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Abstract12

Food webs map feeding interactions among species, providing a valuable tool for understand-13

ing and predicting community dynamics. Trait-based approaches to food webs are increasingly14

popular, using e.g. species’ body sizes to parameterize dynamic models. Although partly suc-15

cessful, models based on body size often cannot fully recover observed dynamics, suggesting16

that size alone is not enough. For example, differences in species’ use of microhabitat or non-17

consumptive effects of other predators may affect dynamics in ways not captured by body size.18

Here, we report on the results of a pre-registered study (Laubmeier et al., 2018) where19

we developed a dynamic food-web model incorporating body size, microhabitat use, and non-20

consumptive predator effects and used simulations to optimize the experimental design. Now,21

after performing the mesocosm experiment to generate empirical time-series of insect herbivore22

and predator abundance dynamics, we use the inverse method to determine parameter values23

of the dynamic model. We compare four alternative models with and without microhabitat use24

and non-consumptive predator effects. The four models achieve similar fits to observed data25

on herbivore population dynamics, but build on different estimates for the same parameters.26

Thus, each model predicts substantially different effects of each predator on hypothetical new27

prey species. These findings highlight the imperative of understanding the mechanisms behind28

species interactions, and the relationships mediating the effects of traits on trophic interactions.29

In particular, we believe that increased understanding of the estimates of optimal predator-prey30

body-size ratios and maximum feeding rates will improve future predictions. In conclusion, our31

study demonstrates how iterative cycling between theory, data and experiment may be needed32

to hone current insights into how traits affect food-web dynamics.33

Key words: body size, microhabitat use, non-consumptive predator-predator effects, allomet-34

ric scaling, food webs35

36

1 Introduction37

Mapping feeding interactions among species in food webs is a crucial first step for understanding38

how ecological communities function, for gauging the impacts of anthropogenic stress on community39

structure and stability, and for evaluating how ecosystems might be managed to conserve biodiver-40
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sity and ecosystem functioning (Thompson et al., 2012). However, to achieve quantitative food-web41

understanding and predictions, we need a second step of formulating mechanistic models capable42

of replicating food-web abundance dynamics, and to develop feasible approaches to parameterize43

such models (e.g. Portalier et al., 2019; Schneider et al., 2012). Only by deriving robust parameter44

estimates are we then prepared to predict dynamics beyond the range of the existing data, such as45

what happens when a new species enters the system.46

Historically, parameterization of a food-web model required the strength of every trophic link47

to be independently estimated experimentally, a laborious and often imprecise process (Roslin48

and Majaneva, 2016). Additionally, some elements, such as non-consumptive interactions among49

multiple predators, cannot be understood solely from a pairwise predator and prey perspective50

(Terry et al., 2020). This complexity has made it unwieldy to use dynamic food-web models to51

map the abundance dynamics of diverse predator-prey assemblages in nature. Recent developments52

in food-web ecology are now offering a potential cure for this ‘plague of parameters’ (Hudson53

and Reuman, 2013) through trait-based and, especially, allometric (body-size based) approaches54

(Yodzis, 1998; Schneider et al., 2012; Boit et al., 2012; Curtsdotter et al., 2019). Such models55

assume a general relationship between organismal body size and metabolism (Brown et al., 2004;56

Peters, 1983), and from this infer a relationship between body size and trophic interaction strength57

(Brose, 2010). Allometric Trophic Network (ATN) models (Otto et al., 2007; Schneider et al., 2012;58

Berlow et al., 2009) have been formulated based on this idea. They show promising predictions of59

observed trophic interaction strengths and abundance dynamics of interacting species (Boit et al.,60

2012; Schneider et al., 2012; Curtsdotter et al., 2019; Jonsson et al., 2018), as well as replication61

of observed community patterns such as the mass-abundance relationship (Hudson and Reuman,62

2013). However, while body size can explain a large portion of observed interaction strengths, in63

most cases there remains some substantial unexplained variation, which is potentially attributable64

to other, as yet unmeasured traits (Schneider et al., 2012; Jonsson et al., 2018). Thus, although65

promising, the general applicability of the ATN modelling approach and the extent to which direct66

and especially indirect trophic interactions are determined by traits other than body size, remains67

to be explored.68
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Among the more successful applications of the ATN model, Schneider et al. (2012, 2014) discuss69

the potential importance of species’ ‘habitat domain’ (Schmitz, 2007), suggesting that differences70

in predators’ and prey’s microhabitat use may explain residual variation where the model did not71

accurately capture the experimental data. Motivated by this, Jonsson et al. (2018) combined the72

microhabitat use of species with their body size to parameterize an ATN model, thereby successfully73

predicting experimentally observed population-level interaction strengths when a predator species74

was alone with its prey (i.e. in the absence of indirect effects from other species). While these and75

other studies have pointed to the importance of predator and prey habitat use (e.g. Schmitz, 2007;76

Knop et al., 2014; Staudacher et al., 2018), it has, to our knowledge, never been explicitly incor-77

porated into a dynamic model and parameterized by experimental data. This lack of integration78

between theory and empirical validation limits our ability to quantify the effect or importance of79

habitat use.80

The trophic interaction modifications (or indirect trait-based effects) observed in treatments81

with more than two species and pinpointed by Jonsson et al. (2018) are often behaviour-mediated82

effects of population-level interaction strengths, where changes in the behaviour of a predator and/or83

its prey is induced by the presence of another species, thereby modifying the per capita interaction84

strength between the predator and its prey (Terry et al., 2017). Mechanisms include avoidance of85

intraguild predation and interference among predator species as well as facilitation (Preisser et al.,86

2007; Kéfi et al., 2012; Sih et al., 1998; Losey and Denno, 1998; Knop et al., 2014). Such interactions87

are not described by the ATN model, and so the model poorly captures their population-level effects88

(Terry et al., 2020; Jonsson et al., 2018). Jonsson et al. (2018)’s results strongly suggested that89

it is a lack of behavior-based non-consumptive interspecific interference effects in the ATN model90

that is the main cause for its inability to accurately predict trophic interaction strength in more91

complex webs. Hence, two promising model developments might improve predictions: to consider92

the spatial niche of species and/or to account for non-consumptive intra-guild interactions.93

Here we report on the post-experiment findings of a pre-registered experiment (Laubmeier et al.,94

2018) aimed at testing the importance of both microhabitat use and non-consumptive predator-95

predator effects in food-web dynamics. To this purpose, we altered the ATN model to include96
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these factors. We introduced a term for microhabitat use, where predators and prey will encounter97

each other more frequently the more time they spend in the same area, thereby showing a stronger98

interaction strength. We also included a term for non-consumptive predator-predator effects, where99

avoidance of other predators due to the fear of intraguild predation (e.g. Lima, 2002) or interference100

by other predators decreases predation rate. Finally, to establish whether the effects of microhabitat101

use and non-consumptive predator-predator effects were sufficiently strong to be observed across a102

diverse range of predators, we intentionally selected diverse predators covering a range of guilds and103

feeding modes. To accommodate effects of variation in e.g. feeding mode on optimal predator-prey104

body-mass ratio for different types of predators, we allowed the value of the optimal predator-prey105

body mass ratio to vary from predator to predator in the parameter estimation that followed -106

thereby departing from other studies utilizing the ATN model, such as Schneider et al. (2012) and107

Jonsson et al. (2018).108

To arrive at an optimized design for generating empirical data to inform theoretical models,109

we (Laubmeier et al., 2018) a priori explored the optimal and minimal timing and frequency of110

experimental sampling to provide sufficient data on population dynamics to enable the use of the111

inverse method (Chowell, 2017; Banks et al., 2014) for parameter estimation and model testing112

parameter values of the model. In the current paper, we now perform these steps and test our113

model against the resulting empirical data, developing a habitat overlap metric in the process.114

2 The model115

We model predator-prey population dynamics in a food web, inferring interaction strengths from116

body size and microhabitat use. Stronger interactions occur when prey are close to a predator’s117

optimal prey size, or when predator and prey overlap more in their microhabitat use. To develop118

our model, we started with the Allometric Trophic Network (ATN) model, which uses body sizes119

of predator and prey to dictate interaction strengths (Brose, 2010; Otto et al., 2007; Schneider120

et al., 2012). We then modified the ATN model to include habitat overlap and non-consumptive121

predator-predator interactions.122

Our modified model was published in Laubmeier et al. (2018). Subsequent to publication, we123
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observed that our original formulation for similarity in microhabitat use did not always capture the124

amount of time predator and prey were in the same location and therefore their likely frequency of125

interaction. We have, therefore, modified the habitat overlap index to account for this. Below, the126

entire, updated model is presented and described.127

To account for differences in habitat use across species, we divide the habitat into microhabitat128

zones, quantify the amount of predation that occurs in each microhabitat zone, and sum across all129

zones. The amount of predation increases with the amount of time spent in the microhabitat (p)130

and decreases with the size of the microhabitat (A). When pi,h is large, species i spends more time131

in habitat h, and if pi,h and pj,h are both large, we expect species i and j to encounter one another132

more often in habitat h. Here, we measure pi,h empirically.133

We also introduce a term that describes the decrease in predation by a predator due to non-134

consumptive effects of other predators. This may include fear of predation, leading to decreased135

foraging, or physical interference (Preisser et al., 2007; Sih et al., 1998). We propose that the136

magnitude of this effect depends on the likelihood of predator j being intraguild prey to predator137

l, and therefore depends on the expected attack rate of l on j (ajl). Microhabitat overlap will also138

affect predator encounters and should therefore affect the magnitude of non-consumptive effects139

(e.g. Knop et al., 2014). We account for the effects of microhabitat overlap on non-consumptive140

predator-predator effects in the same way as described above for predator-prey interactions. We141

sum over the potential attack rates of all species l on a single individual of species j to account for142

time spent avoiding or evading species l while species j is attempting to capture its own prey. The143

importance of non-consumptive predator-predator effects is described by the scaling constant t0,144

where a large value indicates a high penalty to attack rates due to non-consumptive effects. Non-145

consumptive effects from a conspecific individual may not be distinguishable from non-consumptive146

effects from another predator species, and so we remove the intraspecific competition term as used147

in Schneider et al. (2012) from this version of the ATN model and replace it by the more general148

expression for non-consumptive effects from other predator individuals of any species.149

In total, dynamics for the number of individuals Ni of species i are therefore given by:150
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dNi

dt
= riNi−

∑

j

∑

h

aij
Ah

pi,hNipj,hNj

1 +
∑

k
akj
Ah

hkjpk,hNk + t0
∑

l
ajl
Ah

pl,hNl

(1)

where species i increases in proportion to its intrinsic growth rate ri and decreases due to151

predation. We assume the intrinsic growth rate (ri) for predators to be zero due to their much152

longer generation time (a year) compared with the duration of our experiment. The realized per153

capita attack rate of predator j on species i in a microhabitat h (αijh) increases with the intrinsic154

attack rate determined by the predator-prey body-mass ratio (aij , see below) and decreases with155

the size of the microhabitat, (αijh = aij/Ah), because predator and prey encounter each other less156

frequently in the larger area. Total predation in a microhabitat increases as the proportion of prey157

species i (pi,hNi) and predator species j (pj,hNj), in habitat h increases, but decreases dependent158

on the time predator j spends handling prey of the same or other species (hkj), or spends avoiding159

or interfering with other predators l.160

As in Schneider et al. (2012), we assume that for species body masses Wi and Wj (corresponding161

to prey i and predator j), the allometric parameters (i.e. those dependent on body mass) are given162

by:163

aij = a0W
1/4
i W

1/4
j

(

Wj/Wi

Ropt,j
e
1−

Wj/Wi
Ropt,j

)φ

hij = h0W
1/4
i W

−1/4
j

(2)

The derivation of allometric parameters is described in Schneider et al. (2012). We note the164

importance of scaling parameters a0, h0, and Ropt,j . a0 scales the frequency of attacks when species165

encounter one another, with larger values of a0 indicating more frequent attacks. h0 scales the166

time spent handling alternative prey items. Larger values of h0 indicate more time spent handling167

prey which results in attacks on a lower portion of the prey population when prey are abundant.168

Ropt,j indicates the optimal predator-prey body-mass ratio for a successful attack by predator j,169
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where Ropt,j = 1 indicates that predator j is most successful when attacking prey as large as itself170

and Ropt,j � 1 indicates that predator j is most successful when attacking prey much smaller than171

itself. Parameter φ (φ >= 0) tunes the width of this success curve, with φ = 0 indicating that172

attack success is independent of prey size, while the greater the value of φ the more restricted the173

attack success around Ropt. In contrast to Schneider et al. (2012), we allow the value of Ropt to174

vary from predator to predator. This is to account for differences in traits not accounted for in the175

model that may affect predator foraging behavior.176

To determine the importance of the terms we introduce — microhabitat overlap and non-trophic177

predator-predator effects — we compare four variations of the model:178

1. the full model (Eq. 1, i.e. with t0 > 0 and including pi,h and Ah)179

2. an intermediate model with habitat use but without predator interference (setting t0 = 0)180

3. an intermediate model with predator interference but without habitat use (removing pi,h and181

Ah)182

4. a minimal model without habitat use or predator interference (removing pi,h and Ah and183

setting t0 = 0)184

The different parameters of Eqs 1-2 affect (i) which prey a predator is most likely to consume185

and (ii) to what extent. As such, the values that we estimate here for a0, h0, Ropt etc. for our186

four model variants will, to some extent, reflect how each model emphasizes the importance of187

different factors for each interaction. To begin with, a predator with an Ropt value of 1 will interact188

most strongly with prey of its own size, while a predator with an Ropt of 100 will more effectively189

consume prey 100 times smaller than itself. Next, if a predator spends all its time on bean plants190

(pi,beans = 1) it will have the strongest interaction with prey that also reside predominantly on191

beans, and have no interaction with prey that are never on beans. Crucially, when the model192

includes habitat use, it is the combination of both Ropt and pi,h that dictates trophic interaction193

strength. For example, consider prey x (size = 10 and px,beans = 1) and prey y (size = 1 and194

py,barley = 1) with predator i. If predator i (size = 100 and pi,beans = 1) only interacts with prey x,195
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this is already captured entirely by the microhabitat use terms since the predator spends all its time196

in the same microhabitat zone as prey x and never overlaps with prey y. In a model accounting197

for habitat use (as in models 1 and 2), Ropt,i, therefore, will likely have an estimated value near198

10, since predator i is ten times larger than prey x. If, however, we do not account for habitat199

use (as in models 3 and 4), the model needs some other way to capture that predator i does not200

interact with prey y in order to optimize the fit to empirical data. In the parameter estimation this201

could be achieved by a larger value of Ropt,i (moving its optimal prey size further from prey y),202

or a higher value of φ (narrowing the effective feeding range), thus absorbing differences based on203

which terms are present in the model and producing good model fit without necessarily reflecting204

the ’true value’ of a parameter. This is important to remember when interpreting the results of the205

model fitting below.206

We do not explicitly include non-consumptive mortality in this model. For the aphid (or basal)207

prey, mortality not due to predation is included in the growth rate term ri, while for predators the208

experiment is not long enough that we expect mortality other than that due to intraguild predation.209

Furthermore, without single individual controls, it would be difficult to separate “natural” mortality210

from that due to predation or cannibalism.211

3 Methods212

3.1 The mesocosm experiment213

To empirically test and parameterize this model required a study system with rapid growth of214

the prey population, a range of body sizes of both predators and prey, and distinct habitat zones.215

With this in mind, and with the benefit of data from a previous experiment (Jonsson et al., 2018),216

we assembled a six-species terrestrial arthropod community (Laubmeier et al., 2018) (figure 1)217

dependent on two species of plants; barley (Hordeum vulgare) and fava beans (Vicia faba).218

As primary consumers we chose one large (Acyrthosiphon pisum) and one small (Rhopalosi-219

phum padi) species, both aphids. Next, to explore the importance of body mass and microhabitat220

use in trophic interactions, we chose four predators on these prey, differing in body size and/or221

habitat preference; one large and one small predominantly foliage-dwelling predator (Coccinella222
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septempunctata and Orius majusculus respectively), and one large and one small predominantly223

ground dwelling predator (Pardosa spp. and Bembidion spp. respectively, where spp. signals224

the potential inclusion of several congeneric but morphologically indistinguishable species). Each225

mesocosm contained both barley (Hordeum vulgare) (as a host for R. padi) and fava beans (Vicia226

faba) (as a host for A. pisum), one or both aphid species and zero, one or two predator species. All227

combinations of predator and prey were replicated six times in a fully factorial design (figure 2).228

This resulted in 30 predator-prey combinations, plus three control treatments with no predators.229

Plants were sown in 60x40cm, 20cm deep, plastic containers, sown with two rows of 10 fava bean230

seedlings and three rows of 15 barley seedlings. A 60cm high mesh cage, with one side resealable231

to allow aphid counting, was placed on top of each container to prevent insects from entering or232

escaping the microcosm.233

150 wingless adult aphids, placed on Petri dishes, were introduced per microcosm two days234

before the experiment began. One third of the mesocosms (66 mesocosms) were inoculated with235

150 R. padi (zero A. pisum), one third with 150 A.pisum (zero R. padi), and the final third with236

75 R. padi and 75 A. pisum. Predators were introduced at the beginning of the experiment. The237

number of predators was determined using a combination of short term (8hr) feeding trials and238

pilot studies to reach a density where predators would impact the prey, but not eliminate them too239

quickly. Predator numbers in single-species mesocosms were: C. septempunctata: 4 individuals; O.240

majusculus: 40 individuals; Pardosa: 20 individuals; Bembidion: 40 individuals. Mesocosms with241

two predators species contained half the number of individuals of each predator species as single242

predator-species mesocosms, i.e. mesocosms with both Pardosa and Bembidion together contained243

10 Pardosa individuals and 20 Bembidion individuals244
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Figure 1: The food web including all possible interactions that we allowed in the model. Species are, from
top left: lady beetle (Coccinella septempunctata); wolf spiders (Pardosa spp.); minute pirate bug (Orius

majusculus); bird cherry-oat aphid (Rhopalosiphum padi); pea aphid (Acyrthosiphon pisum); and ground
beetle (Bembidion spp). Arrows indicate potential feeding interactions which we then parameterized using
the inverse method. Arrows point from prey to predator. Double headed arrows indicate that species could
potentially eat each other and arrows beginning and ending with the same species indicate cannibalism. We
removed all interactions to and from C. septempunctata except for C. septempunctata preying on aphids,
and assumed that the aphids did not consume any predators. This arthropod community was dependent on
two species of plants; barley (Hordeum vulgare) and fava beans (Vicia faba).

245

Frequency and timing of aphid counts were determined based on our pre-experimental analyses246

(Laubmeier et al., 2018). Due to a minor difference in method compared to previous experiments247

(Jonsson et al., 2018) that made data collection quicker than expected (in-cage rather than destruc-248

tive sampling), we increased sampling slightly from the minimum determined in Laubmeier et al.249

(2018). Aphid populations were counted on days 2, 4, 6 and 8. Treatments with C. septempunctata250

were also counted on days 1 and 3, because we realized that C. septempunctata decimated aphid251

populations so rapidly that we would require more data points in order to obtain an estimate of252

their parameters. Aphids were counted by opening the cage door and carefully counting the number253

of aphids on each plant.254

The proportion of time predators spent in each habitat, pj,h, was measured in single predator255

mesocosms. The location of each predator was marked on a mesocosm map before beginning to256

count aphids in these mesocosms. We then categorized these into four areas: walls/roof, ground,257

beans, and barley. Aphid habitat use was measured by separating aphid counts into each of those258

categories, but only recorded on days 2 and 6. While the absolute area of beans and barley changed259
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Figure 2: An overview of the predator-prey combinations used in the experiment. Each combination
was replicated six times.

throughout the experiment, we estimated that, on average, the surface area of beans, of barley, and260

of the ground were roughly equivalent, while the area of the walls and roof was six times larger261

than each other habitat area (figure 4).262

Predators could only be reliably counted through destructive sampling of the mesocosms, and263

were therefore only counted on the final day (day 8). After the aphid count, predators were collected264

by a thorough examination of cage and plant, and sifting through the soil. An additional predator265

search was repeated the next day to catch any missed in the initial search.266

Over the duration of the experiment, we found that C. septempunctata could occasionally267

escape through gaps in the mesh cages. We assume that any C. septempunctata missing from cages268

escaped in this manner, as other predators were never observed consuming C. septempunctata.269

Because this change in the population is not described by our mathematical model, we added270

replacement individuals to cages where C. septempunctata went missing and did not dynamically271

model the population. Instead, we directly input C. septempunctata population densities into the272

model for other species’ population dynamics. We fixed these densities at constant levels for the273

duration of the experiment by taking the average value of all observed abundances in each cage. We274

used averages instead of time-series data due to the uncertainty associated with our observations;275

it was impossible to know exactly when between observations the individuals went missing from276
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the mesocosm.277

The ATN model describes species interaction strengths as a function of species traits (in our278

case body size and microhabitat use). Because the presence or absence of a food-web link is simply279

a binary interpretation of interaction strength, the ATN model also predicts the binary food-web280

structure. However, if a feeding interaction is prohibited due to traits not accounted for in the281

model, it cannot be expected to correctly predict the absence of such links. As neither body size282

nor microhabitat could explain why the other predators did not consume C. septempunctata (there283

was microhabitat overlap and predation of similar-sized intraguild prey), we removed feeding inter-284

actions between C. septempunctata and other predators from the network of potential interactions285

(figure 1). Similarly, C. septempunctata did not consume Bembidion or Pardosa, for reasons not286

necessarily explained by microhabitat use or body size (most likely Bembidion’s hard cuticle (e.g.287

Brousseau et al., 2018) and Pardosa’s speed), so we removed these interactions.288

3.2 Model fitting289

Using abundance data from our experiment, we parameterized four versions of the ATN model290

(based on different assumptions for habitat use and predator interference, see below) through the291

inverse method (Banks et al., 2014; Chowell, 2017). Under this method we first formulated a292

least squares cost criterion (JLS) (Banks and Tran, 2009; Banks et al., 2014), which describes the293

deviation of model predictions from empirical observations. Next, by minimizing this cost across294

all possible parameterizations, we found the best-fitting parameterization. In order to compare the295

importance of habitat use and predator interference, we repeated this fitting for each of the four296

models.297

To fit the models, we first established a common baseline for aphid growth. Using the data298

from control treatments, we estimated the intrinsic growth rate (ri) for A. pisum and R. padi.299

The rate was distinct for each aphid species, but we assumed the same rate for each aphid species300

across all aphid treatments (single-species or combined) and replicates. After this, we estimated301

the remaining model parameters using data from predator-treated mesocosms. There were 10302

predator treatments, each with 18 aphid populations; 6 replicates of each of A. pisum and R. padi303

in isolation, as well as 6 replicates of A. pisum and R. padi when in combination with each other.304
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We simultaneously estimated constants for allometric relationships (a0, h0, Ropt,j , φ) and predator305

interference (t0) alongside initial aphid abundances. Although model parameters must be the same306

across all treatments and replicates (but vary among the four models), initial aphid abundances were307

permitted to vary in every replicate mesocosm. This allowed for differences in population outcomes308

due to external, potentially stochastic factors, such as variation in plant growth. We constrained309

estimates of these initial abundances to a range determined by observations from control mesocosms310

on day 0 of the experiment (ranging from 125 to 775, with a median of 205). Other parameters311

were unconstrained, except Ropt which was bound between 1 and 1000. This was capped because312

Ropt values could otherwise reach any upper bound permitted, but in reality increases over 1000313

had very little effect on aij . For the reduced models, we utilized the same values for ri as in the314

full model and repeated the process for estimating parameters and initial abundances. To remove315

predator interference, we set t0 = 0 and did not estimate that parameter. To remove habitat use,316

we set pi,h = 1 and Ah = 1, removing the summation over all h.317

3.3 Model evaluation and prediction318

Notably, the above steps utilize the entire data set to derive parameter estimates. Each estimation319

problem yields a cost criterion (JLS) quantifying model fit, where a lower value of JLS indicates a320

better model fit. We can also evaluate the performance of each model according to the realism of321

estimated parameter values and associated processes (e.g. feeding rates), compared to literature or322

supplemental empirical testing. To summarize, we used a mix of statistical and expert-knowledge323

model performance criteria, specifically: (i) the JLS cost criterion, (ii) visual fit of predicted vs324

observed aphid abundance, (iii) realism of parameter values, (iv) realism of ecological processes,325

and (v) observed vs predicted final predator abundance.326

To evaluate performance for these parameter values outside the observed data, we generated327

predictions for dynamics using an alternative food-web configuration. To demonstrate how the328

models might compare in their predictions for a new prey species, we used each model, with its329

resulting parameterization, to predict the population on days 2, 4, 6, and 8 of a hypothetical,330

entirely ground-dwelling prey species weighing 1mg (slightly larger than A. pisum) paired with331
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each of our four predator species.332

4 Results333

Table 1: Parameter values and model fit (JLS) for models with and without habitat use and
non-consumptive predator-predator effects. Model 1 = full model with both habitat and non-
consumptive effects. Model 2 = only habitat. Model 3 = Only non-consumptive effects. Model 4 =
minimal model, neither habitat nor non-consumptive effects. a0, h0, t0 and φ refer to parameters
in Eqs. 1 and 2. Ropt.P , Ropt.O, Ropt.C and Ropt.B refer to the optimal predator-prey body-size
ratio for Pardosa spp., O. masculus, C. septempunctata, and Bembidion spp. respectively.

Model a0 h0 t0 φ Ropt.P Ropt.O Ropt.C Ropt.B JLS

1 47.37 0.014 13.66 1.41 1 4 1000 108 1.20e+08
2 7.78 0.015 - 1.23 30 997 218 8 1.18e+08
3 0.32 0.063 9.14 1.64 1 3 360 389 1.22e+08
4 0.39 0.057 - 1.83 1 78 362 377 1.38e+08

All four models gave similar fits to the data (JLS values in table 1 and figure 3), but did so334

by having different parameter values, particularly a0 and Ropt,j . This is not surprising since both335

parameters can be expected to absorb differences based on which terms are present in the model,336

without necessarily reflecting the ‘true value’ of a parameter (see explanation at end of section337

2). For example, a0 scales the frequency of attacks when species encounter each other; a higher338

value of a0 signals a higher likelihood of an attack after an encounter and — all else being equal339

— will lead to a higher predation rate. At the same time, differences in habitat overlap between340

species decrease encounters, as do non-consumptive predator effects, which — all else being equal341

— would lead to a lower predation rate. Thus, in models from which the latter two terms are342

absent, a certain (observed) predation rate can only be achieved by a lower likelihood of attack (i.e.343

lower a0) than in models where these terms are present (because here a higher a0 can be countered344

by a decrease in attacks due to fewer encounters). In a similar vein, Ropt,j describes the optimal345

predator-prey body-size ratio for predator j. A larger value means predator j preferentially attacks346

prey much smaller than itself, while an Ropt of 1 means that predators preferentially attack prey347

the same size as themselves. Because we allowed Ropt to vary among predators, we found that a348

particular predator’s Ropt value could vary substantially among models, thereby compensating for349
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differences in attack rate which were or were not accounted for by habitat use or non-consumptive350

predator effects in that particular model.351

As a result of all this, we saw different parameter values in the different models (Table 1). The352

different parameter values produced different null-model predictions of feeding rates (i.e. predictions353

for the scenario where predators and prey used all habitats in proportion to the habitat area; see354

colored lines in figure 5, here termed ‘potential feeding rates’). Despite this, all models produced355

similar ‘realized feeding rates’ of predators on aphids when actual habitat use was taken into account356

(larger dots at darker vertical lines in figure 5). Consequently, understanding how this is achieved357

will be useful for deciphering what each model assumes about the foraging behavior of the predators358

involved.359

As expected, the scaling parameter for attack rate, a0 was highest in the models with habitat360

overlap (where encounters were limited), especially the model which also included non-consumptive361

predator-predator effects (Table 1). Ropt,j values also varied significantly among models, suggesting362

that this parameter is also absorbing differences based on which terms are present in the model.363

The optimal predator-prey body-mass ratio for Pardosa was equal to one in three out of four364

models, implying that Pardosa is capable of and willing to attack prey of its own size. Such365

behaviour by Pardosa is in line with our own observations made during the experiment, where366

Pardosa individuals readily consumed each other. In models with non-consumptive effects, the367

optimal prey body size for the small O. majusculus was large as well (i.e. small Ropt) - a pattern368

also in line with our observations from the feeding trials, where O. majusculus individuals readily369

consumed A. pisum individuals of approximately the same size as themselves. In stark contrast,370

model 2, which includes habitat use but lacks non-consumptive predator effects, has a value of371

Ropt,O very close to the upper limit of 1000. In this model with habitat overlap but not non-372

consumptive predator effects, a small value of Ropt (corresponding to large optimal prey), would373

result in a much stronger effect of O. majusculus on A. pisum than we observe in the data. This374

is for two reasons. First, because O. majusculus had relatively high microhabitat overlap with A.375

pisum (figure 4) the model would predict many attacks by O. majusculus on A. pisum due to many376

encounters and high a0. Second, the model predicts that non-consumptive predator effects strongly377
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decrease foraging (and therefore encounters) when Ropt,j is close to one and conspecific individuals378

become a threat. A model without non-consumptive predator effects, therefore, would not show a379

decrease in attacks on A. pisum due to O. majusculus avoiding conspecific potential predators. The380

high value of Ropt which the model in fact fitted, accounted for the lower-than-otherwise-expected381

effect of O. majusculus on A. pisum, by driving down attack rates of O. majusculus on all prey. C.382

septempuntata seemed to prefer smaller prey, with Ropt values ranging from 218 to 1000. R. padi,383

which C. septempuntata had a very strong effect on, has a body-size ratio with C. septempuntata384

of 242, so this range of Ropt values reflects C. septempuntata’s impact on R.padi. Bembidion also385

tended to have larger values of Ropt, especially when the model did not include habitat use. This386

may reflect the fact that Bembidion has a negligible impact on A.pisum. When habitat use was387

included in the model, the negligible effect of Bembidion on A. pisum was accounted for by the388

fact that they had very little overlap. Without habitat, the larger value of Ropt predicted a lower389

interaction strength with A. pisum.390

Other parameters varied less among models. Handling time was uniformly low across all models,391

ranging from 0.014 to 0.063. When included in the model, t0 was high (13.66 and 9.14 with and392

without habitat respectively), suggesting that non-consumptive predator effects are important in393

those models. φ ranged from 1.23 to 1.41, which tells us that the importance of predator-prey body394

size was roughly consistent across models.395

While the models fit very similarly to the dynamics of aphid populations, they gave different396

predictions of predator populations (figure 6). The full model usually gave the best prediction of397

final predator population sizes. Omitting only non-consumptive predator-predator effects from the398

model tended to estimate a stronger decline of predator populations than observed in the data,399

while omitting both non-consumptive effects and habitat tended to underestimate the decline. The400

exception here is Pardosa, where the full model over-estimated the decline. This is because Pardosa401

had a small Ropt,j value in the full model, making cannibalism a common occurrence.402

Despite the different parameter values estimated for each model, they combined to yield rel-403

atively similar realized feeding rates (dots in figure 5), especially on the aphids R. padi and A.404

pisum (with the exception of Bembidion and O. majusculus in the habitat-only model). Potential405
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Figure 3: Model predictions of aphid population growth (lines) across time, compared to data of
aphid counts per day (boxes) in single-aphid (rows) single-predator (columns) treatments. Lines
show predictions of the different models. The final row shows model predictions when fitting each
model to a hypothetical new prey species that resides entirely on the ground and has a body size
of 1mg.
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feeding rates (lines in figure 5) were higher in the models including habitat overlap, but were (in406

most cases) dramatically decreased when accounting for the actual habitat use of species. This407

decrease is shown by the difference between the dots and the lines in figure 5. The few cases where408

the realized feeding rate was larger than the potential feeding rate (e.g. the interaction strength409

of Bembidion with itself) occurred when species had similar (or in this case, identical) habitat use,410

especially in a relatively small habitat area. These potential feeding rates are primarily relevant411

when extrapolating to other species combinations or habitat configurations; when fitting the data412

from our experiment, it is the realized feeding rates, including the effects of habitat overlap and413

non-consumptive predator-predator effects, that matter. This is why such different models can414

produce such similar fits to observations.415

However, the fact that the different models all produced similar fits to observations, especially416

of aphid dynamics, does not mean the models are equivalent. When we used the models to make417

predictions for a new species, each model gave very different predictions (bottom row in figure418

3). Using a hypothetical, entirely ground-dwelling prey species slightly larger than A. pisum, each419

model predicted vastly different impacts of the predators on the prey population. Without habitat420

use, the models predicted that Bembidion and Pardosa would have no impact on the prey, C.421

septempuntata would be a strong predator, and O. majusculus would fall somewhere in between.422

With habitat, C. septempuntata was predicted to have very little impact on the prey (since C.423

septempuntata was almost never on the ground). Pardosa and Bembidion were predicted to have424

the strongest effect when habitat, but not non-consumptive effects, was included in the model.425
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Figure 4: Proportion of time each species spent in each of the four microhabitat zones. The final column
shows the relative size of each area. The prey species were A = A. pisum, R = R. padi, while the predators
were B = Bembidion, C = C. septempunctata, O = O. majusculus, P = Pardosa.

426

5 Discussion427

Here, we have reported on the post-experiment results of a pre-registered study aimed at develop-428

ing a dynamic food-web model, taking into account body size, habitat use, and non-consumptive429

predator-predator effects. We used the inverse method to determine parameter values of the dy-430

namic model from time-series data from mesocosm experiments. When comparing the fits of four431

alternative models with or without microhabitat use and non-consumptive predator-predator ef-432

fects to the dynamics of two aphid species and their predators, we found that objectively (based433

on the JLS criterion alone) the four models fit equally well and predicted similar aphid popula-434

tion dynamics. Yet, the four models had different values for key parameters, making it difficult435

to determine which model , if any, could be interpreted as being the best. By having different436

parameter values, the models ascribed different mechanisms to similar dynamic outcomes. These437

different mechanisms matter when models are applied beyond the data range, as we showed with438

vastly different predicted effects of each predator on a hypothetical new prey species across the439

different models. Below, we examine each finding in turn.440

With respect to our model performance criteria, we found that all four models performed rel-441
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Figure 5: Predictions of each model for each predator population’s feeding rate (y axis) on prey of
different body sizes (x axis). Lines show the null expectation or potential feeding rate, i.e. predicted
feeding rate as a function of prey size if predator and prey used all habitats in proportion to the
area of the habitat (no difference in habitat use between predator and prey). This can also be
understood as the likelihood that a predator will successfully attack a prey individual after they
encounter each other, and is clearly much higher for the models that include habitat use. Line color
corresponds to different models. Points show realized feeding rates of predators on each species in
the experiment, based on the prey’s body size (position along the x-axis, denoted by vertical dashed
lines) and the actual amount of time predators and prey spend in different habitats. This can be
understood as the likelihood that a predator first encounters and then successfully attacks a prey
individual. Points are colored according to model, the same as lines. The two aphid species are
identified by larger points and darker vertical lines, while predator species (which become intraguild
prey to other predators) are shown by smaller points and lighter colored lines. Body sizes were
R. padi = 0.155mg, A. pisum = 0.67mg, O. majusculus = 0.58mg, Bembidion = 2.15mg, Pardosa
= 18mg, and C. septempuntata = 37mg. Relationships here are shown for predator populations
of 20 Bembidion, 2 C. septempuntata, 20 O. majusculus or 10 Pardosa individuals with an aphid
population of 100 individuals. Despite having a higher a0 value, full model feeding-rate predictions
are lower than the model with only habitat for all species except C. septempuntata due to predator-
predator non-consumptive effects. Note the varying scales of the y-axis.
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Figure 6: Experimental results (purple boxes) and model predictions for the proportion of each
predator population remaining on the final day of the experiment. Data is grouped (facets along
the right-hand y-axis) according to the second predator, i.e. the top right panel shows the pro-
portion of the Pardosa population remaining at the end of the experiment when combined with
Bembidion. Note that C. septempuntata was not modelled dynamically, so all model predictions
are the same. Model predictions show different predictions based on different prey treatments and
aphid population initial conditions.
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atively similarly. First, the models matched aphid abundances to a comparable extent (JLS range442

from 1.18×108 to 1.38×108, table 1), and second, the visual fit was good overall (figure 3). Third,443

all parameter values were — given our current knowledge — within reasonable ranges (Table 1).444

Fourth and similarly, processes (e.g. realized feeding rate), also appeared to be within reasonable445

ranges (figure 5). We found the largest difference between models in our final performance criteria,446

observed versus predicted final predator abundance. Generally the full model and the model with447

only predator avoidance gave the closest predictions to the data, but this depended on the predator448

species (figure 6). Overall, with regards to all five model performance criteria, the models per-449

formed well at describing aphid population dynamics for the studied predator-prey combinations.450

Nonetheless, estimated parameter values varied among models. This variation related especially to451

attack rate, a0, and to optimal predator-prey body-size ratio, Ropt,j , with more variation in some452

species than others. This implies that we may ascribe different mechanisms to similar outcomes,453

whereas the models themselves are far from exchangeable and cannot all be correct at the same454

time.455

That variation in performance between models is so small makes it difficult to confidently456

assess which model is the most accurate and appropriate. Two criteria point to the minimal457

model (without habitat use and predator-predator interference) as being the worst: it provided458

the worst fit (table 1), and it frequently over-estimated both aphid populations (figure 3) and459

predator populations. (Here, Pardosa formed an exception, as the the population of this predator460

was typically underestimated, figure 6). The full model and the model with non-consumptive461

predator-predator effects but no habitat use most often yielded the best predictions of the predator462

populations, while the model with habitat use but no non-consumptive predator-predator effects463

usually under-estimated the predator population (figure 6). Based on our observations during the464

experiment, the model with only habitat use also seems to predict the most biased Ropt,j values465

for both Pardosa and O. majusculus. We observed that both predator species will readily feed on466

individuals of a similar size as themselves, yet this model predicts that the optimal prey are 30 or467

997 times smaller than Pardosa and O. majusculus respectively. This would mean that the optimal468

prey mass of O. majusculus is 0.58 micrograms, approximately the mass of a grain of maize pollen469
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(Sheridan, 1982; Porter, 1981). The minimal model also predicted a relatively high Ropt,j value for470

O. majusculus, in contrast to experimental observations. These inaccuracies of the simpler models471

would hint that the full model, or the model with non-consumptive predator-predator effects but not472

habitat, is the best model, and that non-trophic predator-predator effects and possibly habitat use473

are important mechanisms driving trophic dynamics. Each line of evidence is, however, inconclusive,474

and the variation in performance between models is small. These considerations make it difficult to475

effectively determine which model is the most accurate and appropriate, and therefore to evaluate476

the importance (or lack thereof) of habitat use and non-consumptive predator-predator effects.477

What our findings suggest is that we are yet to reach the point where we can fit ATN models478

to data for more diverse species, where traits other than body size also impact interactions, then479

say with any degree of confidence that this or that model is the correct one and the right one480

to base predictions upon. Each model points to different mechanisms behind the same outcomes.481

Models with high a0 values (those including habitat overlap) ascribe the realized feeding rate to a482

low frequency of encounters, but predict that when encounters do occur, then an attack is likely.483

Models with low a0 values, in contrast, suggest that encounters are common, but that when an484

encounter occurs, an attack is less likely. Similarly, differences in Ropt,j values attribute different485

mechanisms to similar predator-prey interaction dynamic outcomes. In both models that include486

non-consumptive predator-predator interference, the Ropt value of O. majusculus is close to the487

actual body-size ratio between O. majusculus and A. pisum. This suggests that A. pisum is a488

favoured prey of O. majusculus, and that the reason O. majusculus does not decimate A. pisum489

is cannibalism. Based on the Ropt,j value of O. majusculus, the feeding rate of this species is490

likely limited by non-consumptive predator-predator effects by conspecifics. In models without491

this mechanism (non-consumptive predator-predator effects), however, a similarly low value of Ropt492

would indicate that O. majusculus should annihilate A. pisum — which it clearly does not. In493

these models, O. majusculus had a larger Ropt value, suggesting that the reason it did not feed on494

A. pisum so strongly was not due to the effects of other predators, but because A. pisum was not495

its optimal prey size. Given that we observed during initial feeding trials that O. majusculus would496

readily feed on A. pisum, it seems most likely that non-consumptive predator-predator effects are497
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in fact the limiting mechanism, not incompatible body sizes.498

To help differentiate between models and improve prediction accuracy, we will need a closer499

understanding of which mechanisms are actually at play. Such insight is particularly important500

for making predictions of novel prey species, as we showed here (figure 3), as well as predictions501

of changes in existing species. If predator and prey change their habitat use to overlap more or502

less (as may be caused by loss of habitat for example, e.g. Carroll et al. (2019)), then a model503

where habitat use is important will have vastly different predictions from one where habitat use504

is not important. Improving our understanding of the mechanisms underlying food-web dynamics505

is therefore crucially important before we begin to make predictions. One way to resolve this506

conundrum, and to enable selection among models with a similar fit to the data, is to explore507

certain parameters more explicitly, and to estimate their value through supplementary experiments508

or investigations. Through such added data, we should be able to put limits on the ranges of509

parameter values, and thereby enable determination of which models are, in fact, most accurate.510

In our case, Ropt would be a good candidate. This parameter absorbed a large portion of511

residual variance in our models, but should be relatively straight-forward to measure in itself (e.g.512

Brousseau et al., 2018). In our model fitting, we allowed Ropt to vary among predators to account513

for traits, such as feeding mode, that we had not included in the model. This, however, probably514

allowed too much flexibility. As a result, the predicted Ropt values varied significantly (in the case515

of O. majusculus, Ropt covered almost the entire allowed range, from 4 to 997). Feeding trials of516

each predator with otherwise similar prey covering a range of body sizes should enable a restriction517

of each predator’s Ropt range. Such additional data would enable these parameters to be fixed or518

limited, aiding in discerning which models actually are most accurate.519

Our study has shown that different model formulations and combinations of parameter values520

can produce similar outcomes in terms of predicted community dynamics. This implies that success521

in predicting observed trophic interaction strength and community dynamics of the ATN model so522

far (e.g. Schneider et al., 2012; Jonsson et al., 2018) must perhaps be interpreted cautiously. More523

specifically, although it is well established that body size does affect many interactions between524

species, the generality and exact nature and quantitative form of this relationship needs to be525
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further established. Only then can we rule out that a particular model formulation does not526

produce the ‘correct results’ (i.e. good fit to the data) for the wrong reasons. For this, the527

underlying biology of what drives foraging ecology (such as prey preference and feeding behaviour528

and efficiency) needs to be better understood, especially how it may vary among species and be529

affected by other traits than body size (e.g. Brousseau et al., 2018). Furthermore, we have shown530

that it is important to understand model limitations before applying a model to an experimental531

system, so that some aspect of the system is not more complex than that assumed by the model.532

In hindsight, we realise that some aspects of our model design might seem overambitious, if the533

goal were to discriminate between alternative model formulations and estimate parameter values534

for some universal relationship. More specifically, we explicitly aimed for predator diversity in535

our experimental design, leading us to include predators like O. majusculus, Pardosa, and C.536

septempuntata into the parameterization. As the foraging behavior of some of these predators537

differs from more traditional ‘grab-and-chew’ predators like Bembidion, it is probably too simplistic538

to describe trophic interaction strengths of all these predators using the same universal relationship539

and based on one trait (body size) only. On the other hand, our attempt at doing so has revealed540

the need to develop models that accommodate a diversity of foraging behaviour in predators.541

In the current case, we will stop short of these proposed added steps, as the current study was542

explicitly designed to span the steps reported here (Laubmeier et al., 2018). Our intent is not to543

arrive at the final solution, but to point to the next step in the iterative process between theory544

and empirical insight.545

5.1 Conclusion546

In this study, we tested an approach explicitly developed in Laubmeier et al. (2018). Our aim547

was to arrive at an optimized design for generating empirical data to inform theoretical models.548

While carefully designed, the real-life implementation of the approach reveals the limitations of the549

information gained when trying to discriminate between different model versions. This emphasizes550

the challenges in developing the ATN model approach that need to be tackled. While we were551

able to arrive at a set of alternative parameter combinations plausible in the light of the data,552
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we were still unable to pinpoint which model is correct without locking down the exact value of553

one or several further parameters. The importance of doing so was revealed by our exercise of554

predicting the dynamics of a hypothetical novel species arriving in the system. Depending on555

which model is true, Bembidion and Pardosa may have the strongest effect on the novel prey,556

driving their population size nearly to zero, or they may have no impact and C. septempuntata and557

O. majusculus may be the more effective predators. Before we can convert the proposed models558

to predictive tools, we thus need to do more ground-work and conduct smaller experiments to559

estimate parameters such as optimal prey body size and attack rate scaling parameters — thereby560

gaining the resolution to select among multiple models. In conclusion, our study demonstrates how561

iterative cycling between theory, data and experiment may be needed to hone current insights into562

how traits affect food-web dynamics.563
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