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Abstract

Epigenetic clocks based on DNA methylation (DNAm) can to accurately predict chronological
age and are thought to capture biological aging. A variety of epigenetic clocks have been
developed for different tissue types and age ranges, but none has focused on age prediction for
preterm infants. Epigenetic estimators of biological age might be especialy informative in
epidemiologic studies of neonates, particularly those born preterm, since this is a key
developmental window. Neonatal DNAmM is dynamic and preterm infants are at heightened risk
of developmental impairments. We aimed to fill this gap by developing epigenetic clocks for

neonatal aging in preterm infants.

As part of the Neonatal Neurobehavior and Outcomes in Very Preterm Infants (NOVI) study,
buccal cells were collected at NICU discharge to profile DNAm levels in 542 very preterm
infants. We applied elastic net regression to identify four epigenetic clocks (NEOage) predictive

of post-menstrual and postnatal age, compatible with the Illumina EPIC and 450K arrays. We
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observed high correlations between predicted and reported ages (0.93 — 0.94) with root mean

squared errors (1.28 - 1.63 weeks).

Epigenetic estimators of neonatal aging in preterm infants can be useful tools to evaluate

biological maturity and associations with neonatal and long-term morbidities.
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1. Introduction

DNA methylation (DNAm) is one of the most studied epigenetic mechanisms and acts at the
interface between the environment and human health. Changes in DNAmM are aso strongly
correlated with aging [1] and are most dynamic during pediatric age [2]. Aging-related
fluctuations in DNAmM levels have been capitalized on by researchers to develop “epigenetic
clocks’, sets of CpG sites whose methylation extents have been shown to accurately predict
chronological age and are thought to capture biological aging [2, 3]. These predicted ages are
often referred to as epigenetic age or DNAmM age. Greater DNAmM age relative to chronological
age, also known as age acceleration (AA), has been shown to be associated with age-related

phenotypes in adults, such asfrailty, chronic diseases and mortality [4].

A variety of epigenetic clocks have been developed to predict numerous age metrics in different
tissue types and age ranges [5]. One of the most widely used pan-tissue clocks to estimate
chronological age was created by Horvath and is based on over 8,000 samples from 51 healthy
tissues (age range: 0-101 years) [6]. However, DNAmM age estimates from Horvath’s epigenetic
clock become more precise as chronological age increases and are most variable in pediatric
samples [7]. Hannum et al. developed a clock based on blood with an age range of 19-101 years
[8] while other clocks are designed to capture physiological measures of biological age rather
than chronological age. These include DNAmM PhenoAge [9] and DNAmM GrimAge [10] and are
both blood-based. Many studies have successfully generated epigenetic clocks for various
tissues, age ranges, and morbidities, leading to very promising predictors of chronological agein
adults, and to potentially useful biomarkers for the diseases of aging. While some epigenetic
clocks include children, most clocks are primarily focused on adults and extrapolating them to

children results in inaccurate predictions [2, 11]. Additionally, AA metrics that are derived from
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these clocks may not be as relevant to the health conditions that are most important to children
and adolescents. To address this issue McEwen et al. developed PedBE, an epigenetic clock that
focuses on estimating chronological age of children ranging from O (birth) to 20 yearsold and is
based on buccal epithelial cells [2]. However, the definition of chronological age becomes less
meaningful proximal to birth and is especially skewed among infants born preterm. Infants born
preterm might differ biologically from infants of the same chronologic or postnatal age that are
born full-term. Epigenetic clocks, such as those developed by Knight et al. [12] or Bohlin et al.
[13], have been created to capture gestational age (GA), i.e. the time from conception to birth.
Both clocks are based on cord blood and therefore can only estimate gestational age, not
postnatal age. To our knowledge, there exists no epigenetic clock that properly handles or is

specialized for age prediction in preterm infants.

The WHO estimated 15 million infants, approximately 10% of live births, are born prematurely
early every year (before completing 37 weeks of gestation) [14]. Preterm birth is not only
associated with acute and long-term morbidities including chronic illnesses, brain injuries, and
adverse neuromotor, cognitive, and behavioral outcomes [15], but it is also the leading cause of
death worldwide among children under 5 years [14]. This leads to an immense emotional and
financial burden for families and society. The Institute of Medicine reported in 2007 that the
average medical costs of the first year were aimost 10 times greater for preterm infants in the

U.S., and resultsin a societal economic cost of $26.2 billion each year [16, 17].

Here, we present four NEOage (Neonatal Epigenetic Estimator of age) clocks, epigenetic clocks
that are focused on age estimation of preterm infants based on their DNAm profile measured in
an easily accessible tissue, buccal epithelial cells. Specifically, we investigated post-menstrual

age (PMA), the time from conception to tissue collection at neonatal intensive care unit (NICU)
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discharge, and post-natal age (PNA, or chronological age), the time from birth to tissue
collection (Figure 1). These epigenetic estimators of aging could be particularly important for
preterm neonates, because they may provide insight into early life aging, reflect heath and
development, and provide a measure of early life risk for neonatal morbidities or long-term

neurodevelopmental impairments.
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Figure 1 Illustration of different perinatal age metrics, measured in weeks and days, which we
highlight for infants born preterm. Gestational age (GA) is defined as the time from conception
to birth (expected delivery around 37-42 weeks typically refers to full-term birth, and <37 weeks
refers to preterm birth). Post-menstrual age (PMA) refers to the time from conception onward,
and postnatal age (PNA) is equivalent to chronological age and is the time elapsed after birth. In
this study, buccal cell tissue was collected from infants a NICU discharge to profile DNA

methylation.

2. Methods

2.1. Study participants
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The Neonatal Neurobehavior and Outcomes in Very Preterm Infants (NOVI) study enrolled
infants born <30 weeks postmenstrual age (PMA) from nine NICUs affiliated with six
universities from April 2014 to June 2016. Inclusion criteriaincluded: (1) birth <30 weeks PMA;
(2) parental ability to read and speak English, Spanish, Japanese, or Chinese; and (3) residence
within 3 hours of the NICU and follow-up clinic. Infants were excluded for major congenital

anomalies, maternal age < 18 years, cognitive impairment, or death.

Parents of eligible infants were invited to participate in the study when an infant reached 31-32
PMA or when survival to discharge was determined to be likely by the attending neonatologist.
Researchers explained study procedures and obtained informed consent in accordance with each
ingtitution’s review board. Children were included in this analysis if DNAmM data was available.
PMA in NOVI was calculated by adding PNA at buccal collection to the estimated gestational
age at birth which was obtained via an established process [18, 19] and is described in detail by

Everson et d. [15].

2.2. DNAm Collection and Pre-Processing

Buccal cell tissue was collected from infants that were born very preterm, at NICU discharge
(Figure 1), and DNAm levels were profiled using the Infinium MethylationEPIC BeadChip

(EPIC).

Genomic DNA was extracted from buccal swab samples, collected near term-equivalent age,
using the Isohelix Buccal Swab system (Boca Scientific), quantified using the Quibit
Fluorometer (Thermo Fisher, Waltham, MA, USA) and aliquoted into a standardized
concentration for subsequent analyses. DNA samples were plated randomly across 96-well plates

and provided to the Emory University Integrated Genomics Core for bisulfite modification using
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the EZ DNA Methylation Kit (Zymo Research, Irvine, CA), and subsequent assessment of
genome-wide DNAmM using the Illumina M ethylationEPIC Beadarray (Illumina, San Diego, CA)
following standardized methods based on the manufacturer’ s protocol. The pre-processing of the
data followed a modified workflow described by Everson et al. [15]. Array data were normalized
via Noob normalization [20, 21] and samples with more than 5% of probes yielding detection p-
values! 1> 11.0E-5 or mismatch between reported and predicted sex were excluded. In addition,
one of two duplicated samples was omitted (we retained the duplicate sample with smallest
detection p-values). Probes with median detection p-values'<10.05, probes measured on the X
or Y chromosome, probes that had single nucleotide polymorphisms (SNP) within the binding
region or that could cross-hybridize to other regions of the genome were excluded [22]. Then,
array data were standardized across Type-1 and Type-11 probe designs with beta-mixture quantile
normalization [23, 24]. After exclusions, 706,323 probes were available from 542 samples for
this study. These data are accessible through NCBI Gene Expression Omnibus (GEO) via

accession series GSE128821.

2.3. Development of the epigenetic clocks

Since data from the EPIC and Infinium HumanMethylation450 BeadChip (450k) arrays are
widdy used in ongoing research projects, we considered two sets of data for all analyses. (1) a
complete data set (706,323 probes) with logit transformed beta-values (m-values) that is
compatible with EPIC arrays (hereafter referred to as the EPIC data set) and (2) a subset of the
logit-transformed data (364,410 probes) that is compatible with both EPIC and 450k arrays
(hereafter referred to as the 450k data set). Penalized regression models (“glmnet” function in

glmnet R package [25]) were fit to both data sets to identify sets of CpGs (NEOage clocks)
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predictive of PMA and PNA (4 tota clocks: PMA-EPIC, PNA- EPIC, PMA-450k and PNA-
450K). The alpha parameter of gimnet was set to 0.5 (elastic net regression) and lambda (PMA-
EPIC: 0.049, PNA- EPIC: 0.0677, PMA-450k: 0.097 and PNA-450k: 0.2038) was chosen such
that the mean cross-validated error is minimized with 10-fold cross validation (“lambda.min”

result from “cv.glmnet” function in gimnet R package [25]).

We fit a series of penalized regression models to both data sets (EPIC and 450k) applying leave-
one-out (LOO) cross-validation. This procedure allowed us to assess prediction performances but
also limit overfitting and selection bias. In LOO cross-validation, a modd is trained on all but
one sample to make a prediction for that held-out sample. This step is repeated until each sample
is held out and predicted once and results in N potentially unique sets of CpGs for a given
outcome, where N is the sample size. Because our sample contained multiple births (e.g., twins), we
additionally removed all siblings from the training set of all non-singleton children. The performance of

predicted age outcomes was evaluated by examining their correlation with the measured outcome

and root mean squared error (RMSE = fz’i":l@ with x; and X, being the observed and

estimated age, respectively).

In addition, prediction performances of models trained using the complete (not LOO approach)
450k data set were evaluated in an independent external data set (GSE72120 [26]) that measured
DNAmM in 34 preterm and 36 full-term infants using the 450k array. This data set was chosen
because to our knowledge it is the closest comparable data, but it is important to point out the
difference between both data sets, as one measured DNAm of buccal swabs via the EPIC array

and the other profiled DNAm in saliva using the 450k array. We evaluated the performance of
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our PMA-450k and PNA-450k NEOage clocks in the test sample by examining the correlation

between predicted and measured outcomes. We also report the RM SE.
2.4. Application of existing epigenetic clocks

To compare our newly-developed NEOage clocks to existing clocks, we applied Horvath’s skin-
blood clock [27] and PedBE [2] to estimate PNA in our data and in the independent external data
set. Horvath's skin-blood clock includes 391 CpGs and was developed with DNA from human
fibroblasts, keratinocytes, buccal cells, endothelial cells, blood, and saliva (age range: 0-92
years). Out of the 391 CpGs, 345 CpGs were available in the NOVI and saliva data set. For the
NOVI data set, 42 out of the 46 missing CpGs were substituted with closest CpGs within
5,000bp. The remaining 4 missing CpGs were omitted; 3 CpGs did not have CpGs available in
our data that were within 5,000bp and 1 CpG was located on chromosome X (excluded during
data preprocessing). Analogously for the saliva data set, 40 of the 46 missing CpGs were
subgtituted with closest CpGs within 5,000bp. The remaining 6 missing CpGs were omitted; 5
CpGs did not have CpGs available in the saliva data set that were within 5,000bp and 1 CpG was
located on chromosome X. The PedBE clock (age range: 0-20 years), developed with pediatric
buccal epithelia cells, congsts of 94 CpGs. There were 5 CpGs not available in the NOVI and
saliva data set, which were substituted by the closest CpGs within 5,000bp. No CpGs were
omitted. Performance of predicted PNA was evaluated by their correlation with the measured

PNA and RMSE.
2.5. Enrichment analysis

To gain insights into the biological functions of the genes associated with the identified CpGs

included in the four NEOage clocks, we performed an enrichment analysis. We utilized the
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“gometh” function in missMethyl Bioconductor package [28], that performs a hypergeometric
test, while taking the number of CpG sites per gene into account. For the enrichment analysis
involving the CpGs of the 450k clocks, we specified the array type to be “450k” and provided a
list of CpGs that were considered (364,410 probes) for the “all.cpg” argument of “gometh”.
Analogously, we specified the array type to be “EPIC” for the enrichment analysis involving the
CpGs of the EPIC clocks and also provided a list of CpGs that were considered (706,323
probes). We evaluated both options for databases provided by “gometh”: GO (Gene Ontology)

and KEGG (Kyoto Encyclopedia of Genes and Genomes).

3. Reaults

We applied elastic net regression to identify the sets of CpGs that are predictive of PMA and
PNA in a unique population of preterm neonates. We compared the prediction performances of
our NEOage clocks to two existing epigenetic clocks (Horvath's skin-blood clock and PedBE)
by evaluating their performances in our NOVI (buccal cells) data set and an external saliva data

Set.

3.1. NEOage clocks

We identified four epigenetic clocks predictive of either PMA or PNA that are compatible with
the EPIC array or 450k array. The number of CpGs within each clock range from 303-522 CpGs
with varying degrees of overlap between the clocks (see Figure 2). CpGs for each NEOage clock
with the corresponding coefficients to calculate DNAmM age are provided in the Supplementary

Material (Supplementary Tables 1-4, Supplementary Code 1).
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Figure 2 Upset plot of CpGs included in our four NEOage clocks. Highlighted in red are the
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number of CpGs that are unique to each individual clock. Highlighted in orange are the number
of overlapping CpGs of clocks that are predictive of either PMA or PNA. Highlighted in blue are
the number of CpGs that overlapped in al four clocks (additional information for the 20
common CpGs provided in Supplementary Table 5). Highlighted in black are the number of
overlapping CpGs of clocks where at least one clock is predictive of PMA and at least one clock

ispredictive of PNA.

To assess the prediction performances without reusing information we performed LOO cross-

validation (additional information in 2.3 Development of the epigenetic clock) and evaluated
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prediction performances using correlations and RMSE. We observed very strong positive
correlations between predicted and measured age metrics (r > 0.9 and p-values < 10716) with
very similar correlation coefficients anong our four NEOage clocks (Figure 3). The predictions
for PMA achieved RMSEs of 1.28 for the 450k and EPIC clocks, while predictions of PNA
resulted in a RMSEs of 1.63 and 1.55, for the 450k and EPIC clocks respectively. The
scatterplots in Figure 3 in combination with the strong correlations and low RM SE indicate high

accuracy of our NEOage clocks.
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Figure 3 Scatterplots of estimated and measured PMA and PNA using our NEOage clocks
compatible with the EPIC and 450k array within NOVI. Prediction performances are evaluated

by RM SE and correlations between estimated and measured age metrics.

Next, we evaluated the prediction performance of our 450k clocks in an externa independent

data set that measured DNAmM in saliva tissue using the 450k array. This external saliva data
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includes preterm and full-term infants. While Figure 4 visualizes both preterm and full-term
infants, we first focused on only preterm infants in the prediction performance assessment of our
NEOage clocks. Focusing on preterm infants of the saliva data allows for a more appropriate
comparison of the two data sets. The prediction performances in the external saliva data set
resulted in diminished but still strong correlations (PMA: r=0.61 and PNA: r=0.76), and lower
RMSE for PMA (RMSE = 1.09) and similar RMSE for PNA (RMSE = 1.55), compared to the
NOVI data set. However, it is important to note that the ranges of PMA and PNA in preterm
infants of the saliva data are 38-42.6 and 6.9-17.6 weeks, respectively. These ranges are
noticeably smaller than the ranges of PMA and PNA in the NOVI data set (PMA: 32.1-51.4
weeks; PNA: 2.7-25.3 weeks) and is likely one reason for lower correlation coefficients between

predicted and reported ages in this dataset.
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Figure 4 Scatterplots of estimated and measured PMA and PNA using our 450k clocks in an
external saliva data set (GSE72120 [26]) that included full-term (red) and preterm (blue) infants.

This saliva data set was measured by the 450k array. The reported prediction performances,
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RMSE and correlation coefficients, between estimated and measured age metrics are based on

preterm infants only since our NOV | training data did not include any full-term infants.

While we observed strong predictive performance for our newly developed NEOage clocks, the
existing Horvath skin-blood clock and PedBE clock did not predict PNA as accurately in preterm
infants. As shown in Figure 5, the correlations between estimated and measured PNA are
moderate in the NOVI data set (Horvath: r = 0.44 and PedBE: r = 0.59). The RMSE are
greater for both clocks, with a noticeably greater RMSE for Horvath’s skin-blood clock
(Horvath: RMSE = 49.68 and PedBE: RMSE = 8.68). Additionally, our NEOage clocks
outperformed the existing clocks in the independent saliva data set. Analogoudy, Figure 6
displays both preterm and full-term infants. For preterm infants (highlighted in blue), Horvath
skin-blood clock and PedBE exhibit weak corrdlations (Horvath: » = 0.31 and PedBE: r =
0.19) with RMSE of 38.49 and 12.93 weeks, respectively. For full-term infants (highlighted in
red), the Horvath skin-blood clock correlation is » = 0.60 and PedBE corréation is r = 0.20
with RMSE of 46.31and 5.54 weeks, respectively. Interestingly, Horvath’'s clock yields a
substantially better correlation between reported and predicted age for full-term infants
compared to preterm infants, while the PedBE clock yielded weak correlations for both groups.
Y et, while the correlations are stronger for Horvath’s clock, the actual predicted ages were closer
to the reported ages for the PedBE clocks. In contrast, PNA prediction of full-term infants using
our NEOage 450k PNA clock has a stronger correlation (r = 0.76) than both existing clocks and
a similar RMSE of 7.42 weeks compared to PedBE. The best prediction performance for the
full-term infants resulted from our NEOage 450k PMA clock with a correlation of 0.90 and

RMSE of 2.14 weeks.
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Figure 5 Scatterplots of PNA estimated by Horvath’s skin-blood clock and PedBE and measured
PNA within NOVI. Prediction performances are evaluated by RMSE and correlations between

estimated and measured PNA.
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450k array and included full-term (red) and preterm (blue) infants. The reported prediction
performances, RM SE and correlation coefficients, between estimated and measured age metrics

are based on preterm infants only.

3.2. Enrichment analysis

We performed enrichment analyses for the CpGs included in the four NEOage clocks that we
characterized to evaluate potential pathway enrichments of genes associated with CpGs that we
identified. No pathways or GO terms were significantly enriched after FDR correction (FDR <
0.1), but the KEGG pathways and GO terms that tended to have the smallest raw p-values
included immune and inflammatory responses, endocrine activities, steroidogenesis, cellular
proliferation, celular differentiation and organization, and organ morphogenesis. Tables
containing the 20 most significantly enriched pathways are provided in Supplementary Material

(Supplementary Table 6-13).

4. Discussion

While there has been some progress in addressing the lack of epigenetic clocks focusing on
pediatric populations in recent years [2], to our knowledge, there currently exists no epigenetic
clock that is specialized for preterm infants, nor for age prediction specific to the neonatal
period. Preterm infants present a unique population due to the shift of ther biological and

chronological age progress relative to full-term infants. To fill this gap, we developed four
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NEOage clocks that are based on preterm infants from the NOVI study to estimate PMA and
PNA (EPIC- and 450k-compatible) and include 303-522 CpGs. We demonstrate that our newly
developed NEOage clocks outperform two established epigenetic clocks, Horvath’'s skin-blood
clock and PedBE, both in our NOVI buccal data set and in an external saliva data set of infants

that were born preterm.

A systematic deviation of full-term infants can be observed in Figure 4 and Figure 6. This shift
appears to be more dominant in PNA predictions and might indicate that our PMA and PNA
clocks capture a similar aging signature, but that our PNA clocks are more sensitive to the
gestational age at birth. Pre- and full-term infants, as shown in Figure 4B, appear to have
moderately similar regression slopes, but different intercepts, which is most likely a result of
their different gestational age at birth. While extrapolation of our NEOage clocks outside of their
training range is not recommended, it can be expected that prediction accuracy decreases with
greater age differences (similar to extrapolating adult clocks to children, or pediatric clocks to
the neonatal period). However, if extrapolation of age outside of our training age range but

proximal to birth is necessary, our PMA clocks might be more appropriate.

We observed noticeable differences in RMSE when comparing reported ages to predicted ages
from existing clocks [2, 6], predominantly in estimates from Horvath’s skin-blood clock, but also
PedBE. One possible explanation is that both clocks were not specifically developed for this age
range. For these existing clocks, age is estimated in years, which was then transformed to weeks
by multiplying by 52. Hence, any prediction errors might be amplified. In addition, PNA is
greatly overestimated for all infants by Horvath’s skin-blood clock, meaning that estimated PNA

is greater than measured PNA for every infant.
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While PMA seems to provide a more generalizable estimate of age, it comes with the limitation
that the day of conception (reference point to calculate PMA) is not as precise of a measurement
as day of birth (reference point to calculate PNA) and therefore is associated with a certain
degree of uncertainty. Another limitation is the extension of these clocks to other tissue types,
because our NEOage clocks are based on buccal cells collected via cheek swabs from preterm
infants. Generalizing our NEOage clock to different tissue types will most likely compromise the
prediction performance. Nevertheless, buccal swab is minimally invasive and thus is specifically
important in pediatric and neonatal populations where more invasive sampling may deter study
participation [29]. While blood samples provide large amounts of DNA with good quality, it
requires an invasve and expensive procedure with technical difficulties, can be difficult or
impossible to collect from preterm neonates, and causes discomfort and increased risk of
infection [29]. In addition, buccal epithelial cells have been shown to be better proxy for the
brain than peripheral blood [30]. The collection of buccal cells and saliva is less complicated,
inexpensive and non-invasive [29], with the added benefit of buccal cells being less
heterogeneous [2, 30]. A possible contamination of prenatal fetal sample with maternal cells can

be avoided by performing a short terminal repeats analysis[29].

With our newly developed NEOage clocks we aim to fill the gap of methylation clocks trained
on pediatric samples [31] and based on buccal cells, an easily accessible tissue that requires no

invasive procedures.

Our epigenetic estimators of neonatal aging in preterm infants might be particularly valuable in
this population of neonates, because it could alow us to gain insight into early life aging and

reflect influences on subsequent health and development. Further, establishing precise estimators
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of PMA might help us to develop tools to more accurately determine the day of conception and

measurements associated with it (e.g. PMA and gestational age).

5. Conclusion

We have introduced our four NEOage clocks that are specific to the assessment of epigenetic age
in very preterm neonates. Our NEOage clocks are based on buccal cells, a tissue that is easily
accessible and requires no invasive intervention. Postmenstrual age (PMA) and post-natal age
(PNA) can be accurately estimated utilizing DNAmM measured by either the Illumina 450k or
EPIC array. We demonstrated that our NEOage clocks outperform two existing clocks by
assessing their prediction performances in two preterm infant data sets. With our NEOage
clocks, we have provided tools to examine neonatal aging, age acceleration and their association

with neonatal health and development in a unique population of very preterm infants.
Data Availability Statement

The DNA methylation data generated in the current study are available in the NCBI GEO via
accession series GSE128821. R codes used for the analyses presented in the paper are available

upon request to the corresponding author.
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Supplementary Table 1 CpGs and corresponding coefficients of the 450k-PMA NEOage clock
Supplementary Table 2 CpGs and corresponding coefficients of the 450k-PNA NEOage clock

Supplementary Table 3 CpGs and corresponding coefficients of the EPIC-PMA NEOage clock


https://doi.org/10.1101/2021.05.13.444018
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.13.444018; this version posted May 18, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Supplementary Table 4 CpGs and corresponding coefficients of the EPIC-PNA NEOage clock
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Supplementary Table 6 Top 20 pathways from GO pathway analysis for CpGs included in the
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Supplementary Table 7 Top 20 pathways from KEGG pathway analysis for CpGs included in

the 450k-PM A NEOage clock

Supplementary Table 8 Top 20 pathways from GO pathway analysis for CpGs included in the

450k-PNA NEOage clock

Supplementary Table 9 Top 20 pathways from KEGG pathway analysis for CpGs included in

the 450k-PNA NEOage clock

Supplementary Table 10 Top 20 pathways from GO pathway analysis for CpGs included in the

EPIC-PMA NEOage clock
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Supplementary Code 1 R code example to calculate DNAmM age using NEOage clocks
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