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Abstract

The ventromedial prefrontal cortex (vmPFC) has been thought to play an important role in
processing endogenous information such as generating subjective affective meaning. Unlike
sensory cortex, which processes exogenous information about the external world similarly
across individuals, prior work has posited that vmPFC activity may be idiosyncratic to each
individual, even when exposed to the same external stimulus. In this study, we recorded local
field potentials (LFPs) from intracranial stereotactic electrodes implanted in patients with
intractable epilepsy while they watched an emotionally engaging television show episode and
evaluated temporal synchronization of these signals across participants in auditory cortex and
vmPFC. Overall, we observed markedly lower intersubject synchronization of signals recorded
from electrodes implanted in vmPFC compared to auditory cortex. A subset of patients,
however, appeared to share similar vmPFC states during the more emotionally salient scenes.
This work suggests that the vmPFC is involved in processing affective responses to ongoing
experience in a state-like manner, but the specific states and temporal sequences are
idiosyncratic to each individual, even when viewing the same television episode.
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Introduction

The ventromedial prefrontal cortex (vmPFC) is a functionally heterogeneous cortical region (de
la Vega et al., 2016; Kahnt et al., 2012) that has been the subject of extensive investigation over
the past few decades. It is metabolically active in the absence of any explicit task (Raichle et al.,
2001) and coactivates with a distinct functional network that includes the posterior cingulate
cortex (Buckner and DiNicola, 2019; Fox and Raichle, 2007). The vmPFC plays a central role in
learning, memory, and decision-making by facilitating the integration of multimodal value signals
(Bartra et al., 2013; Hare et al., 2008; Knutson et al., 2001; Padoa-Schioppa and Assad, 2006;
Rangel et al., 2008; Rich and Wallis, 2016; Suzuki et al., 2017), representing latent contextual
information (Constantinescu et al., 2016; Niv, 2019; Schuck et al., 2016), and remembering the
past and projecting into the future (Buckner and Carroll, 2007). The vmPFC also processes
affective and social information by generating (Chikazoe et al., 2014; Damasio et al., 2000;
Eisenbarth et al., 2016; Lindquist et al., 2012) and regulating affective states (Etkin et al., 2015;
Ochsner et al., 2002; Phelps et al.,, 2004; Wager et al., 2004), and by supporting internally
generated self-referential thought (Andrews-Hanna et al., 2014; Kelley et al., 2002; Mason et al.,
2007; Mitchell et al., 2002). Because the vmPFC is anatomically connected to many systems
involved in processing affective and conceptual information including the brainstem, insula,
medial temporal lobe, and prefrontal cortex, it has been hypothesized to be the hub in
generating affective meaning (Ashar et al., 2017; Chang et al., 2021; Damasio, 2006; Roy et al.,
2012). However, generating affective meaning is a highly idiosyncratic process that synthesizes
endogenous signals that are unlikely to be common across participants, even when they are
exposed to the same exogenous stimuli or experiences. This means that the same person might
generate different affective meaning from others in response to the same eliciting event based
on fluctuations in these endogenous signals.

Unlike unimodal cortex that processes exogenous information about the external world, the
vmPFC is at the pinnacle of transmodal association cortex that processes endogenous
information pertaining to our past experiences, current homeostatic states, and future goals
(Margulies et al., 2016; Margulies and Smallwood, 2017; Mesulam, 1998; Paquola et al., 2019).
Consequently, responses in this region are highly variable across individuals, exhibiting little
evidence of intersubject spatiotemporal synchronization across a variety of experimental
contexts such as listening to stories (Lerner et al., 2011), watching movies (Chang et al., 2021,
Chen et al., 2017; Hasson et al., 2004), multivariate decoding (Bhandari et al., 2018), or
functional connectivity patterns in resting state fMRI (Gordon et al., 2016; Mueller et al., 2013).
For example, in a recent fMRI study, in which participants watched a pilot episode from a
character-driven television drama, we observed minimal amounts of intersubject
synchronization in the vmPFC compared to unimodal sensory cortex (Chang et al., 2021).
Instead, participants appeared to dynamically switch between a few discrete states while
watching the show. Though the vmPFC states were spatially consistent across participants,
they were experienced at different times for each participant, with the largest temporal
synchronization of states occurring at the most emotionally salient moments in the episode.
Using these spatial patterns as indicators of an endogenous state revealed consistent
activations distributed throughout the brain in distinct affective networks despite not being
consistently time-locked to the external stimuli. While this study demonstrated a clear

3


https://doi.org/10.1101/2021.05.10.443308
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.10.443308; this version posted October 4, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

dissociation between how exogenous and endogenous information are processed in the brain,
there are a number of open questions that remain unanswered. First, though the primary results
were replicated across two independent fMRI datasets, it is unclear how much the effects might
simply reflect artifacts of the BOLD fMRI signal itself. For example, the vmPFC is notoriously
difficult to image due to its close proximity to the orbital sinus, which creates susceptibility
artifacts in the magnetic field resulting in large signal dropout and spatial distortion (Glover and
Law, 2001; Weiskopf et al., 2007). Second, the BOLD signal reflects a downstream process of
neural firing, and heterogeneity in individual vascular systems may lead to individual variations
in hemodynamic responses (Birn et al., 2001; Handwerker et al., 2012; Lindquist et al., 2009).

To address these limitations, we sought to more directly assess temporal synchronization of
vmPFC activity using intracranial electrophysiological recordings of local field potentials (LFPs).
Unlike fMRI, intracranial recordings do not suffer from susceptibility artifacts, and can measure
signals with high temporal resolution from very specific spatial locations. Prior intracranial work
investigating the vmPFC has relied on more traditional task-based paradigms to characterize its
role in computing value (Hill et al., 2016; Li et al., 2016; Lopez-Persem et al., 2020; Saez et al.,
2018). Stimulation paradigms have implicated the involvement of the vmPFC in the subjective
experience of affect, olfaction, and gustation (Fox et al., 2018; Yih et al., 2019). Naturalistic
designs, such as passive movie watching, can provide rich contextual information, which makes
them well suited for studying social, cognitive, and affective processes (Hasson et al., 2020;
Jolly and Chang, 2019; Sonkusare et al., 2019), but have been rarely used in intracranial EEG
research (Honey et al., 2012; Jafarpour et al., 2019; Mukamel et al., 2005). The majority of work
using naturalistic designs has instead focused on characterizing sensory processes in auditory
cortex and found that power in high frequency bands, such as gamma (¥), positively correlate
with the envelope of the auditory stimulus (Honey et al., 2012) and also with fluctuations in the
BOLD response in auditory cortex of other participants viewing the same stimulus while

undergoing fMRI (Mukamel et al., 2005). Power in low frequency bands (e.g., a), in contrast,
exhibits an inverse relationship and negatively correlates with auditory signals and fluctuations

in BOLD.

In the present study, we recorded intracranial stereo electroencephalogram (SEEG) data from 6
patients undergoing surgical intervention for intractable epilepsy while they viewed a 45-minute
television episode (Friday Night Lights). We were primarily interested in evaluating the temporal
consistency of responses in the vmPFC across patients compared to the auditory cortex.
Intersubject correlation analysis (ISC) (Hasson et al., 2004; Nastase et al., 2019) has emerged
as the predominant method to evaluate the functional alignment of signals across participants.
High levels of ISC indicate that participants are processing information pertaining to the stimuli
similarly, while low ISC indicates high intersubject heterogeneity. However, there are several
difficulties applying this technique to sEEG data. First, both the number and location of
implanted sEEG electrodes are determined by clinical needs rather than research interests,
which results in only a small fraction of the cerebral cortex being covered by any given patient’s
electrodes, along with little overlap in implantation locations across patients. Unlike
electrocorticography (ecogq) recordings in which a high density grid of electrodes is placed over
the same cortical surface, across-subject comparisons are particularly difficult with sEEG as
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there can be large inter-subject differences in the number and location of electrodes (Chang,
2015; Owen et al., 2020; Parvizi and Kastner, 2018). Second, electrodes implanted in the same
participant and recorded from the same stereotactic strip are not entirely independent, and are
likely to be reflecting similar signals. Failure to account for these within-subject clustering effects
and electrode distances can bias the ISC metric. To address these limitations, we assess the
impact of within subject similarity and spatial distance on ISC in the vmPFC and auditory cortex
and evaluate the ability of functional alignment (Chen et al., 2015a; Haxby et al., 2020) to
overcome these inherent challenges to working with SEEG data.

Results

Inter-electrode temporal synchrony


https://doi.org/10.1101/2021.05.10.443308
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.10.443308; this version posted October 4, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Pairwise electrode correlation

Similar similarity (vmPFC)
4 S
I ra
4
4
i .
4
Dissimilar

Pairwise electrode correlation

Similar similarity (auditory) - W
s |

4 = = r- g Mean Aud|
i e
' r
I : e ¥ A B
Time
Dissimilar

Figure 1. Electrode locations and temporal similarity. Here we illustrate the electrode locations within the vmPFC
and bilateral auditory regions of interest. Electrode anatomical locations vary across subjects. We compute the
pairwise correlations between electrodes. The similarity of electrode pairs recorded from within the same participants
is considerably higher than across participants. Each subject is indicated by a unique color. Intersubject Correlation
(ISC) is the mean of the lower triangle of this pairwise correlation matrix after performing a Fisher r to z
transformation.

To estimate and quantify the influence of spatial distance, within-subject, and within-strip
clustering on inter-electrode similarity, we fit a linear distance regression model separately to
vmPFC and auditory electrodes broadband power activities. Specifically, we predicted the
pairwise inter-electrode broadband power temporal similarity matrix from a linear combination
of: (a) the inter-electrode spatial distance, (b) dummy variables indicating which pairs of
electrodes belonged to each of the 6 participants, and (c) dummy variables indicating which
pairs of electrodes belonged to the same electrode strip (Fig. 2A). This analysis allows us to
guantitatively model the independent effects of spatial distance and within-subject effects on
inter-electrode temporal synchronization. In vmPFC electrodes, we found that spatial distance

6


https://doi.org/10.1101/2021.05.10.443308
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.10.443308; this version posted October 4, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

(F(1) = 5.28, p = 0.0218, r* = 0.0001), within-subject effects (F(7) = 3497.7, p < 0.001, r* =
0.535) and within-strip effects (F(16) = 85.67, p < 0.001, r*= 0.030) all independently explained
a substantial portion of inter-electrode similarity variance beyond inter-electrode clustering
within the same stereotactic strip. Similarly, for auditory electrodes we found that spatial
distance (F(1) = 7.02, p = 0.008, r* = 0.0004), within-subject effects (F(5) = 843.77, p < 0.001, r*
= 0.224), and within-strip effects (F(9) = 97.94, p < 0.001, r* = 0.047) all significantly accounted
for temporal synchrony variance (Fig. 2D).

These linear distance regression models allowed us to quantitatively remove this nuisance
variance from the pairwise temporal similarity matrix. We computed ISC on the residuals after
removing the effects of spatial distance and within-subject effects and observed higher levels of
residual inter-electrode temporal synchrony in auditory cortex (r=0.014, bootstrap p=0.013)
compared with vmPFC (r=0.003, bootstrap p=0.381) using a sign permutation test (p<0.001;
Fig. 2C). We also examined these effects across multiple frequency bands and consistently
found low ISC values in vmPFC across frequency bands (Fig. S2).

Taken together, these results indicate that within both vmPFC and auditory cortex, broadband
temporal dynamics were more similar across electrodes within the same participant and within
the same stereotactic strips than across participants, and that nearby electrodes exhibited more
similar broadband temporal dynamics than distant electrodes. After conditioning on all of these
effects, we found that electrodes within the auditory cortex exhibited significantly higher levels of
broadband temporal synchronization across subjects than electrodes within vmPFC.
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Fig. 2. Temporal Synchrony Distance Regression. A. We used a fixed-effects regression to separate out the effect
of spatial locations and within-subject clustering on pairwise electrode temporal distance. B. We observed high
temporal synchronization of broadband power in both vmPFC and auditory electrodes. The auditory broadband ISC is
not statistically different from the vmPFC broadband ISC (sign permutation test, p = 0.21). C. After removing within-
subject clustering and spatial distance effects, we see a marked decrease in temporal ISC in vmPFC, but not auditory
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cortex. Auditory broadband ISC is significantly higher than vmPFC (sign permutation test, p < 0.001) D. Overall
percentage of variance explained by spatial distance and within-subject clustering in auditory/vmpfc regression model
(i.e., r’) normalized by the total variance explained by the full model. Although both explain a significant amount of
variance, the within clustering effect explains the majority of variance in the pairwise correlation values. Error bars
indicate 95% confidence interval for the ISC values (See details in Method section).

Improving inter-electrode alignment with the Shared Response
Model

Our distance regression approach allowed us to estimate the impact of spatial distance and the
subject-specific correlation pattern for each participant (Fig. 1, diagonal blocks). However, these
regressions are based on the assumptions that: (a) millimeter-scale discrepancies in spatial
location correspond to linear changes in temporal synchrony within each region, and (b) each
electrode is statistically independent of the other electrodes. Although these simplifying
assumptions enabled us to gain the new insights summarized above, we also know from prior
work that neither of these assumptions are likely to be (strictly) true. To address these issues,
we used a completely different analytic approach and evaluated the efficacy of aligning the
electrodes across participants within each region to a common latent space using the Shared
Response Model (SRM) (Chen et al., 2015a).

SRM was originally developed to perform functional alignment (Haxby et al., 2020, 2011) on
fMRI data by remapping voxels into a common latent space based on shared responses to time-
synchronized stimuli (Chen et al., 2015a; Vodrahalli et al., 2018). This mapping is learned using
a data-driven unsupervised latent factor algorithm and allows each subject to have a different
number of electrode recordings. Formally, for each subject ¥s number-of-electrodes by number-
of-timepoints data matrix, X SRM finds an individual basis W, and a latent time series matrix &
, subject to the constraint that § is common across all participants. This allows X; to be
approximated by X; = W;S + E; where W; and E; are subject-specific and where § is the
latent embedding shared across all m participants (Fig. 3). Here, we use SRM to align
electrodes separately within the auditory or vmPFC regions after performing minimal
preprocessing (i.e., bandpass filtering, bad channel removal ,and re-referencing), based on
putative shared temporal dynamics across participants. The output of this procedure is a
separate component-by-time matrix for each participant, in which each component is now
aligned across participants and can be used in place of voltage in any other type of analysis.


https://doi.org/10.1101/2021.05.10.443308
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.10.443308; this version posted October 4, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Subject A 5 components

e

Electrodes

5 electrodes

W, Shared component
matrix

5 components

i
0

5 component

Electrodes
5 electrodes

SUbJECLF ANV

L R

Electrodes

| A

Time

!
8 electrodes

Fig. 3. Shared Response Model. Graphical depiction of Shared Response Model applied to auditory electrodes. We
applied SRM to electrodes in 6 subjects and decomposed electrode voltage in each subject into subject-specific basis
functions that project into a shared component matrix common across all subjects.

We first attempted to validate how well this technique performs in functionally aligning the sEEG
electrodes. We hypothesized that functional alignment should aid in extracting functional signals
that are common across participants filtering out idiosyncratic signals. Specifically, we
anticipated that aligning electrodes within the auditory cortex should result in a signal that better
corresponds to properties of the auditory stimulus while participants watched the show
compared to simply computing the mean across electrodes. For example, prior work has shown
that lower frequency power tends to negatively correlate with the audio envelope of auditory
stimuli, whereas higher frequency power tends to positively correlate with the auditory signal
(Honey et al., 2012; Mukamel et al., 2005; Nir et al., 2007). To test this hypothesis, we
estimated a 5-dimensional SRM using the band-pass filtered voltage activities of 44 auditory
electrodes from 6 subjects. We selected the SRM component with the highest ISC across
subjects (ISC = 0.04, p<0.001) and computed the time-varying power in the low § (i.e., 1-2 Hz)
and high 7 (i.e., 70-150 Hz) power bands. We then correlated these signals with the raw audio
envelope to assess how well this approach was able to recover the true signal we expected to
be present in the data (Fig. 4A). Consistent with prior work (Honey et al., 2012; Mukamel et al.,
2005), we found that power in the 4 band negatively correlated with the audio envelope (r=-0.22,
p<0.001), while the broadband Y power of the SRM component positively correlated with the
raw audio envelope (r=0.06, p<0.001). Importantly, we also found that the SRM component
exhibited a tighter coupling of the audio envelope in both 4 and high 7 frequency bands
compared to simply averaging power from electrodes across participants (low delta: p < 0.001;
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broadband gamma: p = 0.02). This analysis provides a proof-of-concept demonstration
confirming that the SRM can extract meaningful functional signals from a well-characterized
region of cortex, and outperforms across-participant electrode averaging.

We next explored the impact of the SRM transformation on the power spectral density (PSD).
EEG LFPs tend to reflect higher power in lower frequency components (the well characterized
1/f noise) and this may have impacted the functional alignment procedure. We computed the
mean-normalized power spectrum density (PSD) of the maximum SRM component and
compared this to the PSD of the average electrode bandpass filtered voltages. Overall, we
found that the SRM component did not appear to substantially alter the PSD in either auditory
cortex or vmPFC (Fig. 4B; see S8, for individual participants).

Another potential benefit of applying SRM to LFPs relates to artifact removal. Because SRM
attempts to temporally align signals that are shared across participants, it likely implicitly
removes artifacts that are not time-locked across participants. For example, removing ictal
activity and interictal epileptiform discharges (IEDs) is well-known in the intracranial literature to
present a substantial computational challenge (Keller et al., 2010; Thomas et al., 2018). Several
factors, including a lack of precise and established definitions of epileptic spikes and wide
spectrum of morphologies of epileptiform abnormalities both within the same patient and across
patients, contribute to the difficulties in identifying and removal of IEDs (Dimpelmann and Elger,
1999; El-Gohary et al., 2008; Yadav et al., 2011). However, because IED morphologies are
unique to each participant and occur at different times, we hypothesized that SRM should be
effective in removing these idiosyncratic signals. To test this hypothesis, we estimated a new
SRM using the non-preprocessed raw voltage data and found that SRM was able to
successfully remove IEDs and Ictal activities (Fig. 4C). In addition, SRM was able to reduce the
impact of 60Hz power line noise by an average of 51% (Fig. S3; see supplementary materials
for details).
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Fig. 4. Validating SRM on auditory cortex. A: SRM component from auditory cortex electrodes better captures the
audio-specific stimuli than the subject-averaging method. Left: correlation between SRM low 4 power (1-2 Hz) and
audio envelope; Right: correlation between SRM high ¥ power (70-150 Hz) and audio envelope (*: 0.01<=p<0.05; **:
0.001<p<=0.01). B: The log-log plot for Power Spectrum Density of auditory and vmPFC max SRMs. The 1/f trend is
removed by fitting a first-order linear regression and obtaining the residuals. We plotted the subject-averaged and 1/f
detrended PSDs for both the max SRM component (red lines) and the original electrode channels (black lines).
Shaded areas indicate 95% confidence intervals. We see that the SRM does not appreciably distort the original
electrode PSD. C. To estimate the extent to which SRM can reduce IED and Ictal (seizure) activities, we apply SRM
to 20s of selected time periods in amygdala electrodes in 5 subjects where a mixture of IEDs and Ictal activity
patterns is clearly visible by eye. We apply SRM to data with IED and Ictal activities and we found that SRM removed
the subject-specific IED and Ictal activities.

vmPFC activity does not align across subjects

After validating the SRM method on the auditory cortex, we next were interested in evaluating
shared signals in the vmPFC after aligning electrodes with SRM. We trained an SRM with 6
components on vmPFC electrodes and transformed each participant's observed data into the
shared latent space. We selected the SRM component with the highest ISC across subjects
(1ISC=0.01, p=0.004). We also computed the ISC across broadband power and several narrow
band frequencies (i.e., 4, 8, a, B and low and high 7). We did not observe a significant effect of
intersubject synchronization across any frequency band in the vmPFC using a bootstrapping
procedure (Fig. 5; §: r=0.01, p = 0.08 #: r=0.01, p = 0.95 a: r=-0.00, p = 0.93 B r=0.00, p = 0.24
low 7. r=0.00, p = 0.12 high 7: r=0.00, p=0.27, broadband: r=0.01, p = 0.49), unlike auditory
cortex (Fig. 5; 8: r=0.11; p = 0.002; &: r=0.02, p = 0.16; a: r=0.06; p < 0.001 B r=0.024, p = 0.07;
low 7Y: r=0.01, p = 0.23; high 7: r=0.01, p=0.1; broadband: r=0.03, p = 0.02) Moreover, we found
that the ISC in the SRM-aligned vmPFC was significantly reduced compared to auditory cortex
across multiple bands using a permutation test (9: effect size diff = 0.09, p < 0.001, a: effect size
diff = 0.06, p < 0.001, B- effect size diff = 0.02, p = 0.002, broadband: effect size diff = 0.02, p =
0.003). To ensure that these results were completely unbiased from training and testing the
SRM model on the same data, we also performed a split-half cross-validation procedure, in
which we trained the model on the first or second half of the data and tested it on the other half.
Overall, we observed consistent results, in which ISC was not significantly different from zero,
even when the SRM model was trained on independent data (Fig. S4).
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Fig. 5. Shared Response Model vmPFC Alignment. A) Inter-subject correlation value for auditory (blue) and
vmPFC (red) electrodes. After identifying the SRM component with the highest ISC across participants, we extracted
power from different frequency bands and computed ISC within each band including broadband power. Error bars
indicate 95% confidence interval for the ISC values (See details in Method section), * indicates p<0.05 using subject-
wise bootstrapping. B) Line plots illustrate each HMM state concordance across participants at each time moment
during the episode and have been smoothed with an exponential smoothing function with alpha = 0.001 for
visualization. Shaded regions indicate scenes associated with intense affective experiences reported in (Chang et al.,
2021). State 1 appears corresponds to positive affective scenes while State 2 corresponds to negative affective
scenes. Screenshots from Friday Night Lights are copyright of NBCUniversal, LLC.
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Temporal alignment of discrete SRM states across participants

The above ISC analyses provide converging evidence with the distance regression analyses
indicating minimal evidence of consistent across-participant temporal synchronization in the
vmPFC across the 45min episode consistent with our hypotheses. However, there are many
other possible explanations for this finding including that our SRM alignment approach may
have inadvertently removed much of the signal of interest and we are simply modeling the
residual noise. One proposed approach to address this is to have participants view the same
stimulus twice and compute the intra-viewing synchronization coefficient within each participant
(Nastase et al., 2019). However, this approach is problematic for studying processes beyond
sensory perception such as memory or generating affective meaning as the second viewing will
necessarily be impacted by the first viewing, which will decrease within-subject ISC values.
Instead, we used an entirely different approach to evaluate if there might be particular time
points during which participants briefly experienced the same psychological state. This would
demonstrate that: (a) we have retained true signal, and also (b) provide evidence of inter-
subject idiosyncratic processing. For example, in a previous fMRI study, we found evidence that
participants were more likely to occupy the same psychological state during scenes that elicited
more intense affective experiences (Chang et al., 2021). These states were identified directly
from brain activity using Hidden Markov Models (HMMs), and were validated on self-reported
time-varying feelings and facial expressions.

Using this same time-varying latent state approach, we fit an HMM to the broadband power of
the 6 SRM components separately for each individual participant. We made the following
implicit assumptions: (1) the latent state transitions follow a first order Markovian Process, (2)
the SRM components were modeled using an orthogonal multivariate Gaussian Distribution,
and (3) all participants experienced the same number of latent states. We used the Viterbi
algorithm (Forney, 1973) to obtain the most likely sequence of latent states for each participant.
Hidden states derived from each HMM were then aligned across participants by maximizing the
cross-subject state similarity using the Hungarian Algorithm (Kuhn, 2005). We estimated the
number of HMM states by computing the Bayesian Information Criterion (BIC) across a range of

states (k = [2:15]) and found that k=3 states exhibited the greatest improvement in model fit
(Fig. S7). Finally, we computed the across-patient state concordance at each moment in time by
calculating the proportion of participants occupying the same state within each time interval (Fig
5B). Higher concordance values indicate that more participants were sharing a common
psychological state.

During several scenes that we identified in our prior work as having particularly high emotional
salience and narrative importance (Chang et al., 2021), we found that the patients tended to
converge on the same HMM states. These scenes included: (a) a positive sentimental scene
when the football players provide mentorship to younger kids (~22 min, State 1), (b) a negative
scene when the star quarterback is severely injured during a play and undergoes emergent
spinal surgery (=35 min, State 2), and (c) a positive scene when the nervous and inexperienced
backup quarterback throws a game winning pass (~42 min, State 1). Though only 50% of the
patients converged on the same states during these scenes, it is notable that State 1
concordance increased during positively valenced scenes, while State 2 concordance increased
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during negative arousing scenes similar to what we found using fMRI (Chang et al., 2021).
These results are consistent with the hypothesis that the vmPFC is involved in generating
affective meaning (Ashar et al., 2017; Chang et al., 2021; Chikazoe et al., 2014; Roy et al.,
2012) and importantly demonstrate that the minimal synchronization observed in the ISC
analyses cannot be explained by the absence of any meaningful signal in the vmPFC LFPs.

Discussion

The majority of cognitive neuroscience research has focused on mapping stimulus-driven neural
activity patterns that are common across participants. This approach has been highly successful
in developing a deep understanding of how the brain processes exogenous information about
the external world. However, this approach may have limited utility when characterizing regions
that process endogenous information that may be idiosyncratic to each individual participant
such as transmodal cortex (Mesulam, 1998). The vmPFC has been theorized to be intimately
involved in generating affective meaning by integrating stimulus-driven information with an
individual's unique history of past experiences, internal homeostatic states, and future goals
(Ashar et al., 2017; Chang et al., 2021; Roy et al., 2012). Consequently, activity in this region
has been highly variable across individuals in a variety of tasks (Bhandari et al., 2018; Hasson
et al., 2004; Mueller et al., 2013). Consistent with these observations, we have previously found
using fMRI that unlike unimodal sensory cortex, the vmPFC does not appear to synchronize
across participants when passively viewing an emotionally engaging television drama except
during particularly salient emotional scenes (Chang et al., 2021). The vmPFC, however, is
notoriously difficult to image using BOLD fMRI due to signal drop out and geometric distortions
arising from susceptibility artifacts. Therefore, in this paper, we sought to examine inter-subject
synchronization of vmPFC activity based on LFPs recorded using SEEG in patients undergoing
surgical intervention for intractable epilepsy when watching an emotionally arousing naturalistic
stimulus. Overall, our results are highly consistent with the previously reported fMRI findings
(Chang et al., 2021). We find strong evidence of common signals being processed in the
unimodal auditory cortex, but minimal evidence of cross-participant temporal synchronization in
the vmPFC across any specific frequency band. However, this region does appear to reflect the
idiosyncratic ways we assign affective meaning to incoming stimuli as approximately 50% of our
sample appeared to be sharing a similar valenced interpretation of the most emotionally salient
scenes based on our individual-HMM analysis.

A methodological challenge to evaluating shared signals across participants using sEEG is that
electrodes are not located in the same spatial locations across participants. Electrode locations
are determined based on clinical needs for monitoring epileptiform activity and surgical planning
(Chang, 2015; Parvizi and Kastner, 2018). For example, even though we collected data from 14
patients, only 6 had electrodes placed within both of our target regions of interest (i.e., vmPFC &
auditory cortex). A major contribution of this work is the application of alignment procedures that
allow signals within a region originating from different anatomical locations to be compared
across participants. We used two different analytic approaches that are novel to analyzing
SEEG data. First, we performed linear distance regression to estimate and remove variance in
the pairwise electrode temporal similarity matrix resulting from variations in the spatial distance
of electrode placement, intra-subject covariance from electrodes located on the same
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stereotactic strip. Overall, we found that over 95% of the variance of the electrode temporal
similarity matrix could be explained by these three different types of signals. Removing these
signals revealed that processes in the auditory cortex, but not vmPFC appeared to be shared
across participants. Second, we performed functional alignment using SRM. This approach
attempts to align latent signals present in the electrodes based on commonality across
participants and importantly can accommodate different numbers of electrodes for each
participant. We demonstrate that this approach is better able to recover auditory signals in the
auditory cortex compared to simply averaging electrodes. In addition, SRM can also be effective
in removing many sources of noise that are idiosyncratic to each individual participant such as
IEDs and Ictal activities and even power line noise to some extent. This was confirmed by
selectively adding different types of noise to each participant and evaluating how much of the
noise was removed by the SRM procedure. Similar to the distance regression approach, we
only observed common signals in the auditory and not vmPFC cortex across participants after
performing this alignment procedure. These results indicate that SRM provides a promising
technique for both denoising signals, but also in functionally aligning electrodes and may
complement alternative techniques such as SuperEEG (Owen et al., 2020).

Our results suggest that processes in transmodal cortex such as the vmPFC appear to be
idiosyncratic to each individual and do not directly map onto processing exogenous information
from the eliciting naturalistic stimulus. These results are in line with our previous fMRI findings in
which two independent samples of participants watched the same video (Chang et al., 2021).
Importantly, this work confirms that the fMRI results cannot be fully attributed to signal dropout
and geometric distortions in the BOLD signal arising from susceptibility artifacts in the magnetic
field where tissue borders air in the orbital sinus. How then should this null result be interpreted?
On the one hand, variations in LFPs in the vmPFC across participants could arise from
participants engaging in stimulus-independent thought such as mind wandering (Christoff et al.,
2016; Mason et al., 2007). Alternatively, participants could be making stimulus-dependent
evaluations about the affective meaning of the stimulus with respect to their idiosyncratic goals,
experiences, and homeostatic states (Ashar et al., 2017; Chang et al., 2021; Roy et al., 2012).
One of the most simple appraisals an individual can make is whether they like or dislike a
stimulus or event. These subjective value judgments require integrating multiple attributes of a
stimulus with respect to salient goals (Padoa-Schioppa and Assad, 2006; Rangel et al., 2008).
For example, when appraising the value of food, the vmPFC appears to integrate multiple
attributes such as taste, cost, and caloric content (Suzuki et al., 2017) with broader goals such
as eating healthy (Reber et al., 2017) and internal homeostatic drives (Robinson and Berridge,
2013) and neuronal firing in this region appears to reflect the deliberation when making these
decisions (Rich and Wallis, 2016). Thus, it seems plausible that participants may be generating
their own unique appraisals about the events in the television show as they unfold. The results
from our HMM analysis support this latter interpretation. We find that participants are more likely
to occupy the same vmPFC state during the more emotionally evocative scenes and that
distinct states appear to map onto valenced interpretations of the scene (e.g., good or bad),
providing a direct replication of our fMRI study (Chang et al., 2021). Importantly, in these
emotionally salient scenes, approximately only 50% of our sample appeared to occupy the
same state. This likely explains why we did not observe synchronization using the ISC method,
which would require more consistent temporal synchronization from the majority of the
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participants. Moreover, these results are also consistent with previous work that has found that
the vmPFC may be involved in assessing the saliency of a particular event (Jafarpour et al.,
2019).

More broadly, this work presents a fundamental challenge to studying the computations
performed by the vmPFC. The majority of cognitive neuroscience research relies on group
analyses to make inferences and these findings reveal that participants do not share consistent
processes when viewing a rich and engaging naturalistic stimulus. Future work will need to
develop novel research paradigms and analytic frameworks that can account for this
intersubject heterogeneity to better characterize the computations performed by this region of
cortex. Several promising approaches include the idiographic approach employed in studies of
valuation (Rangel et al., 2008) and aesthetic experiences (Isik and Vessel, 2019), intersubject
representational similarity analysis (Chen et al., 2020; Finn et al., 2020; van Baar et al., 2019),
and fitting HMMs directly to single subject brain activity (Chang et al., 2021).

There are several potential limitations of this work that are important to highlight. First, it is
unknown to what extent these results may be attributed to the pathophysiology of epilepsy or its
pharmacological treatment. Both chronic refractory epilepsy and antiepileptic drugs could have
a profound effect on the patient's brain responses and cognitive functions (Brunbech and
Sabers, 2002; Elger et al., 2004; Motamedi and Meador, 2003; Rantanen et al., 2011; van
Rijckevorsel, 2006). However, we presume that these results will generalize beyond the specific
participants and patient populations included in our analyses. Second, our analyses assume
that our sampled electrodes in the vmPFC cover regions performing similar functions across
participants. However, it is well known that the vmPFC is composed of several functionally
separable regions (Kahnt et al., 2012). Thus, it is possible that the implanted electrodes may be
located in regions that are not functionally homogeneous across participants. This particular
issue may be more problematic for single unit recordings, as LFPs are likely reflecting
coordinated firing of populations of neurons distributed across larger areas of cortex (Nir et al.,
2007). Third, the maximum number of components we were able to estimate for the SRM was
determined by the smallest number of electrodes implanted in any participant (Chen et al.,
2015a). It is highly likely that the vmPFC contains many more than 6 latent components (the
fewest number of electrodes in this region in a single participant). However, we think this is
unlikely to change our results as we focused specifically on the component with the highest
synchronization across participants. Fourth, our HMM analysis assumes that all participants
experienced the same number of states. It is highly unlikely that all subjects experienced the
same number of latent states, but this simplifying assumption was necessary to enable the
alignment of states and compute the state concordance across participants.

In summary, using a naturalistic paradigm with SEEG recordings, we investigated intersubject
synchronization of dynamic LFP signals in the vmPFC. Overall, we found minimal evidence
indicating that signals in this region are shared across participants during this experimental
context after removing artifacts related to spatial distance and within-subject and within-
stereotactic strip clustering. However, our individual-HMM analysis revealed that some vmPFC
states appeared to show increased alignment during emotionally salient scenes. These results
are highly consistent with previous work using fMRI (Chang et al., 2021) and suggest that the
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vmPFC is involved in processing affective responses to ongoing experience in a state-like
manner, but the specific states and temporal sequences are idiosyncratic to each individual.
Beyond the vmPFC, we observed strong synchronization in the §, a, and B bands of auditory
cortex that directly mapped onto properties of the eliciting auditory stimulus. In addition, we
demonstrate that SRM (Chen et al., 2015a; Haxby et al., 2020) can be a promising technique to
aid in functionally aligning signals from electrodes implanted in different regions across
participants and also in denoising SEEG data.

Methods

Participants

In this study, we recruited 14 epilepsy patients (mean age = 38.6, sd=11.7; 5 females)
undergoing inpatient stereo-EEG monitoring at the Dartmouth-Hitchcock Medical Center. SEEG
electrode placement is determined solely based on clinical needs and we only included
participants with electrodes implanted in both vmPFC and auditory regions (n=6, mean age =
45.6, sd = 12.3, 3 females), (See table 1 for detailed information on electrodes and subjects). All
participants provided informed consent approved by the Institutional Review Board at
Dartmouth-Hitchcock Medical Center.

Experiment Procedure

Participants watched the first episode of the 45-minute television drama Friday Night Lights
while undergoing stereo-EEG monitoring at their bedside. This show was selected because of
its engaging and emotionally evocative content. The show was presented on a Windows
computer using either PsychoPy (Peirce, 2007) or SuperLab (Cedrus, San Pedro, CA USA).
Triggers indicating the onset and offset of the stimulus were sent to the SEEG recording system.
Electrodes used in the study were either 0.86 mm diameter Ad-Tech (Ad-Tech Med Instr Corp,
USA) sEEG with 10 independent recording contacts per electrode or 0.8 mm diameter PMT
(PMT Corp., USA) seEG with 8-12 independent recording contacts per electrode. Intracranial
data were recorded on a Natus XLTek EMU 128 system at 2048Hz.

Electrode Placement and Channel Selection

We obtained a pre-operative whole-brain T1-weighted MRI scan for each patient with a 3-T
scanner using a 3D BRAVO sequence, at TR = 8.4 ms, TE = 3.4 ms, voxel size = 0.5 *0.5 *
1.25 mma3. All scans were visually inspected for motion, abnormalities and other artifacts by
certified radiologists at Dartmouth-Hitchcock Medical Center. Post-operative CT head scans
were obtained for each patient at voxel size = 0.5 x 0.5 x 0.5 mm?® to compute the locations of
each depth electrode. Both pre-operative MRI scans and post-operative CT scans were co-
registered using SPM12 toolbox in Matlab 2017b. We determined the locations of depth
electrodes by thresholding the registered CT image. Each depth electrode was represented by a
cluster of dots in the registered CT image, while the coordinates were calculated by averaging
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all dots within each cluster. Individual T1-weighted MRI scans were normalized to Montreal
Neurological Institute (MNI) space using the SPM 12 toolbox.

We assigned electrodes to each region of interest (ROIl) based on broad areas of cortex
functionally defined by the Neurosynth meta analytic database (Yarkoni et al., 2011). For each
electrode we created a sphere of radius 2mm centered at the electrode’s MNI location. We then
calculated the percentage overlap between the electrode sphere and each ROI region mask.
We included electrodes with greater than 50% overlap within each ROI region mask. Electrode
assignments and ROI region masks can be viewed at https://neurovault.org/collections/9709/).

Signal Preprocessing

A careful visual inspection was conducted on the collected SEEG data by a qualified neurologist
to exclude all bad/corrupted electrodes or electrodes with excessive epileptic activities. SEEG
data was high-pass filtered at 0.1 Hz to remove slow drifts and a 60 Hz FIR notch filter was
applied to remove electrical interferences. We used Laplacian re-referencing to electrodes on
each stereotactic strip to extract local population-level activity (Li et al., 2018) and downsampled
the data to 512 Hz to speed up subsequent analysis computations. Data preprocessing was
performed in Python 3.7.9 with the MNE (Gramfort et al., 2013), Numpy (Harris et al., 2020),
and Scipy (Virtanen et al., 2020) packages.

Time-Frequency Processing

Unless otherwise specified, we used Morlet Wavelet Transforms implemented in the MNE
package (function: tfr_array_morlet) (Gramfort et al., 2013) with a width of 7 cycles for all time
frequency decomposition analyses discussed in the paper. Specifically, we created 30
logarithmically spaced frequency bins ranging from 1 Hz to 150 Hz, applied the wavelets to
each frequency bin, and calculated the power. Power modulations that fall between 56 - 64 Hz
and 116-124 Hz are not included because of their proximity to the 60 Hz power line noises and
120 Hz harmonics. We divided the power in each frequency bin by its mean to convert the
absolute power values to a proportion of the mean (Ossandon et al., 2011). This normalization
procedure minimizes power differences across frequency bands resulting from their 1/f
distribution. Finally we averaged all power estimates for the wavelet frequency bins within § (1-
2Hz), @ (2-5 Hz), a (5-14 Hz), 8 (14-30 Hz), low 7 (30-70 Hz), high 7 (70-150 Hz), or overall
broadband power (1-150Hz) bands. We also ran all time-frequency decomposition analyses
with Hilbert transformation and observed similar results.

Power-Spectrum Density

We calculated the power spectrum density (PSD) of the signal using Welch’s Method with a
Hamming window of 1s with 50% overlap. In Fig 4B & Fig S3, we removed the 1/f power decay
by log-transforming the power and frequency bins estimated from Welch's Method, fitting a
linear regression and finally plotting the residuals from the regression. We used
implementations from mne-python (function: psd_array_welch) (Gramfort et al., 2013) for
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Welch’'s Method and implemented the linear regression with scikit-learn (function:
LinearRegression) (Pedregosa et al., 2011)

Inter-subject Correlation (ISC)

In order to measure the degree of shared information patterns across subjects, we used the
Intersubject correlation (ISC) metric (Hasson et al., 2004). ISC is a simple yet effective way to
reliably extract the shared brain responses to complex naturalistic stimuli across individuals
(Nastase et al., 2019). ISC was originally developed for fMRI data analysis but has also been
applied to other neuroimaging modalities such as EEG (Dmochowski et al., 2012; Imhof et al.,
2020; Kaneshiro et al., 2020; Maffei, 2020; Poulsen et al., 2017), MEG (Chang et al., 2015;
Chen and Farivar, 2020; Thiede et al., 2020).

We applied ISC to our intracranial EEG data to study the degree of functional alignment across
subjects separately within auditory and vmPFC electrodes. We calculated ISC as the mean
value of the lower triangle of the pairwise correlation matrix, excluding the diagonal elements.
We applied fisher's z-transform to transform the pairwise correlation value prior to taking the
mean and used the inverse fisher transform to convert the mean z-transformed value back to
correlation. Each correlation pair is calculated as:

oz — %) (s — )

corr(z,y) =
Ox0y (eq 1)
where,
(eq 2)
and
1 N
i' _ - 23,
N i= (eq 3)
The overall ISC is thus,
Y1 L1 Z(corr(S;, S5))
ISC,..n = R(==L2E
N ( N(N-1) ) (eq 4)
where,
1. 142
and
e —1
R(z) = e +1 (eq 5)

S is the ‘subject’ matrix of shape either number of electrodes by time (for raw electrode &
residualized analysis, N=44) or number of subjects by time (for the subsequent SRM analysis,
N=6).
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To test if ISC values are significantly above zero, we used subject-wise bootstrapping as
recommended by (Chen et al., 2016). Specifically, we sample the pairwise correlations in the
lower triangle correlation matrix with replacement and calculate the ISC after removing
correlations between the same electrode. We repeated the process 5000 times and calculated
the p-value for our two-tailed hypothesis test. We used the ISC and bootstrap implementations
from our python analysis package nltools (Chang et al., 2018) available at https://nltools.org/.

Distance Regression

To perform our distance regression (Fig. 2A), we first computed the pairwise correlation matrix
separately for vmPFC or auditory electrodes across 6 subjects. Next, we calculated a pairwise
Euclidean Distance matrix using the x/y/z millimeter MNI coordinates separately for vmPFC or
auditory electrodes across 6 subjects. Prior to running the regression, we Fisher z-transformed
the correlation matrix and centered the distance matrix. We then added within-subject dummy
matrices for each subiject, in which electrode pairs clustered within a subject were indicated by a
value of 1, and O everywhere else. In addition, we added within-stereotactic strip dummy
matrices, to indicate whether electrodes were located on the same strip within a subject with a 1
or 0. We estimated a separate linear model for each region of interest (e.g., vmPFC or auditory
cortex) using the pairwise correlation matrix as the response variable and the euclidean
distance matrix, 6 dummy subject matrices and dummy electrode matrix (10 for auditory while
16 for vmPFC) as explanatory variables using the function ‘Im’ in R (Computing and Others,
2013). We did not include a global intercept for the regression. The residuals of the model are
obtained and used in subsequent ISC analyses. We calculated the variance explained using a
nested model comparison approach where we compared the total variance explained to a
subset of the model omitting either the spatial distance or the within-subject clustering dummy
indicator matrices.

Shared Response Model

We performed functional alignment (Haxby et al., 2020) using the Shared Response Model
(SRM; (Chen et al., 2015a)) separately on auditory and vmPFC electrodes across 6 subjects.
As demonstrated in Fig. 4, SRM is a matrix factorization model that decomposes the electrode-
by-time matrix for each subject into a common shared component matrix and an orthogonal
subject-specific basis matrix. The objective function is to minimize the reconstruction loss
across all 6 subjects. SRM identifies common activity patterns that are present across subjects
and provides a method to transform the original electrode activities into a shared latent
component space. The number of features k in our study is chosen as the minimum number of
electrodes present in any given participant (k=5 for auditory, k=6 for vmPFC).

For each subject’s electrodes activity matrix Xz, i=1..6, of shape (n4, ) where 4 is the number of
electrodes present in the subject (see Table S1) and ¢ is the time length of the SEEG recording
(~45 minutes), we decompose Xi &= W;S where Wi is the orthogonal subject-specific basis
function of shape (ni, k) satisfying W;“CT = I3 and S is the shared components matrix of shape
(k,2) The objective function is thus to minimize the squared reconstruction loss as
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6
minw,s ¥, |1 X — WiS||3

i=1 , Where |-llF is the frobenius norm. (see details in (Chen et al.,
2015b) about how to computationally derive a solution to the objective function). After we have
identified the Wj for each subject and S for all subjects, we can use the subject’s reconstructed
activity matrix X;= WiS of shape (&, t), to approximate the subject’'s raw electrode activity
matrix Xi. For each component m = 1..k, we selected the m — #h row (which leads to a matrix
of shape (1,2) for each subject) of the reconstructed matrix X; across 6 subjects and calculated
the ISC. We selected the component m that yields the maximum ISC across 6 subjects. We
used a modified version of the original Brainiak version of SRM implemented in our nltools
package (Chang et al., 2018).

Statistical Tests

All hypothesis tests comparing regions used non-parametric sign permutation tests. In order to
test the significance of differences between auditory and vmPFC ISC values, we randomly
shuffled the group assignment of each pairwise correlation and calculated the ISC differences
for the re-shuffled pairwise correlations. We repeated the process 5000 times to generate a null
distribution and calculated p-values for our two-tailed hypothesis test, by counting the number of
iterations that our observed difference exceeded the null distribution. For one-sample tests, we
randomly multiplied each value by [1,-1] and generated a null distribution using 5000 iterations.
To test if ISC values are significantly above zero, we used subject-wise bootstrapping as
recommended by (Chen et al., 2016) and described above in ISC section.

Extracting audio power envelope

We extracted the power envelope of the auditory stimulus using a similar procedure as (Honey
et al., 2012). We extracted power from the auditory channel using multi-tapering where power is
estimated every 200 Hz from 200 Hz to 5000 Hz (25 frequency bands in total) with 3 tapers. We
took the logarithm of each frequency band and further z-score normalized the power in each
frequency band. Finally we averaged the powers across 25 frequency bands to get the final
power envelope for the audio stimuli.

Hidden Markov Model

Hidden Markov Models are generative probabilistic state-space models which assume that the
current sequence of observations is generated by a sequence of discrete latent state variables.
The transitions between latent states are assumed to follow the first order Markov Process,
where the probability of transition to the next immediate state depends only on the most recent
state. We have also made the implicit assumption that the observed variables follow a
multivariate Gaussian distribution with diagonal covariance matrix.

We fit an individual HMM separately on each participant’s broadband power SRM components.
Specifically we first applied a 6-component SRM to the raw vmPFC electrodes across 6

subjects, and obtained the resulting transformed matrix of shape (6,2) for each subject. We
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extracted the broadband power from the SRM components for each participant and normalized
the power for each SRM component for each participant. We fit an HMM to the normalized
broadband power matrix for each subject using the hmmlearn Package (version 0.2.5). We used
the Viterbi algorithm to maximize a posteriori probability estimates and infer the most likely
sequence of latent states. Model parameters were estimated with expectation-maximization. In
order to determine the number of states k for our HMM model, we calculated the Bayesian
Information Criterion (BIC) value over a range of k = [2,15] BIC finds the simplest model to fit
the data by balancing the maximum likelihood function and the model parameters & number of
data points.

Specifically BIC is calculated as:
BIC = In(n)(K* + 2kf — 1) — 2n(L) (eq 7)

where n is the number of observations, k is the number of parameters in the model, fis the
number of features (which equals to 6 SRM components in our case), and L is the maximum
log-likelihood of the HMM model fit. We calculated the BIC value for each chosen ¥ = [2, 18] for
each participant. For each state we averaged the BIC across 6 participants. We then selected
the k which gives the maximum reduction in BIC value (i.e., the derivative of the BIC with
respect to k; Fig. S7). For each fitted model, we aligned the latent states across participants by
maximizing the correlation similarity between the model pairs using the Hungarian Algorithm
(Kuhn, 2005).

Code

All code used to perform these analyses are available on Github
https://github.com/cosanlab/naturalistic IEEG func_align/.
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