132 bioamplifier chip in 32 channels.
Raspberry Pi stores the data on local memory and also streams it to Redis for real-time
visualization on the online dashboard. For data integrity and upload efficiency, raw
data is saved every 5 minutes on local memory and streamed every 10 seconds to Redis.
Once the recording ends, all local data files are uploaded to S3 for permanent storage,
and data is further backed up to Amazon Glacier for long-term archiving. Local data
files on the Pi auto-erase every 14 days to release memory. To view a dated recording,
the user can select and pull the data files from S3 to the dashboard for display (Figure
3).

Communication with hardware Communication between Raspberry Pi and Intan
RHD2132 bioamplifier chip uses Serial Peripheral Interface (SPI). SPI is a fast and
synchronous interface that is widely used in embedded systems for short-distance data
streaming. It is a full-duplex master-slave-based interface where both master and
slave can transmit data at the same time. The protocol for both Raspberry Pi and
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Intan RHD2132 bioamplifier chip is a four-wire interface: Clock (SCLK), Chip select
(CS), Master-Out-Slave-In (MOSI), and Master-In-Slave-Out (MISO). In Piphys, the
Raspberry Pi acts as the master device and generates a clock signal and recording
commands to configure the Intan RHD2132 bioamplifier chip through MOSI. The Intan
chip responds as slave and sends the digitized data back by MISO. The chip allows
configuration of sampling rate and bandwidth of the low-noise amplifiers. The 32
channels on the chip are sampled sequentially with available sampling rate options from
2 kHz to 15 kHz per channel. The amplifiers give 46 dB midband gain with lower
bandwidth from 0.1 Hz to 500 Hz, and upper bandwidth from 100 Hz to 20 kHz.

Online dashboard Users interact with Piphys devices through a web browser
application, referred to as the Graphical User Interface (GUI). The GUI allows a
user to initiate a recorded experiment and monitor electrical activity on each channel.
Programatically, the GUI mimics an IoT device that sends messages to other devices
(i.e., Piphys units) and listens to their corresponding data streams in a high-performance
Redis database service. The Piphys device produces a single data stream to Redis,
and many users can view the stream from the Redis server. Therefore, many users can
monitor and interact with a particular Piphys device without additional overhead placed
on that device.

Users can be located anywhere on the Internet without concern for where
the physical Piphys device is or which network it is on. We routinely perform
electrophysiology experiments from Santa Cruz on a Piphys-connected device that is
located 90 miles away in San Francisco.

When a new user opens the browser GUI, the web application queries the AWS IoT
service for online Piphys devices to populate a device dropdown list. When the user
selects a device from the dropdown, an MQTT ‘ping’ message is sent to the relevant
device every 30 seconds, indicating that a user is actively monitoring data from that
device. As long as the Piphys device receives these pings, the Piphys device will continue
to send its raw data stream to the central Redis service. When the Piphys device has
not received any user messages for at least a minute, it will cease sending its raw data
stream. This protocol ensures the proper decoupling of users from devices. The Piphys
device is not dependent on a user gracefully shutting down.

While the Piphys device feeds raw data to the Redis service, data transformations
are applied downstream by other IoT-connected processes. For example, the Piphys
Control Panel displays a threshold spike sorted transformation of the raw data. This
data transformation is an independent process that listens for MQTT requests for the
raw data stream and transforms the raw stream into a stream containing the past ten
spike events detected per channel. For channels with no detected spikes, a random
sample of the channel is saved to the stream every 30 seconds to provide a sampling of
the channel’s activity.

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 20, 2021. ; https://doi.org/10.1101/2021.05.18.444685doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.18.444685
http://creativecommons.org/licenses/by-nc-nd/4.0/


Light-weight Electrophysiology for Cloud-Based Experiments 9

Figure 4. Dashboard. A control panel interface is displayed through the browser

running spike detection by thresholding.

3. Detection of neuron activity

We tested the Piphys system for long-term recordings of human primary neurons. These
neurons were cultured in an Axion CytoView MEA 6-well plate (Methods). After
recording, the raw data was ingested to SpyKING CIRCUS software [31] for analysis.
SpyKING CIRCUS is a semi-automatic spike sorting software that uses thresholding,
clustering, and greedy template match approaches to detect single cell action potentials.
Here, we show two types of results, first for single neuron recordings and second for a
bursting neural network.

Figure 5. Detection of neuronal spike activity using Piphys. Spike train (black

trace) from a recorded neuron in the time domain from Piphys. Spikes shown here are

sorted from SpyKING CIRCUS software and labeled on the raw data with green and

orange dots. Bottom: spike raster is aligned with the detected spikes showing firing

activities at specific positions. (1)(2)(3) Individual spike examples randomly picked

from the spike train.
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Recording from primary neurons

After 14 days in culture in culture, primary neurons were recorded with the Piphys
system and two commercially available systems: the Intan RHD USB interface board
and the Axion Maestro Edge. After recording, all three datasets were filtered with
bandpass filtering from 300 Hz to 6000 Hz and spike sorted with a threshold of ± 6 µV .
Figure 5 shows a ten-second spike train from Piphys with dots highlighting detected
spikes in the raw data.

To further demonstrate the applicability of Piphys to primary neuron recording, we
compare the shape of the detected action potential and quality metrics such as amplitude
distribution, interspike interval distribution, and firing rate to commercially available
systems (Figure 6). The data was recorded from the same channel in the same well
of neurons by Piphys, Intan, and Axion systems in sequential order on the same day.
The data recorded on Piphys corresponds to the data obtained from both commercial
systems, with high similarity to Intan and overall consistency with Axion across metrics
in Figure 6.

The mean spike waveform, shown in the first column of Figure 6, was determined
by averaging the voltage in a 3 ms window centered around the point where the voltage
crossed the spike threshold. Differences in Axion’s waveform shape are a flatter starting
point and a higher upstroke before settling to resting state. The amplitudes for the
mean waveform are -24.67 ± 3.92 µV for Piphys, -26.92 ± 4.96 µV for Intan, and -24.50
± 1.69 µV for Axion. Axion has a smaller deviation than Piphys and Intan, showing
lower noise in the recording system.

The amplitudes of the detected spikes over time, shown in the middle column of
Figure 6 are more sparse for Axion than for Intan and Piphys. Firing rates in events
per second over the recording period shown are 8.05 for Piphys, 8.44 for Intan, and 6.86
for Axion.

The interspike interval histograms, shown in the middle column of Figure 6, have
similar longer-tail distributions for Piphys and Intan centered at 122.79 ms and 118.15
ms, and a tighter distribution for Axion centered at 145.57 ms. However, the interspike
interval means for all three systems are significantly close together.

The variation between Piphys and Axion could be attributed to physical differences
in the circuity and possible advanced filtering performed by Axion’s proprietary BioCore
v4 chip ‡. The filtering could account for the smoothness and low variability of the
signal (measured 1.12 ± 0.18 µV RMS noise baseline), resulting in a smaller number of
identified firing events with a tighter distribution. Piphys and Intan systems both use
the same amplifier chips (Intan RHD2000 series), where the optional on-chip filtering
was disabled during recording §. The raw signal, therefore, has a larger noise margin
(measured 3.21 ± 0.66 µV RMS noise baseline for Intan, 2.36 ± 0.4 µV RMS for
Piphys), which may create more false-positive firing events. The tail of the amplitude

‡ https://www.axionbiosystems.com/resources/product-brochure/maestro-edge-mea-system-brochure
§ https://intantech.com/files/Intan_RHD2000_series_datasheet.pdf
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Figure 6. Piphys performance is similar to commercial systems. Spike

sorting result for the same recording channel from Piphys, Intan RHD USB interface

board, and Axion Maestro Edge. Shown from left to right are mean waveform with

standard deviation (shaded area), amplitudes of the detected spikes over time, and

interspike interval distribution. (a) Piphys (b) Intan RHD USB interface board (c)

Axion Maestro Edge (d) Comparison of the mean waveform, amplitude, and interspike

interval distribution from three systems.

distributions in Intan and Piphys is skewed towards lower-amplitude events, closer to
the noise floor. The interspike intervals for Intan and Piphys register several events
with near-zero intervals, likely suggesting false-positive spikes from noise contamination.
Contamination from noise, which is likely symmetrical, could affect the shape of the
mean waveform calculated by overlaying and averaging all registered spikes.

Overall, these results demonstrate that Piphys can record neural activity in a
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manner comparable to commercially available hardware and software.

Figure 7. Bursting activity across four channels with channel mapping.

Channel mapping shows 64 electrodes in well B2 of the Axion plate. Light green dots

are the 32 electrodes recorded by Piphys. Dark green dots mark channels 1, 5, 12

and 20 whose raw recording plots are on the right. The spike raster superimposes all

the detected spikes in the shown channels. Each light green vertical line in the raster

indicates a spike, and the dark green bar is the result of superimposing multiple spikes

in the burst. The bars in the raster plot align with the bursts throughout these four

channels.

Detecting burst activity from primary neuron network

On day 42 of culture, we recorded from the neurons with Piphys and found the primary
neurons displayed synchronized network bursts, consistent with previous observations
[35, 36]. Figure 7 shows the synchronous activity captured across four channels. After
spike sorting, most detected spikes were arranged in short intervals with periods of
silence in between. The spikes inside the bursts align among the channels, indicating that
synchronized activity was present through the network. Quantitatively, the bursting has
a general population rate of 0.13 bursts each second, with each burst lasting around 1
second. Within one burst, the number of spikes is 55 ± 17.58.

To further characterize Piphys system’s performance, we compute the SNR of
bursting activity by the following equation applied to the smoothed signal:
SNR(dB) = 20log10(

µb−µn

σn
)

where µb and µn are the mean for the burst and baseline noise, respectively, σn is
the standard deviation of the noise. In Figure 8, background signal in green represents
the original recording. The signal in blue is the smoothed product by boxcar averaging
with a window size of three times the standard deviation of the original. The median
SNR across active channels is measured at 4.35 dB. The mean for baseline noise in
the burst recording is around 2.13 µV RMS, consistent with the noise measurement
for the experiments described in the Performance section. These experiments further
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Figure 8. Signal-to-noise ratio of the burst. (a) Burst train (green) and the

smoothed signal (blue). (b) Zoom in to the third smoothed burst showing means of

the signal and the baseline noise for SNR calculation.

demonstrate that the Piphys system is sensitive and reliable in the relatively low
amplitude neural signal recording range. In addition, with its open-source, light-
weight, and remote monitoring capability through the IoT, Piphys adds unique value in
extracellular electrophysiology.

4. Comparison to other platforms

Comparing electrophysiology platforms side by side is challenging because each system
fits a specific niche and requirements for a particular workflow. Different platforms arose
as solutions to different problems, challenges, and user needs. Piphys arose due to the
need for automation of experiments, integration with other IoT sensors, and flexible
recording equipment that can be used in a fleet for longitudional study of many in vitro

replicates.

Table 1 summarizes electrophysiology systems comparable to Piphys. The Axion
Maestro Edge is designed as an out-of-the box bench top electrophysiology system with
maximum comfort and usability. Although it has the highest price per channel, it is also
an incubator. The Intan RHD USB interface board and headstages require more effort
to calibrate, ground, and shield. Unlike Axion, Intan designs and code are open source.
Intan bioamplifier chips have been used in many open source systems, including Intsy,
Willow, Open Ephys, and now Piphys. Intsy was designed for measuring gastrointestinal
(EGG), cardiac (ECG), neural (EEG), and neuromuscular (EMG) signals [17]. Willow
was designed for high channel count neural probes and resolves the need for many
computers by writing data directly to hard drives [20]. Open Ephys is an alternative
system to Intan integrating more features into their GUI for closed-loop experiments
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Platform System Noise
(µV RMS)

Sample
Rate
(kHz)

Channels Cost
(USD)

Cost
per
Channel

Open
Source

IoT

Piphys 2.36 ± 0.4 † 15 32 $1,545 $48 Yes Yes
Intsy [17] 6-8 2 64 $2,500 $39 Yes No
Intan RHD ‖ 3.21 ± 0.66 † 30 256 $10,295 $40 Yes No
Open Ehpys [18] 2.4 ∗ 30 512 $15,545 $30 Yes No
Willow [20] 3.9 30 1024 $20,480 $20 Yes No
Axion Maestro Edge ¶ 1.12 ± 0.18 † 12.5 384 $70,000 $182 No No

Table 1. Comparison of Piphys features to several commercial and open source

electrophysiology systems. Sampling Rate and Channels columns show the maximum

numbers for all systems. ∗Noise shown on Open Ephys website is the amplifier input

noise for Intan RHD2132 bioamplifier chip, not the whole system noise. †RMS noise

recorded experimentally.

and plugin-based workflows [18] +. Noise measurements for Piphys, Intan, and Axion
were experimentally recorded, while noise measurements for Intsy, Willow, and Open
Ephys were cited. Intan claims 2.4µV RMS as typical in the datasheet for their chips
∗ which was likely inherited into Open Ephys documentation. The whole system noise
for Open Ephys is not explicitly mentioned in documentation.

Piphys is the only electrophysiology device that supports Internet of Things (IoT)
software integration out of the box. The IoT hardware modules and cloud software allow
for horizontal scalability, enabling long-term observations of development, organization,
and neural activity at scale, and integration with other IoT sensors. Piphys has a low
entry cost, and the cost per channel can also be significantly lowered by increasing the
number of channels supported per device. This would be accomplished by engineering
an inexpensive FPGA into the controller shield to sample multiple bioamplifier chips
and buffer those readings for the Pi. Piphys can have a large cost reduction if extra
specialty connectors and adapters are removed (cutting roughly $300) and it is fitted
with a less expensive USB cable.

5. Discussion

Remote longitudinal recording of neural circuits on an accessible platform will open
up many exciting avenues for research into the physiology, organization, development,
and adaptation of neural tissue. Integration with cloud software will allow in-depth
experimentation and automation of analysis.

The proof of principle for Piphys has been shown on 2D cultures. As experiments

+ https://open-ephys.org
∗ https://intantech.com/files/Intan_RHD2000_series_datasheet.pdf
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with other devices have shown, it should be applicable to measurements of 3D brain
organoids, which are becoming and increasingly popular model for studying human brain
tissue development and function [5, 37–42].

Many electrode probes have been designed to interface with tissues to provide
measurement points for voltage recordings [15, 33, 34, 43, 44]. Future work on Piphys
would involve expanding the number of different electrodes types for long-term culture
of the biological sample through collaborations with other research groups.

Future work on Piphys also includes increasing sampling rate and precision of timing
in between samples. Currently, the Raspberry Pi CPU samples the Intan RHD2132
bioamplifier chip, and the sampling rates are limited by the CPU’s ability to multitask.
Future solutions may involve adding another CPU or FPGA to the hardware shield. The
platform will continue to be improved, and its modularity allows adapting hardware and
software components as different needs arise.

Signal-to-noise ratio could be improved with enabling and tuning on-chip filtering,
and improving Faraday cage shielding. In vitro cultures typically fire with amplitudes
between 10 - 40 µV [5, 7, 45]. They demand sensitive recording equipment, as an increase
of just a few µV in noise for spikes on the lower end of the spectrum can be considered
a non-trivial variable.

Piphys software and hardware source files for building the Piphys system are
available open source on GitHub ]. All files are provided ‘as is’ and end-users
are encouraged to freely use and adapt the system for their own application-specific
protocols.

Overall, the open source Piphys design, programmability, and extreme flexibility of
the Raspberry Pi significantly lowers the entry barrier of the electrophysiology system,
providing an opportunity for broader applications in education and research.

6. Methods

Tissue source

De-identified tissue samples were collected with previous patient consent in strict
observance of the legal and institutional ethical regulations. Protocols were approved by
the Human Gamete, Embryo, and Stem Cell Research Committee (institutional review
board) at the University of California, San Francisco.

Primary neuron culture

Prior to cell culture, the electrode surfaces of 6-well Axion plates (Axion Biosystems,
CytoView MEA 6) were coated with 10 mg/mL poly-D-lysine (Sigma, P7280) at room
temperature overnight. The following day, plates were rinsed 4x with water and dried at
room temperature. Primary cells were obtained from human brain tissue at gestational
week 21. Briefly, cortical tissue was cut into small pieces, incubated in 0.25% trypsin

] https://github.com/braingeneers/piphys
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(Gibco, 25200056) for 30 minutes, then triturated in the presence of 10mg/mL DNAse
(Sigma Aldrich, DN25) and passed through a 40um cell strainer. Cells were spun down
and resuspended in BrainPhys (StemCell Technologies, 05790) supplemented with B27
(Thermo Fisher, 17504001), N2 (Thermo Fisher, 17502001), and penicillin-streptomycin
(Thermo Fisher, 15070063), then diluted to a concentration of 8,000,000 cells/mL.
Laminin (Thermo Fisher, 23017015, final concentration 50ug/mL) was added to the final
aliquot of cells, and a 10uL drop of cells was carefully pipetted directly onto the dried,
PDL-coated electrodes, forming an intact drop. The plate was transferred to a 37C,
5% CO2 incubator for 1 hour to allow the cells to settle, then 200uL of supplemented
BrainPhys media was gently added to the drops. The following day, another 800uL of
media was added, and each well was kept at 1 mL media for the duration of the cultures,
with half the volume exchanged with fresh media every other day. Activity was first
observed at 14 days in culture, and the second recordings were performed on day 42 of
culture.

Circuit board design, reduction of noise and EMI

The printed circuit board was designed in Autodesk Eagle. The board has four layers of
copper. The top and bottom layers of the board are GND, while the two layers inside
are signal and power. Every signal via has a ground via next to it to sink EMI as signals
switch layers. The layout of the circuit board is done in modules. Via stitching was done
around the perimeter and throughout the board area to separate modules (highlighted
by squares in Figure 2) and fill in areas with no components. The amplifier chip and
Raspberry Pi computer are separated by a cable such that noise from the computer
would not interfere with the sensitive neural signal recording. During data acquisition,
all of the electronics and biology were shielded by a 1 mm thick steel faraday cage.

Cloud services integration

We deployed servers and cloud computing platforms to achieve permanent data storage
and messaging between the local device and the dashboard. We used Remote Dictionary
Server (Redis), Amazon Web Services Internet of Things (AWS IoT), and Simple Storage
Service (S3). All services (except AWS IoT) are platform agnostic and can be hosted
anywhere. For our particular experimental setup, Redis and S3 were hosted on the
Pacific Research Platform (PRP) [28]. The Internet of Things (IoT) service with MQTT
messaging and device management was coordinated through Amazon Web Services
(AWS). The dashboard was hosted on a server at UC Santa Cruz.

Redis, real-time data stream Neuronal action potential recording with a high
sample rate and multiple channels requires a high throughput pipeline to make real-
time streaming possible. Remote Dictionary Server (Redis) is a good choice for the
implementation of this objective. It is a high-speed cloud-based data structure store
that can be used as a cache, message broker, and database. Based on benchmarking
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results, Redis can handle hundreds of thousands of requests per second. The highest
data rate for every push from Piphys system to Redis is 9.6 MB (32 channels × 15 kHz
sampling rate × 16 bits/sample × 10 seconds), which can be satisfied with an internet
bandwidth larger than 7.68 Mbps.

Internet of Things (IoT) communication The dashboard is programmed to be
an IoT device that sends Message Queuing Telemetry Transport (MQTT) messages to
control and check the Piphys system. In response, the Piphys subscribes to a particular
MQTT topic to wait for instructions. The AWS IoT supports the communication of
hundreds of devices, making the Piphys system’s extension to a large scale possible in
the future.

Simple Storage Service (S3) The Simple Storage Service (S3) is the final data
storage location. S3 is accessible from anywhere at any time on the internet. It
supports both management from a terminal session and integration to a custom web
browser application. After each experiment, a new identifier will be updated on the
dashboard. When a user asks for a specific experiment result, the dashboard can pull
the corresponding data file directly from S3 for visualization.
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