

1 ***Fusarium graminearum* DICER-like-dependent sRNAs are required for the**
2 **suppression of host immune genes and full virulence**

3

4 Bernhard Werner¹, Aline Koch², Ena Šećić¹, Jonas Engelhardt¹, Lukas Jelonek³, Jens
5 Steinbrenner¹, Karl-Heinz Kogel^{1&}

6 ¹Institute of Phytopathology, Centre for BioSystems, Land Use and Nutrition, Justus Liebig
7 University, Heinrich-Buff-Ring 26-32, D-35392, Giessen, Germany

8 ²Institute for Phytomedicine, University of Hohenheim, Otto-Sander-Straße 5, D-70599,
9 Stuttgart, Germany

10 ³Institute of Bioinformatics and Systems Biology, Justus Liebig University, Heinrich-Buff-
11 Ring 58, D-35392, Giessen, Germany

12 Email addresses

13 Bernhard.T.Werner@online.de

14 Aline.Koch@uni-hohenheim.de

15 Ena.Secic@agrar.uni-giessen.de

16 JonasEngelhardt@yahoo.de

17 Lukas.Jelonek@computational.bio.uni-giessen.de

18 Jens.Steinbrenner@agrar.uni-giessen.de

19 &Corresponding author

20 Karl-Heinz.Kogel@agrar.uni-giessen.de

22 **Abstract**

23 In filamentous fungi, gene silencing by RNA interference (RNAi) shapes many biological
24 processes, including pathogenicity. Recently, fungal small RNAs (sRNAs) have been shown to
25 act as effectors that disrupt gene activity in interacting plant hosts, thereby undermining their
26 defence responses. We show here that the devastating mycotoxin-producing ascomycete
27 *Fusarium graminearum* (*Fg*) utilizes DICER-like (DCL)-dependent sRNAs to target defence
28 genes in two Poaceae hosts, barley (*Hordeum vulgare* *Hv*) and *Brachypodium distachyon* (*Bd*).
29 We identified 104 *Fg*-sRNAs with sequence homology to host genes that were repressed during
30 interactions of *Fg* and *Hv*, while they accumulated in plants infected by the DCL double knock-
31 out (dKO) mutant PH1-*dcl1/2*. The strength of target gene expression correlated with the
32 abundance of the corresponding *Fg*-sRNA. Specifically, the abundance of three tRNA-derived
33 fragments (tRFs) targeting immunity-related *Ethylene overproducer 1-like 1* (*HvEOL1*) and
34 three Poaceae orthologues of *Arabidopsis thaliana* *BRI1-associated receptor kinase 1*
35 (*HvBAK1*, *HvSERK2* and *BdSERK2*) was dependent on fungal DCL. Additionally, RNA-ligase-
36 mediated Rapid Amplification of cDNA Ends (RLM-RACE) identified infection-specific
37 degradation products for the three barley gene transcripts, consistent with the possibility that
38 tRFs contribute to fungal virulence via targeted gene silencing.

39

40

41 **Keywords:** RNAi, sRNA, *Fusarium graminearum*, DCL, Barley, *Hordeum vulgare*,
42 *Brachypodium distachyon*, SERK, EOL1, BAK1

43

44 ***Significance Statement***

45 *Fusarium graminearum* is one of the most devastating fungal pathogens in cereals, while
46 understanding the mechanisms of fungal pathogenesis is a prerequisite for developing efficient
47 and environmentally friendly crop protection strategies. We show exploratory data suggesting
48 that fungal small RNAs play a critical role in *Fusarium* virulence by suppressing plant
49 immunity.

50

51 **Introduction**

52 RNA interference (RNAi) is a biological process in which small RNA (sRNA) molecules
53 mediate gene silencing at the transcriptional or post-transcriptional level. In agriculture, RNAi-
54 mediated silencing strategies have the potential to protect crops from pests and microbial
55 pathogens (Koch & Kogel 2014; Guo et al. 2016; Liu et al. 2020; Šečić & Kogel 2021; Koch
56 & Wassenegger 2021). Expression of non-coding double-stranded (ds) RNA targeting essential
57 genes in a pest, a pathogen or a virus can render host plants more resistant by a process known
58 as host-induced gene silencing (HIGS) (Rosa et al. 2018; Cai et al. 2018a; Gaffar & Koch 2019;
59 Niehl & Heinlein 2019). Alternatively, plants can be protected by foliar application of dsRNA
60 to plants (Koch et al. 2016; Wang et al. 2016a; Konakalla et al. 2016; Mitter et al. 2017; Kaldis
61 et al. 2018; McLoughlin et al. 2018; Sang et al. 2020). While these RNAi-based crop protection
62 strategies are proving to be efficient and agronomically practical in the control of insects (Head
63 et al. 2017) and viruses (Niehl et al. 2018), many questions remain unanswered with regard to
64 the control of fungi.

65 The blueprint for using RNA to fight disease comes from nature (Cai et al. 2018a). During
66 infection of *Arabidopsis thaliana* (*At*), the necrotrophic ascomycete *Botrytis cinerea* (*Bc*)
67 secretes DICER-like (DCL)-dependent sRNAs that are taken up into plant cells to interact with
68 the Arabidopsis ARGONAUTE protein *AtAGO1* and initiate silencing of plant immune genes
69 (Weiberg et al. 2013; Cai et al. 2018b). For instance, sRNA *Bc*-siR3.2 targets mitogen-activated
70 protein kinases, including *MPK2* and *MPK1* in *At*, and *MAPKKK4* in tomato (*Solanum*
71 *lycopersicum*), while *Bc*-siR37 targets several immune-related transcription factors including
72 *WRKY7*, *PMR6* and *FEI2* (Wang et al. 2017b). Likewise, the oomycete *Hyaloperonospora*
73 *arabidopsisidis* produces 133 AGO1-bound sRNAs, which are crucial for virulence (Dunker et
74 al. 2020), and microRNA-like RNA1 (*Pst*-milR1) from the yellow rust causing biotrophic
75 basidiomycete *Puccinia striiformis* f.sp. *tritici* (*Pst*) reduced expression of the defence gene

76 *Pathogenesis-related 2 (PR2)* in wheat (*Triticum aestivum*) (Wang et al 2017a). Notably, when
77 comparing sRNA in the leaf rust fungus *Puccinia triticina* (*Pt*), 38 *Pt*-sRNAs were homologous
78 to sRNAs previously identified in *Pst* (Dubey et al. 2019; Mueth et al. 2015), hinting to the
79 possibility that sRNA effectors are conserved among related fungal species as it is known for
80 plant miRNAs (Reinhart et al. 2002, Jones-Rhoades 2012). One group of conserved sRNAs
81 with putative effector function are transfer RNA (tRNA)-derived fragments (tRFs). Bacterial
82 tRFs play a role in the symbiotic interaction between soybean (*Glycine max*) and its nitrogen
83 fixing symbiont *Bradyrhizobium japonicum* during root nodulation (Ren et al. 2019). Similarly,
84 the protozoan pathogen *Trypanosoma cruzi* secretes tRF-containing microvesicles resulting in
85 gene expression changes in mammalian host cells (Garcia-Silva et al. 2014).

86 Fungal species of the genus *Fusarium* belong to the most devastating pathogens of cereals
87 causing Fusarium head blight and crown rot (Dean et al., 2012), and contaminate the grain with
88 mycotoxins such as the B group trichothecenes deoxynivalenol (DON), nivalenol (NIV), and
89 their acetylated derivatives (3A-DON, 15A-DON, and 4A-NIV) (Desjardins et al., 1993; Jansen
90 et al., 2005; Ilgen et al., 2009). Viability, aggressiveness, and virulence of Fusaria are under
91 control of the RNAi machinery (Kim et al., 2015; Son et al., 2017; Gaffar et al. 2019).

92 To test the possibility of *Fg* producing sRNAs that exert effector function and promote
93 pathogenesis, we predicted *Fg*-sRNA targets in two Poaceae hosts, *Hordeum vulgare* (*Hv*) and
94 *Brachypodium distachyon* (*Bd*). Among the many predicted plant targets of fungal sRNA, three
95 fungal tRFs had sequence similarity to *BRI1-associated receptor kinase 1 (BAK1)* homologs
96 and *EOL1 (Ethylene overproducer 1-like 1)* in *Hv* and *Bd*. Upon infection with the wild type
97 *Fg* strain, transcripts of genes were strongly reduced, while in contrast they were increased
98 upon infection with *Fg* strains compromised for DCL activity. Degradation products of target
99 mRNAs were detected by RNA-ligase-mediated Rapid Amplification of cDNA Ends (RLM-

100 RACE), supporting the possibility that DCL-dependent sRNAs play a critical role in the
101 interaction of *Fg* with cereal hosts.

102

103 **Results**

104 ***Fusarium graminearum* DCL mutants are less virulent on barley and *Brachypodium* leaves**

105 The *Fusarium* mutant IFA65-*dcl1* is partially impaired in infecting wheat ears and causing
106 *Fusarium* head blight (Gaffar et al. 2019). We extended this earlier study to examine the effects
107 of impaired DCL activity on the plant defence response. To this end, two to three-week-old
108 detached second leaves of barley cv. Golden Promise (GP) were drop-inoculated with 3 µl of a
109 solution containing 150,000 conidia per ml of *Fg* isolate PH1 or the double knock-out (dKO)
110 mutant PH1-*dcl1/2*. At five days post inoculation (dpi), the dKO mutant produced significantly
111 smaller necrotic lesions (30%; median (MED) (27%); interquartile range (IQR) (47%)
112 Wilcoxon rank sum test, p=0.007) than the wild type (wt) strain, confirming that DCL activity
113 is required for full *Fg* virulence (Fig. 1A).

114 Next, we determined the virulence of *DCL* mutants on *Brachypodium distachyon* Bd21-3. Flag
115 leaves of three-week-old plants were inoculated with 10 µl (10,000 conidia ml⁻¹) of fungal
116 inoculum. Single mutants IFA65-*dcl1* and IFA65-*dcl2* produced significantly smaller lesions
117 than the wt (IFA65-*dcl1*, 54%; MED (42%); IQR (56%) and IFA65-*dcl2*, 66%; MED (60%);
118 IQR (58%); pairwise Wilcoxon rank sum test; Bonferroni corrected; p<0.005) (Fig. 1B). These
119 results substantiate the earlier findings (Gaffar et al. 2019) that fungal DCL activity is required
120 for *Fusarium* virulence on graminaceous plants.

121 ***Selection of sRNAs with sequence homology to plant genes***

122 We looked for interaction-related fungal sRNAs that potentially could interfere with plant gene
123 expression by sequence-specific silencing. To this end, a previously published sRNA
124 sequencing data set of *Fg* sRNAs from an axenic IFA65 culture (Koch et al. 2016) was analysed
125 for sRNAs with sequence complementarity to barley genes. In order to identify a wide range of
126 potential targets, we applied only two selection criteria, namely *i.* size (21-24 nt) and *ii.* a

127 minimal number of reads (at least 400 reads in the dataset). From a total of 35,997,924 raw
128 reads, 5,462,596 (comprising 589,943 unique sequences) had a length of 21-24 nt. From the
129 unique sequences, 1,987 had at least 400 reads. Since the IFA65 genome has not been
130 sequenced, we used the published genome information of *Fg* strain PH1 (genome assembly
131 ASM24013v3 from International Gibberella zeae Genomics Consortium: GCA_000240135.3)
132 for further analysis. The majority of the 1,987 unique sRNAs mapped to rRNA (64.4%) and
133 intergenic regions (21.6%), while 3.7% and 2.4% mapped to protein coding genes and tRNAs,
134 respectively, and 7.8% did not perfectly match the reference genome (Fig. S1). According to
135 the TAPIR algorithm, the 1,987 sequences overall matched mRNAs of 2,492 genes (*Hordeum*
136 *vulgare* IBSC PGSB v2 reference genome; Mascher et al., 2017) sufficiently close according
137 to the refined target prediction criteria suggested by Srivastava et al. (2014). GO-enrichment
138 analysis revealed an enrichment in functions of nucleotide binding, motor activity and kinase
139 activity and processes such as transport and localization (Fig. S2). Most of the 14,156
140 transcripts of the 2,492 target genes, which we nominated as potential sRNA targets, showed
141 partially homologous sequences to more than one sRNA accounting for a total of 17,275 unique
142 pairs of potential target gene - sRNA combinations. Target prediction results are presented with
143 only one transcript (splice variant) for every combination (Tab. S2). Of note, merely 101 out of
144 the 1,987 sRNAs had no predicted target among the total number of 248,391 plant mRNAs in
145 the IBSC_PGSB_v2 annotation.

146

147 ***Barley immune genes accumulate to higher levels in PH1-dcl1/2-infected leaves***

148 From the set of 2,492 barley genes with partial sequence homology to *Fg* sRNAs, we selected
149 16 genes for further analysis, based on an educated guess that they are potentially involved in
150 biotic stress reactions during plant-fungal interaction (Tab. 1). When tested with RT-qPCR, we
151 found eight genes significantly higher expressed (Student's *t*-test, paired, **p*<0.1, ***p*<0.05,

152 ***p<0.01) in leaves infected with PH1-*dcl1/2* vs. PH1 (Fig. 2). Among these genes are three
153 that encode proteins involved in the regulation of either ethylene (ET) (Ethylene overproducer
154 1-like 1, *HvEOL1*) or auxin responses (Auxin response transcription factors *HvARF10* and
155 *HvARF19*) and three kinases, of which Somatic embryogenesis receptor-like kinase 2
156 (*HvSERK2*) and BRI1-associated receptor kinase 1 (*HvBAK1*) are likely involved in
157 recognition of microbe-associated molecular patterns (MAMPs). Moreover, genes encoding the
158 plastid kinase 2-Phosphoglycolate phosphatase 2 (*HvPGLP2*), Resurrection 1 (*HvRST1*, with a
159 rather elusive function in cuticle formation and embryo development), and the histone-lysine
160 N-methyltransferase Su(var)3-9-related protein 5 (*HvSUVR5*, involved in transcriptional gene
161 silencing) were also strongly expressed.

162 ***HvEOL1* transcripts also accumulate to higher levels upon DCL knock-down via spray
163 induced gene silencing (SIGS)**

164 We selected *HvEOL1* (*HORVU2Hr1G119180*), which is a homologue of *At Ethylene*
165 *overproducer1* (*AtETO1*; *AT4GO2680.1*), for further analysis. The alignment of the respective
166 protein sequences of *HvEOL1* and *AtETO1* is shown in Fig. S3. *AtETO1* negatively regulates
167 ethylene synthesis in *At* by ubiquitination of type-2 1-Aminocyclopropane-1-carboxylate
168 synthases (ACSs), which produce the direct precursor of ET (Christians et al. 2009) (Fig. S4).
169 Upon inoculation with PH1, *HvEOL1* expression was reduced by 23% as compared to non-
170 inoculated barley leaves. In contrast, *HvEOL1* was strongly expressed in PH1-*dcl1/2*-infected
171 leaves well above the levels measured either in PH1- or mock-inoculated leaves. To further
172 substantiate that *HvEOL1* expression is under the control of fungal DCL activity, we used a
173 SIGS strategy (Koch et al. 2016) to partially inactivate DCL function in *Fg*. Two-week-old
174 detached leaves were sprayed with 20 ng μ l⁻¹ of dsRNA-*dcl1/2*, a 1,782 nt long dsRNA derived
175 from the sequences of IFA65-*DCL1* and IFA65-*DCL2* (Fig. S5A,B). 48 h later, leaves were
176 drop inoculated with conidia and harvested at 5 dpi. Consistent with the expectation that

177 exogenous dsRNA-*dcl1/2* mediates silencing of their *DCL* gene targets, RT-qPCR analysis
178 confirmed that the transcript levels of IFA65-*DCL1* and IFA65-*DCL2* were reduced to 22%
179 and 42%, respectively, as compared with the Tris-EDTA (TE) buffer control (Fig. 3A). In
180 accordance with the results obtained with strain PH1, *HvEOL1* was also significantly ($p=0.029$,
181 Student's *t*-test (Δct), one sided, paired) downregulated in response to IFA65 infection
182 compared to mock controls treated with 0.02% Tween20 (Fig. 3B). In contrast, however, when
183 leaves were sprayed with dsRNA-*dcl1/2* prior to inoculation with IFA65, *HvEOL1* transcripts
184 strongly accumulated in comparison with the inoculated leaves sprayed with TE buffer (Fig.
185 3C).

186

187 ***Fungal sRNAs targeting HvBAK1, HvEOL1, and HvSERK2 mRNAs are less abundant in***
188 ***PH1-dcl1/2 vs. PH1***

189 To detect the abundance of specific *Fg*-sRNAs, originally identified by sequencing of axenic
190 IFA65 mycelium, in PH1-infected plant tissue, we performed reverse transcription stem-loop
191 qPCR (Chen et al. 2005). From the above defined pool of 1,987 *Fg*-sRNAs (axenic, 21-24 nt
192 length, ≥ 400 reads) 22 unique sRNAs matched partial sequences of *HvEOL1*, 10 matched
193 *HvBAK1* and five matched *HvSERK2*. *Fg*-sRNA-1921 matched all three genes and *Fg*-sRNA-
194 321 matched both *HvEOL1* and *HvBAK1* (Tab. 2; Tab. S2). These two sRNAs show high
195 sequence similarities among each other. To identify their origin, they were aligned to the
196 genomic sequence of strain PH1 (GCA_900044135.1). We found that they match the gene
197 *Fg_CS3005_tRNA-Gly-GCC-1-9* encoding tRNA-Gly for the anticodon GCC. Of note, a larger
198 cluster of 27 overlapping tRNA-derived fragments (tRFs) with more than 50 reads matching
199 the tRNA-Gly gene sequence were detected (Fig. S6). To assess differential accumulation of
200 tRFs from the *Fg_CS3005_tRNA-Gly-GCC-1-9* cluster in leaves infected with PH1 vs. PH1-
201 *dcl1/2*, sRNAs were reverse transcribed using hairpin-priming followed by qPCR amplification

202 (Chen et al. 2005). For this analysis, we chose *Fg*-sRNA-321, the most abundant tRF from this
203 cluster, along with *Fg*-sRNA-1921, which targets all three GOIs and an additional tRF (*Fg*-
204 sRNA-6717), which targets *HvEOL1* and *HvBAK1* (see Tab. 2) to assess the sensitivity of the
205 assay. In the initial IFA65 dataset the *Fg*-sRNA-321 had a read count of 2,106, *Fg*-sRNA-1921
206 had 416 and *Fg*-sRNA-6717 had 86 from a total of more than 5 million reads (Fig. S7). This
207 equals 386 reads per million (rpm) for *Fg*-sRNA-321, while in average unique reads had only
208 1.7 rpm. Using TAPIR (Bonnet et al. 2010), we also calculated the target score values for all
209 three tRFs, which is a measure for the similarity between sRNA and target. A high value refers
210 to more dissimilarities. Mismatches (MMs) increase the score by one point and G-U pairs by
211 0.5 points. These values are doubled if the respective MMs and G-U pairs are located between
212 the second and 12th nt of the sRNA (5'-3') because a high similarity in the seed region of the
213 sRNA is especially important for RNAi (Mallory et al. 2004). *Fg*-sRNA-321 has a score of 4.5
214 for *HvBAK1* and *HvEOL1*, *Fg*-sRNA-1921 has a score of 4, 3.5 and 6 for *HvBAK1*, *HvEOL1*
215 and *HvSERK2*, respectively and *Fg*-sRNA-6717 has a score of 5.5 and 4.5 with *HvBAK1* and
216 *HvEOL1*. In plants other than Arabidopsis, such as wheat and rice, a score cut off at 4 or 6
217 points lead to a precision of 82% or 62% and a recall of known interactions of 39% or 58%
218 respectively according to Srivastava et al. (2014).

219 All three fungal tRFs were detected in infected leaves, while they could not be found in
220 uninfected leaves (Fig. 4). Significantly lower amounts of *Fg*-sRNA-1921 (59%), *Fg*-sRNA-
221 321 (56%), and *Fg*-sRNA-6717 (60%) were detected in PH1-*dcl1/2* vs. PH1-infected leaves
222 (Fig. 4), showing that their biogenesis is DCL-dependent.

223

224 ***Fg*-sRNA-321 and *Fg*-sRNA-1921 also match SERK2 in *Brachypodium distachyon* Bd21-3**

225 Next, we assessed the possibility that *Fg*-sRNA-321, *Fg*-sRNA-1921 and *Fg*-sRNA-6717 also
226 have sequence homologies in *At* and the model grass *Bd*. Target prediction with the TAPIR

227 algorithm using the optimised parameters for *At* (score=4; mfe=0.7), could not detect potential
228 targets in *At* ecotype Col-0. In contrast, these three tRFs matched the sequence of *Brachypodium*
229 *somatic embryogenesis receptor-like kinase 2* (*BdSERK2*) in Bd21-3 with a score of 3.5, 3 and
230 5.5, respectively (Tab. 2). We examined the expression pattern of *BdSERK2* in response to leaf
231 infection: *BdSERK2* is relatively weakly expressed in uninfected plants and is not further
232 suppressed after inoculation with PH1, whereas it strongly accumulated in PH1-*dcl1/2* vs. PH1-
233 infected Bd21-3 (Fig. 5). This finding further supports the possibility that the control of *SERK2*
234 expression via RNAi pathways by *Fg* is evolutionary conserved in cereals.

235 ***RLM-RACE shows infection specific degradation products of HvBAK1, HvEOL1 and***
236 ***HvSERK2***

237 We assessed the sRNA-mediated cleavage of *HvBAK1*, *HvEOL1*, and *HvSERK2* mRNAs, using
238 a modified RNA-ligase-mediated Rapid Amplification of cDNA Ends (RLM-RACE) assay.
239 Control samples were prepared both from uninfected tissue and from infected tissue without
240 the reverse transcription step (no-RT control) and PCR products were visualized on an EtBr-
241 Agarose gel. In these no-RT controls no amplification was visible.

242 For each gene more than one infection-specific product was amplified (blue and red arrows),
243 which could not be amplified from the uninfected sample (Fig. 6D-F). We excised three bands
244 (red arrows) of the expected size for a *Fg*-sRNA-1921 guided cleavage of *HvBAK1* (Fig. 6D)
245 and one band for *HvEOL1* (Fig. 6E) and *HvSERK2* (Fig. 6F) and cloned them into the pGEM-
246 T easy vector system. According to the IBSC_PGSB_v2 assembly, *HvBAK1* has splice variants,
247 which could produce cleavage products of different lengths while for *HvSERK2* and *HvEOL1*
248 there are no introns between sRNA target site and primer. From each band, five colonies were
249 picked and for 23 of these extracted plasmids sequences were obtained. 16 sequences perfectly
250 matched the reference genome, four with one MM and one with four MMs. Two sequences did
251 not match the reference sufficiently enough to be aligned over the full length. The observed

252 cleavage products are close to but do not match the canonical slice site between the 10th and
253 11th nt of *Fg*-sRNA-1921 and *Fg*-sRNA-321 (Fig. 6A-C).

254

255 ***Total sRNAs predicted to target a gene in barley are correlated with the de-repression***
256 ***strength***

257 Not all potential targets of *Fg*-sRNAs are downregulated nor do all potential targets show a re-
258 accumulation upon infection with PH1-*dcl1/2* (see Fig. 3). To address this bias we conducted a
259 more focused target prediction exclusively for the 16 genes already tested by RT-qPCR. This
260 allowed a much more thorough search, where targets for all sRNAs with at least two reads were
261 predicted. From these 136,825 unique sRNAs (axenic, 21-24 nt length, ≥ 2 reads) representing
262 4,997,312 reads of the total of 5,439,472 reads 21-24 nt in length, 5,052 have potential target
263 sequences in the 16 mRNA sequences selected for further investigation in the *Hordeum vulgare*
264 cv. GP assembly GCA_902500625. An additional filter step was employed to select for sRNAs
265 with a maximum of one MM to the PH1 assemblies GCA_000240135.3 and
266 GCA_900044135.1. Subsequently, sRNAs with up to one MM to *Fg*-rRNAs were removed
267 leaving a total of 1,212 sRNAs with 1,311 potential sRNA-mRNA interactions representing
268 85,531 reads in the analysis.

269 To establish a correlation of the observed resurgence of potential target genes and targeting
270 sRNAs, we analysed the *DCL*-dependent expression change using $\Delta\Delta\Delta ct$ values. To compare
271 the expression of a GOI in two samples, the difference between the ct-values for a reference
272 gene and the GOI can be determined (Δct) and to calculate the expression difference between
273 the control and treated sample the difference between the Δct values ($\Delta\Delta ct$) is calculated. We
274 further defined the $\Delta\Delta\Delta ct$ value as the difference between the $\Delta\Delta ct$ values for a GOI in PH1
275 and PH1-*dcl1/2*-infected samples. From this follows a gene with a negative $\Delta\Delta\Delta ct$ value shows
276 a higher transcript accumulation during the infection with a fungal strain with compromised

277 DCL function and the stronger the accumulation the lower this $\Delta\Delta\Delta ct$ value is. We found a
278 negative correlation between the $\Delta\Delta\Delta ct$ value and the number of total sRNAs targeting a GOI
279 (Fig. 7). This correlation becomes more significant if a lower score cut-off for the target
280 prediction is chosen until the cut-off of four. The most significant correlation is for all predicted
281 interactions with a score equal or below four with a p-value of 0.011 (t-test) (Fig. 7B). The p-
282 value for a correlation with a cut-off of five (Fig. 7C) is 0.033 (t-test) and six (Fig. 7D) is 0.094
283 (t-test), while a score cut-off of 3 leads to a situation, where there are no predicted sRNA
284 interactions for all genes except for three (Fig. 7A).

285

286

287 **Discussion**

288 We show here that full virulence of the ascomycete fungus *Fusarium graminearum* on
289 graminaceous leaves depends on the activity of fungal DCLs. The dKO mutant PH1-*dcl1/2* is
290 less virulent on barley and the two single KO mutants IFA65-*dcl1* and IFA65-*dcl2* also are less
291 virulent on *Brachypodium*. These results are consistent with our previous studies showing that
292 knock-down or SIGS-mediated silencing of *Fusarium DCLs* and other components of the RNAi
293 machinery reduced the virulence of the fungus on barley (Gaffar et al. 2019; Werner et al.
294 2020). DCL enzymes are key components of the fungal RNAi machinery required for the
295 biogenesis of sRNAs directing silencing of sequence-complementary endogenous and foreign
296 genes (Lax et al. 2020). The latter case involves DCL-dependent pathogen-derived sRNAs that
297 target plant defense genes to increase virulence as shown for *Botrytis cinerea* (Weiberg et al.
298 2013; Wang et al. 2017b), *Puccinia striiformis* (Wang et al. 2017a) and *Magnaporthe oryzae*
299 (Zanini et al. 2021).

300 In the present work we found potential host target genes for fungal small RNAs (*Fg*-sRNAs)
301 that were differentially regulated in response to plant infection with *Fg* wt vs. *Fg* DCL KO
302 mutants, and the same effect was confirmed when DCLs were silenced by SIGS. This suggests
303 a scenario in which impaired DCL function resulting in reduced fungal RNAi activity ultimately
304 leads to de-repression of host target genes. Of note, target gene de-repression was also observed
305 when the transcript was not significantly downregulated by the wt fungus during infection. This
306 could be explained by a mutually neutralizing effect in which *Fg*-sRNAs continuously target
307 genes for silencing, while concurrent plant immune responses are a trigger for up-regulation.
308 Thus, one can speculate that these described effects reflect an abrogation of host-favouring
309 upregulation by host immunity vs. pathogen-favouring downregulation by sRNA effectors.

310 We identified three tRFs predicted to target *BdSERK2*, *HvBAK1*, *HvEOL1* and *HvSERK2*.
311 Unexpectedly, these tRFs are partially DCL-dependent, with a reduced abundance by more than

312 50% during infections with the dKO mutant PH1-*dcl1/2* vs. wt PH1 based on fungal biomass.
313 Current knowledge of tRFs in fungi and oomycetes suggests that their silencing activity is
314 independent of DCL, as shown for *Sclerotinia sclerotiorum* (Lee Marzano et al. 2019) and
315 *Phytophthora infestans*, where the production is partially dependent on AGO (Åsman et al.
316 2014). Furthermore, analysis of tRFs in *Cryptococcus* spp. revealed a RNAi-independent
317 generation of tRFs and possible compensatory effects in an RNAi-deficient genotype (Streit et
318 al. 2021). Interestingly however, the tRFs *Fg*-sRNA-321, *Fg*-sRNA-1921 and *Fg*-sRNA-6717
319 are neither 5'- or 3' tRNA halves nor do they belong to any of the described tRF-1, tRF-2, tRF-4
320 or tRF-5 classes (Kumar et al. 2016a) applied by the tRFtarget database for animals, yeast
321 (*Schizosaccharomyces pombe*) and the bacterium *Rhodobacter sphaeroides* (Li et al. 2021).
322 When following the classification of the tsRBase used for all eukaryotic kingdoms and bacteria
323 (Zuo et al. 2021), the three tRFs are classified as internal tRFs based on the origin within the
324 mature tRNA. Interestingly, there are tRFs found in *Phytophthora sojae* starting in the
325 anticodon loop and ending in the T loop of mature tRNAs (Wang et al. 2016b), which resembles
326 the *Fg*-sRNA tRFs (Fig. S8).

327 We observed several infection-specific degradation products of the predicted host target genes
328 *HvBAK1*, *HvEOL1* and *HvSERK2* for tRFs *Fg*-sRNA-321, *Fg*-sRNA-1921 and *Fg*-sRNA-
329 6717. However, cleavage occurred outside the canonical miRNA cleavage site as defined by
330 Mallory et al. (2004), though these genes are partially silenced during infection and silencing
331 is apparently abolished upon infection with the DCL dKO mutant. While the canonical cleavage
332 site for miRNA-directed cleavage in *At* is well defined, the tRF-directed cleavage observed by
333 5' RACE of transposable elements in *At* (Martinez et al. 2017) and of defence-related genes
334 during the infection of black pepper (*Piper nigrum*) with *Phytophthora capsici* (Asha & Soniya
335 2016) was found outside of the canonical cleavage site. Additionally, the identification of
336 sRNA-directed cleavage sites in barley often leads to divergent findings. Ferdous et al. (2017)
337 predicted ~400 target genes for 11 presumably drought responsive miRNAs and found cleavage

338 products for 15 targets overlapping the respective miRNAs alignment through degradome
339 sequencing in the two barley cultivars Golden Promise (GP) and Pallas. From these confirmed
340 targets, 13 were cleaved at the canonical 10th-11th nt site, one was cleaved at 19th-20th nt, and
341 one at the 5th-6th nt. Hackenberg et al. (2015) predicted 97 target genes of drought responsive
342 miRNAs in GP and identified eight targets through degradome sequencing, which were all
343 cleaved outside of the 10th-11th nt site. Thus, both studies suggest the presence of non-canonical
344 miRNA directed cleavage. Of note, both studies relied on the same degradome sequencing
345 dataset from GP, while Ferdous et al. also observed non-canonical cleavage in an independent
346 Pallas dataset. Moreover, in a study performed by Curaba et al. (2012) 96 target genes of GP
347 for miRNAs involved in seed development and germination were identified by degradome
348 sequencing and only 16 targets were cleaved exclusively at the 10th-11th nt site, while the other
349 targets were sporadically cleaved with an offset (24) and 56 were cleaved in majority in a non-
350 canonical site. Finally, Deng et al. (2015) identify in the barley cultivar Morex 65 target genes
351 of 39 miRNAs, and for only 32% of the identified targets the canonical 10th-11th nt cleavage
352 product was the major degradome product. Together these studies highlight the challenges in
353 the identification of cleavage sites of sRNAs in barley and cleavage sites of tRFs in plants. The
354 absence of canonical cleavage products for tRFs does therefore not exclude the tRF-directed
355 cleavage of *HvBAK1*, *HvEOL1* and *HvSERK2*.

356 We found that 22 *Fg*-sRNAs target *HvEOL1*, a putative negative regulator of ET biosynthesis
357 in barley. In *Arabidopsis thaliana* the EOL1 homolog *AtETO1* acts together with *AtEOL1* and
358 *AtETO1*-like 2 (EOL2) in directing the ubiquitination and subsequent degradation of type-2 1-
359 aminocyclopropane-1-carboxylate synthase (ACS) proteins (e.g. ET overproducer 2 (ETO2))
360 (Christians et al. 2009; Yoshida et al. 2006). ET is a gaseous plant hormone that plays an
361 important role in regulating plant growth and development, and is critical for pathogen
362 interaction and abiotic stresses (Abeles et al. 1992). Generally, ET acts synergistically with
363 jasmonate (JA) in the defence response against necrotrophic pathogens and this ET/JA response

364 has antagonistic effects on salicylic acid (SA) signalling against biotrophic pathogens. Yet in
365 low amounts JA and SA act synergistically (Glazebrook 2005; Li et al. 2019). Therefore,
366 controlling both ET biosynthesis and ET signalling is crucial for plants. Towards this, plants
367 have evolved complex mechanisms that allow tight regulation of ET pathways e.g. at the level
368 of (i) ET production mainly by regulating ACS gene family members, (ii) ET perception
369 through constitutive triple response 1 (CTR1)-mediated inhibition of positive regulator ET
370 insensitive 2 (EIN2) (Kieber et al. 1993, Alonso et al. 1999), and (iii) expression of ET-
371 responsive TFs (e.g. ET response factor 1 (ERF1)) via EBF-mediated degradation of ET
372 insensitive 3 (EIN3) (Potuschak et al. 2003) (Fig. S4). According to the anticipated role of ET
373 in the plant response to necrotrophic pathogens, such as *Fg*, targeting negative regulators of ET
374 synthesis such as *HvEOL1* would be detrimental to *Fg* colonization. Of note, our findings are
375 consistent with previous results demonstrating that *Fg* exploits ET signalling to enhance
376 colonization of Arabidopsis, wheat and barley (Chen et al. 2009), supposedly through an
377 increase in DON-induced cell death through ET. These findings further challenge the role of
378 ET in defence against necrotrophic pathogens. Strikingly, the authors showed that in
379 Arabidopsis ET overproducing mutants (ETO1 and ETO2) and a negative regulator of ET
380 signalling (CTR1) are more susceptible to *Fg*, while *At* mutants in ET perception (ETR1) and
381 signalling (EIN2 and EIN3) are resistant. These findings were confirmed by the direct
382 application of ET during the infection of wheat and barley, which lead to increased
383 susceptibility to *Fg*. Based on these findings, we suggest that negative regulators of ET are
384 efficient targets for sRNA-directed manipulation of host immunity by *Fg*.

385 The bacterial pathogen *Pseudomonas syringae* secretes two effector molecules, AvrPto and
386 AvrPtoB, into host plants. These effectors interact with the receptor-like kinase BRI1-
387 associated receptor kinase 1 (BAK1), also known as SERK3, thereby preventing the recognition
388 of various MAMPs through the association of BAK1 with pattern recognition receptors (PRRs)
389 such as flagellin-sensitive 2 (FLS2) and Ef-Tu receptor (EFR) (Shan et al. 2008). We observed

390 *FgDCL*-dependent silencing of the cereal BAK1 homologs *HvBAK1*, *HvSERK2* and *BdSERK2*.
391 While these genes have a higher similarity to *AtSERK2* than to *AtSERK3* (*AtBAK1*), they still
392 are among the closest homologs to *AtBAK1* found in cereals (Fig. S9). It is tempting to speculate
393 that further experiments will uncover additional hubs that are targeted both by protein and
394 sRNA effectors.

395

396 **Conclusion**

397

398 Our data show that in the necrotrophic ascomycete *Fusarium graminearum* gene silencing by
399 RNAi shapes its ability to cause disease, which is consistent with earlier results on the
400 significance of the RNAi machinery in *Fg* (Gaffar et al. 2019; Son et al. 2017). Pathogenicity
401 relies on DICER-like (DCL)-dependent sRNAs that were identified as potential candidates for
402 fungal effectors targeting defence genes in two Poaceae hosts, barley and *Brachypodium*. We
403 identified *Fg*-sRNAs with sequence homology to host genes that were down-regulated by *Fg*
404 during plant colonisation, while they were expressed above their level in healthy plants after
405 infection with a DCL dKO mutant. In PH1-*dcl1/2* vs. PH1 the strength of target gene
406 accumulation correlated with the abundance of the corresponding *Fg*-sRNA. Our data hint to
407 the possibility that three DCL-dependent tRFs with sequence homology to immunity-related
408 *Ethylene overproducer 1-like 1* (*HvEOL1*) and three Poaceae orthologues of *Arabidopsis*
409 *thaliana BRI1-associated receptor kinase 1* (*HvBAK1*, *HvSERK2* and *BdSERK2*) contribute to
410 fungal virulence via targeted gene silencing.

411

412 **Experimental procedures**

413 **Plants, fungi and plant infection**

414 *Fusarium graminearum* (*Fg*) strain PH1, the double knock-out (dKO) PH1-*dcl1/2* (Dr. Martin
415 Urban, Rothamsted Research, England), strain IFA65 (IFA, Department for
416 Agrobiotechnology, Tulln, Austria) and single mutants IFA65-*dcl1* and IFA65-*dcl2* (Gaffar et
417 al. 2019) were cultured on synthetic nutrient poor agar (SNA). Preparation of fungal inoculum
418 was performed as described (Koch et al. 2013). *Arabidopsis thaliana* ecotype Col-0 and
419 *Atago1-27* (Morel et al. 2002; Polymorphism:3510706481) were grown in 8 h photoperiod at
420 22°C with 60% relative humidity in a soil - sand mixture (4:1) (Fruhstorfer Type T, Hawita,
421 Germany). For infection, 15 rosette leaves were detached and transferred in square Petri plates
422 containing 1% water-agar. Drop-inoculation of *Arabidopsis* leaves was done with 5 µl of a
423 suspension of 5×10^4 *Fg* conidia ml⁻¹ at two spots per leaf. Infection strength was recorded as
424 infection area (size of chlorotic lesions relative to total leaf area) using the ImageJ software
425 (<https://imagej.nih.gov/ij/>).

426 For infection of barley (*Hordeum vulgare* cv. Golden Promise, GP) and *Brachypodium*
427 *distachyon* (Bd21-3), plants were grown in a 16 h photoperiod at 20°C/18°C day/night and 60%
428 relative humidity in soil (Fruhstorfer Type LD80, Hawita). Ten detached second leaves were
429 transferred into square Petri plates containing 1% water-agar. GP leaves were drop-inoculated
430 with 3 µl of 1.5×10^5 conidia ml⁻¹ conidia suspension. Bd21-3 leaves were drop-inoculated on
431 two spots with 10 µl of 1×10^4 conidia ml⁻¹ conidia suspension. Infection strength was measured
432 with the PlantCV v2 software package (<https://plantcv.danforthcenter.org/>) by training a
433 machine learning algorithm to recognize necrotic lesions. For gene expression analysis, a
434 suspension of 5×10^4 *Fg* conidia ml⁻¹ was used and leaves were either inoculated on 3 spots
435 with 20 µl (barley) or on 2 spots with 10 µl (*Brachypodium*), respectively and experiments were
436 evaluated 5 days post inoculation (dpi).

437 ***Fungal transcript analysis***

438 Gene expression analysis was performed using reverse transcription quantitative PCR (RT-
439 qPCR). RNA extraction was performed with GENEzol reagent (Geneaid) following the
440 manufacturer's instructions. Freshly extracted mRNA was used for cDNA synthesis using
441 qScriptTM cDNA kit (Quantabio). For RT-qPCR, 10 ng of cDNA was used as template in the
442 QuantStudio 5 Real-Time PCR system (Applied Biosystems). Amplifications were performed
443 with 5 µl of SYBR[®] green JumpStart Taq ReadyMix (Sigma-Aldrich) with 5 pmol
444 oligonucleotides. Each sample had three technical repetitions. After an initial activation step at
445 95°C for 5 min, 40 cycles (95°C for 30 sec, 60°C for 30 sec, 72°C for 30 sec) were performed
446 followed by a melt curve analysis (60°C-95°C, 0.075°C/s). Ct values were determined with the
447 QuantStudio design and analysis software supplied with the instrument. Transcript levels were
448 determined via the $2^{-\Delta\Delta C_t}$ method (Livak & Schmittgen 2001) by normalizing the amount of
449 target transcript to the amount of the reference transcript *Elongation factor 1-alpha (EF1-a,*
450 *FGSG_08811)* gene (Tab. S1).

451 ***Plant transcript analysis***

452 Leaves were shock frozen at 5 dpi and RT-qPCR was performed as described above. Reference
453 genes were *Ubiquitin-40S ribosomal protein S27a-3* (HORVU1Hr1G023660) for GP and *Ubi4*
454 (Bradi3g04730) for Bd21-3 according to Chambers et al. (2012) (Tab. S1). Primers were
455 designed using Primer3 v2.4.0 (Untergasser et al. 2012).

456 ***Spray application of dsRNA***

457 Second leaves of 2 to 3-week-old GP were detached and transferred to square Petri plates
458 containing 1% water agar. dsRNA was diluted in 500 µl water to a final concentration of 20 ng
459 µl⁻¹. As control, Tris-EDTA (TE) buffer was diluted in 500 µl water corresponding to the
460 amount used for dilution of the dsRNA. Typical RNA concentration after elution was 500 ng/µl,

461 with 400 μ M Tris-HCL and 40 μ M EDTA in the final dilution. Each plate containing 10
462 detached leaves was evenly sprayed with either dsRNAs or TE buffer with 500 μ l, and
463 subsequently kept at room temperature (Koch et al. 2016). Two days after spraying, leaves were
464 drop-inoculated with three 20 μ l drops of *Fg* suspension containing 5×10^4 conidia ml $^{-1}$. After
465 inoculation, plates were closed and incubated for five days at room temperature.

466 ***Target prediction for sRNAs***

467 RNA was purified and enriched for sRNAs from fungal axenic culture using the mirVana
468 miRNA Isolation Kit (Life Technologies). Indexed sRNA libraries were constructed from these
469 sRNA fractions with the NEBNext Multiplex Small RNA Library Prep Set for Illumina (New
470 England Biolabs) according to the manufacturer's instructions. Reads were trimmed with the
471 cutadapt tool v2.1 (Martin 2011) by removing adapters and retaining reads with a length of 21-
472 24 nt and quality checked with the fastQC tool v0.11.9
473 (<http://www.bioinformatics.babraham.ac.uk/projects/fastqc/>). For Fig. S1 reads were aligned to
474 the *Fg* reference genome (GCF_000240135.3_ASM24013v3) with bowtie2 (Langmead &
475 Salzberg 2012) following a sensitive alignment policy (-D 100, -R 10, -L 19). The aligned reads
476 were assigned to the additional attribute "gene_biotype" with htseq-count (Anders et al. 2015)
477 according to the latest assembly (ftp://ftp.ensemblgenomes.org/pub/release-44/fungi/gff3/fungi_ascomycota3_collection/fusarium_graminearum_gca_000240135).
478 Remaining reads were collapsed with the fastx toolkit v0.0.14 (Hannon 2010) and reads with
480 at least 400 reads were targeted against the IBSC_PGSB_v2 cDNA annotation with the plant
481 miRNA target prediction algorithm TAPIR (Bonnet et al. 2010), following the optimized
482 parameters according to Srivastava et al. (2014). The results of the target prediction were further
483 analysed with RStudio (RStudio Team 2016) and the package biomaRt (Durinck et al. 2005) to
484 find targets associated with stress and immunity associated Gene ontology (GO) terms in the
485 database "plants_mart" from plants.ensembl.org hosted by the EBI (European Bioinformatics

486 Institute) and the Wellcome Trust Sanger Institute. The same method was used for the
487 identification of target genes in *B. distachyon* (GCA_000005505.4) and *A. thaliana*
488 (Araport11).

489 ***Stemloop-RT-qPCR of sRNAs***

490 RNA was extracted and genomic DNA was digested as described above. The sequences of
491 sRNAs found in axenic fungal culture were used to design specific stem loop (SL) primers
492 matching the sRNA over 6 nt at the 3'end. For the primer design, the tool of Adhikari et al.
493 (2013) was used. SL-primers were diluted to 10 pM and folded in a cycler (95°C for 15 min,
494 90°C 5 min, 85°C 5 min, 80°C 5 min, 75°C 1 h, 68°C 1 h, 65°C 1 h, 62°C 1 h, 60°C 3 h). These
495 primers were used for cDNA synthesis (Thermo Scientific RevertAid RT Reverse Transcription
496 Kit) according to manufacturer's instruction with an annealing step at 16°C instead of 25°C and
497 were used in multiplex to target respective fungal sRNAs and barley miRNAs *Hvu-mir159* and
498 *Hvu-mir168* as references. To obtain amplification efficiencies, a mix from all RNAs was
499 diluted in a four step dilution series with a factor of ten and reverse transcribed. Reactions were
500 set up with the highest concentration of 15 ng μ l⁻¹ and the lowest of 15 pg μ l⁻¹ cDNA. All sRNA
501 amplifications showed an efficiency of 80-82% and an R² between 1 and 0.997 except for Fg-
502 sRNA-6717 with an efficiency of 66.4%. For RT-qPCR, 1.5 μ l of 3 ng μ l⁻¹ cDNA was used as
503 template in the QuantStudio 5 Real-Time PCR system (Applied Biosystems). Amplifications
504 were performed with 5 μ l of SYBR® green JumpStart Taq ReadyMix (Sigma-Aldrich) with 1.5
505 pmol or 3 pmol oligonucleotides. Each sample had three technical repetitions. As forward
506 primer the unused nucleotides of the remaining sequence of the sRNA were used, which were
507 extended to achieve optimal melting temperature, and as reverse primer the universal stem loop
508 primer developed by Chen et al. (2005) was used. Relative abundance of the sRNAs was
509 calculated with the $\Delta\Delta$ ct-method with incorporation of amplification efficiencies. sRNAs were

510 normalized against the reference miRNAs Hvu-mir-159a and 168-5p and after this against the
511 fungal biomass measured as *EF1- α* against *HvUBQ* (*HORVUIHr1G023660*).

512 **Statistics**

513 To assess the differential expression of genes via RT-qPCRs the ΔCt values were compared via
514 a one or two sided paired Students *t*-test. Disease symptoms were either compared via Students
515 *t*-test if the data showed a normal distribution in Shapiro-Wilk test or via a Wilcoxon rank sum
516 test.

517 **RLM-RACE**

518 RNA from GP barley infected with *Fg*-IFA65 at 5 dpi and an uninfected control was extracted
519 with the Isolate II plant miRNA kit (Bioline). 1 μg of RNA (>200 nt) of infected, uninfected
520 and a mix of both samples for a –RT-control were assembled. 1 μl of the 5'RACE Adapter [0.3
521 $\mu\text{g}/\mu\text{l}$], 1 μl of the 10x Reaction Buffer, 1 μl of 1mg/ μl BSA, 0.5 μl of T4 RNA Ligase [10U/ μl]
522 (Thermo Scientific) and DEPC-treated water up to 10 μl were prepared and incubated at 37°C
523 for 60 min. Subsequently, the whole reaction was used for reverse transcription (RevertAid
524 Reverse Transcriptase, Thermo Scientific). 10 μl ligation reaction, 1 μl Random Hexamer
525 [100pmol/ μl], 4 μl 5x Reaction Buffer, 0.5 μl RiboLock RNase Inhibitor (Thermo Scientific),
526 2 μl dNTP Mix [10 mM] and 1 μl RevertAid Reverse Transcriptase (or water (–RT control))
527 and 1.5 μl water were mixed and run for 10 min at 25°C, 60 min at 42°C and 10 min at 70°C.
528 Then, a nested hot-start touch-down PCR for each target gene was performed. The primer
529 sequences for the outer (first) and inner (second) PCR are shown in Tab. S1. 5 μl of 10x Buffer
530 B, 1 μl of a dNTP Mix [10 mM], 2 μl MgCl₂ [25 mM], 1 μl Adapter specific Primer [10 pmol
531 μl^{-1}] and 1 μl gene specific primer (GSP) [10 pmol μl^{-1}], 0.6 μl DCS DNA Polymerase (DNA
532 Cloning Service) [5 U/ μl] and 2 μl cDNA or outer PCR reaction and 37.4 μl water were mixed
533 and run at 95°C for 5 min, (95°C for 30 s, 68°C-0.5°C/cycle for 30 s, 72°C for 30 s)*15, (95°C
534 for 30 s, 60°C for 30 s, 72°C for 30 s)*18 and 72°C for 5 min. PCR products were evaluated in

535 a 1.5% agarose gel and bands of the expected size, which were present in the infected but not
536 uninfected samples, were excised. Products were cleaned with the Wizard SV Gel and PCR
537 Clean-Up System (Promega) and cloned with the pGEM-T easy Vector Systems (Promega).
538 For each band, five clones were picked for sequencing. Plasmids from O/N cultures were
539 extracted with the Monarch Plasmid Miniprep Kit (New England Biolabs) and sent for
540 sequencing to LGC genomics.

541 ***Analysis of target genes and targeting sRNAs***

542 After the initial target prediction an additional target prediction for the newly released cultivar
543 specific genome (GCA_902500625) of barley cv. Golden Promise (GP) was conducted.
544 Adapters were removed and reads were collapsed as described before for the target prediction.
545 All sRNA sequences were read with SeqinR (v3.6-1; Charif & Lobry 2007) and stored in a list
546 of SeqFastadna objects. To identify the homologous genes to the already identified targets in
547 GP, the cDNA library was blasted with the command-line blast application (Nucleotide-
548 Nucleotide BLAST 2.6.0+) (Camacho et al. 2009) against the identified target sequences from
549 the IBSC_PGSB_v2 cDNA library with percent identity of 90 and a query coverage of 55% as
550 cut-off values. All sRNAs with at least two reads were written to a file in chunks of 2000 each
551 and ran against each individual target gene with TAPIR via the system2 function in R (R Core
552 Team 2019) in the RStudio software. Results were collected, stored in a data.frame, and further
553 analysed with R. sRNAs identified to target a gene of interest (GOI) were written to a fasta file
554 with SeqinR and blasted against the rRNAs from the assemblies GCA_900044135.1 (*Fg-PH1*),
555 GCA_000240135.3 (*Fg-PH1*) and the *Fusarium* rRNAs from the RNACentral fungal ncRNA
556 dataset (ftp://ftp.ebi.ac.uk/pub/databases/RNACentral/current_release/sequences/by-
557 [database/ensembl_fungi.fasta](http://www.ensembl.org/fungi) (12/Sep/2020)) with the options wordsize=4, perc_identity=95,
558 qcov_hsp_perc=95. All sRNAs matching rRNAs were removed. Thereafter, sRNAs were

559 compared to the *Fg* assemblies GCA_900044135.1 (*Fg*-PH1) and GCA_000240135.3 (*Fg*-
560 PH1) with the same blast strategy and only perfectly matching sRNAs were retained.

561 To derive the relative expression of a GOI between two samples the following formula is used.

562
$$\text{Relative expression}_{GOI} = 2^{-\Delta\Delta ct_{GOI}}$$

563 We further defined the $\Delta\Delta\Delta ct$ value as the difference between the $\Delta\Delta ct$ values for a GOI in PH1
564 and PH1-*dcl1/2*-infected samples.

565
$$\Delta\Delta\Delta ct = \Delta\Delta ct_{PH1-dcl1/2} - \Delta\Delta ct_{PH1}$$

566 This enables the calculation of the re-accumulation between the two samples as follows.

567
$$\text{DCL-dependent resurgence factor} = \frac{\text{Relative expression}_{PH1-dcl1/2}}{\text{Relative expression}_{PH1}} = 2^{-\Delta\Delta\Delta ct_{GOI}}$$

568

569 The sum of all reads and the corresponding $\Delta\Delta\Delta ct$ -value were plotted with ggplot2 (Wickham
570 2016) and a linear regression was added to the plot. To allow a log2-transformation of the plots
571 genes with zero targeting reads were set to one targeting read. The plots were arranged using
572 ggpubr v.0.4.0 (Kassambara 2017).

573 ***GO enrichment analysis***

574 Gene ontology (GO) enrichment analysis was performed via the AgriGO v.2.0 analysis toolkit
575 (Tian 2017) with the standard parameters singular enrichment analysis (SEA).

576 ***Phylogenetic analysis of SERK homologs***

577 Homologs of *HvBAK1* and *HvSERK2* were searched in *At*, *Hv* and *Bd* with biomaRt v.2.40.5
578 (Durinck et al. 2005) and downloaded from the EMBL's European Bioinformatics Institute
579 plants genome page (plants.ensembl.org) in the plants_mart dataset hvulgare_eg_gene
580 (Ensembl Plants Genes v. 50). For these homologs the CDS of all homologs within the

581 respective datasets *athaliana_eg_gene*, *hvulgare_eg_gene* and *bdistachyon_eg_gene* were
582 downloaded. The CDS were subsequently aligned with the muscle algorithm in MEGA7
583 (Kumar et al. 2016b) and a phylogenetic tree was constructed via a bootstrap method with 200
584 iterations.

585 *Acknowledgements*

586 We thank the Salk Institute Genomic Analysis Laboratory for providing the sequence-indexed
587 Arabidopsis TDNA insertion mutants. This work was supported by the Deutsche
588 Forschungsgemeinschaft (Research Unit FOR5116) to KHK.

589

590 ***Supporting Information***

591 ***Fig. S1: Feature mapping of Fg-sRNAs with a read length of 21-24 nt***

592 Reads were trimmed as described earlier and aligned to the PH1 reference genome
593 (GCF_000240135.3_ASM24013v3) with bowtie2 (Langmead & Salzberg 2012).

594 ***Fig. S2: GO-enrichment analysis of all potential targets of Fg-sRNAs with more than 400***
595 ***reads***

596 The plot shows all significantly enriched GO-terms in the target gene set for (A) molecular
597 function and (B) biological process. The analysis was done using agriGo v2.0. Each box
598 contains information regarding one term. GO: indicates the GO accession, in brackets the p-
599 value is stated (Fisher; Yekutieli (FDR)). After the bracket the GO-term description is written
600 followed by the number of genes associated with said term 1. in the gene set and 2. In the
601 background.

602 ***Fig. S3: Alignment of AtETO1 and HvEOL1***

603 Identical amino acids are marked blue and similar amino acids are marked red. The alignment
604 and visualization was done with the msa package for R (Bodenhofer et al. 2015).

605 ***Fig. S4: Regulation of ET synthesis in At***

606 *AtETO1* negatively regulates ethylene (ET) synthesis in *At*. *AtETO1* acts together with *AtEOL1*
607 and *AtETO1*-like 2 (EOL2) in directing the ubiquitination and subsequent degradation of type-2
608 1-aminocyclopropane-1-carboxylate synthase (ACS) proteins (e.g. ET overproducer 2
609 (ETO2)), which produce the direct precursor of ET.

610 ***Fig S5: Sequences of dsRNA-dcl1/2***

611 Coding Sequences (CDS) of the respective *FgDCL* genes with the sequences comprising the
612 dsRNAs marked in red. **A.** *FgDCL1-FGSG_09025* (912 nt long dsRNA-*FgDCL1*). **B.**
613 *FgDCL2-FGSG_04408* (870 nt long dsRNA-*FgDCL2*).

614 **Fig. S6: Position and read count of all tRFs from Fg-tRNA-Gly(GCC)**

615 Alignment position of all *Fg*-sRNAs from axenic culture with more than 50 reads perfectly
616 matching the *Fg*-tRNA-Gly(GCC)-9 gene (*Fusarium graminearum* CS3005-tRNA-Gly-GCC-
617 1-9) colored by read count.

618 **Fig. S7: Abundance of unique Fg-sRNAs in axenic culture of IFA65**

619 A: Histogram of the read count of every unique sRNA. The plot is truncated to make
620 abundances recognizable. Most sRNAs have very low read counts and very few sRNAs have
621 more reads than 3,000. Maximum read count per sRNA is 42,866. B: Violin plot of log2-
622 transformed reads counts untruncated.

623 **Fig. S8: Origin of tRFs in Fg-tRNA-Gly(GCC)**

624 The centroid secondary structure of the *Fg*-tRNA-Gly(GCC) generated on the RNAfold web
625 server (<http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAlign.cgi>) with the origin and
626 alignment of *Fg*-sRNA-321, *Fg*-sRNA-1921 and *Fg*-sRNA-6717. The colors of bases indicate
627 the base pair probabilities.

628 **Fig. S9: Molecular Phylogenetic analysis by Maximum Likelihood method**

629 The evolutionary history was inferred by using the Maximum Likelihood method based on the
630 General Time Reversible model (Nei & Kumar, 2000). The tree with the highest log likelihood
631 (-25430.37) is shown. Initial tree(s) for the heuristic search were obtained automatically by
632 applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using
633 the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with
634 superior log likelihood value. The tree is drawn to scale, with branch lengths measured in the

635 number of substitutions per site. The analysis involved 77 nucleotide sequences. Codon
636 positions included were 1st+2nd+3rd. There were a total of 2427 positions in the final dataset.
637 Evolutionary analyses were conducted in MEGA7 (Kumar et al. 2016b).

638 ***Tab. S1: Primer sequences***

639 Sequences and target accessions for all primers used in the study

640 ***Tab. S2: Target prediction results***

641 Results of the target prediction with the TAPIR algorithm for all *Fg*-sRNAs with more than 400
642 reads

643

644

645 **References**

646 Abeles, F. W. (1992). Roles and physiological effects of ethylene in plant physiology:
647 dormancy, growth, and development. *Ethylene in plant biology*.

648 Adhikari, S., Turner, M., & Subramanian, S. (2013). Hairpin priming is better suited than in
649 vitro polyadenylation to generate cDNA for plant miRNA qPCR. *Molecular plant*, 6(1), 229-
650 231.

651 Alonso, J. M., Hirayama, T., Roman, G., Nourizadeh, S., & Ecker, J. R. (1999). EIN2, a
652 bifunctional transducer of ethylene and stress responses in *Arabidopsis*. *Science*, 284(5423),
653 2148-2152.

654 Anders, S., Pyl, P. T., & Huber, W. (2015). HTSeq—a Python framework to work with high-
655 throughput sequencing data. *Bioinformatics*, 31(2), 166-169.

656 Asha, S., & Soniya, E. V. (2016). Transfer RNA derived small RNAs targeting defense
657 responsive genes are induced during *Phytophthora capsici* infection in black pepper (*Piper*
658 *nigrum* L.). *Frontiers in plant science*, 7, 767.

659 Åsman, A. K., Vetukuri, R. R., Jahan, S. N., Fogelqvist, J., Corcoran, P., Avrova, A. O., ... &
660 Dixelius, C. (2014). Fragmentation of tRNA in *Phytophthora infestans* asexual life cycle stages
661 and during host plant infection. *BMC microbiology*, 14(1), 308.

662 Bodenhofer, U., Bonatesta, E., Horejš-Kainrath, C., & Hochreiter, S. (2015). msa: an R package
663 for multiple sequence alignment. *Bioinformatics*, 31(24), 3997-3999.

664 Bonnet, E., He, Y., Billiau, K., & Van de Peer, Y. (2010). TAPIR, a web server for the
665 prediction of plant microRNA targets, including target mimics. *Bioinformatics*, 26(12), 1566-
666 1568.

667 Cai, Q., He, B., Kogel, K. H., & Jin, H. (2018a). Cross-kingdom RNA trafficking and
668 environmental RNAi—nature's blueprint for modern crop protection strategies. *Current*
669 *opinion in microbiology*, 46, 58-64.

670 Cai, Q., Qiao, L., Wang, M., He, B., Lin, F. M., Palmquist, J., ... & Jin, H. (2018b). Plants send
671 small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes. *Science*,
672 360(6393), 1126-1129.

673 Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., & Madden, T.
674 L. (2009). BLAST+: architecture and applications. *BMC bioinformatics*, 10(1), 1-9.

675 Chambers, J. P., Behpouri, A., Bird, A., & Ng, C. K. (2012). Evaluation of the use of the
676 Polyubiquitin Genes, Ubi4 and Ubi10 as reference genes for expression studies in
677 *Brachypodium distachyon*. *PLoS One*, 7(11), e49372.

678 Charif, D., & Lobry, J. R. (2007). SeqinR 1.0-2: a contributed package to the R project for
679 statistical computing devoted to biological sequences retrieval and analysis. In *Structural*
680 *approaches to sequence evolution* (pp. 207-232). Springer, Berlin, Heidelberg.

681 Chen, C., Ridzon, D. A., Broomer, A. J., Zhou, Z., Lee, D. H., Nguyen, J. T., ... & Guegler, K.
682 J. (2005). Real-time quantification of microRNAs by stem-loop RT-PCR. *Nucleic acids*
683 *research*, 33(20), e179-e179.

684 Chen, X., Steed, A., Travella, S., Keller, B., & Nicholson, P. (2009). *Fusarium graminearum*
685 exploits ethylene signalling to colonize dicotyledonous and monocotyledonous plants. *New*
686 *Phytologist*, 182(4), 975-983.

687 Christians, M. J., Gingerich, D. J., Hansen, M., Binder, B. M., Kieber, J. J., & Vierstra, R. D.
688 (2009). The BTB ubiquitin ligases ETO1, EOL1 and EOL2 act collectively to regulate ethylene
689 biosynthesis in *Arabidopsis* by controlling type-2 ACC synthase levels. *The Plant Journal*,
690 57(2), 332-345.

691 Curaba, J., Spriggs, A., Taylor, J., Li, Z., & Helliwell, C. (2012). miRNA regulation in the early
692 development of barley seed. *BMC plant biology*, 12(1), 1-16.

693 Dean, R., Van Kan, J. A., Pretorius, Z. A., Hammond-Kosack, K. E., Di Pietro, A., Spanu, P.
694 D., ... & Foster, G. D. (2012). The Top 10 fungal pathogens in molecular plant pathology.
695 *Molecular plant pathology*, 13(4), 414-430.

696 Deng, P., Wang, L., Cui, L., Feng, K., Liu, F., Du, X., ... & Weining, S. (2015). Global
697 identification of microRNAs and their targets in barley under salinity stress. *PLoS One*, 10(9),
698 e0137990.

699 Desjardins, A. E., Hohn, T. M., & McCORMICK, S. P. (1993). Trichothecene biosynthesis in
700 Fusarium species: chemistry, genetics, and significance. *Microbiology and Molecular Biology
701 Reviews*, 57(3), 595-604.

702 Dubey, H., Kiran, K., Jaswal, R., Jain, P., Kayastha, A. M., Bhardwaj, S. C., ... & Sharma, T.
703 R. (2019). Discovery and profiling of small RNAs from Puccinia triticina by deep sequencing
704 and identification of their potential targets in wheat. *Functional & integrative genomics*, 19(3),
705 391-407.

706 Dunker, F., Trutzenberg, A., Rothenpieler, J. S., Kuhn, S., Pröls, R., Schreiber, T., ... &
707 Weiberg, A. (2020). Oomycete small RNAs bind to the plant RNA-induced silencing complex
708 for virulence. *Elife*, 9, e56096.

709 Durinck, S., Moreau, Y., Kasprzyk, A., Davis, S., De Moor, B., Brazma, A., & Huber, W.
710 (2005). BioMart and Bioconductor: a powerful link between biological databases and
711 microarray data analysis. *Bioinformatics*, 21(16), 3439-3440.

712 Ferdous, J., Sanchez-Ferrero, J. C., Langridge, P., Milne, L., Chowdhury, J., Brien, C., &
713 Gaffar, F. Y., & Koch, A. (2019). Catch me if you can! RNA silencing-based improvement of
714 antiviral plant immunity. *Viruses*, 11(7), 673.

715 Gaffar FY, Imani J, Karlovsky P, Koch A, Kogel KH (2019) Different components of the RNAi
716 machinery are required for conidiation, ascosporogenesis, virulence, DON production and
717 fungal inhibition by exogenous dsRNA in the Head Blight pathogen *Fusarium graminearum*.
718 *Front. Microbiol* doi: 10.3389/fmicb.2019.01662.

719 Garcia-Silva, M. R., Cabrera-Cabrera, F., Cura das Neves, R. F., Souto-Padrón, T., de Souza,
720 W., & Cayota, A. (2014). Gene expression changes induced by *Trypanosoma cruzi* shed
721 microvesicles in mammalian host cells: relevance of tRNA-derived halves. *BioMed research
722 international*, 2014.

723 Glazebrook, J. (2005). Contrasting mechanisms of defense against biotrophic and necrotrophic
724 pathogens. *Annu. Rev. Phytopathol.*, 43, 205-227.

725 Guo, Q., Liu, Q., Smith, N.A., Liang, G., & Wang, M.B. (2016). RNA Silencing in plants:
726 mechanisms, technologies and applications in horticultural crops. *Current Genomics*, 17, 476–
727 489.

728 Hannon, G. "Fastx-toolkit." FASTQ/A Short-reads Preprocessing Tools (2010)

729 Hackenberg, M., Gustafson, P., Langridge, P., & Shi, B. J. (2015). Differential expression of
730 micro RNA s and other small RNA s in barley between water and drought conditions. *Plant
731 biotechnology journal*, 13(1), 2-13.

732 Head, G. P., Carroll, M. W., Evans, S. P., Rule, D. M., Willse, A. R., Clark, T. L., ... & Meinke,
733 L. J. (2017). Evaluation of SmartStax and SmartStax PRO maize against western corn rootworm
734 and northern corn rootworm: efficacy and resistance management. *Pest management science*,
735 73(9), 1883-1899.

736 Ilgen, P., Hadeler, B., Maier, F. J., & Schäfer, W. (2009). Developing kernel and rachis node
737 induce the trichothecene pathway of *Fusarium graminearum* during wheat head infection.
738 *Molecular plant-microbe interactions*, 22(8), 899-908.

739 Jansen, C., Von Wettstein, D., Schäfer, W., Kogel, K. H., Felk, A., & Maier, F. J. (2005).

740 Infection patterns in barley and wheat spikes inoculated with wild-type and trichodiene synthase

741 gene disrupted *Fusarium graminearum*. *Proceedings of the National Academy of Sciences*,

742 102(46), 16892-16897.

743 Jones-Rhoades, M. W. (2012). Conservation and divergence in plant microRNAs. *Plant*

744 *molecular biology*, 80(1), 3-16.

745 Kaldis, A., Berbati, M., Melita, O., Reppa, C., Holeva, M., Otten, P., & Voloudakis, A. (2018).

746 Exogenously applied dsRNA molecules deriving from the Zucchini yellow mosaic virus

747 (ZYMV) genome move systemically and protect cucurbits against ZYMV. *Molecular plant*

748 *pathology*, 19(4), 883-895.

749 Kassambara, A. (2017). ggpubr: “ggplot2” based publication ready plots. R package version

750 0.1. 6.

751 Kieber, J. J., Rothenberg, M., Roman, G., Feldmann, K. A., & Ecker, J. R. (1993). CTR1, a

752 negative regulator of the ethylene response pathway in *Arabidopsis*, encodes a member of the

753 raf family of protein kinases. *Cell*, 72(3), 427-441.

754 Kim, H. K., Jo, S. M., Kim, G. Y., Kim, D. W., Kim, Y. K., & Yun, S. H. (2015). A large-scale

755 functional analysis of putative target genes of mating-type loci provides insight into the

756 regulation of sexual development of the cereal pathogen *Fusarium graminearum*. *PLoS Genet*,

757 11(9), e1005486.

758 Koch, A., Biedenkopf, D., Furch, A., Weber, L., Rossbach, O., Abdellatef, E., ... & Kogel, K.

759 H. (2016). An RNAi-based control of *Fusarium graminearum* infections through spraying of

760 long dsRNAs involves a plant passage and is controlled by the fungal silencing machinery.

761 *PLoS pathogens*, 12(10), e1005901.

762 Koch, A., & Kogel, K. H. (2014). New wind in the sails: improving the agronomic value of
763 crop plants through RNA i-mediated gene silencing. *Plant biotechnology journal*, 12(7), 821-
764 831.

765 Koch, A., Kumar, N., Weber, L., Keller, H., Imani, J., & Kogel, K. H. (2013). Host-induced
766 gene silencing of cytochrome P450 lanosterol C14 α -demethylase-encoding genes confers
767 strong resistance to Fusarium species. *Proceedings of the National Academy of Sciences*,
768 110(48), 19324-19329.

769 Koch, A., & Wassenegger, M. (2021). Host-induced gene silencing—mechanisms and
770 applications. *New Phytologist* doi: 10.1111/nph.17364.

771 Konakalla, N. C., Kaldis, A., Berbati, M., Masarapu, H., & Voloudakis, A. E. (2016).
772 Exogenous application of double-stranded RNA molecules from TMV p126 and CP genes
773 confers resistance against TMV in tobacco. *Planta*, 244(4), 961-969.

774 Kumar, P., Kuscu, C., & Dutta, A. (2016a). Biogenesis and function of transfer RNA-related
775 fragments (tRFs). *Trends in biochemical sciences*, 41(8), 679-689.

776 Kumar, S., Stecher, G., & Tamura, K. (2016b). MEGA7: molecular evolutionary genetics
777 analysis version 7.0 for bigger datasets. *Molecular biology and evolution*, 33(7), 1870-1874.

778 Langmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. *Nature
779 methods*, 9(4), 357.

780 Lax, C., Tahiri, G., Patiño-Medina, J. A., Cánovas-Márquez, J. T., Pérez-Ruiz, J. A., Osorio-
781 Concepción, M., ... & Calo, S. (2020). The Evolutionary Significance of RNAi in the Fungal
782 Kingdom. *International Journal of Molecular Sciences*, 21(24), 9348.

783 Lee Marzano, S. Y., Neupane, A., Mochama, P., Feng, C., & Saleem, H. (2019). Roles of
784 argonautes and dicers on Sclerotinia sclerotiorum antiviral RNA silencing. *Frontiers in Plant
785 Science*, 10, 976.

786 Li, N., Han, X., Feng, D., Yuan, D., & Huang, L. J. (2019). Signaling crosstalk between salicylic
787 acid and ethylene/jasmonate in plant defense: do we understand what they are whispering?.
788 *International Journal of Molecular Sciences*, 20(3), 671.

789 Li, N., Shan, N., Lu, L., & Wang, Z. (2021). tRFtarget: a database for transfer RNA-derived
790 fragment targets. *Nucleic Acids Research*, 49(D1), D254-D260.

791 Liu, S., Jaouannet, M., Dempsey, D. M. A., Imani, J., Coustau, C., & Kogel, K. H. (2020).
792 RNA-based technologies for insect control in plant production. *Biotechnology advances*, 39,
793 107463.

794 Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-
795 time quantitative PCR and the $2^{-\Delta\Delta CT}$ method. *methods*, 25(4), 402-408.

796 Mallory, A. C., Reinhart, B. J., Jones-Rhoades, M. W., Tang, G., Zamore, P. D., Barton, M. K.,
797 & Bartel, D. P. (2004). MicroRNA control of PHABULOSA in leaf development: importance
798 of pairing to the microRNA 5' region. *The EMBO journal*, 23(16), 3356-3364.

799 Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing
800 reads. *EMBnet. journal*, 17(1), 10-12.

801 Martinez, G., Choudury, S. G., & Slotkin, R. K. (2017). tRNA-derived small RNAs target
802 transposable element transcripts. *Nucleic acids research*, 45(9), 5142-5152.

803 Mascher, M., Gundlach, H., Himmelbach, A., Beier, S., Twardziok, S. O., Wicker, T., ... &
804 Stein, N. (2017). A chromosome conformation capture ordered sequence of the barley genome.
805 *Nature*, 544(7651), 427-433.

806 McLoughlin, A. G., Wytinck, N., Walker, P. L., Girard, I. J., Rashid, K. Y., de Kievit, T., ... &
807 Belmonte, M. F. (2018). Identification and application of exogenous dsRNA confers plant
808 protection against Sclerotinia sclerotiorum and Botrytis cinerea. *Scientific Reports*, 8(1), 1-14.

809 Mitter, N., Worrall, E. A., Robinson, K. E., Li, P., Jain, R. G., Taochy, C., ... & Xu, Z. P. (2017).
810 Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses.
811 *Nature plants*, 3(2), 1-10.

812 Morel, J. B., Godon, C., Mourrain, P., Béclin, C., Boutet, S., Feuerbach, F., ... & Vaucheret, H.
813 (2002). Fertile hypomorphic ARGONAUTE (ago1) mutants impaired in post-transcriptional
814 gene silencing and virus resistance. *The Plant Cell*, 14(3), 629-639.

815 Mueth, N. A., Ramachandran, S. R., & Hulbert, S. H. (2015). Small RNAs from the wheat
816 stripe rust fungus (*Puccinia striiformis* f. sp. *tritici*). *Bmc Genomics*, 16(1), 1-16.

817 Nei, M., & Kumar, S. (2000). *Molecular evolution and phylogenetics*. Oxford university press.

818 Niehl, A., & Heinlein, M. (2019). Perception of double-stranded RNA in plant antiviral
819 immunity. *Molecular plant pathology*, 20(9), 1203-1210.

820 Niehl, A., Soininen, M., Poranen, M. M., & Heinlein, M. (2018). Synthetic biology approach
821 for plant protection using ds RNA. *Plant biotechnology journal*, 16(9), 1679-1687.

822 Nowara, D., Gay, A., Lacomme, C., Shaw, J., Ridout, C., Douchkov, D., ... & Schweizer, P.
823 (2010). HIGS: host-induced gene silencing in the obligate biotrophic fungal pathogen *Blumeria*
824 *graminis*. *The Plant Cell*, 22(9), 3130-3141.

825 Potuschak, T., Lechner, E., Parmentier, Y., Yanagisawa, S., Grava, S., Koncz, C., & Genschik,
826 P. (2003). EIN3-dependent regulation of plant ethylene hormone signaling by two *Arabidopsis*
827 F box proteins: EBF1 and EBF2. *Cell*, 115(6), 679-689.

828 R Core Team, R. (2019). R: A language and environment for statistical computing.

829 Reinhart, B. J., Weinstein, E. G., Rhoades, M. W., Bartel, B., & Bartel, D. P. (2002).
830 MicroRNAs in plants. *Genes & development*, 16(13), 1616-1626.

831 Ren, B., Wang, X., Duan, J., & Ma, J. (2019). Rhizobial tRNA-derived small RNAs are signal
832 molecules regulating plant nodulation. *Science*, 365(6456), 919-922.

833 Rosa, C., Kuo, Y. W., Wuriyanghan, H., & Falk, B. W. (2018). RNA interference mechanisms
834 and applications in plant pathology. *Annual review of phytopathology*, 56, 581-610.

835 RStudio Team (2016). RStudio: Integrated Development for R. RStudioInc., Boston, MA URL
836 <http://www.rstudio.com/>.

837 Sang, H., & Kim, J. I. (2020). Advanced strategies to control plant pathogenic fungi by host-
838 induced gene silencing (HIGS) and spray-induced gene silencing (SIGS). *Plant Biotechnology
839 Reports*, 14(1), 1-8.

840 Šečić E and Kogel KH (2021). Requirements for fungal uptake of dsRNA and gene silencing
841 in RNAi-based crop protection strategies. *Current Opinion in Biotechnology*, COBIOT-D-21-
842 00048.

843 Shan, L., He, P., Li, J., Heese, A., Peck, S. C., Nürnberg, T., ... & Sheen, J. (2008). Bacterial
844 effectors target the common signaling partner BAK1 to disrupt multiple MAMP receptor-
845 signaling complexes and impede plant immunity. *Cell host & microbe*, 4(1), 17-27.

846 Son H, Park AR, Lim JY, Shin C, Lee Y-W (2017) Genome-wide exonic small interference
847 RNA-mediated gene silencing regulates sexual reproduction in the homothallic fungus
848 *Fusarium graminearum*. PLoS Genet 13(2): e1006595. doi:10.1371/journal.pgen.1006595

849 Srivastava, P. K., Moturu, T. R., Pandey, P., Baldwin, I. T., & Pandey, S. P. (2014). A
850 comparison of performance of plant miRNA target prediction tools and the characterization of
851 features for genome-wide target prediction. *BMC genomics*, 15(1), 1-15.

852 Streit, R. S. A., Ferrareze, P. A. G., Vainstein, M. H., & Staats, C. C. (2021). Analysis of tRNA-
853 derived RNA fragments (tRFs) in *Cryptococcus* spp.: RNAi-independent generation and
854 possible compensatory effects in a RNAi-deficient genotype. *Fungal Biology*.

855 Tian, T., Liu, Y., Yan, H., You, Q., Yi, X., Du, Z., ... & Su, Z. (2017). agriGO v2. 0: a GO
856 analysis toolkit for the agricultural community, 2017 update. *Nucleic acids research*, 45(W1),
857 W122-W129.

858 Untergasser, A., Cutcutache, I., Koressaar, T., Ye, J., Faircloth, B. C., Remm, M., & Rozen, S.
859 G. (2012). Primer3—new capabilities and interfaces. *Nucleic acids research*, 40(15), e115-
860 e115.

861 Wang, B., Sun, Y.F., Song, N., Zhao, M.X., Liu, R., Feng, H., Wang, X.J., & Kang, Z.S.
862 (2017a). *Puccinia striiformis f. sp tritici* microRNA-like RNA 1 (Pst-milR1), an important
863 pathogenicity factor of Pst, impairs wheat resistance to Pst by suppressing the wheat
864 pathogenesis-related 2 gene. *New Phytologist*, 215, 338–350.

865 Wang, M., Weiberg, A., Dellota, E. Jr, Yamane, D., & Jin, H. (2017b). Botrytis small RNA Bc-
866 siR37 suppresses plant defense genes by cross-kingdom RNAi. *RNA Biology*, 14, 421–428.

867 Wang, M., Weiberg, A., Lin, F.-M., Thomma, B. P. H. J., Huang, H.D., & Jin, H. (2016a).
868 Bidirectional cross-kingdom RNAi and fungal uptake of external RNAs confer plant protection.
869 *Nature Plants*, 2, 16151.

870 Wang, Q., Li, T., Xu, K., Zhang, W., Wang, X., Quan, J., ... & Shan, W. (2016b). The tRNA-
871 derived small RNAs regulate gene expression through triggering sequence-specific degradation
872 of target transcripts in the oomycete pathogen *Phytophthora sojae*. *Frontiers in plant science*,
873 7, 1938.

874 Weiberg, A., Wang, M., Lin, F. M., Zhao, H., Zhang, Z., Kaloshian, I., ... & Jin, H. (2013).
875 Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways.
876 *Science*, 342(6154), 118-123.

877 Werner, B. T., Gaffar, F. Y., Schuemann, J., Biedenkopf, D., & Koch, A. M. (2020). RNA-
878 spray-mediated silencing of *Fusarium graminearum*AGO and DCL genes improve barley
879 disease resistance. *Frontiers in Plant Science*, 11, 476.

880 Wickham, H. (2016). *ggplot2: elegant graphics for data analysis*. Springer.

881 Yoshida, H., Wang, K.L., Chang, C.M., Mori, K., Uchida, E., Ecker, J.R. (2006). The ACC
882 synthase TOE sequence is required for interaction with ETO1 family proteins and
883 destabilization of target proteins. *Plant Mol Biol*. 62(3):427-37.

884 Zanini, S., Šečić, E., Busche, T., Galli, M., Zheng, Y., Kalinowski, J., & Kogel, K. H. (2021).
885 Comparative Analysis of Transcriptome and sRNAs Expression Patterns in the Brachypodium
886 distachyon—Magnaporthe oryzae Pathosystems. *International Journal of Molecular Sciences*,
887 22(2), 650.

888 Zuo, Y., Zhu, L., Guo, Z., Liu, W., Zhang, J., Zeng, Z., ... & Peng, Y. (2021). tsRBase: a
889 comprehensive database for expression and function of tsRNAs in multiple species. *Nucleic
890 Acids Research*, 49(D1), D1038-D1045.

891

892

893 **Tables**

894 **Tab. 1: Selected GO-terms of tested genes and closest homologs in *A. thaliana***

Name	ensembl_gene_id	GO_term	<i>A.thaliana</i> Homolog	Abbr.
<i>HvARF3</i>		auxin-activated signaling pathway		
Auxin response transcription factor 3	HORVU1Hr1G076690	regulation of transcription, DNA-templated nucleus	AT2G33860	<i>ARF3</i>
<i>HvSUB1</i>		Golgi apparatus		
Short under blue light 1	HORVU2Hr1G028070	transferase activity, transferring glycosyl groups fucose metabolic process	AT4G08810	<i>SUB1</i>
<i>HvPPR</i>		protein binding		
Pentatricopeptide repeat superfamily protein	HORVU2Hr1G078260	protein binding	AT2G06000	
<i>HvSERK2</i>		integral component of membrane		
Somatic embryogenesis receptor-like kinase 2_1	HORVU2Hr1G080020	positive regulation of innate immune response regulation of defense response to fungus	AT1G34210	<i>SERK2</i>
<i>HvARF10</i>		auxin-activated signaling pathway		
Auxin response transcription factor 10	HORVU2Hr1G089670	regulation of transcription, DNA-templated nucleus	AT2G28350	<i>ARF10</i>
<i>HvEOL1</i>		regulation of ethylene biosynthetic process		
ETO1-like 1	HORVU2Hr1G119180	protein binding	AT4G02680	<i>EOL1</i>
<i>HvRST1</i>		integral component of membrane		
Resurrection 1	HORVU3Hr1G016630	membrane	AT3G27670	<i>RST1</i>
<i>HvPIX7</i>		protein serine/threonine kinase		
Putative interactor of XopAC 7	HORVU3Hr1G051080	ATP binding protein kinase activity	AT5G15080	<i>PIX7</i>
<i>Hvemb2726</i>		translation elongation factor activity		
Embryo defective 2726	HORVU5Hr1G024470	mitochondrion intracellular	AT4G29060	<i>emb2726</i>
<i>HvPGLP2</i>		chloroplast		
2-Phosphoglycolate phosphatase 2	HORVU5Hr1G052320	phosphoglycolate activity hydrolase activity	AT5G47760	<i>PGLP2</i>

<i>HvATG2</i> Autophagy-related 2	HORVU6Hr1G034660	autophagy of peroxisome autophagy	AT3G19190	<i>ATG2</i>
<i>HvSUVR5</i> Su(var)3-9-related protein 5	HORVU6Hr1G069350	histone-lysine N-methyltransferase activity chromosome methyltransferase activity	AT2G23740	<i>SUVR5</i>
<i>HvRDR1</i> RNA-dependent RNA polymerase 1	HORVU6Hr1G074180	RNA-directed 5'-3' RNA polymerase activity RNA binding gene silencing by RNA	AT1G14790	<i>RDR1</i>
<i>HvGDH</i> Glycine decarboxylase complex H	HORVU6Hr1G076880	glycine decarboxylation via glycine cleavage system glycine cleavage complex mitochondrion	AT2G35370	<i>GDH1</i>
<i>HvBAK1</i> Somatic embryogenesis receptor-like kinase 2_2	HORVU7Hr1G068990	integral component of membrane transmembrane receptor protein serine/threonine kinase signaling pathway	AT1G34210	<i>SERK2</i>
<i>HvARF19</i> Auxin response transcription factor 19	HORVU7Hr1G096460	auxin-activated signaling pathway regulation of transcription, DNA- templated nucleus		
<i>BdSERK2</i>	BRADI_5g12227v3	integral component of membrane positive regulation of innate immune response regulation of defense response to fungus	AT1G34210	<i>SERK2</i>

896 qPCR and RT primer used in this study. First column shows the name of the respective template.

897 Second column gives the accession for genes or the sequence of sRNAs. Third column shows

898 the primer names and fourth column gives the oligonucleotide sequence. Lower case letters are

899 complementary to the respective sRNA.

900

901

902 **Tab. 2: Target prediction results of Fg-sRNAs with more than 400 reads in IFA65 axenic**
903 **culture.**

sRNA-Name	Reads	Score	Alignment	Length
<i>Fg</i> -sRNA-321	2106	4.5	3' GCUUGGGUCCCGAGGGGCUACC .. .o o	5' 22
<i>HvEOL1</i>			5' GAAUUCAGGGCUCCCCGGUGG	3'
<i>Fg</i> -sRNA-1921	416	3.5	3' CUUGGGUCCCGAGGGGCUACC . .o o	5' 21
<i>HvEOL1</i>			5' AAUUCAGGGCUCCCCGGUGG	3'
<i>Fg</i> -sRNA-6717	86	4.5	3' UAGCUUGGGUCCCGAGGGGCUAC .. .o o	5' 23
<i>HvEOL1</i>			5' AUGAAUUCAGGGCUCCCCGGUG	3'
<i>Fg</i> -sRNA-1921	416	6	3' CUUGGGUCCCGAGGGGCUACC 	5' 21
<i>HvSERK2</i>			5' GCACGCAGGGGUCACCGAUGG	3'
<i>Fg</i> -sRNA-321	2106	4.5	3' GCUUGGGUCCCGAGGGGCUACC o	5' 22
<i>HvBAK1</i>			5' UGCACACAGGGCUCCCCCAUGG	3'
<i>Fg</i> -sRNA-1921	416	4	3' CUUGGGUCCCGAGGGGCUACC 	5' 21
<i>HvBAK1</i>			5' GCACACAGGGCUCCCCCAUGG	3'
<i>Fg</i> -sRNA-6717	86	5.5	3' UAGCUUGGGUCCCGAGGGGCUAC . o . . .	5' 23
<i>HvBAK1</i>			5' UUUGCACACAGGGCUCCCCCAUG	3'
<i>Fg</i> -sRNA-321	2106	5.5	3' GCUUGGGUCCCGAGGGGCUACC .. .o o o	5' 22
<i>BdEOL1</i>			5' GAAUUCAGGGCUCUCCGGUGG	3'
<i>Fg</i> -sRNA-1921	416	4.5	3' CUUGGGUCCCGAGGGGCUACC . .o o o	5' 21
<i>BdEOL1</i>			5' AAUUCAGGGCUCUCCGGUGG	3'
<i>Fg</i> -sRNA-6717	86	5.5	3' UAGCUUGGGUCCCGAGGGGCUAC .. .o o o	5' 23
<i>BEOL1</i>			5' AUGAAUUCAGGGCUCUCCGGUG	3'
<i>Fg</i> -sRNA-321	2106	3.5	3' GCUUGGGUCCCGAGGGGCUACC o	5' 22
<i>BdSERK2</i>			5' UGCACGCAAGGCUCCCCCGAUGG	3'
<i>Fg</i> -sRNA-1921	416	3	3' CUUGGGUCCCGAGGGGCUACC 	5' 21
<i>BdSERK2</i>			5' GCACGCAAGGCUCCCCCGAUGG	3'
<i>Fg</i> -sRNA-6717	86	5.5	3' UAGCUUGGGUCCCGAGGGGCUAC ..o . . .	5' 23
<i>BdSERK2</i>			5' UCUGCACGCAAGGCUCCCCCGAUG	3'

904 Mismatches (MMs) between mRNA and sRNA are marked as “.”, while G-U pairs are marked

905 as “o”.

906

907

909 **Figure legends**

910 **Fig. 1: Virulence of *Fusarium graminearum* strains PH1 and IFA65 DCL single and dKO**
911 **mutants on barley and *Brachypodium*.**

912 A: Relative infected area on leaves of barley cv. Golden Promise (GP) at 5 dpi. Detached leaves
913 were inoculated with 3 μ l of a solution containing 150,000 conidia per mL. The area with leaf
914 necrosis was measured with the free image analysis software package PlantCV. Boxplots
915 represent the median and quartiles of three independent biological experiments (n=56).
916 (Wilcoxon Rank Sum Test, $P=7.1*10^{-3}$, x=mean)

917 B: Relative infected leaf area on leaves of *Brachypodium distachyon* Bd21-3 at 5 dpi. Detached
918 leaves were inoculated with 10 μ l of a solution containing 10,000 conidia per mL. The area
919 with leaf necrosis was measured with ImageJ. Boxplots represent the median and quartiles of
920 nine independent biological experiments (n=63). (Pairwise Wilcoxon Rank Sum Test,
921 Bonferroni corrected, $P_{dcl1}=4.9*10^{-8}$, $P_{dcl2}=2.6*10^{-4}$, x=mean)

922 Outliers (>2.5) are not shown but indicated as written values next to the upward arrow (\uparrow).

923

924 **Fig. 2: Relative expression (log2 fold) of potential barley target genes for fungal sRNAs in**
925 **leaves infected with *Fusarium graminearum* wt strain PH1 vs. PH1-dcl1/2.**

926 Expression was normalized against barley *Ubiquitin* (*HvUBQ*) and subsequently against the Δ ct
927 of the uninfected control (mock treatment). Bars represent the mean \pm SE of three independent
928 biological replicates. Significant differences were calculated for the expression of a respective
929 gene in PH1 vs. PH1-dcl1/2-infected samples and PH1 vs. controls. The dotted line shows the
930 expression level of mock treatment. (Student's *t*-test, (paired) one sided, * $P<0.1$, ** $P<0.05$,
931 *** $P<0.01$)

932 **Fig. 3: Relative expression of HvEOL1 in response to inoculation of barley leaves with**
933 ***Fusarium graminearum*.**

934 **A**, Relative expression of *FgDCL1* and *FgDCL2* on detached barley cv. Golden Promise leaves
935 at 5 dpi in wt strain IFA65 and 7 days post spray application of the 1,782 nt long dsRNA
936 construct dsRNA-*dcl1/2* vs. TE buffer. **B**, Relative expression of *HvEOL1* at 5 dpi with IFA65
937 vs. mock control. **C**, Relative expression of *HvEOL1* 5 dpi with wt strain IFA65 and 7 days
938 post spray application of dsRNA-*dcl1/2* vs. TE buffer. Gene expression was first normalized
939 against the reference gene *HvUBQ* (*HORVU1Hr1G023660*) and subsequently against the Δct
940 of the respective control for B (mock = 0.002% Tween20) and for A,C (IFA65 / TE). Bars
941 represent the mean \pm SE of three (B) and four (A, C) independent biological replicates.
942 (Student's *t*-test, *P<0.05, ***P<0,005)

943

944 **Fig. 4: Relative amount of different fungal tRFs with homology to HvEOL1 mRNA**

945 Relative amount of different fungal tRFs with homology to *HvEOL1* mRNA during infection
946 of barley leaves with PH1 and PH1-*dcl1/2* normalized to fungal biomass and relative quantity
947 of sRNAs normalized to wt PH1 measured by qPCR. *Fg*-sRNA-1921, *Fg*-sRNA-321 and *Fg*-
948 sRNA-6717 quantity was normalized to *Hvu*-miR159 and *Hvu*-miR168 and fungal biomass as
949 determined by *FgEF1 α* expression was normalized to *HvUBQ*. Subsequently the amount of
950 sRNAs was normalized with fungal biomass. The amount of sRNA in PH1-infected leaves was
951 set to 1. Values and error bars represent the mean \pm SE of three independent biological
952 replicates. Significance was calculated via a one-sample *t*-test. (**P<0.01, ***P<0.005)

953

954 **Fig. 5: Relative expression of BdSERK2 in response to inoculation of *Brachypodium***
955 ***distachyon* leaves with *Fusarium graminearum*.**

956 Relative expression of *BdSERK2* in detached Bd21-3 leaves at 4 dpi with PH1 vs. PH1-*dcl1/2*.
957 The gene expression was first normalized against the reference gene *BdUBI4* and subsequently
958 against the Δct of the mock treated control. Values and error bars represent the mean ± SE of
959 three independent biological replicates. (Student's t-test, paired, one sided, **P<0,01)

960

961 **Fig. 6: Analysis of potential target sites of *Fg*-sRNAs as determined by RLM-RACE products.**

962 **A,B,C** Potential target sites of *Fg*-sRNA-321 and *Fg*-sRNA-1921 predicted by TAPIR (blue),
963 genomic DNA (GPv1, GCA_902500625.1, A: contig7:321364603-321365033, B:
964 contig2:598018255-598018555, C: contig2:474465508-474465708) of barley cv. Golden
965 Promise (green), and the alignment of sequences derived from the RLM-RACE PCR (red)
966 relative to the *Hv*-gDNA and *Fg*-sRNAs. **D,E,F** PCR-products of the second nested RLM-
967 RACE-PCR visualized in an EtBr-Agarose gel. Red arrows indicate excised bands and blue
968 arrows indicate infection specific products.

969

970 **Fig. 7: The degree of DCL-dependent gene silencing is correlated with the number of**
971 **homologous fungal sRNAs.**

972 Each dot represents a predicted target gene of *Fg*-sRNAs. On the x-axis the ΔΔΔct-value is
973 shown with bars representing SD. On the y-axis the log₂ of the number of total sRNAs
974 potentially targeting each gene are shown. The dotted line represents a linear regression model.
975 P indicates the significance (t-test) of the model and the score cut-off indicates the score limit
976 used during the target prediction. Plot A, B, C and D are the calculations for a score cut off of
977 3, 4, 5 and 6 respectively.

978

979

980 **Tab. S1: Primer sequences**

Gene	Accession	Primer Name	Sequence
HvARF3	HORVU1Hr1G076690	HORVU1Hr1G076690_F	GGTCAGCTCAGAACCGAACG
		HORVU1Hr1G076690_R	ATTCTGACGCTCCACTCCTTG
HvPPR	HORVU2Hr1G078260	HORVU2Hr1G078260_F	GGGTGCTTCATCGAGTTGGAA
		HORVU2Hr1G078260_R	CTGCAAAACCACAGAGCTTGT
HvSERK2	HORVU2Hr1G080020	HORVU2Hr1G080020.6_F	GATGACAGACAGAGTCCTGCT
		HORVU2Hr1G080020.6_R	AGCACTACTACCAGCACCGA
HvARF10	HORVU2Hr1G089670	HORVU2Hr1G089670_F	CACATCGGCGATGAACCTTTC
		HORVU2Hr1G089670_R	TCGGCTCAAGATCGATGGATG
HvPGLP2	HORVU5Hr1G052320	HORVU5Hr1G052320_F	CTCCTTGTCTGTCAGGTGTGA
		HORVU5Hr1G052320_R	ATTGCTGGTGCTGTATTCGGA
HvATG2	HORVU6Hr1G034660	HORVU6Hr1G034660_F	TTCTTATCTGGGGCTTGGTG
		HORVU6Hr1G034660_R	TCGTAGCAGCCAAGAACATT
HvGDH	HORVU6Hr1G076880	HORVU6Hr1G076880_F	GGCAACGTGGAGAGTGTGAA
		HORVU6Hr1G076880_R	GTACGGGCTCGAGTTGATCAG
HvARF19	HORVU7Hr1G096460	HORVU7Hr1G096460_F	GGGCCGGTCTATCGACATTAG
		HORVU7Hr1G096460_R	TTGACAAACTCCTCCAAAGGG
HvSUB1	HORVU2Hr1G028070	MLOC_12796.1_F	CAGAGTTCAGGAGGGCAAG
		MLOC_12796.1_R	GACAAACGTCCGGTTGAGGA
HvSUVR5	HORVU6Hr1G069350	MLOC_14605.1_F	TGCATTTGTTGACCGCAGG
		MLOC_14605.1_R	AGGCTTGTCTGGAACGATG
Hvemb272	HORVU5Hr1G024470	MLOC_58105.1_F	AGACTGATGTTGCGGTGGAG
		MLOC_58105.1_R	GGTTGCGACCTAACTTGGGA
HvPIX7	HORVU3Hr1G051080	MLOC_5991.1_F	GATGGGCTTCAGGGGCATAA
		MLOC_5991.1_R	ATGGGAGCGGAAATGACCTC
HvRDR1	HORVU6Hr1G074180	MLOC_75294.1_F	TATCTGAAGGTTCGGCCTGC
		MLOC_75294.1_R	GTTCCGCTCCACAGAACAGA

<i>HvRST1</i>	HORVU3Hr1G016630	MLOC_75306.1_F	TTGCAGGGACTTGTCTTGGT
		MLOC_75306.1_R	TGACAGATGGCAGAGCAAGG
<i>HvEOL1</i>	HORVU2Hr1G119180	MLOC_8741_F	CACTTCAAGCCCGCTGACTA
		MLOC_8741_R	CTCATGTATCGTGCTCGCCT
<i>BdSERK2</i>	BRADI_5g12227v3	PNT61220_F	AGTTGCCTTCCTCCGTCTT
		PNT61220_R	ACCAGTTGATGGAACCTCTCC
<i>HvUBI</i>	HORVU1Hr1G023660	Ubideg60_F	ACCCTCGCCGACTACAAACAT
		Ubideg60_R	CAGTAGTGGCGGTCGAAGTG
<i>FgEF1a</i>	FGSG_08811	EF1a_F	CAAGGCCGTCGAGAACGTCCAC
		EF1a_R	TGCCAACATGATCATTCTCGTA
Name	Sequence (RNA)	Primer	Sequence (Primer)
<i>Hvu-miRNA-159a</i>	UUUGGAUUGAAGGGAGCUCUG	hvu-mir159a_F	TGGCTCGCTtttgattgaaggga
		hvu-mir159a_RT	GTCGTATCCAGTGCAGGGTCCGA
			GGTATTTCGCACTGGATACGACcagag
			c
<i>Hvu-miRNA-168</i>	UCGCUUGGUGCGAGAUCGGGAC	hvu-mir168-5p_F	GTTCGCTtcgttggcagat
		hvu-mir168-5p_RT	GTCGTATCCAGTGCAGGGTCCGA
			GGTATTTCGCACTGGATACGACgtccc
			g
<i>Fg-sRNA-321</i>	GCUUGGGUCCCGAGGGGCUACC	Fg-sRNA_321-2106_F	TCGCTccatggggagccctg
		Fg-sRNA_321-2106_RT	GTCGTATCCAGTGCAGGGTCCGA
			GGTATTTCGCACTGGATACGACcgaac
			c
<i>Fg-sRNA-1921</i>	CUUGGGUCCCGAGGGGCUACC	Fg-sRNA_1921-416_F	TCGCTccatggggagccct

		Fg-sRNA_1921-416_RT	GTCGTATCCAGTGCAGGGTCCGA
			GGTATTCGCACTGGATACGACgaacc
			c
Fg-sRNA-	UAGCUUGGGUCCCGAGGGCUA	Fg-sRNA_6717-86_F	TCGCTcatcggggagccctggg
6717	C		
		Fg-sRNA_6717-86_RT	GTCGTATCCAGTGCAGGGTCCGA
			GGTATTCGCACTGGATACGACatcga
			a
Universal		UniSL_R	CCAGTGCAGGGTCCGAGGTA
SL			
Reverse			
Target	Accession	Name	Sequence
RLM-adapter		RLM_Adapter	GCUGAUGGCGAUGAAUGAACACU
			G
			CGUUUGCUGGCUUUGAUGAAA
RLM outer adapter Primer		RLM_Uri_O1	GCTGATGGCGATGAATGAACACTG
RLM inner adapter primer		RLM_Uri_I1	GAACACTGCGTTGCTGGCTTGAT
			G
HvEOL1	HORVU2Hr1G119180	HvEOL1_outer	GAATTACTGATGGCCCGCAT
	HORVU2Hr1G119180	HvEOL1_inner	ACCCACCATTAAAGCATCGCA
HvSERK2	HORVU2Hr1G080020	HvSERK2_1_outer	GAGCCTCAGGAGACGGTTTT
	HORVU2Hr1G080020	HvSERK2_1_inner	AGTGGAGTCGACGATCCAGT
HvBAK1	HORVU7Hr1G068990	HvSERK2_2_outer	GGGTTGCACATGCTCGTAC
	HORVU7Hr1G068990	HvSERK2_2_inner	TGAGGACCCAGCTCACCTC

981

982

Fig. 1

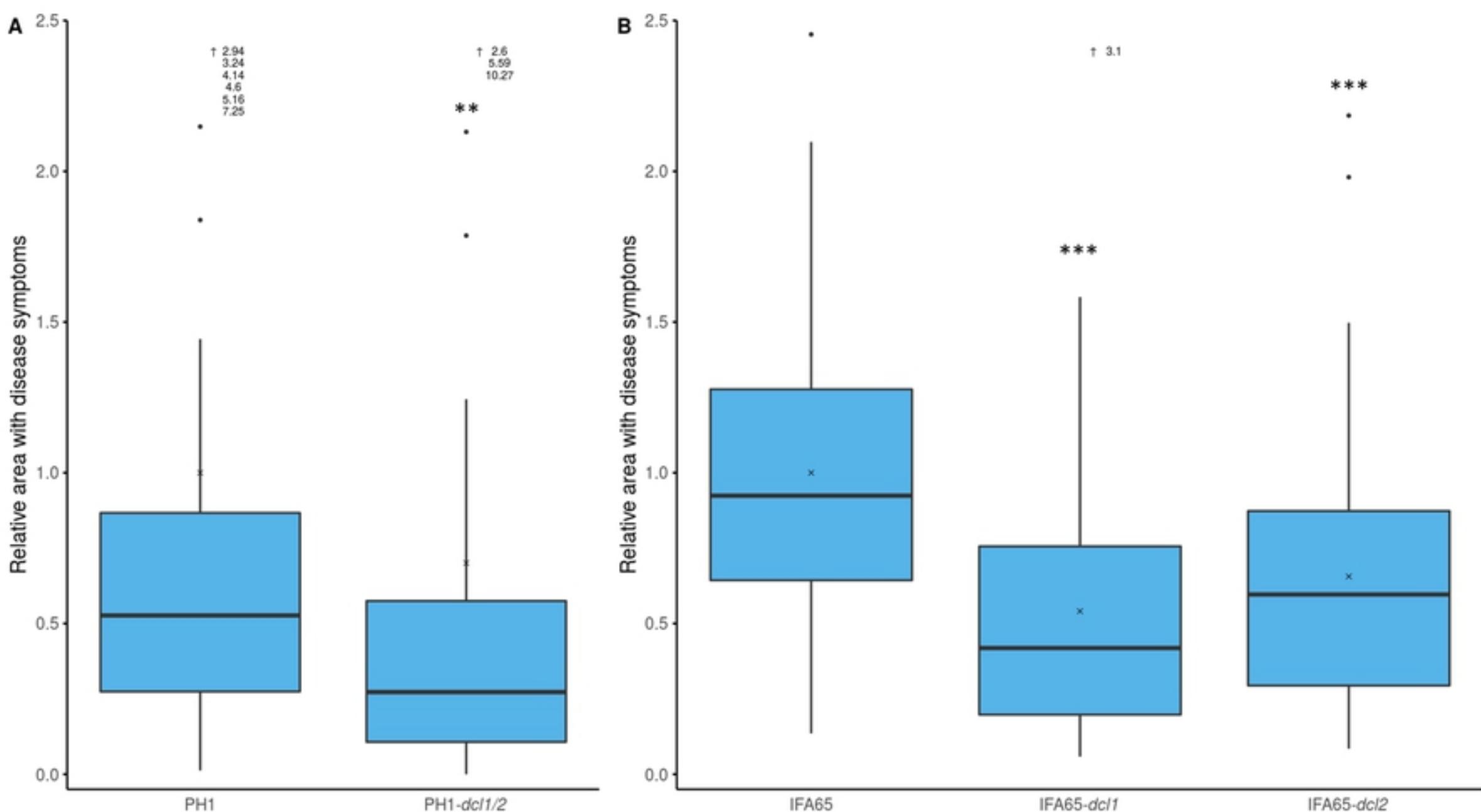


Figure 1

Fig. 2

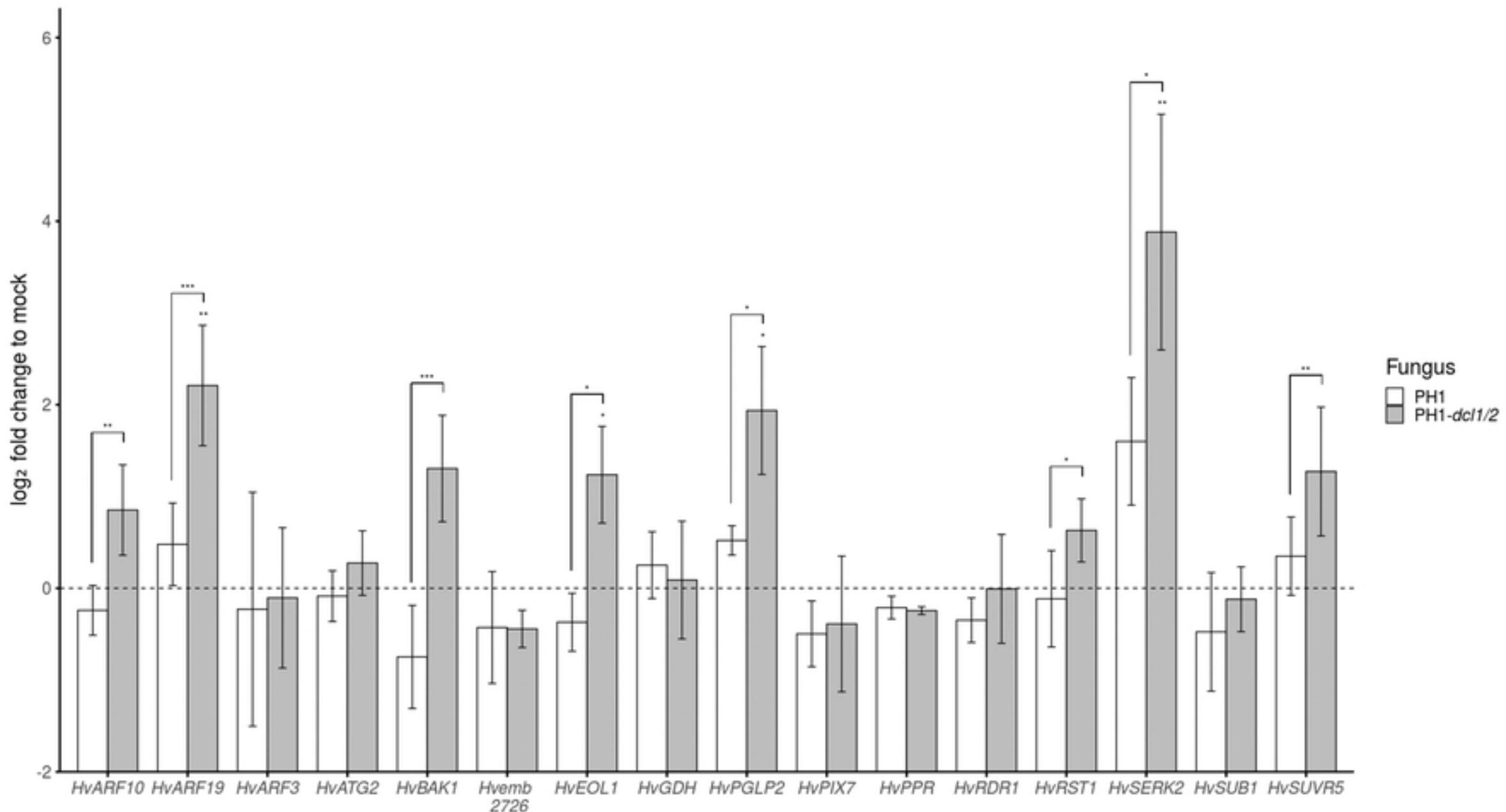


Figure 2

Fig. 3

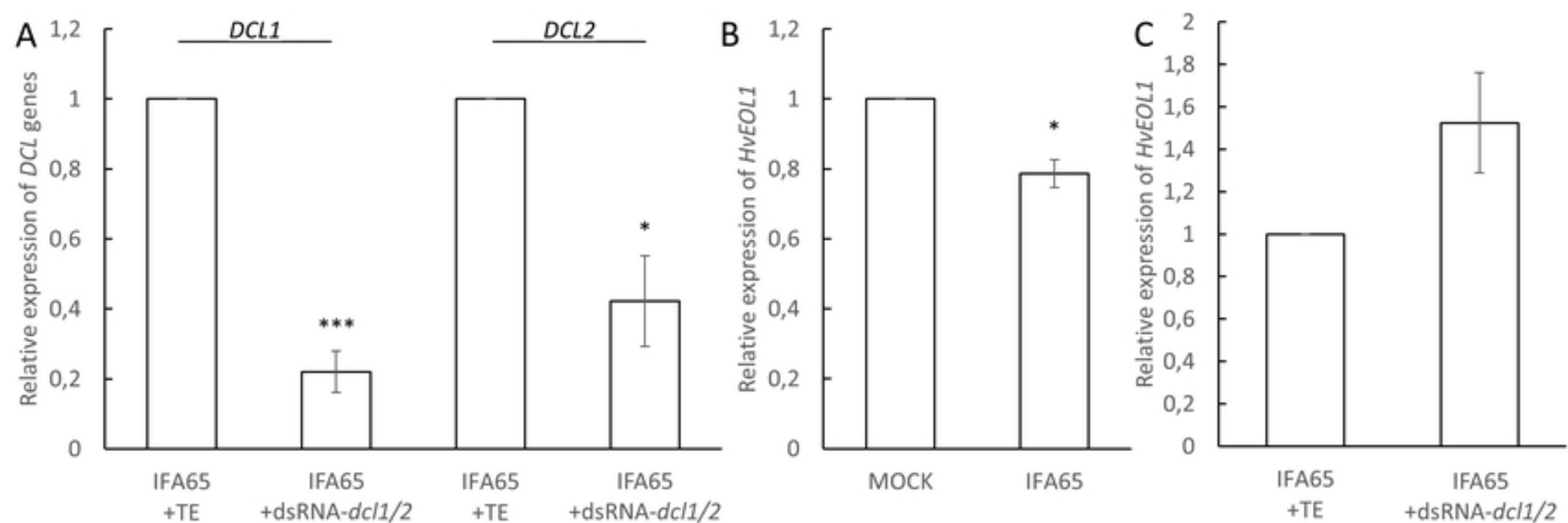


Figure 3

Fig. 4

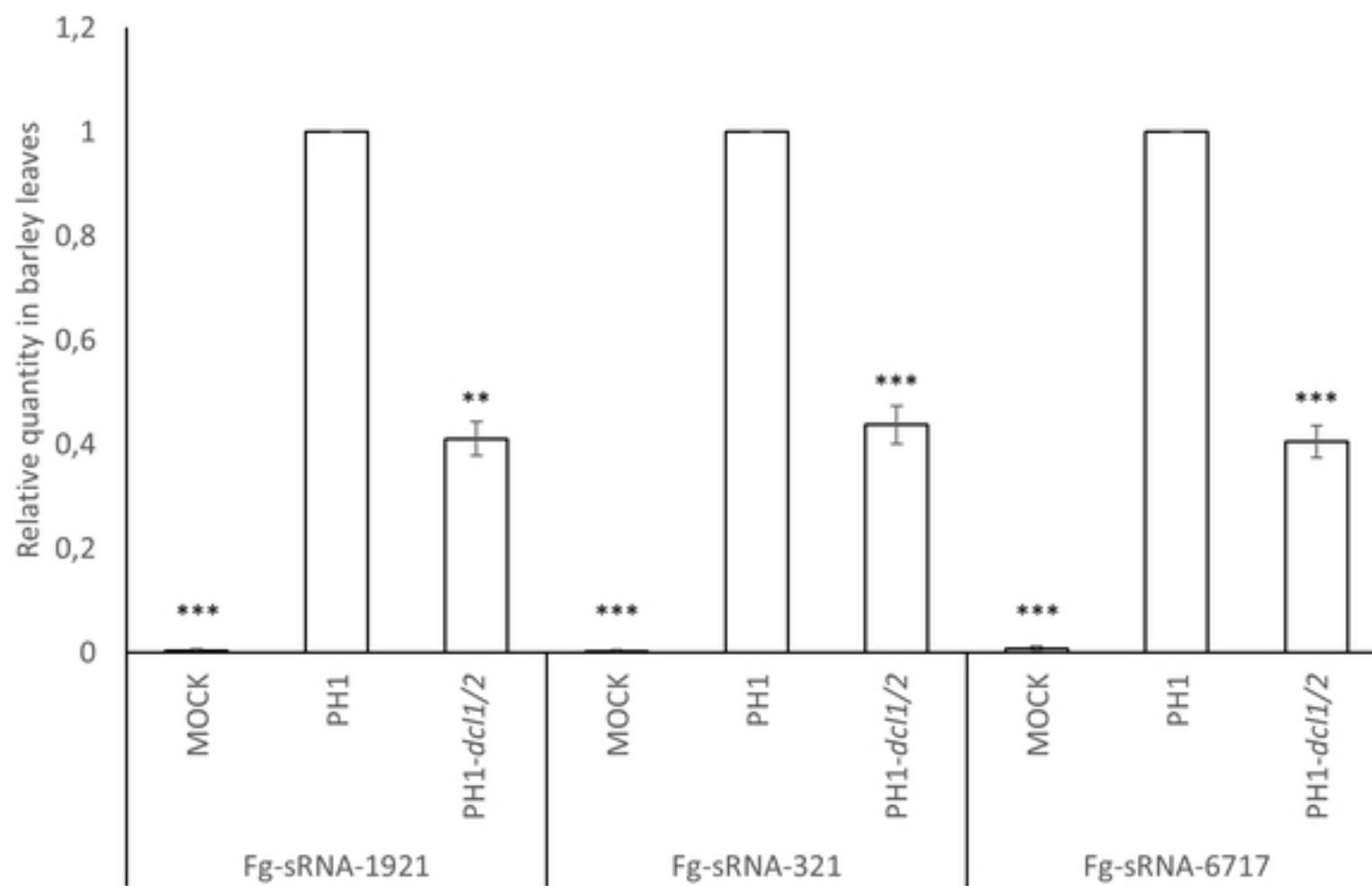


Figure 4

Fig. 5

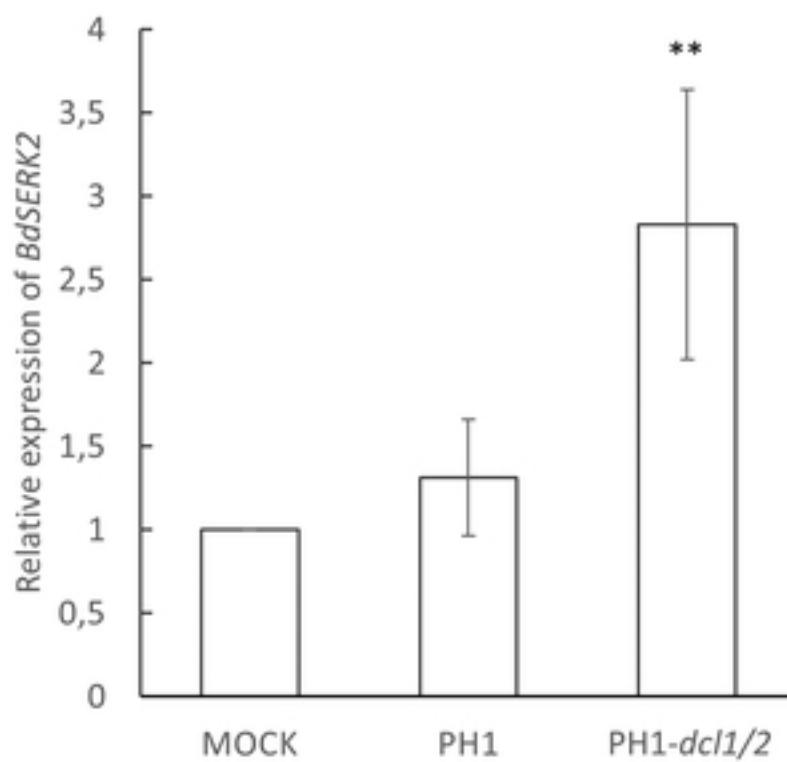
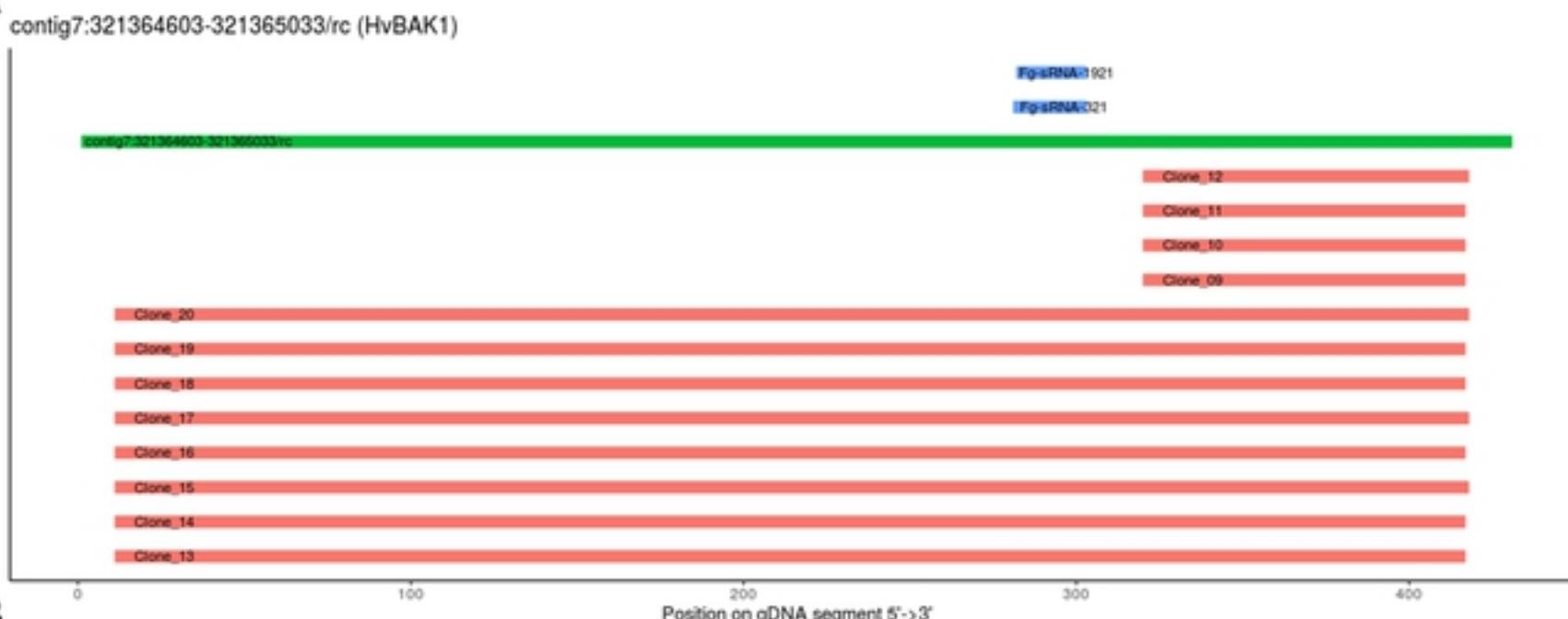
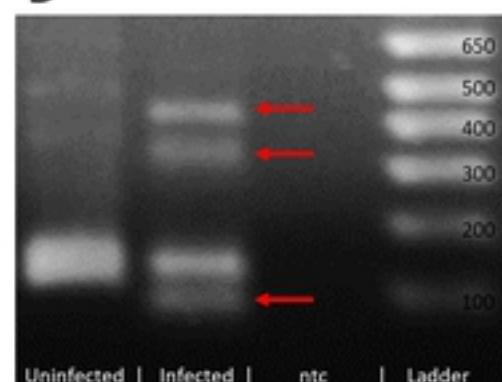
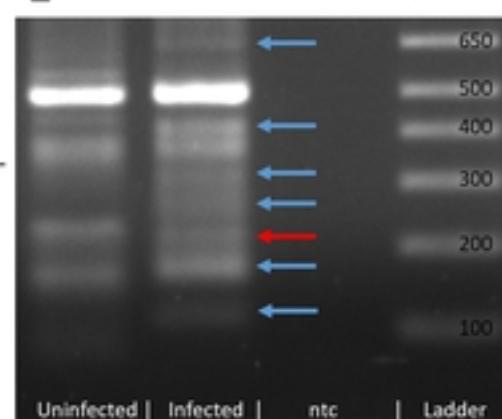



Figure 5

Fig. 6

A


B


C

D

E

F

Figure 6

Fig. 7

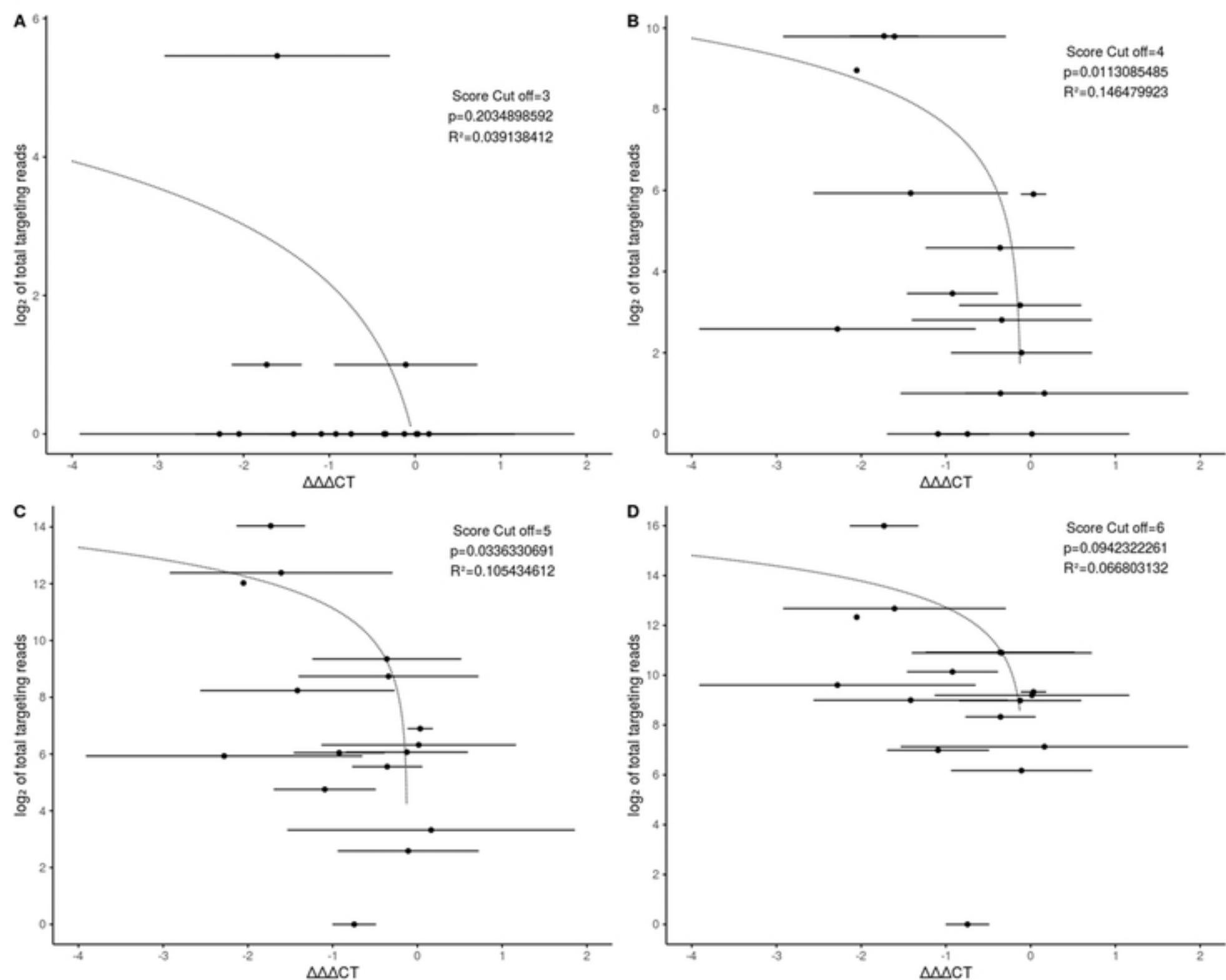
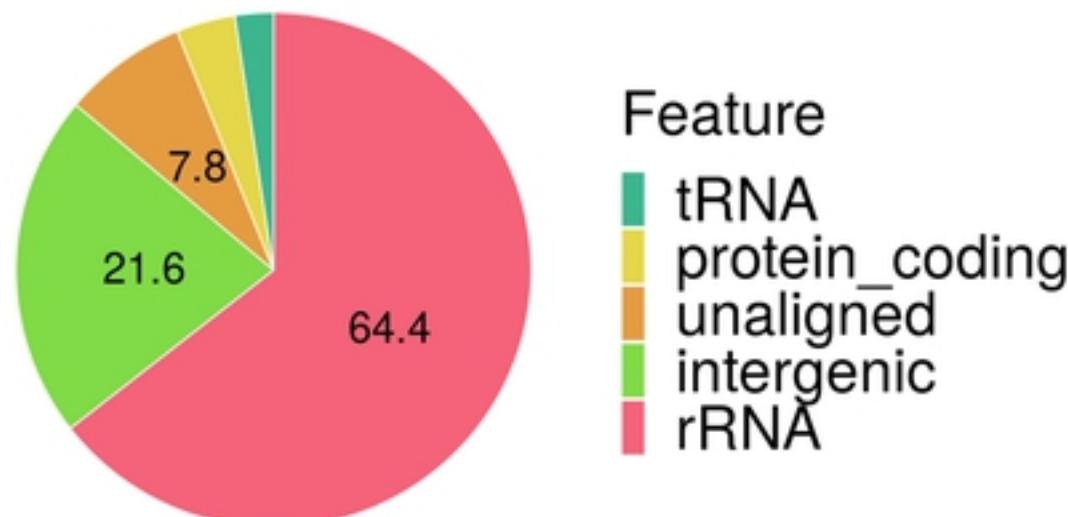
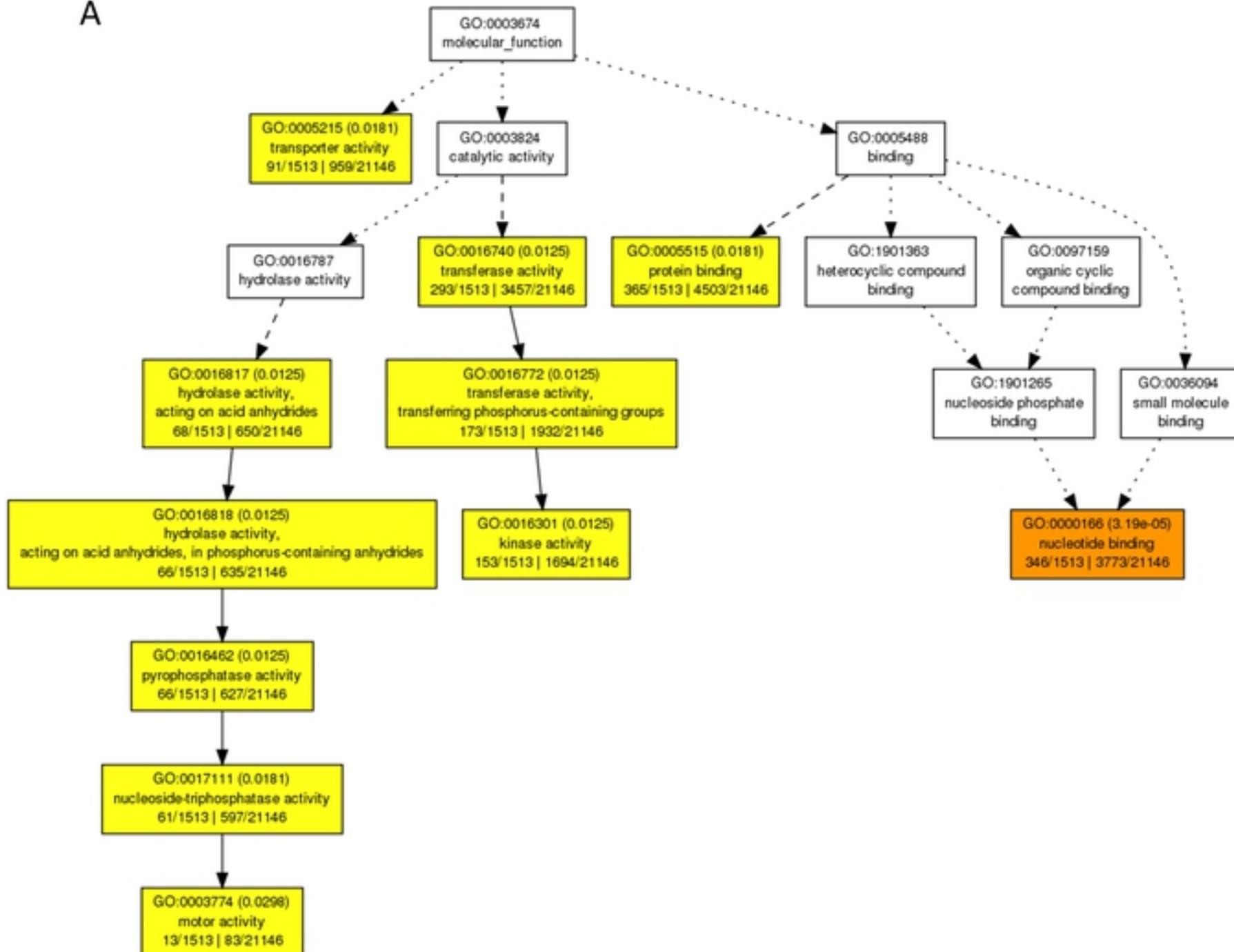



Figure 7

Fig. S1



Feature	Counts	%
rRNA	3517854	64.4
intergenic	1181441	21.6
unaligned	423796	7.8
protein_coding	204681	3.7
tRNA	132329	2.4

Figure S1

Fig. S2

A

B

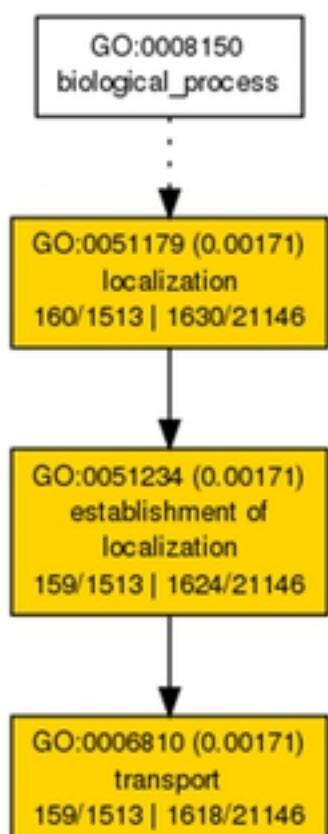


Figure S2

Fig. S3

AT4G02680.1	MRTF PS SCKE QLDLSLNPOSWIQL GKLSS SSSAPLCRESE K PEPO LPH KPLDYV LAQIHEEL TCPLOE SILYL	87
HORVU2Hr1G119180.1	MRKL FS LT SCKE QLDLSLNPOSWIQL GKLSS HSSSSSSIECL K PEPP LPH KPADYV LAQIHEEL YCPHDE SCLYL	89
consensus	!!! * !!!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!!	
AT4G02680.1	LO QVFRLCLGETKIRRRSLQSQAWQEA T HEK FC SWL YEROGEEV DLI SSCGKYSEEFVPLD IASYFPAT ASSPEAASVKTNR	177
HORVU2Hr1G119180.1	LO QVFRLGLGEAKLSRRSLQAAWERA T HEK FC AWL YERGEEPI DLI CSCGKCSQEFKILDFV SQISAE HGIG.FDDESDEFQ	178
consensus	!!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!!	
AT4G02680.1	VSKNVVF IG KIAQRRK ASLSAPPFHAMLYGN TESLL EIDMSENH SSS MRV RDF S VGVLIG SKNL LE LVFANKFCCER	267
HORVU2Hr1G119180.1	GSPVWVHF IR KIAQDRRK AALSTPLYAMINGCFKESHL VIDMSRNC SPI MRA SKES SGRLPY SAEA LE LDFANKFCCKG	268
consensus	!!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!!	
AT4G02680.1	LKD AC RE LASL SS MECAI LM FA EENSP I LA SS CLO VFL YE P SLN DE R VV VE L RVN SQV STMAGKAPP FSLY SCL SE V SM C ID	357
HORVU2Hr1G119180.1	LKD AC QK LASF SS RQDAI FM CA ELG CS I LA AS CLO V LINE P C LN DE Q V V R F S AN Q R STMAGNA FSLY C IL G EV S MS S IS	358
consensus	!!!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!!	
AT4G02680.1	PR SD RT G F LE KL V D F A E N D R C O V L G F H RL C R LL R K Y RE A E A F E T A F N L C H V Y S A T G L A R L Y Q G H I A Y E K L S S V S P F L	447
HORVU2Hr1G119180.1	A I SD V T S F LE KL V D S A S D R C K O I S H O L C R LL R K H A E A E R I F N A A F T A G H V Y S V V G L A R L S R S N H S L N I L D S V S S R W P L	447
consensus	!!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!!	
AT4G02680.1	GWMYQERSFYC C DKK LED LE K A T E L D P T L T Y P Y M RAV R MS Q NA K A A L E E I N R I L G F K I A L E C L E R F C I Y L D Y E A A I R D Q A I	537
HORVU2Hr1G119180.1	GWMYQER A Y I G D S K L E N L N K A T E L D P T L T Y P Y M RA A L M K Q S V E A A I M E I N R I L G F K I V L E C L E R F C C Y L D Y F A A I C D Q A I	537
consensus	!!!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!!	
AT4G02680.1	L T L C P D Y R M F D G V A Q L T L V Y E H V E W T A D C W M Q L W S N V D D I C G S L S V I Y Q M L E S D A C K G V L Y F R Q S L L L R N C P E A A M R S L Q	627
HORVU2Hr1G119180.1	L T L A P D Y R M I G G V A Q L T L V M E N V E W T A D C W M Q L W S S V D D I C G S L S V I Y Q M L E S D A K G V L Y F R Q S L L L R N C P E A A M R S L Q	627
consensus	!!!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!!	
AT4G02680.1	L A R E H A S S D H E R L V Y E G W I Y D T G C E E G L O K A K E S I I K R S F E A F L O K A Y A L A S S L P S S S T V V S L L E D A L C P S D R L R K G O A L N N L	717
HORVU2Hr1G119180.1	L A R E H A S S D H E R L V Y E G W I Y D T G C E E G L O K A E S I I K R S F E A F L O K A Y A L A S S L P S S A T V V S L L E D A L C P S D R L R K G O A L N N L	717
consensus	!!!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!!	
AT4G02680.1	G S V Y V D C E K L D L A A C Y I N A L K R H T R A H Q C L A R V H F R N D A A E E M T L I E K A Q N N A S A Y E K R S E Y C D R L A K S D L E M V T L D P L R V	807
HORVU2Hr1G119180.1	G S V Y V D C G N L D L A A C Y I N A L K R H T R A H Q C L A R V H F R N N T A E E M T L I E K A R S N A S A Y E K R S E Y C D R L K A D L Q M V T L D P L R V	807
consensus	!!!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!!	
AT4G02680.1	Y P Y R Y R A A V L M D S R K E A I E L S A I A F K A D I H L L L R A A F H E H G D S A L R D C R A A L S V D P N H O E M L E L H S R V N S H E P	888
HORVU2Hr1G119180.1	Y P Y R Y R A A V L M D N R K E A I E L S A I A F K A D I N L L L R A A F H E H G D S A L R D C R A A L S V D P N H O E M L E L H H R V N S O E P	888
consensus	!!!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!! * !!!	

Legend:
█ non-conserved
█ similar
█ ≥ 50% conserved

Figure S3

Fig. S4

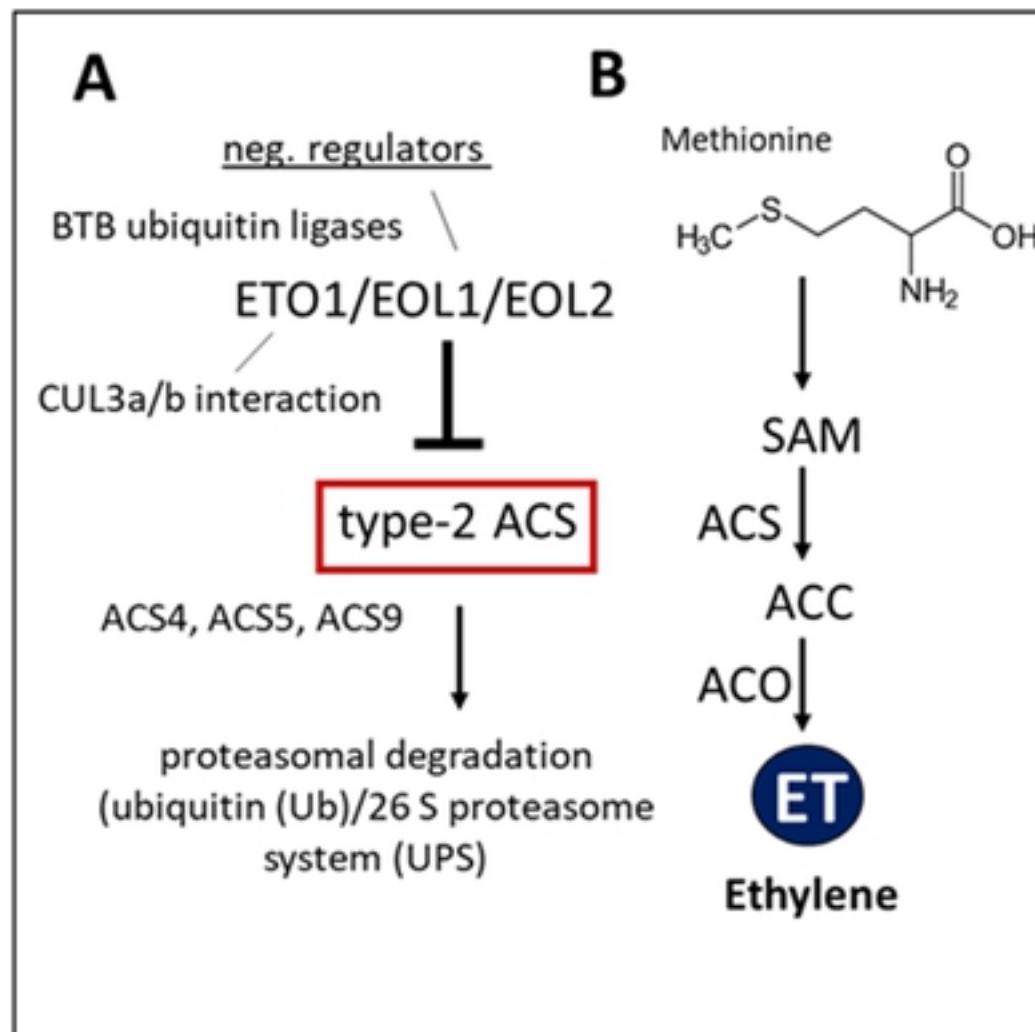


Figure S4

Fig. S5A

FgDCL1-FGSG_09025

ATGGACACCGACTCGACCGACAGCGAAGATGATCGCGTCAGTATGCCGTACCGTGAGGCCCTGAAGCATGAAAGAATACAGAGAAGAAGCGCCTGAACAAGCAGGTTGAAA
CAATACATGATAGAACACGACAGAGAAGCCTATGCCAAAGATTCTGAGAAAAAGAAGCGCGCCCTCGCTGAAGCTCCACCGACATTACACCGCGAGAATATCAGATAGAACTCT
TCGAAGCGCCAAGGAGAAGAATCTCATTGTGGTTTACCTACAGGTATTTCTGCCCTTCGACTCTACTCTGGACATTCTAATAGGCACAGGTTCTGGAAAACACTCATCTCCAT
CTTATTGCTAAAATACTACATTGAATCGAAGTGGAAATCTCGCGCTCTGGAAATCCGAGGAAGGTGGCCTTTCTGGTGGAAAAAGTAGCCCTGTGAGCAGCAATACCGATTTC
TTAAGGACCAGATTTCGGCCACAACATTGTCATGTTACAGGCATAACCGCGGCGTACCAAGGACAAGAAGTACTGGATGATCAGTTCTCAAACAAGGTTGGTCTGCAC
TGCTCACATTGCTGACTGTGAACAAACGGCTCATTACAATGGACCAGATCAACCTCTCATCTCGACGAAGCCATCATGCAAAGAAGAAGCATGATTACGCGAAATTGTC
GACGATATTATTCTACCGAAAAGAACAAAGAGACCTCGATTCTAGGAATGACCGCTCCCTGTGGATTCCAAGGCTGGAGATGTTGCAGAACTGGCACTGAACTGAGAAAAC
CCTGACAGCGAGATCGAACACTCTCGACAAGATGATGCGACAGGCAGTGAATTCCAAGTTCATGTTGAAGAGACAGTCAAATACAACACACTGGACTACCAGACGAGACCAAG
ACACAGCTTGGACTCGATCTAAGCTAGTATCGGAAACAAGGAATTCAAGGCCTCTGACTTCACAAAAGAGGCCTCCACAATCTAGGACCCCTGGTGCAGGACCGATACT
GGCAAGTCTTGATCGACGATAACAGAGATCAAGCGACTCGCCGACAGGACTCGCATGGCTTTTCCGGGGTGGAGAGAAGTGTGGCAAGAGGAGACCAAGCAGAAGAGGCTGTC
AGGGAGGTTAAAAGGTCGCGAGCCACGAGTTAGGGGATCAGTCTCAATCGCAGGAATTGTCAGCTAAAGTGAATGTCATGAAATCTGGTTCATGCCCTCACAGTCG
ATAACACAAAGCGCTGCATGTTTGTGATCAGAGACACACAGCTGCCCTTCCGGACCTTACGACCAAGTTCAATGGCAATTCCGGTATGAATGCTCGTATATGGTAAGTT
GAGTCCCATTCCAACAGCAGTAACTAACCACAATAGATTGGTCAACAATCTAGCAGCAGCACCCCTGGCAATATGTCTCTGCAGAAAGCAATGTTCAACGCTCAAGAACTTAGGGACG
GCGTATAAACTGTCCTTGCAACATCAGTGGCAGAGGAGGAATTGACATTCCGAGTTGATCTGTTATCCGATTGATCTCTATACTTCTGTTATTGATGTTCAATCCAAG
GGCGTGCAGACACGAATCTCACGGTATATCACCAGCTGGAAAGACGGCAACATGAGAGACAGATTGCGAGTCTGAAACAAGCAGCGAGAGATGCAACAGCCTCGAGAGTTCTGTC
TAAGAATACCTGCCGATCGAAAACCTCAAGACGATGATTGATGAGGAGACGGAAAGTCAGATCAAGCAAATACGTTAACGTGTACAAAATAGAATCAACGGCGCACAACTTAC
ATTCCCTCAAGCCTCGAGATACTAGCTGATTGTTGATCCTGGTACAGCAGAGAGCAGCCATAGCAAGGCTGAATATACGTCTACAAGGTGGAACATATTCACAGCCGCC
GTCAATCTACCGTCCAGTCCCCATGTCCTCCAAACAGGCTATCCACAACGAAGCAAGCTCTGCAAAATGCTCAGCGGCTTTGAGGTTGCAAGAAGCTCATCAATGGCAAACA
CATTGATGATCATCTCAGCCTACTTCAAGAAACATTCCACAAAATGCGCAATGCTGTGGGAATAAGCCCTAACAGAAGGGTGAGCATGACATGCCCTGAGGCCAACGTT
GGAGTATCCGTGGAGAATGGACACACTTCTCCAACAAGAAATTACTCTGACAGGGATTGAGGAGAAAAACAGGTCGTGATTCTCTCGGAAGTCCACTCAGGACTACCT
TCAATCCCTTATTCTCGGAATGGACGCTCAGCCATCGTGAAGTGAATGTTCTCAAGAACCTTACCCATCAGGACCGAGGAAGCTGGGGTTGACTGCTTCAACTCAAATC
TTGCCGACGTTTCAGTAAAGAGTTGAGGCCACTTGCAGCAGTTCTTACCTCTGCCCCCTGGAAAAGACCCAATCTAAAGAAATATCGCAATGACTGGGAACTGTC
AACCTGTCAAGAGACCATGACAGTCTGAATGGAGAATGCGCCGACGATTCTCGACAAGCTTGTGAGATCCATATGAGGAGGGCGAAGCTTATAATCAAAGGCATTG
ACAAATCCAAGAAGCCTCTGATCCTACACCGAGGGAGTGCTGAGTCGAGAACAGTGTGCTTATAGGTCTGCGGAACAAAACATTAAAGCAGTACAGCAACAGTGT
TCGACTAACGCCAGTGGCGAGACGATCAACGGTTGCAAAGCTGAGCTCTCATTGCGACGCAATCTGTTGACGAGTTCAAGTAAACGAGGAATCAACAAAGGATTGCTC
GTCATTAGAACCCCTCAACGTGTCACCTGTAAGTGAAGACTCTCTGAAAACGTATCTAACATGCCAGCTGCAATTGACGTTCCATGGCACTCAAGTCCCGAATCAT
CCACAGAACATGATTGCTCTGATCGCTCTGATGCGAACTATTGACCTCTCTATTCCGCCAGCGCTGGCACTCGAGGCAATGACCAAGACAGCGACAACACTGAGGATCATG
GCAAGAACAAATCAATTCCAAGCTGGCATGGGTTCAACTATGAAAGGTTGAAATTCTGAGACTCTGTTCTCAAATGCCACCAATCTCATTGGTACTCAAACCCAAGA
GCAACGAATGTTGACCATGAGCGCATGCTGTCATCTGCAACAAACAATCTGTTCAACACGGCGTAGATTGCAAGCTCCAGAGTACATACGATCTGGCATTGACAGGCG
AACTGGTACCTGATCTTACACTCAGAAAAGGCAAAGCTTCAAGGCAACAGCGCGACAGCGCTAGCCGACAAAAGTATTGCGGATGTCATGAGCTCATTGGTCTGAC
CTCTCAAGCAAGGATGACAATTGAAACATGCCGTCAAAGCTGTCAGAGATGTGCAAAGCAAAGTACCATACGATGGCTTACGATGAGTACTACGATCTTCAAGGTT
ATTGGCAGAAAGCCAGTCCAACGCCAACCGCGTAGACTTGTGCAAGAAAGTGGCAGACGCTACCGGGTACCACTTCAAGTCTGCGCCGCTGCTCCAGAGTGCATT
TACCGTATTAGGGAAACGTTCAAACATCAACGCCGAGTTCTAGGCGATGCCCTCATGACATGACCATCGTCAATATCTATCGCAACTTCCCTCGCAGACCCCTCAGT
GTTGACGGAGCACAAGATGGCAATGCCGTCAAACCAATTCTGTTGTCATGTTAAGCTCAATCTGACCCACATCTGTTCAACACGTCAGTTCATCAGAAAATCGT
ACTATGTGGCGAACTTGAGTTGGCTGAAGAGACTGCGCGCAAGAGGAGAAGAACAGGGACTCCAATGCGCATGGACTTTGGCTCAATGCGACAACGCCCTCAA
CAGATTCAATCGAGGCTCTATGGGGCCATGTTGGATTGAAATTGACTATTCTGTTGAGGATTCTTACCAAGTTCACTTCCCGTACTTAAAGACATGTCATG
TACCTTGCAAACAAAGCATCCTACACATTCTACCAAGAAGATGCAACAGGAGATGGGATGCAATTCTGTTGAGGATTCTTACCAAGTTCACTTCCCGTACTTAA
AAGTTATGAAAGAGTACGACATATATTGAGCCCTCAAGTGCACGAAAGAGTCATCACATGTCACGTTGAGGATGCAAGGAGTGGAGGTTGCTGCAAAGGGGG
AGTTGGAGCCGTATGGCGGTGATGTTGCGATGAGAAGCTGTTGGCTGCGACTGTCAGCCATGGCGGAGATGGACCATGGAACAGCTGTCAA

Fig. S5B

FgDCL2-FGSG_04408

ATGCTCTCAAGCGATAAGGTATGGCGACGCCCTTCCATACCAGACTCCGAGGTCAAAACAATAGCGTCCTCGTCGAGATCTGCTACAGGCAGAAGGAGATAACGA
CTCATATACTGTCGAGATAACCAATGTGTCAGATGACCAGGCCAATGTCAAGAGCAAGACGAAGAAGTTAACGCTCAGAAAGTGACGCCAATCCAGAGGTGAAATCCCC
GCGGTTACCAGCGAGAGATGCTGGAACAAAGCATCAAAGGAATGTCATCGTTGCAAGTAAGTTATTCCAAGTACCCATTCAATCTGCATTGGTACCTGATTAGATGGACACGGGA
AGTGGTAAACTCAAGTGTATGTCATTCCATACCATCGAAAAAGAGAGAGACTAATTATAACTCGTAGGGCCGTATGCGCATCCAACATGAACACTGATACATGTGCACCAAGACAAG
GTTGGTAAACAAAGAAACATAATATCGGGTCAAAACTAACCAATATAGATTCTGGTCTTAGGCAAGACAGTATCGTATGTGAACAGCAATACAGCGTTGCCAAGGCAAATG
CCGTCGGTATCGATGAAACTGCTAACGGGCAATTGAACATCGATGGTCCGAGGACGCTGGCCCCGTATCTTAATGGGACTCGTATCTGTCGACCTTGATATCTGCG
AGATGCTTGACCATGCTTGTCAAGATGAACATGCTGTCCTTATCGTCTCGATGAAGGTGAGACATGCCAACACTAACATATCATTACTGACTTTACAGTTACAATTGTGT
AAAGAATAGCTCTGGTCAAAGGTTATGGTGAATTCTATCAGAACACAAGAACGCCGGCATGCCGTGCCTGCTATCTGGGTTAACAGCCAGCCGATACAGTCGAAGTCATC
CACGACGAAATCCTTGAGCTCGAGGTACCATGGATGCTGTATGCATCACTAACAAATTACCGGAAAGAACCTCCAGCACGTCAACAAGCCCAATCTTCCGAGTATTGTATGA
TGTGGAAGAGCATCCGACTGAAACCCCCCTAATGCAGACTCTGCACTGAGTACTCGGCGATGGACATACCCAGGACCCAAAGTATTATAAAGGCCAAGCAACTTACGTAAGGGC
GAGAAGACTGGACCTGAAACTAAAGTATGTTGATGAAACACAGGACCTCTCAGAACAGCAGTAAAGCTTATGGAACAAAAGCAAAGACATTCTGATGAACCTGGGCTTGGG
CTGCTGACAAGTACATCTCGAGTTGGTCAGTCTGTTCTCAAGAGAAATCGACTGCCAATGACGTTAACGAGTCTGGAGCAATGAGGATAGGACCTACCTGCAGGTCAATTGAG
ACAGATCGCTGCCAGTCCCCATCAGCCAAACTACCAGACAGACACAACCTGGCCGACAAGACGAATAAAACTAACAGGAACACTTGCAGCGGATGAAGATGTGGTCGGCATTATA
TTCGTCAGATCAAGGGCTGCTGCCAACGTCTTGTCTCTTGGAGGACCCCCGAGATTGACAGCGATATCGAGTGGCTCTGTAGTAGGATCCGAGCCACCAAGATTGAA
AGCAAAACATCTACGAGTATCTGCCGGCGACTGCCGATACATTACCGGATTCAAACCTTTGGTCTGACTAGTGTCTGAAGAGGGTATTGATGTCGA
GTGTGCAACCTCGTATATGTTGATGAGACAACGACACTCAAGTCCATATCCAACGCCGGACGAGCTCGCAAACAAAAATCAAAGATGATAGTACTTGCTAGATCTCATCCGA
CGCTCGGGAATGGGATCCCTAGAAAGAGACATGAAGAGTCGTTATGAGCAGGAAAGGGGAGAGTTGGACGCTTAGAGATAGAGGCTCGCACTGAAGCGACGTCTCTTTCTTA
TACTGTAAAAACTCAGGGCTAGATTGGACCTCGAGAATTCTGCCAGCATCGAACATTGGTAACAAGGTTTCCAGCGAGATTACGTTGATCCGAGACCGTCTACATTTC
ACAAGACCGAACTGGGATCAGCACCGCCACTTCAGCGAACGGTGAECTTCCCTGGGTCTGCTTAAGCACCTCGAAGGTGCAAGGGTGGAGGTGGAGATCAGAAAAGA
ATCGGATGAAGGAAGCGGCTTCTGTCATTGTCATGTCACCAAGAACGGTTGGTAGCGACCACCTCTCCCCCTAAATGAGATTGCAAAGAACAGCAGAACAGAGGGCAGCT
AACTGCGCCCGAGCTCTATTGACCCATGAAAGACATTGACAGCGGGGGAGACCACGGCTGAGAAATGGCTCTATGCTTACGAGTTGCGATCACGAGTATGTTACTCTCTTC
ATTTCGAGATTGCCCTGCTGTGTCTTCCACGACCCCGCGACATCACCTTCTACCTGAAGAGGGACTAAATGGCATGTCAAATGCACCTCAATCAAGAGGATCTCAATGATGAAT
GCTTGGGCTGCCAGATCACGTCAACCTATTGGCGATGATTGGCCACCGCTGGAACGTGGAGATCGTACCATGTGATCAAATTATGAGAACAAAGATCTCACCCG
AGATCAAATTGGATCGGTACCTCGGCAAAGCATTGATGCTCTATTGGAAAAGAGAGTCCTGGTGGAGCCAAAAAAACTCCCTTCAACTACGTCAAATGATCCCACAAAGC
CTCCAAAAGAGCAAGTTCAGCACCCATTAAATGAATACGAGGAAGCGCCAGAACAGTATCTAGTTGGATCAATGGACACGCAGGTGGACCTGTTGATGAGATAAAACCG
GTCAGGGGAAGAGCTTGCACCAAACCCCTACCGCTGGTTCTCCGATTCCAGAGCGACTGTTGATGAGGTTCTCGCGCTAAGTCGGGTATGCTTATCCCTCATCATT
CACGAATTGGAGGTTCAGCTCATCGCAATGAACTGTCCTCGACACTTGGCGCCAGTGGTATCACAGATCTGCAATTGGTGAAGCCATCAGCTCGCTAGCGCTGCAGAGC
CTGTTGACTATGAACGTATTGAATTGGCGATTGGTTGAAGTATTGCACTGTTATTCAAGCTACTCTGAACGTAAGTCTCCGATCCCTATCGTCACTTCACTGATCATT
GTCACAGATCCCTTGGCCGAAGGTCTACTCAACCATTCAAAGACCGACTAGTCTCAATACCGTTGACTCGCATGTGCTTGAGACAGGCCCTCAAAGTTCTTCCAAAAA
CATTACTGGAATCAAGTGGAGACCGCTATATCGAGACGAATTCTAGATAAGAACGCCAGTCGATGGTATCAAGGTTGGTCAAAGACTCTGCTGATGTGGTCAGGCAC
TGTTGGAGCCTCTACCAGGATGGAGGAATCAGCAAAGCTGGAGTGCATCAAGGTTTCTGGCACCAAGTGCATGAAAGACGCCAGAGACATACTCTCCGA
GCAGCAATTAGCGACGTACCGTTGCCCGACGATGGAGCCTTGGAAAGAGCTCATCGGTACACATTAGAACAGTCTACTCATTGAGGCAATGACTCACGGCTATGCG
CTGATGGGCGAGCGCATCTTATGAACAAACTCGAGTTCTGGAGATGCCGTTCTGACTACATTGCGTAACCGAATGTTCAAGGCCCCAGTGCCAATGGACGCTTACAC
ATGGTCAAGACTGCCATGGCAACGCTGATTCTGCTTTACAAACATGCAACATGGACTACGCCGGCTGAAGTTGAAATAATGAGAACGGCAACCAAGTGCCTACAGAAGTT
CACTGCCGATATGGAAATTCTACGCTCATGCTCTCCAGAGATGGTAGAATCATGAATGAGACCCAGGCCGATTGAGAGCCTCAAGAGGAATCAATGAGGCTAGGACGAATG
GTAAACACTACCCCTGGACACTCTCGCTCGTCTTCCACCGAAGAACGTTCTACTCCGATATTTCGAGGCTACCCCTAGGTGCCATTGGGTTGATTCAAGGAGATATCGAAGTATGCA
GCCTTCTTACAAGTCCGGCTTGCCTGACCGAATTCTCAGCGATAATATTGTTCAACATCTAAAGAGGAACCTGCCAAACTAGCAATGACCAAGAAATGACGTAT
GATTATACGGCTGTTGATGGGCTATAAAGGAGTACCTCTGCACGCCAAGGTTGGAGATGCCGCTGTTGAGGGACTCAATAAGGCTGAGGCAATGACCAAGGCT
GCCGAAGAGGGCGTGAATTGGGAGCAGAACGTGCAGAGAAGGCCGCTCAGGATGAAATGGCGCATTTCTGTTGCCATGGAACCTAG

Figure S5B

Fig. S6

Fusarium graminearum CS3005 tRNA-Gly-GCC-1-9 cluster

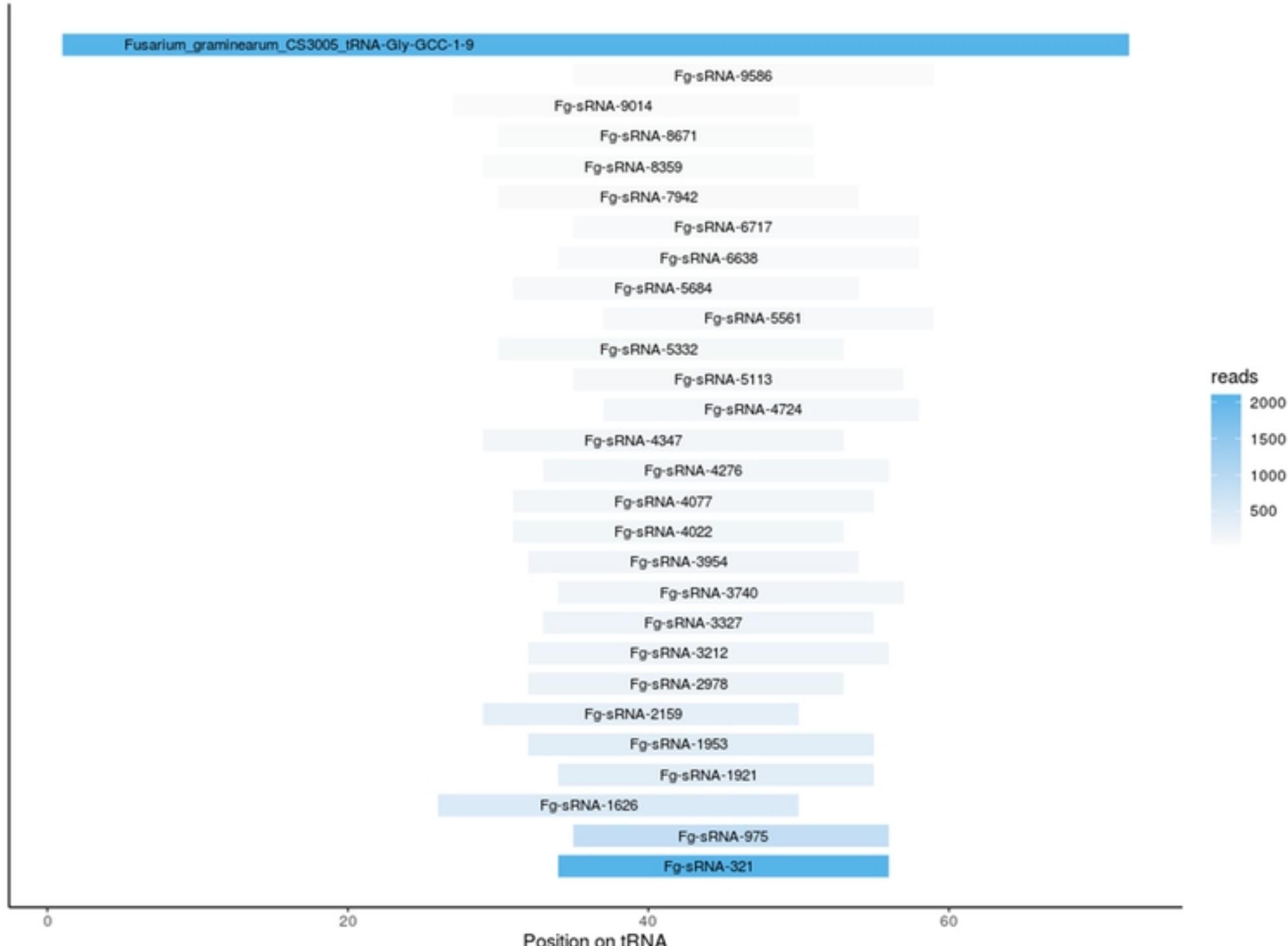


Figure S6

Fig. S7:

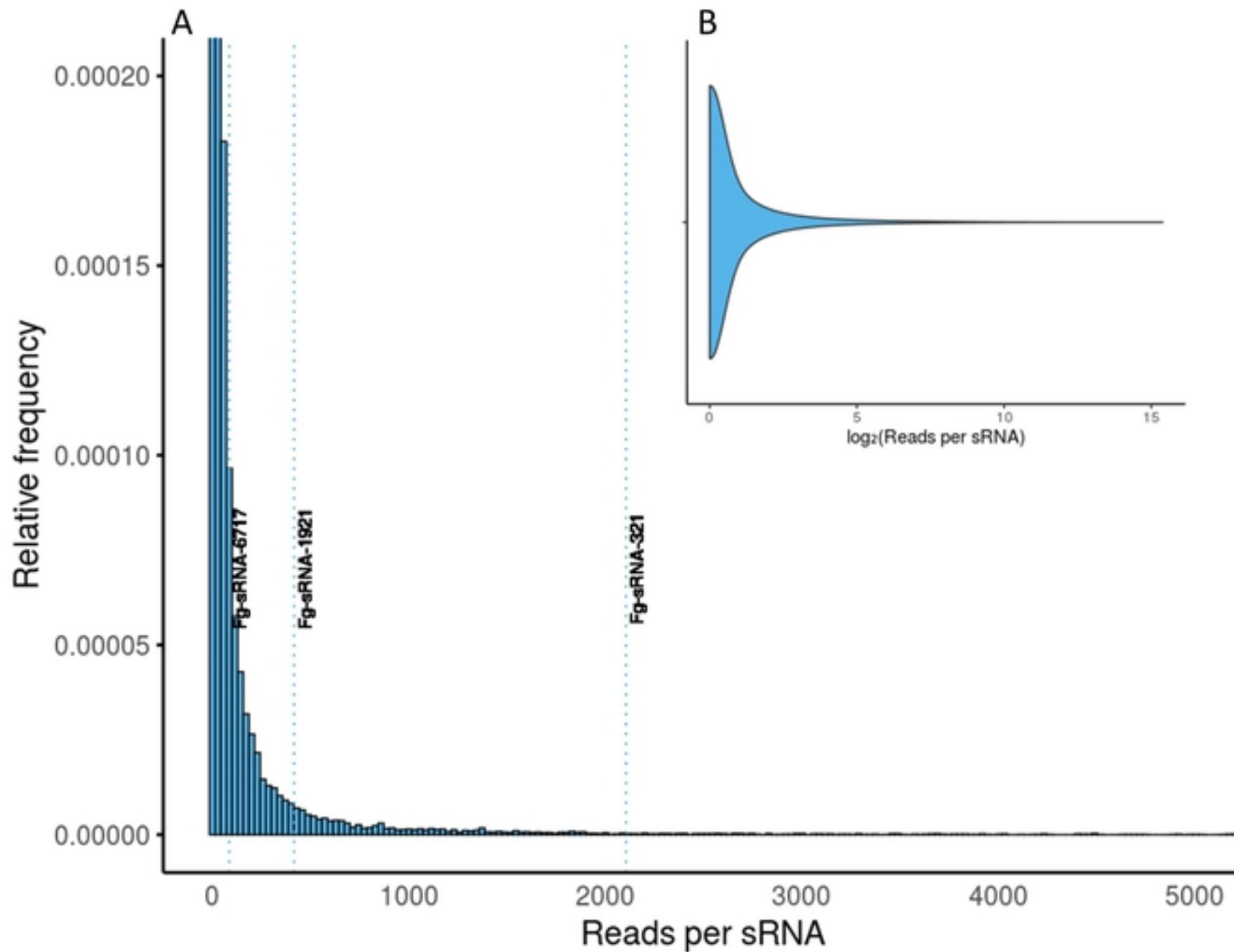
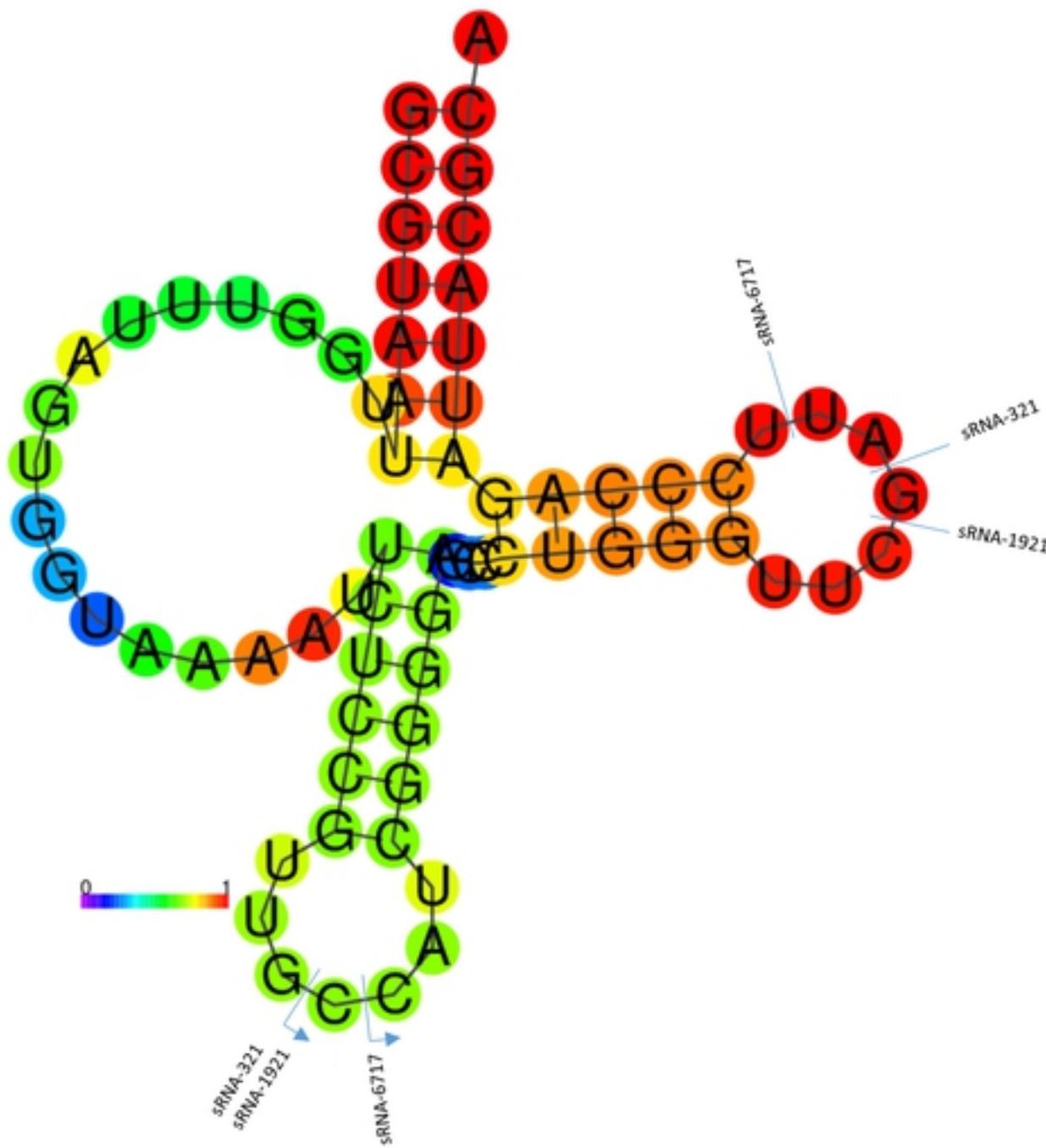



Fig. S8

>Fg-sRNA-321
>Fg-sRNA-1921
>Fg-sRNA-6717
>lcl|Query_57046 Fusarium_graminearum_CS3005_tRNA-Gly-GCC-1-9 GCGUAUJUGGUUUAGUGGUAAAUCUCCGUUGCCAUJCGGGAGCCCUGGGUUCGAUUCCAGAUUACGCA
centroid secondary structure

CCAUCCCCAGCCCUGGGUUCG
CCAUCCCCAGCCCUGGGUUC
CAUCCCCAGCCCUGGGUUCGAU
((((((.....((((.....)))))))...((((.....))))))))).

Figure S8

Fig. S9

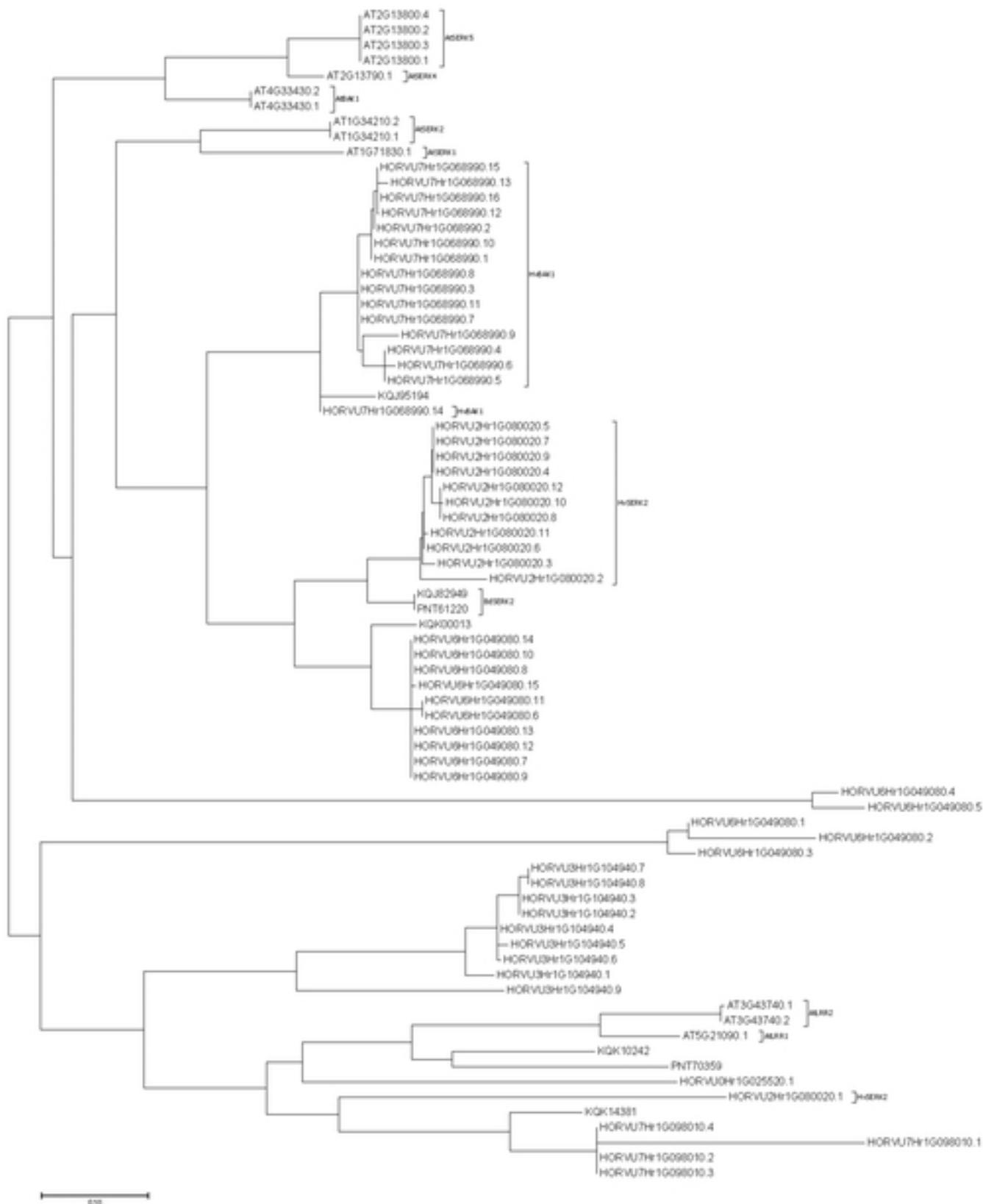


Figure S9