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Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has accumulated ge-
nomic mutations at an approximately linear rate since it first infected human populations in late
2019. Controversies remain regarding the identity, proportion, and effects of adaptive muta-
tions as SARS-CoV-2 evolves from a bat- to a human-adapted virus. The potential for vaccine-
escape mutations poses additional challenges in pandemic control. Despite being of great in-
terest to therapeutic and vaccine development, human-adaptive mutations in SARS-CoV-2 are
masked by a genome-wide linkage disequilibrium under which neutral and even deleterious
mutations can reach fixation by chance or through hitchhiking. Furthermore, genome-wide
linkage equilibrium imposes clonal interference by which multiple adaptive mutations compete
against one another. Informed by insights from microbial experimental evolution, we analyzed
close to one million SARS-CoV-2 genomes sequenced during the first year of the COVID-19
pandemic and identified putative human-adaptive mutations according to the rates of synony-
mous and missense mutations, temporal linkage, and mutation recurrence. Furthermore, we
developed a forward-evolution simulator with the realistic SARS-CoV-2 genome structure and
base substitution probabilities able to predict viral genome diversity under neutral, background
selection, and adaptive evolutionary models. We conclude that adaptive mutations have
emerged early, rapidly, and constantly to dominate SARS-CoV-2 populations despite clonal
interference and purifying selection. Our analysis underscores a need for genomic surveillance
of mutation trajectories at the local level for early detection of adaptive and immune-escape
variants. Putative human-adaptive mutations are over-represented in viral proteins interfering
host immunity and binding host-cell receptors and thus may serve as priority targets for de-

signing therapeutics and vaccines against human-adapted forms of SARS-CoV-2.
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Introduction

Evolution in action: a trail of one million viral genomes

The 2002-2004 severe acute respiratory syndrome (SARS) coronavirus outbreaks had
multiple origins (Chinese SARS Molecular Epidemiology Consortium 2004). In contrast, severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the COVID-
19 pandemic, showed nearly 100% sequence identity among the first outbreak strains from
China, suggesting a single point of viral breach (Lu et al. 2020; Zhou et al. 2020). However,
sequence diversity quickly accumulated as COVID-19 spread globally and remained uncon-
trolled a year later (Andersen et al. 2020; To et al. 2021). This high-stake case of evolution in
action has brought unprecedented health, economic, and social devastation in modern times
(Peeri et al. 2020; Kissler et al. 2020; To et al. 2021). Many of the evolutionary mechanisms
driving SARS-CoV-2 genome diversification are unknown and urgently require elucidation. For
example, to what extent has SARS-CoV-2 adapted to its new human hosts after one year of
genome evolution (Phan 2020; Cagliani et al. 2020; Bai et al. 2020; Yang et al. 2020)? Moreo-
ver, how long can the global vaccine campaigns, most of which rely on vaccines formulated on
basis of the bat-adapted viral genome, maintain effectiveness against the waves of new viral
variants emerging worldwide (Koyama et al. 2020; Burton and Topol 2021)?

The vast number of publicly available SARS-CoV-2 genomes — expected to surpass a
million before June 1, 2021 — offers unique opportunities for understanding the evolutionary
processes accompanying the rapid emergence of a new viral pathogen, while challenging the
ability to translate evolutionary understandings into the control and prevention of current and
future pandemics (de Wit et al. 2016; Hadfield et al. 2018; Cui et al. 2019; Benvenuto et al.
2020; Andersen et al. 2020; Cagliani et al. 2020). Here we tested the hypothesis of rapid adap-
tation of SARS-CoV-2 genomes to human populations during the first year of the global
COVID-19 pandemic. We focused on developing methods and computational tools for identify-
ing human-adaptive mutations in the genomes of zoonotic viral pathogens. ldentifying human-
adaptive mutations is essential to uncovering the molecular mechanisms underlying the transi-
tion of SARS-CoV-2 from bat to human hosts, as well as the viral mechanisms of human path-
ogenesis and virulence (Cagliani et al. 2020). For disease treatment and prevention, human
adaptive mutations are prime targets for the development of therapeutics against human-
adapted SARS-CoV-2 variants as well as the development of broadly effective escape-proof
vaccines (Burton and Topol 2021; Cohen et al. 2021).
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Challenges of identifying adaptive mutations in an asexual microbial population

Despite the benefits of a small genome size (~30,000 base pairs) and an abundance of
geographically and longitudinally marked genome samples, identifying signatures of natural
selection in SARS-CoV-2 is hindered by the challenge of a compact, gene-rich genome with
few non-coding sequences, as is typical for microorganisms (DeLong 2004; Rocha 2018). Se-
quence evolution at non-coding loci in eukaryotic species hews closely to the standard Neutral
Theory of molecular evolution, thus providing a powerful control for testing the presence of
natural selection in functional genomic regions (Garud et al. 2015; Koropoulis et al. 2020). For
example, presence of balancing (i.e., diversifying) selection at the Adh locus in Drosophila was
discovered by an excess of nucleotide polymorphisms in the coding region relative to the 5'-
flanking sequences (HKA test) (Hudson et al. 1987). The unexpected decrease in non-coding
sequence diversity in genomic regions with low recombination rates has led to the discovery of
pervasive purifying (i.e., negative) selection in Drosophila and humans (Hudson and Kaplan
1995; Charlesworth 2013; Campos and Charlesworth 2019). Likewise, adaptive mutations
cause selective sweeps and reduce genetic diversity at linked non-coding loci (Sabeti et al.
2002; Garud et al. 2015).

Genome-wide linkage disequilibrium (LD) imposes an additional, more severe constraint
for detecting adaptive mutations during SARS-CoV-2 evolution in human populations. In bacte-
rial species, recombination is infrequent, yet it occurs at rates high enough to uncouple the
evolution of loci under diversifying election (e.g., loci encoding surface antigens) from evolution
of housekeeping loci under purifying selection (Milkman and Bridges 1990; Haven et al. 2011;
Bobay et al. 2015). In sexual populations, proportions of adaptive amino-acid divergence could
be estimated at a protein-coding locus by contrasting levels of synonymous and nonsynony-
mous substitution rates within and between species (MK test) (McDonald and Kreitman 1991;
Charlesworth and Eyre-Walker 2006). However, the standard MK test severely underestimates
adaptive divergence in asexual populations due to accumulation of slightly deleterious non-
synonymous mutations (Charlesworth and Eyre-Walker 2008; Messer and Petrov 2013). Fur-
thermore, both background selection and selective sweeps (“genetic draft”) reduce the effec-
tive population size and elevate the chance of random fixation of neutral and deleterious non-
synonymous mutations in an asexual population, thus biasing the estimation of adaptive muta-
tion rates (Gillespie 2000; Messer and Petrov 2013).

Similarities between microbial experimental evolution and SARS-CoV-2 evolution

Experimental evolution under controlled laboratory conditions using microorganisms
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provides perhaps the most pertinent model for understanding SARS-CoV-2 evolution in hu-
mans (Lenski 2017; Good et al. 2017; Cvijovi¢ et al. 2018; Bergh et al. 2018). Although SARS-
CoV-2 is a non-free-living organism evolving under open and diverse environmental condi-
tions, SARS-CoV-2 populations share several key evolutionary characteristics with microbial
populations in long term evolution experiments (LTEEs) (Lenski 2017; CvijoviC et al. 2018).
First, both evolving systems were seeded with a single genetically identical clone. Second,
species in both systems were microorganisms containing a compact and gene-rich genome
with few non-coding loci. Third, both systems had large populations in which natural selection
was expected to prevail over genetic drift. For example, in a population with N, = 1000 individ-
uals, any mutation with a selection coefficient |s| > 0.001 would cross the neutral barrier
N.s = 1 and evolve deterministically towards fixation or extinction. Fourth, although capable of
recombination, populations in both systems evolved clonally without detectable levels of genet-
ic exchange among coexisting individuals. Thus, both systems evolved under genome-wide LD
and were expected to show strong clonal interference (Lang et al. 2013; Lenski 2017; Good et
al. 2017). Fifth, populations in both evolving systems were tracked in great genetic detail
through whole-genome sequencing of temporally sampled isolates with spatial replication. Re-
sembling the replicated populations in LTEEs, SARS-CoV-2 subpopulations in six continents
(Asia, Africa, Europe, North America, South America, and Oceania) allowed for detection of
adaptive changes based on recurring genetic events.

As expected given the strong similarities in key evolutionary characteristics, we found
that SARS-CoV-2 populations during the COVID-19 showed similar adaptive dynamics as the
E. coli populations in LTEE, including the early rise and rapid fixation of adaptive mutations,
competing adaptive mutations, and recurrent genetic changes at key gene loci. Previous anal-
yses of genome evolution of SARS coronaviruses have relied mainly on phylogenetic ap-
proaches to identify adaptive genes, haplotypes, and lineages (Chinese SARS Molecular Epi-
demiology Consortium 2004; Phan 2020; Cagliani et al. 2020; Bai et al. 2020; Yang et al.
2020). Crucially, without generating mutation spectra expected under neutral, background se-
lection, and adaptive evolution models, these studies have been unable to test competing evo-
lutionary models or to explore adaptive dynamics at the level of individual mutations. In LTEEs,
the neutrally evolving populations were created by bottleneck events during serial transfer of
cultures from one generation to another (Tenaillon et al. 2016). Here, we used in silico simula-
tion of SARS-CoV-2 genomes evolving under neutral and selective models for understanding
and predicting SARS-CoV-2 evolution during the COVID-19 pandemic.


https://doi.org/10.1101/2021.05.07.443114
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.07.443114; this version posted May 10, 2021. The copyright holder for this preprint (which

131

132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

151
152
153
154
155
156
157

158
159
160
161
162
163

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC 4.0 International license.

Material & Methods

CoV genome simulator and the associated software system

In silico simulations are a powerful approach to test evolutionary hypotheses by provid-
ing fully specified evolutionary processes and parameters as models of species evolution in
nature (Yuan et al. 2012). However, software tools for simulating the evolution of the gene-rich,
finite-size microbial genomes such as those of SARS-CoV-2 are lacking. Simulations based on
coalescent (backward-evolution) are highly efficient but are more suitable for modeling the
evolution of neutral loci and relatively simple forms of selective and demographic mechanisms
(Hudson 2002; Liang et al. 2007; Kelleher et al. 2016). Software tools based on forward-
evolution simulations are less efficient but more flexible in modeling arbitrary selective and
demographic forces (Carvajal-Rodriguez 2008; Hernandez 2008; Haller and Messer 2019).
For simulating microbial genome evolution, two coalescent-based software tools implemented
the realistic form of homologous recombination in bacterial genomes, but were not designed to
simulate protein-coding sequences or the strong purifying and positive selective forces com-
monly operating on the gene-rich microbial genomes (Didelot et al. 2009; Brown et al. 2016).
Furthermore, to our knowledge all existing simulation software implements infinite-site models
of nucleotide substitutions. Consequently, these software tools do not allow for estimation of
the chances of recurrent mutations at the same sites, an aspect that cannot be ignored in a
rapidly expanding viral population with a small genome, such as SARS-CoV-2 populations dur-
ing the COVID-19 pandemic.

Previously, we used forward-simulation to validate the origin and maintenance of high
sequence diversity at a major surface antigen locus in the Lyme disease bacterium (Borrelia
burgdorferi) by negative frequency-dependent selection (Haven et al. 2011). Here we devel-
oped a CoV genome evolution simulator (CovSimulator) and used it to test whether patterns of
CoV genome variability fit better with expectations from neutral (NEU), background-selection
(BKG), adaptive (ADPT), or mixed (MIX) evolution models. The software system associated

with the CovSimulator is diagramed in Supplemental Material Fig S1.

Briefly, CovSimulator first read the annotated genome of a viral progenitor provided in
GenBank format (e.g., Wuhan-Hu-1, GenBank accession NC_045512). It captured the reading
frames of the 25 protein-coding loci (Table 1) in the SARS-CoV-2 genome such that coding (or
non-coding) information associated with each base of the genome was stored. At a protein-
coding nucleotide site, the stored genomic information included the gene locus, codon, amino
acid, and codon position. Simulation was initialized with a population of N identical ancestral
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genomes, each of which was assigned the unit fitness value (see evolution parameters in Ta-
ble 2). During each of the total number of g generations, each individual encountered a Pois-
son-distributed number of point mutations with the mean genome mutation rate m. If a muta-
tion occurred, a uniformly distributed genome position was chosen and an alternative nucleo-
tide was selected as the substitute according to the base-substitution frequencies gathered
from viral genomes (see section below). Similarly, homologous recombination during each
generation occurred with a Poisson distributed mean rate of r per genome. If a recombination
event occurred, two individuals from the population were randomly chosen and a uniformly dis-
tributed genome position was selected as the break point. Two new individual genomes were
created by exchanging the sequences right and left of the break point. Fitness values of the

new genomes were re-computed according to a new set of mutated sites.

Crucially, we defined the fitness of a simulated viral genome as its adaptiveness to the
human host relative to the ancestral viral genome. That is, the fitness of the ancestral viral ge-
nome to the human host was defined as one. A simulated viral population displaying an aver-
age fitness > 1 could thus be interpreted as being better adapted than the ancestral genome to
the human host. A simulated viral population with an average fitness = 1 was considered
equally fit as the ancestral viral genome to reproduce in the human host. Otherwise, a simulat-
ed viral population with an average fitness < 1 was considered less fit than the ancestral ge-
nome to use the human host. To implement this fithess scheme, we determined synonymous
or missense mutations and computed the fitness value of a simulated genome according to
comparison with the ancestral viral genome rather than its parental genome. This fitness defi-
nition is equivalent to measuring fithess gains in an LTEE study through competing the evolved
strains with the original, pre-evolved strain (Lenski 2017).

The fitness of an individual genome was the multiplicative product of its composite co-
dons. Thus, the fitness of the individual was set to zero if the mutation introduced a stop codon
(nonsense) or changed a stop codon into a sense codon (reading-frame extension). Other-
wise, the mutation introduced an amino-acid change (missense mutation). In the neutral mod-
el, the fitness of an individual remained unchanged by missense mutations. In the background
selection model, a missense mutation had a probability of u (e.g., u=0.8) of decreasing the fit-
ness of its carrier genome by a factor of, e.g., w=0.95. In the adaptive evolution model, in con-
trast, a missense mutation had a small probability of v (e.g., v=0.1) of increasing the fitness of
its carrier genome by a factor of, e.g., w=1.05. The fithess of the individual was unchanged if

the mutation occurred at a non-coding (intergenic or untranslated) site or introduced a synon-
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ymous amino acid.

The probability of an individual to produce an offspring in the next generation was de-
termined by its fithess. Specifically, a threshold value between 0 and 1 was computed as an
increasing function of the fitness of an individual c = 1 —e™. A random number p between 0
and 1 was chosen. If p < ¢, then the individual was able to contribute one offspring. Otherwise,
the individual did not have a chance to reproduce. The parental population was repeatedly
sampled with replacement for reproduction until the constant population size of N was
reached. To validate the genome simulator, we compared the sample statistics with neutral
expectations including the level of sequence polymorphism at mutation-drift balance (6 =
2N,.u,), the rate of sequence divergence with respect to the ancestor (k=mi), and the length

and shape of genome genealogies under neutral and selective evolution.

Viral genome database and the associated software system

Viral genomes and associated information on the geographic origins and collection
dates were obtained from GISAID monthly according to submission dates (Shu and McCauley
2017). SNVs and indels in each genome with respect to the reference genome (Wuhan-Hu-1,
GenBank accession NC_045512) were identified by using the program DNADIST in the Nu-
cmer4 package (Marcgais et al. 2018). To minimize sequencing errors, SNVs at genome ends
where missing bases were common were excluded, as were any genomes with more than
10% missing bases at SNV sites. Unique haplotypes were obtained with custom Perl scripts
based on the BioPerl package (Stajich et al. 2002). Isolate information, variants, and haplo-
types were deposited into a custom relational database (“cov-db”) to facilitate downstream
computational analysis. A custom Python script sampled viral genomes (e.g., n=100) by month
and at three spatial scales (continent, country, and state). The script also filtered variants and
output only the most frequently occurring (e.g., >0.5%) variants. A secondary Python script
produced a variant call format (VCF) file based on the sampled isolates and high-frequency
variants. Evolutionary statistics, including variant frequencies, linkage disequilibrium (7), hap-
lotypes, and base substitution frequencies were generated with programs BCFTools and
VCFTools (Danecek et al. 2011). We used Haploview (version 4.2) to calculate LD scores (D’
and A as well as their statistical significance between pairs of SNVs (Barrett 2009). The most
parsimonious haplotype networks were estimated with the program TCS ver1.21 (Clement et
al. 2000) and visualized with tcsBU (Mdrias dos Santos et al. 2016). To visualize genome vari-
ants and haplotype networks, we developed a custom web interface (http:/genometracker.org)

using a similar software system supporting BorreliaBase, a comparative genomics browser of
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Lyme disease pathogens (Di et al. 2014). The software system associated with the “cov-db”

database is diagramed in Supplemental Material Fig S2.

Evolution rates, linkage disequilibrium, and homoplasy

We estimated the SARS-CoV-2 genome divergence rate from the ancestor by perform-
ing a linear regression of sequence differences to the reference genome (NC_045512) with
respect to the genome collection dates. The expected variance of the evolutionary rate was
estimated according to a Poisson model, which specified, at each time point of t days, an ex-
pected number of sequence differences in A=utL, where u being the rate of base substitution
per site per day obtained from the regression line and L being the length of the reference ge-
nome (NC_045512, L=29903). The variance of the Poisson expected difference was expected

to be equal to the difference itself (o°=1).

To compare cross-species rates of amino-acid substitutions at protein-coding loci, we
downloaded the genomes of 24 viral isolates belonging to the family Coronaviridae. The viral
isolates included coronaviruses closely related to SARS-CoV and SARS-CoV-2 and consisted
of Wuhan-Hu-1, RaTG13, P1E, P5L, ZC45, ZXC21, SC2018, HuB2013, Shaanxi2011, HKU3-
1, Rm1, CoV273, GX2013, Rf4092, YN2013, GD01, SZ3, WIV16, SHC014, YN2018B,
As6526, Rs4247, Rs672, and Yunnan2011. Homologous protein sequences were aligned and
individual alignments were concatenated using the sequence utility bioaln from the BpWrapper
software suite (Hernandez et al. 2018). Per-site substitution rates, normalized to a mean rate
of zero, were obtained with rate4site (Pupko et al. 2002).

We used Haploview (version 4.2) to calculate linkage disequilibrium (LD) scores (D’ and
/) as well as their statistical significance (LOD, log odds) between pairs of SNVs (Barrett
2009). We used the DNAPARS program of the PHYLIP (version 3.696) package to search for
a maximum parsimony tree of unique haplotypes, obtaining the homoplasy index (HI) and the

number of base substitutions at each SNV site (Felsenstein 1989). The HI is defined as

1

p— at each SNV site and is zero when the alleles are consistent with the tree

HI =1-—
n

(i.e., the number of substitution for a bi-allelic SNV is one).

Analysis of synonymous and missense evolutionary rates

Genome-wide numbers of synonymous (Ds) and nonsynonymous (D,) nucleotide diver-
gence were obtained through comparison of the reference genome (Wuhan-Hu-1, GenBank
accession NC_045512) to its closest known relative (RaTG13, GenBank accession
MN996532) (Zhou et al. 2020) with the program DNADIST (Margais et al. 2018). Genome-wide
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synonymous (Ps) and nonsynonymous (P,) nucleotide polymorphisms in viral populations were
estimated with the use of viral samples. In computing the per site synonymous and nonsynon-
ymous substitution rates (ds=Ds/S, d,=D/N, ps=Ps/S, pr=Pn/N), the effective numbers of avail-
able synonymous (S) and nonsynonymous (N) sites at each gene locus must be estimated
(Yang 2007). We estimated S and N empirically by using the CovSimulator, which accounts for
both the genome base composition bias and the strong mutation biases (Supplemental Materi-
al Fig S3). Specifically, we ran CovSimulator with a high genome mutation rate m=10 and a
population size p=200 for n=10 generations, generating an expected total number of 20,000
mutation events or 1=0.67 mutations per genomic site, on average. Assuming a Poisson distri-
bution, the proportions of genomic sites encountering 0, 1, and >1 point mutations were ex-
pected to be 51.2%, 34.3%, and 14.5%, respectively. Thus, the probability of a site not being
mutated was p=0.512. To ensure that all genomic sites were mutated at least once, we ran
CovSimulator ten times such that the chance of a site not undergoing any mutation was small
p = 0.512'"% = 1.25¢-3. The average numbers of synonymous and missense mutations from ten
repeated runs, normalized to gene lengths, were used as estimates of S and N (Table 1; Sup-
plemental Material Tables S1 and S2).

Analysis of mutation trajectories

For a simulated population, we followed the trajectories of the most frequent (>0.5%
among all samples) missense mutations by first calculating their frequencies in each genera-
tion. The trajectory of a mutation X was represented by an n-dimensional vector X; =

(X, .-, X:, ), where each X,, was the frequency of X within in the population at time point ¢;.
Distance between two trajectories, Xr and Y, was defined as Dy, = ?:0|Xti - Yti|. Trajectories

of two or more mutations were merged into a “genotype” if the average distance between them
was < 0.05. A genotype (Gy) was considered as derived from (i.e., nested within) a parental

genotype (Gp) if their Jaccard distance J; , = W equaled the simplified Jaccard dis-
1 2

—||a_||01|' In the latter case, the union of the two tra-
2

jectories |G, U G,| was the same as the trajectory of the parental genotype Go, whereas the in-

tance when G, was nested within G, J , = =

tersection of the two trajectories |G; N G,| was the same as the trajectory of the child genotype
Gy. The merging of mutations into genotypes and the nesting of genotypes were both carried
out with the Python package muller (version 0.6.0, https://github.com/cdeitrick/Lolipop) with de-

fault settings. Muller diagrams were subsequently generated using the R package ggmuller.
Fitness of a “genotype” was defined cumulatively (Desai and Fisher 2007). An adaptive muta-
9
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tion within a cluster increases its fithess by s>0 and a deleterious mutation decreases its fit-
ness by s<0. If a parent cluster had fitness ns, and a child of that cluster had fithess ms, the
fitness of the child was (n+m)s.

For viral genome samples, Muller diagrams, which depict mutation frequencies within a
single evolving population, are in general not applicable. Since viral genomes were sampled
from multiple outbreak locations, it would be misleading to perform analysis including merging
of mutations into genotypes and inference of parental and child genotypes. Thus, we used
heatmaps as an alternative approach to follow the trajectories of high-frequency mutations in
both simulated and viral populations. The R package pheatmap was used to generate
heatmaps. As in the Muller diagrams, mutations in a heatmap were grouped into hierarchical
clusters based on similarities in frequencies over time. Similarity between a pair of mutation
trajectories i, and jwas defined as d = 1 - cor(i,,j), where cor(i,,j) was the Pearson’s correlation
coefficient. Unlike in the Muller diagrams, however, mutations with similar frequency trajecto-
ries were not merged into “genotypes”. Nor did the heatmap analysis estimate parent-

descendant relationships among mutation clusters.

Data and software availability

SARS-CoV-2 genome sequences and the associated viral isolate information are avail-
able from the GISAID EpiCoV™ database (Shu and McCauley 2017). Software tools associat-
ed with CovSimulator, the forward-evolution simulator, and cov-db, the custom database of
SARS-CoV-2 genome  variability, are available at the Github repository
(https://github.com/weigangqg/cov-db). Programmatic access to the cov-db database is availa-

ble upon request. Also available in the same Github repository are key datasets including mu-
tation trajectories from simulated evolution and VCF files of viral genomes sampled monthly. A

web interface to the cov-db database is publicly available at http://cov.genometracker.org.

Results and Discussion

CovSimulator: a realistic SARS-CoV-2 genome evolution simulator

The SARS-CoV-2 genome is biased in base composition (62.0% AT) and strongly bi-
ased in mutation frequency. Approximately ~70% of single-nucleotide mutations occurring dur-
ing the pandemic were C>T or G>T substitutions (Supplemental Material Fig S3). To realisti-
cally simulate SARS-CoV-2 genome evolution, we used the first known SARS-CoV-2 genome
(from the Chinese isolate Wuhan-Hu-1 collected in December 2019) (Zhou et al. 2020) as the
progenitor and used empirically derived base substitution probabilities (Table 2). CovSimulator,

10


https://github.com/weigangq/cov-db
http://cov.genometracker.org/
https://doi.org/10.1101/2021.05.07.443114
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.07.443114; this version posted May 10, 2021. The copyright holder for this preprint (which

326
327
328
329
330
331

332
333
334
335
336
337
338
339
340
341

342
343
344
345
346
347
348
349
350
351

352
353
354
355
356
357
358

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC 4.0 International license.
currently implemented with the standard Wright-Fisher model with constant population sizes
and non-overlapping generations, was validated through comparing simulated outputs with an-
alytical expectations including the rates of sequence divergence (Fig 1C and 1D), levels of se-
quence polymorphism (Fig 2C), genealogies of genome samples at the end of simulations
(Supplemental Material Fig S4A), and fitness values of simulated populations (Supplemental
Material Fig S4B).

We used the CovSimulator to derive theoretical expectations of synonymous and mis-
sense divergence, sequence diversity, and their ratios under neutral, background, adaptive,
and mixed evolution models (Figs 1C, 1D, 2C, and 2D). These simulated outcomes provided
baseline controls for estimating selective constraints (Figs 1B & 2B) as well as for understand-
ing evolutionary dynamics at the level of individual mutations (Fig 3). In addition, the CovSimu-
lator provided a simulation-based approach to estimate evolutionary parameters such as the
effective numbers of synonymous and nonsynonymous sites at protein-coding loci (Table 1)
and frequencies of recurrent mutations (see below). Such parameters are difficult to derive an-
alytically because it is necessary to take into account of biases in base composition as well as

in mutation frequency.

Future versions of the simulator will incorporate more realistic demographic features in-
cluding changing population sizes, population admixture, and additional selective mechanisms.
In particular, simulating SARS-CoV-2 genome evolution under negative frequency-dependent
selection is important to identify mutations contributing to immune escape including escape
from vaccines, which are expected to have higher fitness values when they rare (Haven et al.
2011; Papkou et al. 2019). Negative frequency-dependent mutations maintaining coexistence
of multiple clonal lineages have been observed in microbial LTEEs (Maddamsetti et al. 2015;
Good et al. 2017). In addition, the CovSimulator paves a way to estimate parameters of SARS-
CoV-2 evolution (e.g., population growth rates, selection coefficients, and migration rates)
through approximate Bayesian computation (ABC) (Lintusaari et al. 2017).

Accelerated missense divergence: rise of hyper-mutated variants

On the basis of ~1.0 million SARS-CoV-2 genome sequences obtained from the GISAID
database (Shu and McCauley 2017) up to March 31, 2021, we generated a custom database
of high-quality 815,402 SARS-CoV-2 genomes. We identified 8065 SNVs, 173 deletions, and
49 insertions, each of which was represented by 100 or more viral genomes. Genome se-
quences were consolidated into 350,094 haplotypes based on the SNVs and indels. We sam-
pled ~100 genomes monthly from each of the six continental populations and plotted the syn-
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onymous, missense, and total mutational differences with respect to the ancestral genome
over collection dates (Fig 1A). The total rate of mutation accumulation (gray dots) was well
characterized by a linear Poisson model with a highly significant slope and a Poisson-expected
variance (Fig 1A). However, significant deviations from the Poisson model were observed in
Asian, European, Oceanian, and South American viral populations since October 2020, asso-
ciated with the hyper-mutated viral variants discovered first in immuno-compromised patients
with COVID-19 (Choi et al. 2020; Kemp et al. 2021).

The Poisson model of linear mutation accumulations over time initially suggested a neu-
tral process of viral genome divergence. However, closer examination by measuring the syn-
onymous and missense mutation rates separately did not support the neutral divergence mod-
el. The ratio of missense to synonymous mutations was expected to be high (D,/Ds~3.0) ac-
cording to the simulated neutral evolution (Fig 1C, 1¥ panel). In reality, the D,/Ds ratios began
at a low level (D,/Ds~1.0) similar to that from the simulated background selection model (Fig
1C, 1% panel), thus suggesting considerable selective constraints during the early months (be-
fore April 2020) of the pandemic. The D,/Ds ratio increased across continental populations af-
terward and eventually showed a marked increase after October 2020 to the levels expected
from the neutral and adaptive evolution models (Fig 1B). The accelerated missense diver-
gence, reflected in the steep rise of D,/D; ratios, was attributable to the emergence and spread
of hyper-mutated viral lineages, which accumulated predominantly missense mutations with
little synonymous divergence (Fig 1A). However, the acceleration of missense divergence oc-
curred in the North American population before the emergence of hyper-mutated viral lineages
therein (Fig 1B, 4" panel).

The hyper-mutated viral variants, which first emerged in immune-compromised patients
with COVID-19 (Choi et al. 2020; Kemp et al. 2021), resembled the hyper-mutable microbial
lineages with defective DNA repair systems that commonly emerged during LTEE studies
(Lenski 2017). In LTEE populations, the “mutator” phenotype was maintained because the
consistently higher benefits of new adaptive mutations out-weighing the cost of deleterious mu-
tations in a controlled environment (Lenski 2017). Similarly, in an immune-deficient host envi-
ronment, mutations that would have been deleterious in a normal host (e.g., those leading to
hyper immunogenicity) may become neutral or beneficial to viral reproduction (Choi et al.
2020; Kemp et al. 2021). Freed from host immune constraints, viral evolution essentially fol-
lows the adaptive or mixed evolution models in which adaptive lineages dominate the viral
population (Fig 1C and 1D, 3™ panel). Nevertheless, all missense mutations observed in the
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hyper-mutated viral genomes are unlikely to be adaptive because neutral or slightly deleterious
mutations are driven to high frequencies through genetic hitchhiking in an asexual population
(i.e., genetic draft) (Gillespie 2000; Kim and Stephan 2000; Lang et al. 2013).

We note that, beyond adaptive mutations, the acceleration of missense divergence as
measured by the D,/Ds ratio could be caused by demographic forces. In the present study, we
simulated viral evolution with a constant population size, although neutral and slightly deleteri-
ous missense mutations are expected to accumulate in the rapidly expanding viral populations
(Messer and Petrov 2013). In addition, our analysis combined viral samples within a continent
as representing a single population, whereas numerous local outbreaks and subsequent mi-
grations between subpopulations are expected to contribute to increased viral genome diversi-

ty including missense divergence (see next section).

Expanding genome diversity: demographic and selective causes

SARS-CoV-2 genomic diversity, measured by monthly average genome differences (),
increased in the six continents during the first year of the COVID-19 pandemic (Fig 2A). Ex-
panding genomic diversity is expected for a nascent viral population before it reaches muta-
tion-drift balance even if the population remains at a constant size (Fig 2C). Clearly, the global
viral populations are far from reaching an equilibrium level of genomic diversity as the virus
has spread within and across continents, mirroring the failures in local and global outbreak
control. Furthermore, the increasing genomic diversity may be a reflection of increasing admix-

ture of viral subpopulations distributed across the continents.

Beyond demographic forces, the relaxation of selective constraints and adaptive muta-
tions may also have contributed to the rising viral genomic diversity. Ratios of missense to

synonymous polymorphisms (7Z'n/7Z'S) were generally higher in continental populations than ex-

pected under strong purifying selection (Fig 2B), suggesting the accumulation of neutral and
slightly deleterious missense mutations in the expanding viral population. Adaptive hyper-

mutated lineages contributed to the increase in 7Z'n/7Z'S ratios in later months in most continental

populations and caused the elevated D,/Ds ratios described in the previous section, An addi-
tional possible cause of rising viral genomic diversity is the presence of negative frequency-
dependent selection by which rare immune-escape variants gain a selectively advantage (Ha-
ven et al. 2011; Papkou et al. 2019).

Asexuality, recurrent mutations, and recombination

We estimated the genome-wide levels of LD on the basis of 93 most frequent missense
13
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SNVs segregating in 8215 genomes sampled from six continents (Supplemental Material Ta-
ble S3). These mutations were present with a frequency of 20% or higher in at least one month
in one continent. Complete LD (D’ close to 1) dominated the D’ values between pairs of SNVs
and, furthermore, there was no evidence of LD decay over genomic distances between the
SNVs (Supplemental Material Fig S5). LD decay over distance is expected if recombination
among viral strains occurs with sufficient frequency. In microbial species, recombination occur-
ring at a rate comparable to the rate of point mutation is sufficient to cause LD decay over ge-
nomic distances (Fraser et al. 2007; Ansari and Didelot 2014). Thus we conclude that SARS-
CoV-2 populations during the first year of pandemic were largely asexual with little evidence of
recombination. The asexual population structure of SARS-CoV-2 populations mirrors the low
recombination rates during previous SARS and Middle East respiratory syndrome (MERS)
coronavirus outbreaks (Chinese SARS Molecular Epidemiology Consortium 2004; de Wit et al.
2016).

An analysis of SARS-CoV-2 genomes from early isolates suggested active recombina-
tion during human transmission based on a high level of homoplasy — independent mutations
occurring at the same sites that cause inconsistencies with the viral phylogeny (Yi 2020). A
prominent example of phylogenetically inconsistent mutation is the nonsynonymous SNV
TTT[Phe]/TTG[Leu] at the genomic position 11083 of the Nsp6 locus (Yi 2020). By reconstruct-
ing genome phylogeny through haplotype networks, we observed a similarly high level of ho-
moplasy caused by either recombination or by mutations that have occurred independently in
multiple evolutionary lineages (Supplemental Material Fig S6). Recurrent mutations and se-
quencing errors may have contributed to the observed homoplasy (Turakhia et al. 2020). Re-
curring mutations are inevitable in SARS-CoV-2 with its relatively small genome size. The
chance of mutation recurrence increases as the pandemic spreads and persists. Indeed, we
were able to estimate the rate of mutation recurrence with the use of CovSimulator. In a simu-
lated population evolving under neutral conditions, ~2.9% genomic sites (860 out of the total of
29903 sites) experienced two or more mutations after 500 generations. This number was sig-
nificantly greater than expected from a random Poisson process (p=2.1e-270 by a 4 test of
goodness of fit). For two mutations occurring at the same genomic site, strong mutation biases
seen during SARS-CoV-2 genome evolution stipulate a high chance of parallel base substitu-
tions. For example, a mutation at a cytosine (C) site will almost certainly (with a ~95% chance)
result in a thymine (T) (Table 2; Supplemental Material Fig S3).

It should be cautioned that a clonal population structure in SARS-CoV-2 does not imply
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an absence of or an inability of homologous recombination. In fact, coronaviruses are known
for their high potential for homologous recombination in natural reservoirs as well as in the la-
boratory conditions (Masters 2006; Denison et al. 2011; Cui et al. 2019). SARS-CoV-2 ge-
nomes showed a mixed ancestry containing parts of the genome from coronaviruses associat-
ed with the pangolin (Manis javanica) and other parts from related viruses associated with the
bat (Rhinolophus affinis) (Andersen et al. 2020; Lam et al. 2020). Consequently, the high clon-
ality of SARS-CoV-2 populations is likely to be due to the explosive population growth world-
wide (“epidemic structure”) rather than to an inability of recombination (Smith et al. 1993). By
reducing clonal interference among competing adaptive mutations as well as by removing del-
eterious mutations without decreasing the frequencies of beneficial alleles, recombination is a
powerful mechanism accelerating adaptation across species including microorganisms (Smith
et al. 1993; Barton and Charlesworth 1998). As such, it is important to be vigilant about the ris-
ing chance of recombination among SARS-CoV-2 variants as the COVID-19 pandemic be-
comes entrenched. Previously, we have quantified recombination rates in natural populations
of Lyme disease bacterium based on genome comparisons and computer simulations (Qiu et
al. 2004; Haven et al. 2011). Similarly, CovSimulator can be used to detect the presence of re-
combination and to estimate recombination rates in SARS-CoV-2 populations through a com-
parison of homoplasy levels in populations simulated with and without recombination.

Adaptation despite background selection: a model of SARS-CoV genome evolution

The highly clonal population structure of SARS-CoV-2 and the microbial species in
LTEE studies implies that genetic variations across the entire genome are highly linked. As
such, various selective forces interfere with one another including, for example, purifying selec-
tion at housekeeping loci, diversifying selection at antigenic loci, and adaptive evolution at
host-binding sites (Hill and Robertson 1966; Gillespie 2000; Lang et al. 2013; da Silva and
Galbraith 2017; Lenski 2017; Campos and Charlesworth 2019). In addition, neutral or even
deleterious mutations may “ride along” with a newly emerged adaptive mutation and to reach

high frequency in an asexual population.

On the basis of the conclusions on adaptive mutations contributing to genome variability
and on the strong LD across the SARS-CoV-2 genome, we propose the mixed evolution as a
model to understand the dynamics of SARS-CoV-2 genome evolution. In the mixed model
(Figs 1C, 1D, 2C, and 2D), the majority of missense mutations were slightly deleterious (~80%
probability with a multiplicative fitness cost of 0.95) and a small proportion of missense muta-
tions were slightly adaptive (~10% probability with a multiplicative fithess benefit of 1.05).
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First, we traced the genealogy of the final 20 sampled genomes, which showed a substantially
shortened coalescence time since the most recent common ancestor (Fig 3A). Next, we
tracked the frequencies of the top most frequent (>5%) missense mutations for 500 genera-
tions (Fig 3B). Adaptive mutations (11 of a total of 19 mutations) dominated the final popula-
tion. Nevertheless, not all fixed mutations were adaptive. Three neutral (#1, #2, and #4, in
gray) and three deleterious missense (#2, #3, and #4 in blue) mutations became fixed through
linkage with adaptive driver mutations, exemplifying genetic draft (Gillespie 2000). Conversely,
not all adaptive mutations were destined to be fixed, indeed, one adaptive mutation (#5, in red)
was lost because of competition with other adaptive mutations, exemplifying clonal interfer-
ence (Lang et al. 2013; Maddamsetti et al. 2015). Thirdly, we generated the Muller diagrams,
which grouped mutations sharing similar frequency trajectories (i.e., temporal linkage) into a
single “genotype” (Fig 3C). The diagrams highlighted regular selective sweeps driven by adap-
tive mutations. Critically, it is clear from the Muller diagrams that within each “genotype” (e.qg.,
G1, G2, G3, G8, and G9), at least one genetic change was the driver adaptive mutation. To
facilitate comparison of evolutionary dynamics among evolutionary models, we provided the
genome genealogies of the last-generation samples and the Muller diagrams of the topmost
frequent missense mutations from all four models of simulated evolution as Supplemental Ma-
terial Fig S4.

In summary, the mixed evolution model illustrates that, first, adaptive mutations and vi-
ral lineages quickly dominate the viral population despite that most of the missense mutations
are deleterious. Second, neutral and deleterious mutations can become fixed through genetic
hitchhiking with adaptive mutations. Third, adaptive mutations can be lost because of strong
clonal interference. Fourth, recurring mutations become increasingly common because of a
small viral genome, strong mutation biases, longer evolution time, and prolonged maintenance
of adaptive lineages in the viral population. Fifth, temporal linkage among missense mutations
provides a way to identify adaptive driver mutations. These conclusions are anticipated by ob-
servations from microbial LTEE studies as well as by results of theoretical analysis, both of
which showed dominance of adaptive mutations in asexually evolving populations despite
presence of strong purifying selection (Kim and Stephan 2000; Desai and Fisher 2007; Lenski
2017). We note that only one set of evolutionary parameters was used in the present simula-
tion of the mixed model, the outcome of which would vary quantitatively with selection parame-
ters including the proportions and strengths of deleterious and adaptive mutations.
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Spatiotemporal characteristics of adaptive mutations

The mixed model of SARS-CoV-2 genome evolution revealed a number of characteris-
tics of adaptive mutations that are informative for their identification. First, adaptive mutations
were over-represented in high-frequency SNVs (Fig 3). In one population simulated with mixed
model, 258 adaptive mutations (10.9% out of a total of 2376 missense mutations) were present
in the combined sampled genomes. However, 14 (45%) of the adaptive mutations were among
the 31 missense mutations that have reached a frequency of 0.5% or higher. Second, the pro-
portion of adaptive mutations among missense mutations increased over time (Fig 3). In the
same simulated population, among the 20 genomes sampled from the last generation, the
fixed missense mutations included 7 (70%) adaptive, 2 (20%) deleterious, and 1 (10%) neutral
mutations. Third, in clusters of mutations that shared similar temporal trajectories, at least one
of the consortium was the adaptive driver (e.g., G1, G2, G3, G8, and G9 in Fig 3). These char-
acteristics of adaptive mutations suggest ways to identify adaptive mutations driving SARS-
CoV-2 adaptation to humans through spatiotemporal tracking of mutation frequencies.

Guided by the above insights from the simulated evolution and LTEEs, we identified a
genome-wide set of 101 missense mutations with a presence of 20% or higher frequency in at
least one month within a continent (Supplemental Material Table S4). The high-frequency mu-
tations were most often found in genes encoding the spike (S, n=21, 20.8%), nucleocapsid (N,
n=19, 18.8%), Nsp3 (n=13, 12.9%), and ORF8 (n=9, 8.9%) proteins. Similarly, we identified a
set of 52 missense mutations on the spike protein with a presence of 5% or higher frequency
in at least one month within a continent (Supplemental Material Table S5). Mutations on the
spike protein are of particular interest because of its use as vaccinogen. Half (n=26) of these
spike protein mutations were located within the N-terminus domain (NTD) and receptor-binding
domain (RBD), suggesting an oversized role the NTD and RBD mutations play in driving
SARS-CoV-2 adaptation to humans. Sequences in NTD and RBD evolve faster relative to the
genome average during coronavirus divergence, further supporting the role of mutations within
these domains in driving viral adaptation to humans (Luk et al. 2019; Phan 2020; Cagliani et al.
2020) (Supplemental Material Fig S6).

We subsequently clustered these high-frequency mutations on the basis of their tem-
poral trajectories within each continent. A heatmap of frequency trajectories of 52 missense
mutations (with >5% frequency in at least one month) on the spike protein revealed clusters of
mutations that were distributed either across the globe or more limitedly within continents (Fig
4). The globally distributed mutations included the D614G substitution that arose during the
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first month (January 2020) of the SARS-CoV-2 outbreaks in Asia and quickly reached global
fixation. Clinical and experimental studies suggested enhanced human transmissibility but not
increased disease severity associated with D614G viral variants (Korber et al. 2020; Volz et al.
2021; Plante et al. 2021). It is possible that missense mutations strongly linked with the D614G
mutation, including P323L in Nsp12 (RNA polymerase) and R203K and G204R in the N (nu-
cleocapsid) protein, may have also played a role in increased viral fitness in humans (Yang et
al. 2020).

A temporally linked group of six spike protein mutations — N501Y, P681H, T716l,
D1118H, S982A, and A570D — associated with the hyper-mutated B.1.1.7 lineage (Fig 4) that
emerged in September 2020 in England and quickly spread worldwide represent another set of
mutations that have enhanced viral transmission in humans (Galloway 2021; Kemp et al.
2021). These spike protein mutations pose the additional risk of viral escape from protective
immunity elicited with vaccines designed on the basis of the bat-adapted progenitor genome
(Wang et al. 2021; Collier et al. 2021). Other mutations have so far been confined within one or
more continents and have not reached global presence. These spike protein mutations includ-
ed those associated with the B.1.351 lineage in Africa, the P.1 lineage in South America, the
B.1.427/B.1.429 lineages in North America, and the B.1.617 lineage in Asia (Fig 4).

The strong candidates of human-adaptive mutations shown in the above have risen rel-
atively early during the pandemic. The latest emergent human-adaptive mutations, however,
would first reach high frequencies only in local outbreak populations. Thus, it is necessary to
track allele frequencies at regional levels for early detection of human-adaptive mutations. As
an example, we tracked the spatiotemporal frequencies of 56 spike missense mutations with
>5% allele frequencies in at least one month in the United States and and its five states includ-
ing Washington, California, New York, Texas and Michigan (Fig 5). Except for the globally
fixed D614G mutations and mutations associated with the B.1.1.7, B.1.427 and B.1.429 line-
ages, mutations associated with the latest emergent viral lineages only reached the threshold
5% level within the states and not at the national level. For example, the B.1.526 and B.1.243
lineages emerged during December 2020 in New York and have not yet spread to the other
four states. The B.1.2 lineage in Washington and the B.1.234 lineage in Michigan have thus far
been observed only within the states.

In summary, whereas missense mutations in the SARS-CoV-2 genome that have
reached high frequency at local or global levels are not necessarily human-adaptive mutations
because of the possibilities of genetic drift and hitchhiking, clusters of missense mutations that

18


https://doi.org/10.1101/2021.05.07.443114
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.07.443114; this version posted May 10, 2021. The copyright holder for this preprint (which

588
589
590
591
592

593
594
595
596
597
598
599
600
601
602
603
604
605
606

607
608
609
610
611
612
613
614
615
616
617
618
619
620

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC 4.0 International license.
display temporal linkage and have reached high frequencies are indicative of adaption to hu-
mans. Within each of the cluster of temporally linked high-frequency missense mutations, we
expect at least one to be a human-adaptive driver mutation. As such, the high-frequency clus-
ters of missense mutations are top-priority candidates for clinical development of therapeutics
and vaccines that target human-adapted viral variants.

Concluding remarks

In the present work, we used realistic simulations of genome evolution and insights from
microbial long-term evolution experiments (LTEEs) (Tenaillon et al. 2016; Cvijovi¢ et al. 2018)
to understand the evolutionary transition of the SARS-CoV-2 virus from a bat-adapted to a
human-adapted pathogen. The two evolving systems share salient evolutionary characteristics
including strong purifying selection associated with a compact genome and large population
sizes, forced adaptation to a new environment, and an asexual population structure. Not sur-
prisingly, the variety of adaptive dynamics occurred in LTEEs were all discernable during
SARS-CoV-2 evolution including the early rise and rapid fixation of adaptive mutations, clonal
interference with competing adaptive mutations, fixation of neutral and deleterious mutations
due to genetic hitchhiking. Specifically, both LTEEs and our analysis suggest that temporal
linkage among mutations is a sensitive means for identifying emerging human-adaptive muta-
tions and vaccine-escape mutations, particularly when mutation frequencies are tracked at the

local and regional levels.

Epidemiological models based on human coronaviruses and influenza viruses predict
the COVID-19 to be a recurrent seasonal disease in the next 2 ~ 5 years (Kissler et al. 2020;
Cobey 2020). We expect to see continued expansion of viral genome diversity as the pandem-
ic persists, entailing increasing risks for viral adaptation to humans and viral escape from natu-
ral and vaccine-induced protective immunity. Prolonged pandemic incurs the additional risks of
recurrent mutations and recombination among viral variants, which would accelerate viral ad-
aptation to humans. The software systems we developed facilitate real-time tracking of SARS-
CoV-2 outbreaks. The CovSimulator software system is capable of modeling the trajectories of
SARS-CoV-2 genome evolution and could be further improved by including more realistic pa-
rameters such as population expansion, migration and admixture between subpopulations, and
frequency-dependent fitness imitating vaccine-escape mutations. The second software system
associated with the cov-db genome database is capable of rapid tracking of emergent adaptive
mutations through temporal sampling of genomes in a continent, country, or region therein.

Thirdly, the cov.genometracker.org website provides a public-friendly user interface to search,
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browse, and visualize SARS-CoV-2 genome evolution and mutation trajectories (Supplemental
Material Fig S7). Mutations appear in genes encoding proteins that down-regulate host im-
mune responses (e.g., ORF3a and ORF8) and bind host cells (e.g., Spike) are high priority
targets for the development of therapeutics and vaccines against human-adapted SARS-CoV-

2 variants.
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Tables and Figures
Table 1. Protein-coding loci (n=25) included in simulated SARS-CoV-2 genome evolution
Protein ID ¢ Locus  Protein function” Location “ Locus  Synsites Missense
symbol length (S)° sites (V) €
YP_009725297.1 nspl Leader protein; inhibits host translation 266, 805 540 164.48 375.52
YP_009725298.1 nsp2 Unknown 806, 2719 1914 583.94 1330.06
YP_009725299.1 nsp3 Polyprotein processing 2720, 8554 5835 1738.36  4096.64
YP_009725300.1 nsp4 Formation of double membrane vesicles as- 8555, 10054 1500 449.50 1050.50
sociated with replication complexes
YP_009725301.1 nsp5 3C-like proteinase; polyprotein processing 10055, 10972 918 278.19 639.81
YP_009725302.1 nsp6 Formation of double membrane vesicles as- 10973, 11842 870 253.34 616.66
sociated with replication complexes
YP_009725303.1 nsp7 Accessory subunit of RNA-dependent RNA 11843, 12091 249 75.97 173.03
polymerase
YP_009725304.1 nsp8 Accessory subunit of RNA-dependent RNA 12092, 12685 594 164.77 429.23
polymerase; primase
YP_009725305.1 nsp9 RNA-binding protein 12686, 13024 339 105.61 233.39
YP_009725306.1 nsplO0  Co-factor of Nsp14 and Nsp16 for methyl- 13025, 13441 417 123.76 293.24
transferase activity
YP_009725307.1 nspi2  RNA-dependent RNA polymerase 13442, 13468; 2796 843.60 1952.40
13468, 16236
YP_009725308.1 nspl3  Helicase 16237, 18039 1803 541.37 1261.63
YP_009725309.1 nspl4 Proof-reading 3'-to-5' exonuclease 18040, 19620 1581 469.80 1111.20
YP_009725310.1 nspl5  Endonuclease 19621, 20658 1038 319.98 718.02
YP_009725311.1 nspl6  Ribose 2'-O-methyltransferase; RNA cap 20659, 21552 894 268.86 625.14
formation
YP_009724390.1 S Surface glycoprotein; spike protein; binding 21563, 25384 3822 1150.89  2671.11
of host cell receptor
S1 S1 subunit containing the angiotensin- 21563, 23185 1623 482.32 1140.68
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YP_009724391.1
YP_009724392.1
YP_009724393.1
YP_009724394.1
YP_009724395.1
YP_009725318.1
YP_009724396.1
YP_009724397.2

YP_009725255.1

S2
orf3a

E

M
orfo
orf7a
orf7b
orf8

N

orf10

converting enzyme 2 (ACE2) receptor-
binding domain (RBD) (Wang et al. 2020;
Huang et al. 2020)

S2 subunit responsible for membrane fusion
Ion channel promoting virus release (Lu et
al. 2006; Siu et al. 2019)

Envelope protein forming homopentameric
cation channel

Membrane glycoprotein

Unknown

Unknown

Unknown

Ion channel contributing to suppression of
host immunity (Zinzula 2021)
Nucleocapsid phosphoprotein; viral RNA
genome protection and packaging
Unknown; suspected membrane protein
forming viroporin

23186, 25381
25393, 26220

26245, 26472
26523, 27191
27202, 27387
27394, 27759
27756, 27887
27894, 28259
28274, 29533

29558, 29674

2296
828

228
669
186
366
132
366
1260

117

667.38
252.54

80.43
202.40
53.74
115.71
46.24
121.59
396.51

32.88

1528.62
575.46

147.57
466.60
132.26
250.29
85.76

244.41
863.49

84.12

888  “Start and stop positions (stop codon included) based on the genome of the strain Wuhan-Hu-1 (GenBank Accession NC_045512)
889  (Zhou et al. 2020). The nspl1 locus (39 bases; 13442-13480), which is small and enclosed within the nsp12 locus, was excluded. The
890  4-base overlap between orf7a and orf7b was counted towards the former locus.

891  ’(To et al. 2021)

892  ‘ Effective numbers of synonymous (S) and nonsynonymous () substitution sites of a protein-coding locus, derived with the CovSim-
893  ulator (see Material and Methods)

894
895
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896 Table 2. Evolutionary parameters and neutral expectations

Symbol Description and Settings

N, Effective population size (N, = 200); held constant

g Total number of generations (g = 500)

L Genome length (L = 29,903 bases, GenBank Accession NC_045512)

1 Lo Mutation rate per site; neutral mutation rate

6=2 N.uy  Expected level of neutral sequence diversity at mutation-drift balance

TMRC Time to the most recent common ancestor; ~2N, for a haplotype population

T, g, T, Average pair-wise total, synonymous, nonsynonymous sequence differences

m Mutation rate per genome (m = 0.1); Poisson distributed and uniform across the genome

k=mt Expected sequence difference with respect to the ancestral sequence over generation time
(1); Poisson distributed with variance equal to mean, or standard deviation sd(k) = vmt

r Recombination rate per genome (r = O for clonal evolution without recombination); Pois-
son distributed with uniform breakpoint probabilities across the genome

s Sample size per generation (s = 20, 10% of population size)

Wi, W2 Multiplicative fitness loss for a deleterious (w; = 0.95) missense mutation or fitness gain
for an adaptive (w>= 1.05) missense mutation; relative t to the progenitor genome

u,v Probabilities of a missense mutation being deleterious (u = 0.5) or adaptive (v = 0.05);
relative to the progenitor genome

0 0 0.1083 0.7000 0.1917

. . NP Tieiae. o — | 0.0475 0 0.0033 0.9492
Empirically derived base substitution probabilities: Q = 02102 0.0931 0 0.6967 |
0.1025 0.795 0.1025 0

Both rows (source bases) and columns (destination) are in the order of A, C, G, and T,
probabilities for each source base (in a row) summing to 1.

S Total number of synonymous sites in a protein-coding locus

N Total number of nonsynonymous sites in a protein-coding locus

d, d, Levels of synonymous and nonsynonymous divergence between viral species: dg =
D,/S; d, = D,,/N, where D, and D, are the numbers of synonymous and nonsynony-
mous base differences

Ps Pn Levels of synonymous and nonsynonymous polymorphism in a viral population: pg =

P;/S; pn = B,/N, where P, and P, are the numbers of synonymous and nonsynonymous
polymorphic sites
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Fig 1. Rates of synonymous and nonsynonymous divergence of SARS-CoV-2 genomes

(A) In each panel, points represent differences with respect to the reference genome (y-axis) of
viral genomes originating in a continent with collection dates (x-axis) ranging from Dec 2019
through March 2021. A random sample of 100 genomes was chosen for each month, resulting
in ~1400 genomes for each continent with evenly distributed monthly representations. Each
genome was represented three times, including the number of synonymous mutations (cyan),
the number of missense mutations (magenta), and the total number of genetic changes (in-
cluding indels; gray). A linear regression line (solid, with statistics shown within the
“N_America” panel) was derived by using genomes from all continents. Dashed lines show two
standard deviations above and below the regression line on the basis of the Poisson expected
variance o2(k) = k. Hyper-mutated genomes (marked by the lineage designations) that
emerged in late 2020 showed accelerated accumulation of missense (but not synonymous)
mutations (Choi et al. 2020; Kemp et al. 2021). The orange lines indicate a cutoff value of 15

missense mutations to determine outliers.
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(B) Ratios of the numbers of missense (D,) to synonymous (Ds) mutations relative to the refer-
ence genome (y-axis), a measure of selective constraint, were plotted against the viral sample
collection dates (x-axis). Each point was the ratio of the average number of missense to syn-
onymous mutations within a moving window of 14 days. Horizontal dashed lines mark the rati-
0s obtained from simulated evolution and percentages represent proportions of missense mu-
tations that were deleterious (blue), neutral (green) and adaptive (red) (see below). D,/Ds rati-
os in all populations started at low levels, indicating strong purifying selection during the early
months (before April 2020) of the pandemic. The D,/D;s ratio increased greatly in later months
of 2020 worldwide, suggesting rapid population expansion and the emergence of human-

adaptive viral variants.

(C) Mutational divergence (y-axis) over the generation (x-axis) of genomes simulated with four
evolution models. For each model, a sample of s=20 genomes was chosen for each genera-
tion, resulting in ~10,000 genomes for each model. Solid lines indicate the expected mutation
rate in the neutral model. Dashed lines show two standard deviations above and below the ex-
pected total mutation rate on the basis of the Poisson expected variance o%(k) = mt. Genome
evolution was simulated with a population size N=200, genome mutation rate m=0.1 and no
recombination (r=0). In the neutral evolution model (“NEUT”), all missense mutations carried a
fitness of 1. In the background selection model (“BKG”), a missense mutation had an 80%
chance of incurring a fitness cost of 0.95 and was otherwise neutral. In the adaptive evolution
model (“ADPT”), a missense mutation had a 10% chance of incurring a fitness benefit of 1.05
and was otherwise neutral. In the mixed evolution model (“MIX”), a missense mutation had an
80% chance of incurring a fitness cost of 0.95, a 10% chance of incurring a fit benefit of 1.05,
and 10% chance of being neutral. As expected, the ratio of missense to synonymous muta-
tions (~1.0) in the BKG model was markedly lower than that in neutral evolution and was used
as a control (blue dashed line in panel B) for measuring viral evolution during the pandemic.
The ratios of missense to synonymous mutations from the neutral and mixed evolution models
were much higher (~3.0) and were used as another set of controls (green and red dashed lines
in panel B) to understand SARS-CoV genome evolution.

(D) Simulated genomes colored by fitness values. In the neutral evolution model, the total mu-
tation rate and its variability accurately followed the expectations, thereby validating the
CovSimulator. In the background selection model, the overall mutation rate decreased and the
population was increasingly dominated by low-fitness genomes, showing a gradual loss of fit-
ness in a clonal population known as Muller's ratchet (Muller 1964). In the adaptive evolution
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model, mutation accumulation was accelerated and the population was dominated by adaptive
lineages except in the first 100 generations. In the mixed evolution model, adaptive lineages

dominated the population despite the presence of strong purifying selection.
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Fig 2. Synonymous and nonsynonymous polymorphisms of SARS-CoV-2 populations
The average number of pairwise sequence differences (17) is a measure of viral genetic diversi-
ty, which reflects the viral effective population size and viral reproduction rate.

(A) Each panel represents a continental population. Synonymous (17s), nonsynonymous (17,),
and total pairwise sequence differences (y-axis) were calculated from monthly samples from
December 2020 through March 2021 (x-axis). Sequence diversity increased in all populations.
An initial increase in genetic diversity was expected for a nascent viral population before
reaching mutation-drift balance. However, the acceleration of viral diversity in later months was
unexpected and reflected the accumulation of neutral, deleterious, and adaptive genetic diver-

sity in rapidly expanding viral populations.

(B) The ratio of nonsynonymous (17,) to synonymous (17s) diversity, similarly to D,/Ds (Fig 1), is
a measure of selective constraints. The /s ratios were elevated and fluctuated substantially,
in agreement with a lack of selective constraints in rapidly expanding viral populations.

(C) The m values of simulated genomes under four evolution models. In the neutral evolution
5
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model the total m value stabilized at the expected value of 6 = 40, further validating the
CovSimulator. The m values were relatively lower in the background and adaptive selection
models, in agreement with smaller effective population sizes due to natural selection and
shorter coalescent times (Supplemental Fig S4). Genome evolution was simulated with a
population size N=200, genome mutation rate m=0.1 and without recombination (r=0). In the
neutral evolution model (“NEUT”), all missense mutations carried a fithess of one. In the back-
ground selection model (“BKG”), a missense mutation had an 80% chance of carrying a fitness
cost of 0.95. In the adaptive evolution model (“ADPT”), a missense mutation had a 10%
chance of carrying a fitness benefit of 1.05.

(D) The m,/ms ratios for the four evolution models, showing a low value for a population under
purifying selection, a high value during neutral evolution, and intermediate values for a popula-
tion under adaptive evolution. These average ratios are shown in panel (B) as references for

comparison with values based on viral samples.
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982  Fig 3. Mixed evolution as a model of SARS-CoV-2 genome evolution
983  Simulated evolution of a viral population subject to both purifying and adaptive selection (pa-
984 rameters defined in Fig 1) captured viral adaptation at the level of individual mutations.

985 (A) Genealogy of the n=20 simulated genomes sampled from the last generation. The 16 mu-
986 tations were fixed in the final population and their times of first appearance in the population
987  (tick marks on the root edge) corresponded to the timing of selective sweeps shown in the Mul-
988 ler diagram (panel C). The genealogy shows that the final viral population descended from the
989 latest selective sweep, which occurred only ~50 generations ago.

990  (B) In the heatmap, rows show n=19 high frequency (>5% in 10,000 genome samples) non-
7
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synonymous SNVs, labeled by the genome position and destination base, from the mixed evo-
lution model. Frequencies were represented by color intensity (middle panel). Unlike those of
natural viral variants, the fitness values of simulated variants were precisely known (colored
side bar). The variants were grouped according to the correlated evolutionary trajectories
(dendrogram) such that mutations with similar trajectories (“genotypes”) — indicating temporal
linkage — were adjacent. Adaptive mutations (red, numbered from #1 through #11) dominated
the population. Adaptive mutations (#3 and #4) arose early. One adaptive mutation (#5) was
lost, probably because of clonal interference but also possibly because of genetic drift. Among
the four deleterious mutations, one (#1) was lost whereas the other three hitchhiked with linked
adaptive mutations to fixation. Similarly, one neutral mutation (#3) was lost and three others
hitchhiked to fixation. Furthermore, the simulation suggests a high rate of multiple mutations
occurring at the same genomic site associated with adaptive mutations (#1, #10, and #11).
Three of the four multiple-hit mutations had T as the destination base, reflecting the strong mu-
tation bias in which ~70% SNVs during viral evolution were due to C>T or G>T substitutions.

(C) Muller diagrams of mutation trajectories in the simulated population. In the top diagram, at
each vertical cross section, the heights of colored blocks represent the relative frequencies of
the “genotypes”. A genotype represented one or more mutations displaying a similar evolu-
tionary trajectory reflecting temporal linkage. The Muller diagram reveals selective sweeps oc-
curring regularly and strong competition among adaptive mutations. For example, during gen-
erations 100 to 250, the top Muller plot shows competition between two genotypes (G8 and
G13), both of which carried a deleterious mutation. They had similar fithess values (bottom
Muller plot). At the ~250 generation, however, G13 was outcompeted by G8 and went extinct.
G8 itself subsequently gave rise to G2. Similarly, at the ~300™ generation, two adaptive muta-
tions (#5 in G6 and #6 in G10) began to compete against each other and coexisted until the
~450™ generation when G6 was eventually displaced by G1 and G3, both descendants of G10.
The latter case represents a loss of an adaptive allele (#5) due to clonal interference.
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Fig 4. Frequency trajectories of high-frequency missense SNVs in six continental SARS-CoV-2 populations

The heatmap depicts allele frequencies (colored cells, in percentage, scaled with 10-based logarithm) by month (columns) of 51 mis-
sense mutations (rows) on the spike protein in viral populations from six continents (vertical blocks). Each mutation frequency was cal-
culated on the basis of ~100 genomes randomly sampled from a month within a continent. Each mutation was present with a =25% allele
frequency in at least one monthly sample. Mutations were grouped according to similarities in frequency trajectories (rowside dendro-
gram). The rowside table shows mutations associated with major viral lineages (Rambaut et al. 2020) (columns #1 through #12). Col-
umn #13 of the rowside table shows the spike protein domains associated with the mutations, including the N-terminus domain (NTD),
receptor-binding domain (RBD), Furin cleavage site (FCS); and the C-terminus domain (CTD). The heatmap reveals the early rise and
rapid fixation of the D614G mutation across the globe (dark blue stripe in the middle). Also discernable is rapid global spread of six
spike protein mutations (N501Y, P681H, T716l, D1118H, S982A, and A570D) associated with the hyper-mutated B.1.1.7 lineage
(rowside column #1) after its first emergence during October 2020 in Europe (Choi et al. 2020). Other mutations were associated with
lineages that have so far shown limited geographic ranges, including the B.1.351 (originated in Africa, rowside column #2), P.1 (South
America, rowside column #3), B.1.427 and B.1.429 (North American, rowside columns #6 and #7), and B.1.617 (Asia, rowside column
#10) lineages. For early detection of human-adaptive mutations, it is necessary to track mutation frequencies at country and regional
levels before they become more widespread (Fig 5).
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Fig 5. Tracking emergent adaptive mutations at regional levels

The heatmap depicts monthly (columns) frequencies (colored cells) of 56 missense mutations (rows) on the spike protein that were
present with 25% allele frequencies in at least one monthly SARS-CoV-2 sample from the United States and its five states (vertical
blocks). As in the global heatmap (Fig 4), the D614G mutation reached fixation across the country since March 2020. The European
lineage B.1.1.7 (rowside column #1) first arrived the US in December 2020 and quickly spread to all five states. The B.1.427 and
B.1.429 lineages (rowside columns #2 and #3) were first identified in fall 2020 in California and have spread to the four other states by
the end of March 2021. Similarly, the B.1.1.222 (rowside column #7) lineage was first identified in summer in California and has since
spread to Washington, Texas, and Michigan. The B.1.526 and B.1.243 (rowside columns #4 and #5) lineages emerged during Decem-
ber 2020 in New York and have not yet spread to the other four states. Similarly, two other lineages have thus far not yet spread out-
side of the state of origination, including the B.1.2 lineage (rowside column #8) in Washington and the B.1.234 lineage (rowside col-
umns #6) in Michigan. None of the latter four regional lineages has reached a =5% frequency at the national level (1*' vertical block),

highlighting the importance of identifying human-adaptive mutations by tracking mutation frequencies at the level of local populations.


https://doi.org/10.1101/2021.05.07.443114
http://creativecommons.org/licenses/by-nc/4.0/

