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Abstract

With the advent of high throughput genetic data, there have been attempts to estimate

heritability from genome-wide SNP data on a cohort of distantly related individuals using

linear mixed model (LMM). Fitting such an LMM in a large scale cohort study, however, is

tremendously challenging due to its high dimensional linear algebraic operations. In this paper,

we propose a new method named PredLMM approximating the aforementioned LMM moti-

vated by the concepts of genetic coalescence and gaussian predictive process. PredLMM has

substantially better computational complexity than most of the existing LMM based methods

and thus, provides a fast alternative for estimating heritability in large scale cohort studies.

Theoretically, we show that under a model of genetic coalescence, the limiting form of our

approximation is the celebrated predictive process approximation of large gaussian process

likelihoods that has well-established accuracy standards. We illustrate our approach with ex-

tensive simulation studies and use it to estimate the heritability of multiple quantitative traits

from the UK Biobank cohort.

Keywords: Linear Mixed Model; Genetic Relationship Matrix; Genetic Coalescence, Distantly related

individuals; Gaussian Predictive Process.
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1 Introduction

In the past few decades, genome-wide association studies (GWASs) have identified hundreds of single

nucleotide polymorphisms (SNPs) influencing the genetic architecture of complex diseases and traits. For

majority of the traits, however, the associated SNPs from a GWAS only explain a small fraction of the

heritability estimated using twin and family studies. In search of this so called “missing heritability”, there

were attempts to capture even infinitesimal SNP effects by taking into account genome-wide variants in

a linear mixed model (LMM) framework [32, 19, 22, 8]. The SNP-based LMM framework, often known

as genome-based restricted maximum likelihood (GREML) approach, usually involves distantly related

people, whose extent of genetic relatedness depend on their evolutionary history [31]. The total trait

variance in this LMM approach is decomposed into two variance components such as the additive genetic

variance and the residual variance. [24, 28]. The approach requires computation and inversion of a high-

dimensional genetic relationship matrix (GRM) from the genome-wide SNP data of dimensionality same as

the sample size. Heritability is calculated as the ratio of the additive genetic variance to the total variance

and the parameters are usually estimated using a restricted maximum likelihood (REML) approach.

In recent years, advances in genome sequencing have generated huge amount of genetic data on large

scale cohort studies, such as UK Biobank [1], Precision Medicine cohort [17], Million Veterans Program

[13]. These studies collect data on millions of genetic markers and numerous diseases/traits on thousands

of individuals. For example, UK Biobank cohort has data on approximately 500,000 individuals, 800,000

markers and numerous traits. Therefore, it is needless to say that GREML based methods need to be

extremely time and memory efficient to be applicable on such magnanimous studies.

Programs such as genome-wide complex trait analysis (GCTA) [32], genome-wide efficient mixed model

association (GEMMA) [34] have implemented efficient algorithms to fit the GREML approach. These pro-

grams usually follow two steps: first, compute the genetic relationship matrix (GRM) with the SNP data on

the individuals and second, use the computed GRM to fit a GREML corresponding to a trait. If N be the

number of individuals andM be the number of SNPs, the first step of computing the GRM, takes complexity

of O(MN2) FLOPS (floating point operations). And, the next step i.e fitting the GREML to estimate her-

itability, requires inverting the GRM matrix which uses per iteration complexity of O(N3) FLOPS. When

N is extremely large (say more than 100,000), this step becomes computationally intractable. It should be
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noted that the first step (computing the GRM) is also computationally very demanding (especially when

M,N both are large). In large biobank-scale studies, where the interest is to estimate heritability of a

large number of traits, implementing these approaches become computationally very demanding.

Recently, an approximate method named Bolt-REML [20, 21, 22] has been proposed that trades off

small amount of accuracy in favor of greater computational speed. It follows a different path than the

above methods. It does not compute the GRM but uses the SNP data directly to fit the GREML by

monte carlo average information REML algorithm. It has computational complexity of O(MN1.5) per

iteration which is better than the previous methods in terms of N . The software is well optimized and in

our analysis of UK Biobank data, it performed much better compared to the other approaches in terms of

computational time. However, the complexity of Bolt-REML is not linear in N which makes it challenging

to use for larger N (> 300, 000). Additionally, the computational complexity also increases linearly with

M . Thus, in a large cohort with millions of SNPs, it would be immensely intensive to use Bolt-REML for

estimating heritability of all the traits one by one. On the other hand, the previous approaches estimate

the GRM only once (that requires computational complexity of O(MN2)) and after that, the complexity

of analyzing any trait does not depend on M .

In this paper, we approximate the likelihood of the GREML approach to develop a rapid algorithm for

estimating heritability. The approximation is motivated by the concepts of genetic coalescence [18, 9] and

gaussian predictive process models [3, 11]. Our proposed approach PredLMM exploits the structure of the

GRM to ease the computationally demanding linear algebraic steps of the standard GREML algorithm

such as calculation of the determinant or inverse of a high dimensional matrix (N × N) at every itera-

tion. It reduces per iteration computational complexity from O(N3) FLOPS (floating point operations) to

O(Nr2)+O(r3) FLOPS where r is much smaller than N . Theoretically, we show that under a model of ge-

netic coalescence, the limiting form of our approximation is the celebrated predictive process approximation

of large gaussian process likelihoods [3] that has well-established accuracy standards. Empirically we have

verified the reliability and robustness of our proposed approach through extensive simulation studies by

replicating many possible realistic scenarios. We have analyzed the UK Biobank cohort data (with 286,000

British individuals and 566,000 SNPs) to estimate the heritability of Standing Height, Weight, BMI, Sys-

tolic and Diastolic blood pressure, Hip and Waist circumference. We have implemented PredLMM in an
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efficient Python module (https://github.com/sealx017/PredLMM).

2 Materials and Methods

2.1 Genome-based Restricted Maximum Likelihood

2.1.1 Model Specification:

Let Y denote the N ×1 vector of phenotype corresponding to N individuals, X denote the N ×p matrix of

covariates, and W denote the N ×M matrix of mean and variance scaled genotype for the N individuals

and M SNPs, i.e., E(wij) = 0 and V ar(wij) = 1. Consider the following LMM,

Y = Xβ +Wγ + ε; γ ∼ NN (0, σ2
wI), ε ∼ NN (0, σ2

eI) (1)

And, the corresponding marginal model can be written as,

Y ∼ NN (Xβ, σ2
hA+ σ2

eI); σ2
h = Mσ2

w, A =
1

M
WW

> (2)

where A is formally known as the Genetic Relationship Matrix (GRM) and I is the identity matrix.

Heritability is calculated as h2 = σ2
h/(σ

2
h + σ2

e).

2.1.2 Estimation Approaches:

To estimate the variance parameters σ2
h, σ

2
e and eventually h2, different REML algorithms are generally

used. Thus, the entire framework is referred to as genome-based restricted maximum likelihood (GREML)

approach. There are two types of programs implementing the GREML approach: a) Exact Methods

(methods that converge to the REML optimum) and b) Approximate Methods (methods that approximate

the REML optimum).

Exact Methods: Programs such as GCTA [32], GEMMA [35] operate in two steps: first, compute

the GRM, A = 1
M
WW

> and second, consider the computed A in the marginal model from Equation
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2 to estimate h2 using different REML algorithms. These REML algorithms are iterative and compute

analytically exact solutions. For example, GEMMA uses a modified version of Newton-Raphson method

(considers exact Hessian), GCTA uses average information (AI) method (considers approximate Hessian

and hence, computationally faster). The second step involves computing the inverse and determinant of

the N ×N dense matrix V = σ2
hA+σ2

eI at every iteration which takes O(N3) FLOPS, making these exact

methods computationally intractable as N increases.

Approximate Methods: Unlike the previous methods, Bolt-REML [20, 21, 22] does not compute the

GRM A. It directly uses with the SNP data matrix W and follows a Monte Carlo REML approach that

uses random sampling to approximate the derivatives of the log likelihood corresponding to the marginal

model from Equation 2. The algorithm has computational complexity of O(MN1.5) per iteration which

is better than the previous methods in terms of N . The software is well optimized and in our analysis

of UK Biobank data, unlike the previous methods, it would successfully converge for moderately large N

(N > 100, 000) in a reasonable amount of time. However, the per iteration computational complexity of

Bolt-REML still increases linearly with M . Thus, in a cohort study where M is closer to a million (or,

larger), it will become computationally much more challenging to use Bolt-REML. On the other hand, the

previous approaches estimate the GRM only once (with computational complexity of O(MN2)) and after

that, the complexity of analyzing any trait does not depend on M .

2.2 Sub-sample based GREML

Since, the likelihood based methods above involving the full population become increasingly computation-

ally demanding as the population size N increases, an alternative would be to utilize a sub-sample based

approach described here:

• Choose a random sub-sample k of size n∗ from the dataset such that a standard GREML based

program, for example GCTA can be used to estimate heritability (ĥ2k).

• Repeat the step above K times and take the average of the heritability estimates: ĥ2 = 1
K

∑K
k=1 ĥ

2
k

as an estimate of h2.
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Theoretically, the final estimate of heritability: ĥ2 = 1
K

∑K
k=1 ĥ

2
k should be consistent but with a much

higher variance than the full data based GREML estimate. Also, it would be challenging to obtain a closed

form expression of the variance (unless K = 1) and one would have to resort to bootstrapping for that

purpose. Additionally, though this approach can drastically reduce the computational complexity, choosing

the sub-sample size: r and the number of repetition: K to achieve a reliable estimate of heritability may

become an arduous task itself. In our simulation studies and real data analysis, we assess the performance

of a simple version of this method by considering a single repetition and varying the value of n∗. We refer

to it as GREML (sub).

2.3 Proposed Method

2.3.1 Asymptotic limit of the GRM

First, we show that under certain assumptions, as the number of SNPs M goes to infinity, the likelihood

corresponding to the marginal model from (2) converges almost-surely to a gaussian process (GP) likelihood.

The assumptions are as follows,

1. Assumption 1 (Correlation across individuals): We assume that each individual i = 1, 2, . . . , N

can be represented by a point (location) si in an abstract spatial manifold D equipped with a

distance d. The correlation between the genotypes of individuals i and i′ at the jth SNP is given by

Cov(wij , wi′j) = Cj(si, si′) where Cj is a valid covariance function inD which decreases monotonically

with increasing distance d(si, s
′
i).

This assumption is rooted in the theory of genetic coalescence [9, 18]. The coalescence model describes

the relationships within a sample from the present individuals (sequences) back to the most recent

common ancestor (MRCA) [30]. Under coalescence, the correlation between genotypes of individuals

will vary inversely with the time to coalescence, i.e., number of ancestral generations till the most

recent common ancestor. Hence, the MRCAs of different pairs of individuals in a sample can be

assigned to nodes of a genealogical tree. Trees are equipped with a valid distance metric (shortest

distance between nodes) and models for tree-structured objects commonly specify the correlation as

decreasing function of the distance [4].
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The maximum likelihood estimate of h2 from (2) has been shown to be consistent in [16]. The theory

relies on the assumption that the genotype distributions are independent across individuals (upto

standardization). Formally, wi ⊥ wi′ for any two individuals i 6= i′ where wi = ith row of W, is the

genotype vector for the ith individual. Such an assumption of between-individual independence of

genotype distributions is in sharp violation of the principles of coalescent theory.

We note while coalescence model is a natural example where our assumption of latent embedding is

realized, the concept is not just restricted to trees and can be compatible with more complex models

of ancestry depicted by any manifold with a notion of distance.

2. Assumption 2 (Stationarity and ergodicity across the SNPs): We assume that the centered and

scaled genotype process w̃j = (w1j , . . . , wNj)
′ is second-order stationary and ergodic for j = 1, 2, . . ..

Stationarity translates to Cov(w̃j) = Cov(w̃j′) = C for all j, j′ implying that the covariance functions

Cj = C for all j = 1, 2, . . . Ergodicity implies that as the number of SNPs grows, we have

lim
M→∞

A = lim
M→∞

1

M

M∑

j=1

w̃jw̃
>
j → C = Cov(w̃1) (3)

The simplest setting where this assumption is satisfied is when the scaled and centered genotype

processes {w̃j}j=1,2,... are assumed to be iid. Assumption of iid genotypes is common in theoretical

studies of the heritability estimation [16] but independence is only sufficient and not necessary for

us. More realistic scenarios like presence of linkage disequilibrium (LD) that effectuates correlation

across genotypes can also be accommodated as long as the ergodicity is ensured. As shown in [27],

the pairwise LD among loci in a homogeneous population decreases exponentially as a function of

the genetic distance, which validates the feasibility of our assumption.

Correlation structures arising from absolutely regular-mixing processes [6] like autoregressive (AR(p)),

moving average (MA(q)) or ARMA(p, q) [23] will satisfy the strong law of convergence in Equation

(3) [25].

Under Assumption 2, we have the following assertion on the limit of the marginal LMM likelihood from
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(2),

lim
M→∞

NN (Y |Xβ, σ2
hA+ σ2

eI) = NN (Y |Xβ, σ2
hC+ σ2

eI) (4)

where NN (Y |µ,Σ) denotes the N -variate normal likelihood for a realization Y with mean µ and variance

Σ. Thus the likelihood used in heritability estimation converges to a likelihood for data Y a partial

realization of a Gaussian process on D with mean 0 and covariance function C observed at the N latent

locations s1, s2, . . . , sN . It is expected that estimation of heritability using the limiting likelihood (4) will

be similar to that from the exact likelihood (2) as the number of SNPs M is usually very large.

2.3.2 PredLMM:

Just switching to the limiting likelihood (4) does not ease any of the computational burden as GP likelihoods

also require O(N3) FLOPS. However, over the last two decades a series of increasingly sophisticated

algorithms have been proposed for fast approximate GP likelihoods [see 15, for a recent review].

Our approach uses predictive process (PP) [3, 11] which results in the low-rank plus diagonal ap-

proximation of the dense matrix C. Let S = {s1, s2, . . . , sN} denote the set of N latent locations, and

S∗ = {s1, s2, . . . , sr} denote a set of r � N locations in D referred to as the knots. Also, for two sets A

and B in D let CA,B denote the |A|× |B| matrix (C(si, si′))i∈A,i′∈B. The predictive process approximation

of C is given by

C̃PP = CS,S∗C
−1
S∗,S∗CS∗,S∗ + diag(C−CS,S∗C

−1
S∗,S∗CS∗,S∗). (5)

The first term is a low-rank factorization as the number of knots is much less than the sample size. [3]

showed that this low-rank term is the optimal (in terms of reverse Kullback Leibler divergence) low-

rank approximation of C using the knots S
∗. [11] proposed adding the diagonal matrix (second term)

to eliminate a positive bias on the diagonal entries. For moderate choices of r � N , inference from

the predictive process likelihood provides an excellent approximation to that from the full GP likelihood.

Computationally, predictive process only requires O(Nr2 + r3) FLOPS and as r � N , the approximation

results in massive gains in run times. Consequently, predictive processes is one of the most popular

approximations of the full GP likelihood and is widely adopted in many spatial applications.
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In our setting, direct usage of predictive process likelihood is not recommended for two reasons. First,

the locations si are unknown to us. Hence, CPP can only be calculated using approximate locations

like a vector of the top few PC scores. The impact of such choices of locations is less clear. Second,

covariance functions usually involve additional spatial parameters θ, thereby increasing the number of

unknown parameters to be estimated.

Instead, we consider the following strategy. We choose S∗ to be a subset of S, and define I to be the

subset of B = {1, 2, . . . , N} containing the indices corresponding to S∗. We can decompose the GRM A

as,

A = AB,B = AB,IA
−1
I,IAI,B + (AB,B −AB,IA

−1
I,IAI,B)

The decomposition is inspired by the concept of conditional variance [10]. The first term AB,IA
−1
I,IAI,B

on the right is the low-rank part of the full GRM A that is explained by the information about the subset

of individuals I, while the second term AB,B − AB,IA
−1
I,IAI,B is the residual GRM of the individuals in

the subset B ∩ Ic that is not explained by the individuals in the subset I. Replacing the term on the right

with its diagonal, we then have a direct low-rank plus diagonal approximation of A as

ÃPP = AB,IA
−1
I,IAI,B + diag(AB,B −AB,IA

−1
I,IAI,B) (6)

We propose using the likelihoodNN (Y |Xβ, σ2
hÃPP+σ2

eI) for heritability estimation. It is clear thatA and

ÃPP agree on the diagonals, and on the sub-matrix corresponding to the knots I. Also, limM→∞ ÃPP =

C̃PP . Hence, using triangular inequality, we can write

‖A− ÃPP ‖ ≤ ‖A−C‖+ ‖C− C̃PP ‖+ ‖C̃PP − ÃPP ‖

Under assumption 2, the first and third terms vanishes as M → ∞, while for a well chosen set of knots S∗,

the predictive process approximation C̃PP is close to C (since C is a decreasing function of the distance

as postulated in Assumption 1). Hence the middle term will also be small. This justifies why for large M ,

ÃPP is expected to be close to A.
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In our empirical studies detailed later, the predictive process approximation consistently and substan-

tially outperforms the subsample-based method when both uses the same set of knots (subsample) I. We

offer some insight into this. The first term of ÃPP in Equation 6 is

AB,IA
−1
I,IAI,B =


 AIc,IA

−1
I,IAI,Ic AIc,I

AI,Ic AI,I


 .

As mentioned before, this low-rank matrix is the best estimate of A based on the genetic information

only from the individuals in subset I and their genetic correlation with the individuals in subset Ic. If

using the subsampling based approach with the same subsample I, one would only use the submatrix

AI,I to estimate h2. This thus ignores the genetic correlation of these subsampled inviduals with those

not subsampled (quantified as AI,Ic), and is thus suboptimal to the predictive process approach which

leverages this genetic relationship among individuals while remaining computationally scalable.

2.3.3 Computational gains:

Evaluation of our PredLMM likelihood NN (Y |Xβ, σ2
hÃPP + σ2

eI), does not require computing or storing

the entire N ×N GRM matrix A and can be calculated only using the N × r tall thin sub-matrix AB,I ,

the small r × r square matrix AB,B, and diagonal elements of A. This reduces storage from O(N2) to

O(Nr + r2) – a substantial gain for biobank-scale studies with large N as r � N .

Subsequently, the nice low-rank plus diagonal structure of ÃPP facilitates fast evaluation of the likeli-

hood. Inverse of σ2
hÃPP +σ2

eI becomes feasible and significantly rapid using the Woodbury matrix identity

[29], while the matrix determinant lemma [14] is leveraged for scalable computation of the determinant.

Both the steps involve O(Nr2 + r3) FLOPS, as r � N , the computation is thus becomes linear in N – a

drastic reduction from the O(N3) FLOPS required for evaluating the true likelihood.

2.3.4 Choice of knots design and number:

In traditional applications of gaussian processes in spatial statistics, the domain D is known and the

locations si are observed. Hence, the knots need not coincide with the data locations. Recommended

choices for the knot-set include space-filling designs and lattices [3]. In our case, the locations are artificial
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constructs to motivate our direct approximation. Hence, restricting the knot set to be a sub-sample of these

hypothetical data locations is necessary to ensure that the direct approximation ÃPP can be calculated

using submatrices of A. However, our practice has precedence even in conventional spatial settings. Using

some of the data locations has been shown to improve performance of predictive process [3], while related

approaches like splines and other basis function expansions also commonly use data locations as knots.

We used random sub-samples as knots, as empirical experiments highlighted in Section 3 demonstrated

considerable robustness of results to the choice of sub-sample. More informed choices for knots like cluster

representatives from PCA-, GRM-, or dendogram-based clustering can also be used.

Choice of the the number of sub-samples r to be used for PredLMM is more nuanced. Performance of

predictive process is generally more sensitive to the number than the design of the knots [3]. Increasing r

improves the quality of the approximation, with ÃPP exactly equallingA when r = N and I = B. However,

as the computation is cubic in r, use of a very large r would defeat the purpose of the approximation.

In practice, estimating h2 for a few choices of r of increasing values is recommended, stopping when the

estimates of h2 no longer change substantially. Parallel computing resources, if available, can be heavily

deployed for this step.

2.3.5 Asymptotic variance of the estimator

We have derived the expression of the asymptotic variance (standard error) of the PredLMM estimator.

Since it is extremely time consuming to perform the matrix multiplications needed for the exact compu-

tation of the variance expression, we make some reasonable approximations. The details of the derivation

can be found in Appendix A.1.

3 Results

3.1 Simulation Study 1: Simulation under Coalescent Model

The following simulation study replicates a scenario when Assumption 1 from Section 2.3.1 approximately

holds i.e every individual originates from a common ancestor and individuals in the same sub-population
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share a more recent ancestor than the individuals in different sub-populations. A tree structure with four

generations has been depicted in Figure 1.

4th Gen.

3rd Gen.

2nd Gen.

1st Gen.

Figure 1: The figure shows a model coalescence with four generations. Each of the four blocks of people in
the fourth generation share one of the individuals from the third generation as common ancestor. Similarly,
the four people in the third generation have originated from the two in the second generation. And, finally
those two people have originated from a common ancestor in the first generation.

As in Figure 1, we generated a population from a coalescence model. For each SNP j (j = 1, . . . ,M),

the allele frequency p
(0)
j in the first generation was drawn from a uniform distribution on [0.1, 0.9]. In the

second generation, allele frequencies of two different individuals: p
(1)
1j , p

(1)
2j were independently simulated

from a beta distribution with parameters p
(0)
j (1 − θ)/θ and (1 − p

(0)
j )(1 − θ)/θ, θ = 0.05. This model

is commonly known as Balding-Nichols model [2, 26]. In the third generation, allele frequencies of two

individuals: p
(2)
1j , p

(2)
2j were independently drawn from a beta distribution with parameters p

(1)
1j (1−θ)/θ and

(1− p
(1)
1j )(1− θ/θ and allele frequencies of other two individuals: p

(2)
3j , p

(2)
4j were independently drawn from

a beta distribution with parameters p
(1)
2j (1− θ)/θ and (1− p

(1)
2j )(1− θ)/θ. Finally, in the fourth generation,

the allele frequency of j-th SNP of the i-th individual from the k-th sub-population (k = 1, . . . , 4): pijk

was generated from a beta distribution with parameters p
(2)
kj (1− θ)/θ and (1− p

(2)
kj )(1− θ)/θ. We kept the

size of each of the four sub-populations at N/4 so that the total population size is N . We next simulated
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the SNP genotype: wijk from a binomial distribution: Bin(2, pijk) assuming Hardy-Weinberg equilibrium.

Once we simulated genetic data for M markers on N individuals with W representing a N ×M matrix,

we randomly selected mcausal many causal SNPs (columns) to create a N × mcausal dimensional matrix

W
causal which were then used to simulate the phenotype. Fixed effect for each of the causal SNPs: um

was simulated from N(0, h2/mcausal), and the residual effect e was simulated from NN (000, (1/h2 − 1)IN ).

Finally, the phenotype vector was generated as, Y =
∑mcausal

m=1 W
causal
m um + e with W

causal
m as the m-th

column of Wcausal.

We considered two different values of the true heritability: h2 (low and high) and two different combina-

tions of the number of individuals N and the number of SNPs M . We considered case (1.1): h2 = 0.2, N =

5000,M = 8000, case (1.2): h2 = 0.2, N = 8000,M = 13000, case (2.1): h2 = 0.8, N = 5000,M = 8000 and

case (2.2): h2 = 0.8, N = 8000,M = 13000 to study the influence of M and N on heritability estimation.

Figure 2 shows the box-plots of the heritability estimates by different methods over 100 repetitions. We

considered several full likelihood based GREML methods as discussed in Section 2.1.2: GCTA, GEMMA

and Bolt-REML for comparison with PredLMM. Since all of these methods maximize the full likelihood

corresponding to the marginal model in (2), their estimates are expected to be precise and quite similar

to each other. Figure 2 shows very similar performance of these full likelihood based GREML methods.

GREML (500) and GREML (2000) refer to the sub-sample based GREML discussed in Section 2.2 with

sub-sample sizes of 500 and 2000 respectively. PredLMM (500) and PredLMM (2000) refers to fitting

PredLMM with knot-sizes (r) 500, 2000 respectively. Both PredLMM (500) and PredLMM (2000) pro-

duced nearly unbiased estimates in all scenarios with PredLMM (2000) giving more precise estimates of

heritability. GREML (500) mostly underestimated heritability and had a very large variance in all the

cases. The variance was higher for low value of heritability. Our findings show that the sub-sample based

GREML can be unreliable if the sub-sample size is small. GREML (2000) performed better with no ap-

parent bias but still had much larger variance than both PredLMM (500) and PredLMM (2000). Overall,

we found that PredLMM produced robust estimates of heritability even with a very small set of knots,

when the genetic data was simulated from a Balding-Nichols model [2, 26]. .
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3.2 Simulation Study 2: Simulation using UK Biobank data

To replicate more realistic scenarios, we next considered simulations using the UK Biobank cohort data [1].

UK Biobank is a large long-term biobank study in the United Kingdom which is investigating the respective

contributions of genetic predisposition and environmental exposure to the development of various diseases.

We had access to 784,256 markers and multiple phenotypes on 502,628 individuals. The population is

predominantly British (442,687) with a few other ethnicities such as Irish (13,213), Other White (16,340),

Asian (9839), and Black (8038). There is clear genetic clustering in the UK Biobank sample that as been

explored in [12].

Keeping the genetic heterogeneity in mind, we looked into a diverse group of simulation setup using the

genetic data from the UK Biobank study. After standard quality control steps as advised in [7] (removing

SNPs with MAF less than 0.01 and missingness over 10%, removing individuals with high missing genotype

rate), we had approximately 320,000 individuals and 566,000 SNPs. Since, conducting simulation studies

with the entire dataset would be very computationally expensive, we created a sub-population for our

simulation study. We randomly selected 157,000 people (120,000 British and 37,000 from other ancestries

such as Asian, Black, Irish, and Indians). Majority of the full GRMEL-based methods such as GCTA,

GEMMA are computationally infeasible for such a large number of individuals. Bolt-REML is the only

full GREML-based method that is still viable in this context. But, as we see from Figure 3 that even for

a single simulation with 100,000 individuals, Bolt-REML took approximately 1000 minutes to run (more

details regarding the time comparison can be found in Section 4) Thus, we only compared PredLMM with

GREML (sub) in the following simulations.
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Figure 2: The figure shows the boxplots of the heritability estimates by different methods from Simulation
Study 1 (Section 3.1). Each of the four sub-plots corresponds to four different cases. The true heritability
value for each case is mentioned in the sub-plot header and is also depicted by the dotted line.
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Figure 3: The figure shows the time taken by PredLMM with different knot-sizes such as, 2000, 4000, 8000 and
16,000 and by Bolt-REML for a single simulation with 100,000 individuals and 566,000 SNPs (from Simulation
Study 2A).

In our Simulation Study 1, the GREML (sub) appoach produced highly biased estimates. We found

that the bias was significantly lower if the population was heterogeneous (with multiple ethnicities). That

is why, we considered two sets of simulation below: (2A): one with a homogeneous sub-population (only

British ancestry) and (2B): the other with a heterogeneous sub-population of these 157,000 people.

3.2.1 Simulation Study 2A: Simulation with a homogeneous sub-population

We considered three different true values of heritability (low to high): (a) h2 = 0.2, (b) h2 = 0.4 and

(c) h2 = 0.6. Every time we randomly selected 100,000 people with British ancestry from the sample of

157,000 people. Next, we simulated the trait as Y100,000 ∼ N100,000(000, 250h
2
A100,000 + 250(1− h2)I100,000)

where A100,000 was the corresponding GRM. We compared PredLMM with GREML (sub) for four different

sub-sample (knot) sizes, 2000, 4000, 8000, 16000. Box-plot comparison of the estimates are shown in Figure

3. PredLMM for small knot-sizes such as 2000, 4000 showed a slight upward bias when h2 was low [case
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(a)] and a slight downward bias when h2 is high [case (c)]. The bias vanished as the knot-size increased.

For moderate value of h2 i.e in case (b), the bias was imperceptible even for the smallest knot-size of

2000. The GREML (sub) estimates however were completely unreliable for small sub-sample sizes like

2000 and 4000, with the underestimation bias being more visible for relatively smaller values of h2. The

genetic relationship value between two individuals with British ancestry is usually very small (< 0.05). So,

it is possible that for our small subset of individuals, the model became unidentifiable due to the GRM

being close to the identity matrix. This would induce a large bias. However, the GREML (sub) estimates

for large sub-sample size like 16,000 were nearly unbiased in all the cases, but had much larger variance

compared to the corresponding PredLMM estimates.

Figure 4: The figure shows boxplots of heritability estimates by GREML (sub) and
PredLMM with four different sub-sample sizes: 2000, 4000, 8000, 16000 for cases (a), (b)
and (c) from Simulation Study 2A (Section 3.2.1).
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3.2.2 Simulation Study 2B: Simulation with a heterogeneous sub-population

Next, we studied the performance of the methods when the population is heterogeneous with multiple

ethnicities. Every time we randomly selected 100,000 people from the mixed sub-population of size 157,000.

Note that, unlike the last section, we did not choose people with only British ethnicity this time. Rest

of the simulation procedure was the same as the earlier section. Box-plot comparison of the estimates

are shown in Figure 4. GREML (sub) estimates this time did not show huge bias for small or moderate

sub-sample sizes as they did for homogeneous population, but the estimates still showed very high variance.

The issue of unidentifiability possibly did not arise here, because two individuals with different ethnicities

often had high genetic relationship values (> 0.05). It kept the sub-sample GRM away from being close

to the identity matrix. Similar to Simulation 2A, PredLMM showed slight downward bias when the true

heritability was high (case (c)) and slight upward bias when the true heritability was low (case (a)). For

moderate value of heritability (case (b)), the bias was negligible even for the smallest knot-size of 2000.

3.3 Analysis of UK Biobank traits

We estimated heritability of a number of quantitative traits: Standing Height, Weight, BMI, Diastolic

and Systolic blood pressure, Hip and Waist circumference using the British population of size 286,000 and

566,000 SNPs. We took into account the fixed effects of several covariates, such as sex, age, squared age,

and the top 10 genetic principal components. We implemented the GREML (sub) and the PredLMM

approaches with four different sub-sample (knot) sizes: 2,000, 10,000, 20,000 and 40,000. Since, running

the full version of Bolt-REML would take an exorbitant amount of time, we calculated the approximate

“pseudo-heritability” option in BOLT-REML [20, 22]. The results are displayed in Figure 6. For PredLMM

and GREML (sub), we estimated heritability and its standard error for all these traits ( Standing Height,

Weight, BMI, Diastolic and Systolic blood pressure, Hip and Waist circumference), and plotted the point

estimates along with 95% confidence interval (CI) in Figure 6. We truncated the CIs between 0 and 1.

For Bolt-REML (Pseudo), however, we only plotted the point estimates since the package did not provide

a standard error estimate.

According to Figure 6, both PredLMM and GREML (sub) gave point estimates close to Bolt-REML

(Pseudo) for higher sub-sample (knot) sizes. GREML (sub) estimates with the lowest sub-sample size 2000,
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were mostly unreliable. This was quite consistent with what we found in Simulation Study 1 in Section 3.2.1.

It again validates our earlier conclusion that GREML (sub) can turn out to be highly unreliable if the sub-

sample size is inadequate or the chosen sub-sample does not represent the population well. However, even

with the smallest knot-size (2,000), PredLMM produced robust estimates of heritability with a narrow CI.

For other knot-sizes, PredLMM estimates were very close to each other with the CIs becoming increasingly

narrower. Overall, we found a slight decreasing trend in the PredLMM estimates as we increased the

knot-size for majority of the traits. It may be similar to what we have seen in the simulation studies that

PredLMM displays slight over-estimation with small knot-sizes if the true heritability is low. To conclude,

just like the simulation setups, it is again observed that even with a very small number of knots relative

to the total population size, PredLMM can produce highly precise and robust estimate of heritability.

4 Time Comparison

The huge time advantage of PredLMM has already been illustrated in Figure 2. Here, we present a few

more tables in support of that and specify all the technical details. We ran all the methods on a HP Linux

cluster with nodes that use 24 many Haswell E5-2680v3 processor cores. We have listed in Table 1 and

Table 2 the time taken by different methods for Simulation 1 from Section 3.1 and for Simulation 2 from

Section 3.2 respectively.

Table 1: Time comparison of different methods in seconds for Simulation Study 1 in Section 3.1 with 5k (8k SNPs)
and 8k (13k SNPs) individuals.

GCTA GEMMA Bolt-REML GREML (500) GREML (2000) PredLMM (500) PredLMM (2000)
5k 15.5 351.07 13.25 3.41 6.7 5.398 16.77
8k 33.5 1293.44 27.87 5.7 3.3 13.67 28.46

From Table 1, we see that the methods like GCTA and Bolt-REML take similar amount of time,

whereas PredLMM with 500 knots takes around 40% of that. PredLMM with 2000 knots takes time similar

to Bolt-REML. The time advantage is more prominent in Table 2 which corresponds to the analysis from

Simulation Study 2B (Section 3.2.2) with 100,000 individuals (this comparison is also shown in Figure 2).
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Figure 5: The figure shows boxplots of heritability estimates by GREML (sub) and PredLMM with
four different sub-sample sizes: 2000, 4000, 8000, 160000 for case (a), (b) and (c) from Simulation Study
2B (Section 3.2.2).
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Figure 6: The figure shows the point estimates and 95% CI’s of the heritability estimates by PredLMM and
GREML (sub) with varying sub-sample (knot) sizes and only point estimate by Bolt-REML (pseudo) for seven
different real traits. The CIs’ have been truncated below at 0 and above at 1.
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Table 2: Time comparison (in minutes) of PredLMM for varying different knot (sub-sample) sizes with Bolt-REML
for Simulation Study 2B in Section 3.2.1 with 100k individuals

PredLMM Bolt-REML
Knot size 2000 4000 8000 16000
Time 28.33 31.41 44.17 80 986.4

According to Table 2, PredLMM takes just a fraction (around 8%) of time compared to Bolt-REML

even if we choose a large knot size of 16,000. PredLMM takes very similar amount of time for knot sizes

2000 and 4000. We noticed a significant leap in the run-time from knot size of 8000 to knot size of 16,000.

Recall that the per iteration computational complexity of PredLMM is O(Nr2 + r3) i.e the complexity is

cubic with respect to the knot size r which justifies the leap. One may argue that it would be wise to

use just 8000 knots since it can yield a reasonable estimate in a very reasonable time. We should also

mention that we used a pre-computed GRM (using GCTA) in all our analyses (we computed the GRM

for the entire population and used its sub-matrices as necessary in our Simulation Study 2). Computing

the GRM is an arduous task that can take multiple hours depending upon the number of SNPs and the

number of individuals. It has computational complexity of O(MN2). But, it is usually of less concern since

the computation is just a one time thing and the computed GRM then can be used in multiple analyses.

Bolt-REML does not use a pre-computed GRM and uses the genetic data every time for each of the traits

which makes it very time consuming to perform a heritability analysis with multiple traits.

5 Discussion

Genome-based restricted maximum likelihood (GREML) approaches for estimating heritability have be-

come widely popular with the availability of large scale cohort studies. However, majority of the existing

approaches such as GEMMA, GCTA, Bolt-REML implementing GREML, either become computationally

very demanding or even intractable when the number of individuals (N) is too large. In this paper, we

have developed a rapid algorithm for estimating heritability in large scale cohort studies. Our proposed

approach PredLMM approximates the likelihood of a GREML approach. The approximation is achieved

by unifying the concepts of genetic coalescence and Gaussian Predictive Process models. The algorithm
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reduces the usual per iteration computational complexity from O(N3) to O(Nr2 + r3) where r (knot size)

is much smaller than N .

From the simulation study of Section 3.1, we have seen that under the presence of genetic pattern (a

tree like structure) among the individuals, PredLMM yields highly robust estimate of heritability even with

a small knot size (r). To replicate more realistic scenarios, next we have performed simulation studies using

the real genetic data from the UK Biobank cohort study. We have checked the performance of PredLMM

in two cases, a highly homogeneous sub-population (see Section 3.2.1) and a heterogeneous sub-population

(see Section 3.2.2) for a varied range of true heritability values. We have observed that even with a very

small knot size (say 1% of the population size N), PredLMM can achieve an extremely reliable estimate of

heritability at a fraction of time taken by existing softwares like Bolt-REML. PredLMM estimates also have

much narrower CI’s compared to GREML (sub) which behave erratically if the sub-sample size is small.

Finally, we have estimated the heritability of a number of quantitative traits like Standing Height, Weight,

BMI, Diastolic and Systolic blood pressure, Hip and Waist circumference using the entirety of the British

population from UK Biobank data. For all the traits, estimates by PredLMM for varying knot-sizes come

out to be very close and also, very similar to other methods like GREML (sub) and Bolt-REML (Pseudo).

Therefore, it further echoes our conclusion that with even a small set of knots PredLMM can yield a highly

robust estimate of heritability in a fraction of time taken by other methods.

Our next goal would be to analyze behavioral traits like Alcohol Consumption, CPD (cigarettes smoked

per day) etc. from the UK Biobank data. It would be slightly more challenging since those traits often tend

to be skewed and deviate from the usual normality assumption. A very efficient module for implementing

PredLMM in Python is available here, https://github.com/sealx017/PredLMM.. Also, so far we have used

GCTA for computing the GRM (A) which takes up O(N2) storage and costs significant amount of time.

PredLMM actually does not need computing of the full GRM but only a sub section of it requiring storage

space of just O(Nr+ r2). Therefore, in order to use less resources and further faster analysis of large scale

data, we would like to incorporate the feature of computing just the required section of the GRM in our

module as well.
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A Appendix

A.1 Variance of PredLMM estimator

Here, we derive the variance of the PredLMM estimator. PredLMM considers the following multivariate

normal distribution, Y ∼ NN (Xβ, σ2
hÃPP +σ2

eI). Lets denote the covariance matrix as, σ2
V

pp = σ2
hÃPP +

σ2
eI, where σ2 = σ2

h + σ2
e and V

pp is written as,

V
pp =

σ2
h

σ2
ÃPP +

σ2
e

σ2
I = h2Ãpp + (1− h2)I = h2(Ãpp − I) + I = h2App,c + I

where A
pp,c = Ã

pp − I, h2 =
σ2

h

σ2 . Lets denote the corresponding log likelihood by lpp(Y). The first

derivative of lpp(Y) w.r.t βββ, σ2, h2 would be,

∂lpp(Y)

∂βββ
=

X
T
V

pp−1

(Y −Xβββ)

σ2
;

∂lpp(Y)

∂σ2
=

1

2

(
N

σ2
−

(Y −Xβββ)TVpp−1(Y −Xβββ)

σ4

)

∂lpp(Y)

∂h2
=

1

2

(
trVpp−1

A
pp,c −

(Y −Xβββ)TVpp−1

A
pp,c

V
pp−1

(Y −Xβββ)

σ2

)

These three equations can be solved iteratively by Newtonm-Raphson method [33]. βββ and σ2 both will

have closed form solutions at every iteration (t) obtained by equating the respective first derivatives to 0:

β̂ββt+1 = (XT
V̂

pp−1

t X)−1
X

T
V̂

pp−1

t Y, σ̂2
t+1 =

(Y−Xβ̂ββt)
T
V̂

pp−1

t (Y−Xβ̂ββt)
N

where V̂
pp
t = ĥ2t Ã

pp + (1 − ĥ2t )I and

ĥ2t is the value of h2 at the t-th iteration.

The actual expression of the asymptotic variance of the estimator of h2 will involve the information

matrices corresponding to parameters βββ, σ2. We approximate the asymptotic variance by making a sim-

plifying assumption. Upon estimating the values of βββ, σ2, we treat them as known, thereby ignoring their

distributional properties. The second derivative of lpp(Y) with respect to h2 would be,

∂2lpp(Y)

∂h2∂h2
=

1

2

(
trVpp−1

A
pp,c

V
pp−1

A
pp,c −

2(Y −Xβββ)TVpp−1

A
pp,c

V
pp−1

A
pp,c

V
pp−1

(Y −Xβββ)

σ2

)
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Next, we derive expectation of several important terms.

B = E

(
−
∂2lpp(Y)

∂h2∂h2

)
= −

1

2
trVpp−1

A
pp,c

V
pp−1

A
pp,c + trVpp−1

A
pp,c

V
pp−1

A
pp,c

V
pp−1

V

C = E

(
∂lpp(Y)

∂h2
∂lpp(Y)

∂h2

T
)

=
1

4
E{tr(Vpp−1

A
pp,c)2 − 2tr(Vpp−1

A
pp,c)yTVpp−1

A
pp,c

V
pp−1

y + (yTVpp−1

A
pp,c

V
pp−1

y)2}

=
1

4
{(tr(Vpp−1

A
pp,c)2 − 2(tr(Vpp−1

A
pp,c)tr(Vpp−1

A
pp,c

V
pp−1

V)

+ (tr(Vpp−1

A
pp,c

V
pp−1

V))2 + 2tr(Vpp−1

A
pp,c

V
pp−1

VV
pp−1

A
pp,c

V
pp−1

V)}

=
1

4
{(trVpp−1

A
pp,c)− tr(Vpp−1

A
pp,c

V
pp−1

V))2 + 2tr(Vpp−1

A
pp,c

V
pp−1

VV
pp−1

A
pp,c

V
pp−1

V)}

We have used the fact that the true distribution of Y is multivariate normal with mean Xβ and covariance

matrix σ2
V = σ2

hA + σ2
eI and hence, E(Y − Xβββ)(Y − Xβββ)T = σ2

V. Then, the asymptotic variance of

the PredLMM estimator would be B
−1

CB
−1 [5]. Since, the expressions of B and C require dense matrix

multiplications that can be computationally intractable, it is necessary to reasonably simplify them. We

assume that Vpp ≈ V and it leads to, B = C = 1
2trV

pp−1

A
pp,c

V
pp−1

A
pp,c. Finally, the variance formula

reduces to,

B
−1

CB
−1 = B

−1 =
2

trVpp−1

App,cVpp−1

App,c

We have verified the validity of our variance estimate by looking at the coverage probabilities in the

simulation studies.
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