

1 Genetic Basis of Variation in Ubiquitin-Proteasome System **2 Activity**

3 Mahlon A. Collins¹, Gemechu Mekonnen^{1,2}, and Frank W. Albert¹

4 ¹Department of Genetics, Cell Biology, and Development

5 University of Minnesota

6 Minneapolis, MN, U.S.A.

7 ²Current Address:

8 Department of Biology

9 Johns Hopkins University

10 Baltimore, MD, U.S.A.

11 Co-Corresponding Authors:

12 Mahlon A. Collins (mahlon@umn.edu)

13 Frank W. Albert (falbert@umn.edu)

14 Abstract

15 The ubiquitin-proteasome system (UPS) is the cell's primary pathway for targeted protein degra-
16 dation. Although the molecular mechanisms controlling UPS activity are well-characterized, we
17 have almost no knowledge of how these mechanisms are shaped by heritable genetic variation. To
18 address this limitation, we developed an approach that combines fluorescent UPS activity reporters
19 with a statistically powerful genetic mapping framework to comprehensively characterize genetic
20 influences on UPS activity in the yeast *Saccharomyces cerevisiae*. We applied this approach to
21 substrates of the UPS N-end rule, which relates a protein's degradation rate to the identity of its
22 N-terminal amino acid ("N-degron") through the Arg/N-end and Ac/N-end pathways. Genetic
23 influences on UPS activity were numerous and complex, comprising 149 loci influencing UPS ac-
24 tivity across the 20 N-degrons. Many loci specifically affected individual pathways or degrons and
25 multiple loci exerted divergent effects on distinct UPS pathways. One Arg/N-end pathway-specific
26 locus resulted from multiple causal variants in the promoter, open reading frame, and terminator of
27 the *UBR1* E3 ubiquitin ligase gene. These variants differentially affected substrates bound by the
28 Type 1 and Type 2 recognition sites of Ubr1p. Collectively, our results provide the first systematic
29 characterization of genetic influences on UPS activity and a generalizable approach for mapping
30 genetic effects on protein degradation with high statistical power and quantitative precision.

31 Introduction

32 Protein degradation by the ubiquitin-proteasome system (UPS) is an essential biological process
33 that regulates the abundance of cellular proteins and removes damaged and misfolded proteins from
34 cells^{1–3}. Through these actions, UPS protein degradation influences multiple aspects of cellular
35 physiology, including energy metabolism^{4–7}, cell signaling cascades^{8–10}, and stress responses^{11–13}.
36 Aberrant UPS activity adversely affects multiple cellular functions and contributes to a diverse array
37 of human diseases, including cancers^{14,15} and neurodegenerative^{16–18}, immune^{19,20}, and metabolic
38 disorders^{21,22}. To what extent both physiological and pathological variation in UPS activity is
39 driven by natural genetic variation is almost entirely unknown, aside from a handful of limited
40 examples. Genome-wide association studies have linked variation in UPS genes to the risk for
41 several diseases, but the vast majority of such studies have not characterized how these risk loci in-
42 fluence UPS activity^{23–25}. Missense mutations in UPS genes cause fatal, incurable syndromes^{26–28}.
43 However, such mutations often entirely ablate the function of the associated gene, suggesting they
44 represent only one extreme of a continuum of potential variant effects on UPS activity. Beyond
45 these examples, we do not know which DNA sequence variants in a population affect UPS activity,
46 their magnitude of effect, or the molecular mechanism(s) by which they influence UPS activity.
47 Consequently, we do not know how such variants contribute to the genetic basis of complex organ-
48 ismal and cellular traits regulated by the UPS, including the many diseases marked by aberrant
49 UPS activity²⁰.

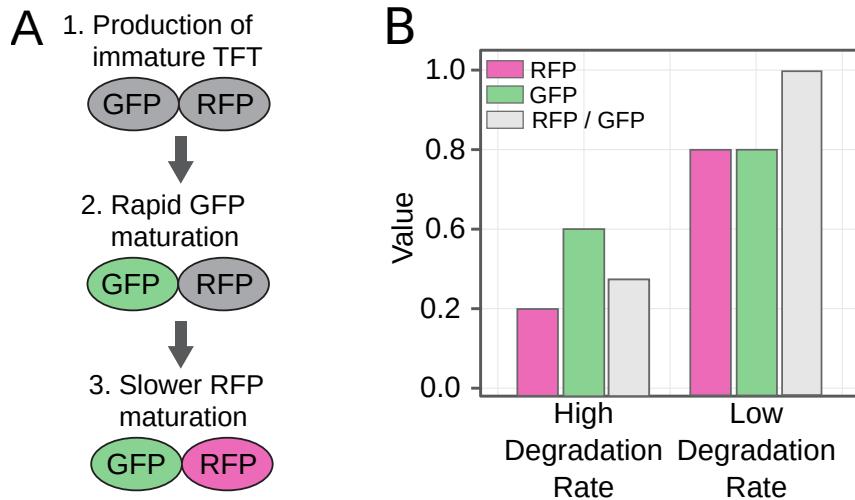
50

51 Our limited understanding of how genetic variation influences UPS activity stands in stark
52 contrast to the well-characterized molecular mechanisms of UPS function. UPS protein degrada-
53 tion comprises a series of enzymatic reactions that carry out the steps of recognizing and marking
54 proteins for degradation, trafficking marked proteins to the proteasome, and substrate unfolding
55 and degradation by the proteasome^{1,3}. This process begins when E3 ubiquitin ligases recognize
56 degradation-promoting signal sequences, termed degrons²⁹, in cellular proteins. When an E3 ligase
57 recognizes its cognate degron, the small protein ubiquitin is covalently attached to the substrate
58 protein, marking it for proteasomal degradation^{30,31}. The proteasome then binds, unfolds, and
59 degrades marked substrates to individual amino acids or small peptides^{32,33}. The activity of each
60 of these reactions is tuned by a diverse array of regulatory mechanisms, many of which are specific
61 to individual UPS pathways. These include transcriptional programs that control the abundance
62 of UPS gene products^{34,35}, post-translational modifications of UPS components that modify their
63 activity^{36,37}, and signaling cascades that alter UPS activity based on the metabolic state of the
64 cell^{38,39}. The large number and diversity of regulatory mechanisms controlling UPS protein degra-
65 dation creates many potential targets through which genetic variation may shape UPS activity.

66

67 Comprehensively characterizing how genetic variation shapes UPS activity thus requires assays
68 that can be readily adapted to multiple UPS pathways, degrons, and substrates. Genetic mapping
69 with controlled crosses of model organisms has been productively used to understand the genetic
70 basis of variation in a variety of cellular and organismal traits^{40–42}. However, technical challenges
71 have thus far precluded using such approaches to characterize genetic influences on UPS activity.
72 In particular, to attain high statistical power, genetic mapping methods require assays that can
73 measure a trait of interest in large numbers of individuals, often in the thousands^{41,43–45}. At this
74 scale, many assays of protein degradation would be prohibitively labor- and time-intensive⁴⁶. Sev-
75 eral high-throughput techniques exist for measuring UPS activity^{46–48}. However, to what extent
76 these methods can be deployed in genetically diverse mapping populations without confounding
77 from differences in reporter expression is unknown. Recent advances in the design of fluorescent
78 timers have the potential to overcome this limitation by providing readouts of UPS activity that
79 are unaffected by differences in reporter expression⁴⁹. In particular, the tandem fluorescent timer
80 (TFT) design has recently been adapted to provide high-throughput measurements of a variety of
81 UPS pathways and substrates^{49–53}. This system could, in principle, enable genetic mapping of UPS
82 activity.

83


84 Here, we leveraged recent advances in the design of TFTs and genetic mapping to systematically
85 characterize the genetic basis of variation in UPS activity. We built a series of TFTs that provide
86 high-throughput, quantitative measurements of the Arg/N-end and Ac/N-end UPS pathways com-
87 prising the UPS N-end rule. We used these reporters to perform bulk segregant genetic mapping in
88 a cross of two strains of the yeast *Saccharomyces cerevisiae*. Our results revealed considerable com-
89 plexity in the genetic influences on UPS activity. Individual UPS degrons are affected by multiple
90 loci, many loci act in a pathway-specific manner, and individual loci influencing UPS activity can
91 contain multiple causal variants in the same gene that act through distinct molecular mechanisms.
92 More broadly, our work introduces a generalizable strategy for mapping genetic influences on the
93 UPS and protein degradation with high statistical power and quantitative precision.

94 Results

95 Ubiquitin-Proteasome System Activity Reporters

96 To map genetic influences on the UPS, we first built and characterized a series of TFT reporters
97 capable of measuring UPS activity with high-throughput and quantitative precision in living cells.
98 TFTs are linear fusions of two fluorescent proteins with distinct spectral profiles and maturation
99 kinetics^{48,54}. The most commonly implemented TFT consists of a faster-maturing green fluores-
100 cent protein (GFP) and a slower-maturing red fluorescent protein (RFP)^{48,49,54} (Figure 1A). If

101 the degradation rate of a TFT-tagged substrate is faster than the maturation rate of the RFP,
102 then the RFP / GFP ratio (hereafter, “TFT ratio”) is inversely proportional to the substrate’s
103 degradation rate^{48,49,54} (Figure 1B). The TFT ratio is also independent of reporter expression⁴⁹,
104 allowing high-throughput measurements of UPS activity in genetically diverse populations of cells.
105

106

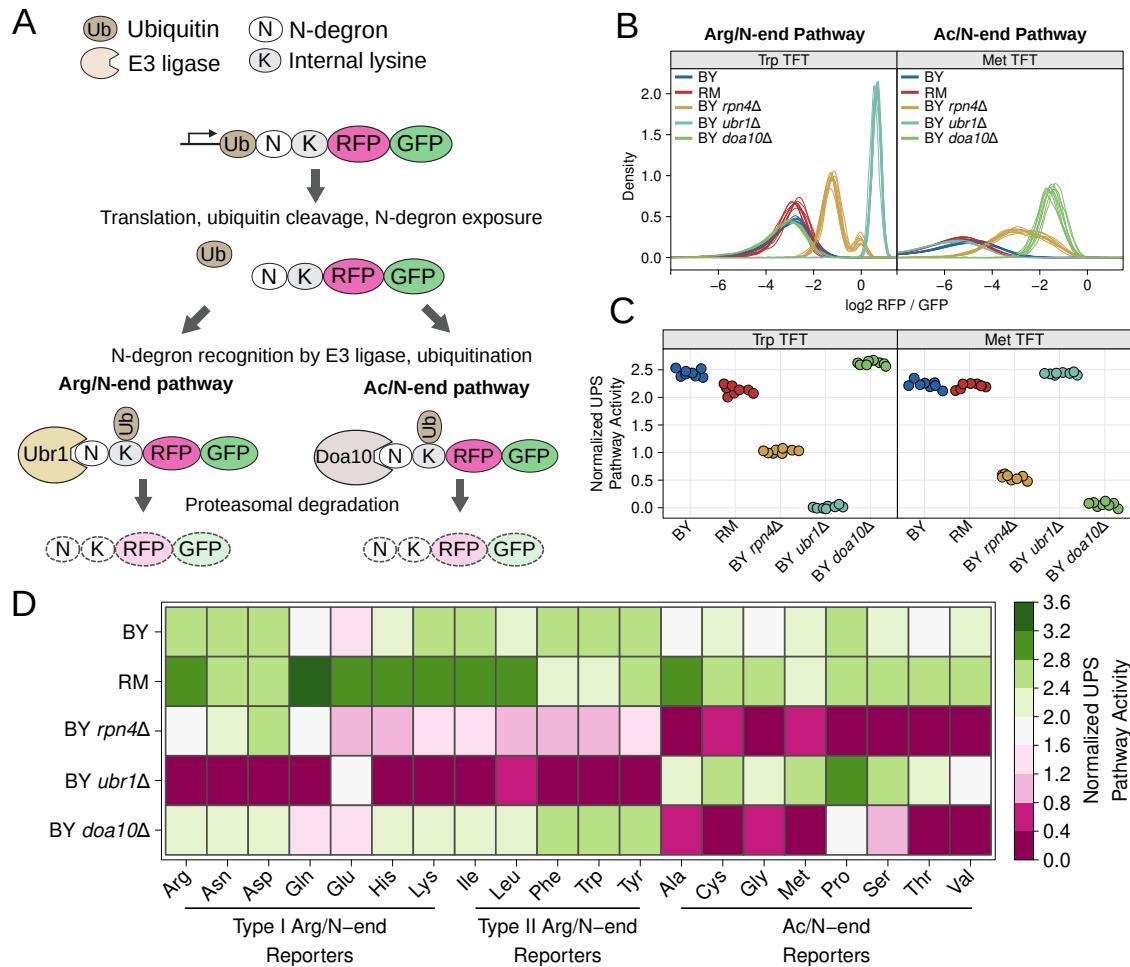
Figure 1: Tandem fluorescent timer (TFT) overview. A. Schematic of the production and maturation of a TFT. B. Simulated data showing the use of a TFT’s RFP/GFP ratio (“TFT ratio”) to measure UPS protein degradation activity.

108 To understand how genetic variation affects UPS activity, we focused on the well-characterized
109 UPS N-end rule pathway. The N-end rule relates a protein’s degradation rate to the identity of
110 its N-terminal amino acid (hereafter, “N-degron”)^{33,55,56}. In the yeast *Saccharomyces cerevisiae*,
111 the N-end rule pathway can be divided into two primary branches, the Arg/N-end and Ac/N-
112 end pathways^{33,55}. Arg/N-end substrates are recognized and bound by the E3 ligase Ubr1p⁵⁷.
113 Ubr1p has two binding sites, which recognize distinct classes of Arg/N-end degrons. The Type 1
114 binding site recognizes basic N-degrons, while the Type 2 binding site recognizes bulky hydrophobic
115 N-degrons³³ (Figure 2A and D). The other primary branch of the N-end rule pathway is the Ac/N-
116 end pathway, whose substrates are recognized and bound by the E3 ligase Doa10p⁵⁸. Doa10p binds
117 substrates with acetylated N-terminal amino acids, as well as unacetylated G and P residues (Figure
118 2A and D)^{33,58}. We reasoned that the diversity of degradation signals encompassed in the N-end
119 rule pathway would maximize our ability to identify genetic variation affecting UPS activity and
120 that the well-characterized effectors of the N-end rule pathway would aid in defining the molecular
121 mechanisms of variant effects on UPS activity.

122 **Analysis of N-end Rule TFTs**

123 We built TFTs bearing each of the 20 possible N-degrons of the N-end rule pathway. To do so, we
124 attached TFTs to the C-terminus of a previously-characterized peptide sequence that engages the
125 N-end rule pathway^{33,56,58}. This peptide is unstructured, lacks internal degrons⁵⁹, contains internal
126 lysine residues that are efficiently ubiquitinated^{56,58}, and has previously been used to characterize
127 the function of the N-end rule pathway^{56–58,60}. To generate each of the 20 possible N-degrons, we
128 used the ubiquitin fusion technique, in which a ubiquitin moiety is placed immediately upstream
129 of the desired N-terminal amino acid⁶⁰. After the construct is translated, ubiquitin hydrolases
130 cleave the ubiquitin molecule, exposing the desired N-terminal amino acid, which functions as an
131 N-degron⁶⁰ (Figure 2A). We devised a generalized approach for integrating N-end rule TFTs into
132 the yeast genome at a defined genomic location (Supplementary Figure 1) and built strains har-
133 boring all 20 possible N-degron TFTs.

134


135 We used multiple strains and two genetic backgrounds to characterize our N-end rule TFTs.
136 Our genetic mapping strains are a laboratory strain closely related to the S288C strain (“BY”)
137 and a wild vineyard strain (“RM”). These strains have previously been used to map the genetic
138 basis of a variety of cellular and organismal traits^{43,61,62}. We also constructed a series of reporter
139 control strains by deleting individual UPS genes from the BY strain. Specifically, we built strains
140 lacking the Arg/N-end E3 ligase *UBR1*⁵⁷ (“BY *ubr1*Δ”), the Ac/N-end E3 ligase *DOA10*⁵⁸ (“BY
141 *doa10*Δ”), or the proteasome gene transcription factor *RPN4*^{34,35} (“BY *rpn4*Δ”). Deleting *UBR1*
142 is expected to stabilize Arg/N-end reporters and deleting *DOA10* is expected to stabilize Ac/N-
143 end reporters^{50,57,58} (Figure 2A). Because deleting *RPN4* leads to reduced numbers of proteasomes
144 and reduced UPS activity³⁵, all reporters are expected to be stabilized in BY *rpn4*Δ. We built
145 BY, RM, BY *rpn4*Δ, BY *ubr1*Δ, and BY *doa10*Δ strains harboring each of our 20 N-end rule TFTs.

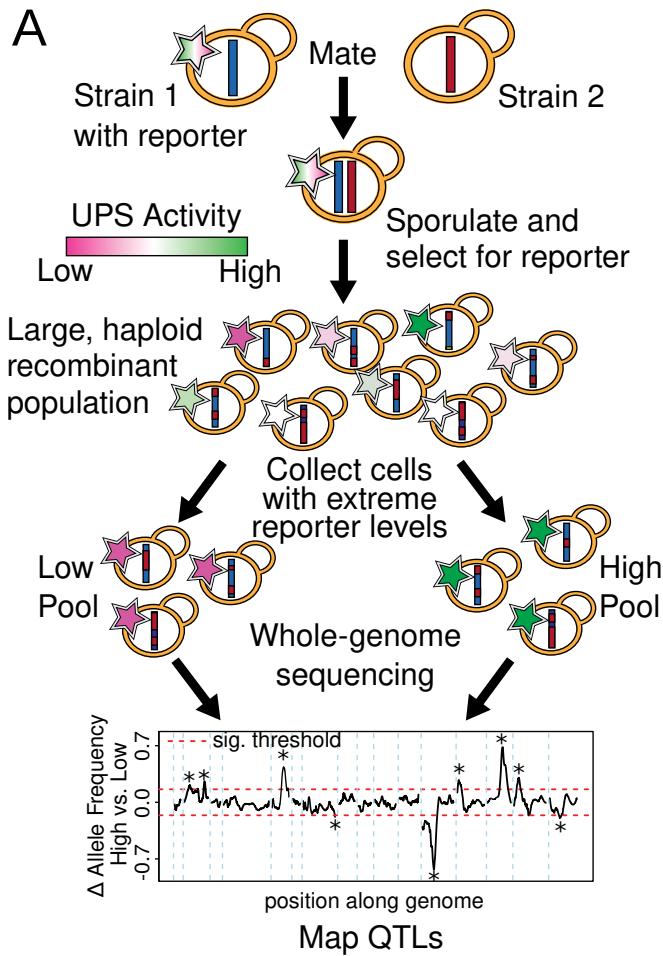
146

147 We characterized UPS activity towards each N-end rule TFT in our strains by flow cytometry.
148 Theoretical and empirical observations indicate that when a TFT’s degradation rate is slower than
149 the maturation rate of its RFP, the TFT’s \log_2 RFP/GFP ratio will be approximately 0 when the
150 fluorescence output of the two fluorophores is equivalent^{49,50,54}. Consistent with our expectations,
151 we observed that the \log_2 RFP/GFP ratio for Arg/N-end TFTs in BY *ubr1*Δ was approximately
152 0 and significantly greater than the corresponding \log_2 RFP/GFP ratio in our wild-type BY and
153 RM strains (Figure 2B/C/D, Supplementary Figure 2, Supplementary Table 1). Deleting *DOA10*
154 likewise produced a significant stabilization of our set of Ac/N-end TFTs relative to BY and RM
155 (Figure 2B/C/D, Supplementary Figure 2, Supplementary Table 1). Deleting *RPN4* significantly
156 stabilized TFTs from both the Arg/N-end and Ac/N-end pathways relative to BY and RM (Figure
157 2B/C/D, Supplementary Figure 2, Supplementary Table 1). We observed that the proline N-end

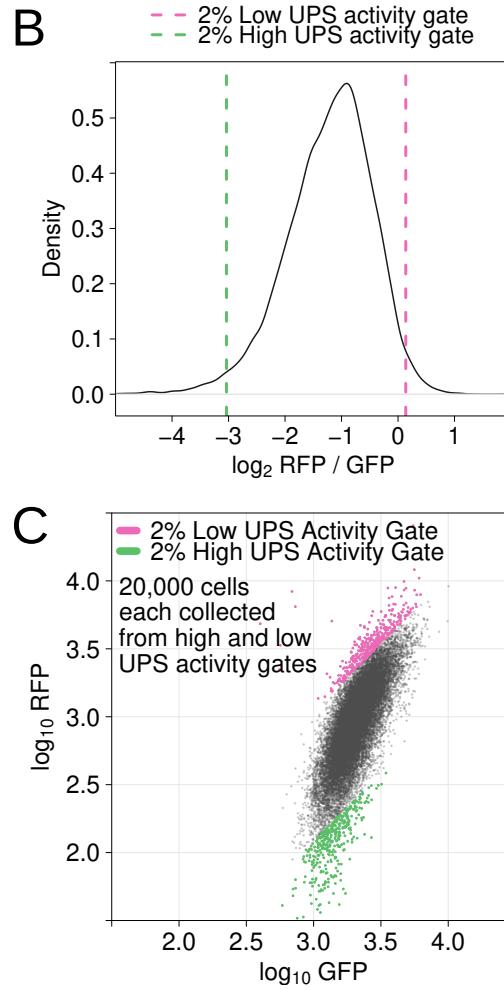
158 TFT was only partially stabilized in BY *doa10Δ* (Supplementary Figure 3), consistent with previous
 159 results^{60,63}. Specifically, when followed by a proline residue, ubiquitin is inefficiently cleaved in the
 160 ubiquitin-fusion technique^{33,60}. Consequently, the proline N-end TFT simultaneously measures the
 161 degradation rate of the proline N-degron and the activity of the ubiquitin-fusion degradation path-
 162 way⁶⁴. Taken together, these results show that our reporters provide sensitive, pathway-specific,
 163 and quantitative measurements of UPS activity.

164

165


Figure 2: Design and analysis of UPS N-end rule TFTs. A. Schematic of the production and degradation of TFTs according to the UPS N-end rule. B. Density plots of the \log_2 TFT ratio from 10,000 cells for each of 8 independent biological replicates per strain per reporter for example Arg/N-end and Ac/N-end reporters. “BY” and “RM” are the strains used for genetic mapping. “BY *rpn4Δ*”, “BY *ubr1Δ*”, and “BY *doa10Δ*” are control strains derived from BY used to characterize each TFT. C. The median of each biological replicate in B. was extracted, scaled, normalized, and plotted as a stripchart for the Trp and Met example N-degron TFTs. D. Heatmap summarizing the results for all strains and N-degrons using data generated as in C.

167 We also compared the degradation rate of each N-degron in the BY and RM strains to determine
168 their overall UPS activity levels. RM had significantly higher UPS activity than BY for 9 of 12
169 Arg/N-end TFTs and 6 of 8 Ac/N-end TFTs (Figure 2D, Supplementary Figure 3, Supplementary
170 Table 1). The set of N-degrons for which RM did not have significantly higher UPS activity included
171 the Ac/N-degrons Met and Pro and the Arg/N-degrons Phe, Trp, and Tyr (Figure 2D, Supplemen-
172 tary Figure 3, Supplementary Table 1). The degradation of the Phe, Trp, and Tyr N-degrons was
173 significantly higher in BY than RM, while the degradation rate of Met and Pro N-degrons were
174 equivalent between the two strains (Figure 2D, Supplementary Figure 3, Supplementary Table 1).
175 Overall, RM has higher UPS activity than BY, suggesting that individual genetic differences can
176 create heritable variation in UPS activity. The observation that BY had higher UPS activity for a
177 subset of N-degrons also raises the possibility that genetic effects on UPS could be specific to an
178 individual N-degron.


179 UPS Quantitative Trait Locus Mapping by Bulk Segregant Analysis

180 We mapped quantitative trait loci (QTLs) for UPS activity using bulk segregant analysis, a method
181 that achieves statistical power by comparing individuals with extreme phenotypes selected from a
182 large population^{44,65}. We created populations of meiotically recombined haploid yeast cells (“seg-
183 regants”) derived from mating TFT-containing BY strains with RM using a modified synthetic
184 genetic array methodology^{66,67} (Figure 3A). We collected pools of 20,000 cells from the 2% tails of
185 the UPS activity distribution in our segregant populations using fluorescence-activated cell sorting
186 (FACS) (Figure 3, B/C). Whole-genome sequencing was then used to determine the allele frequency
187 difference between the high and low UPS activity pools at each DNA variant. At loci linked to
188 UPS activity (QTLs), the allele frequencies will be significantly different between pools, while at
189 unlinked loci the allele frequency difference will be, on average, 0. We called significant QTLs using
190 an empirically-derived null distribution of the logarithm of the odds (LOD; see “Methods”) and
191 set the QTL significance threshold to a LOD score of 4.5, which resulted in a 0.5% false discovery
192 rate (FDR). We further filtered our list of QTLs by retaining only QTLs detected in both of two
193 independent biological replicates. Replicating QTLs were defined as QTLs whose peak positions
194 were within 100 kb of each other on the same chromosome and that had the same direction of allele
195 frequency difference in both biological replicates (Figure 4A). The complete set of replicating QTLs
196 is found in Supplementary Table 2. The full list of QTLs, including those that did not replicate in
197 both biological replicates is found in Supplementary Table 3. The full set of plotted allele frequency
198 differences and LOD traces is found in Supplementary File 1.

199

200

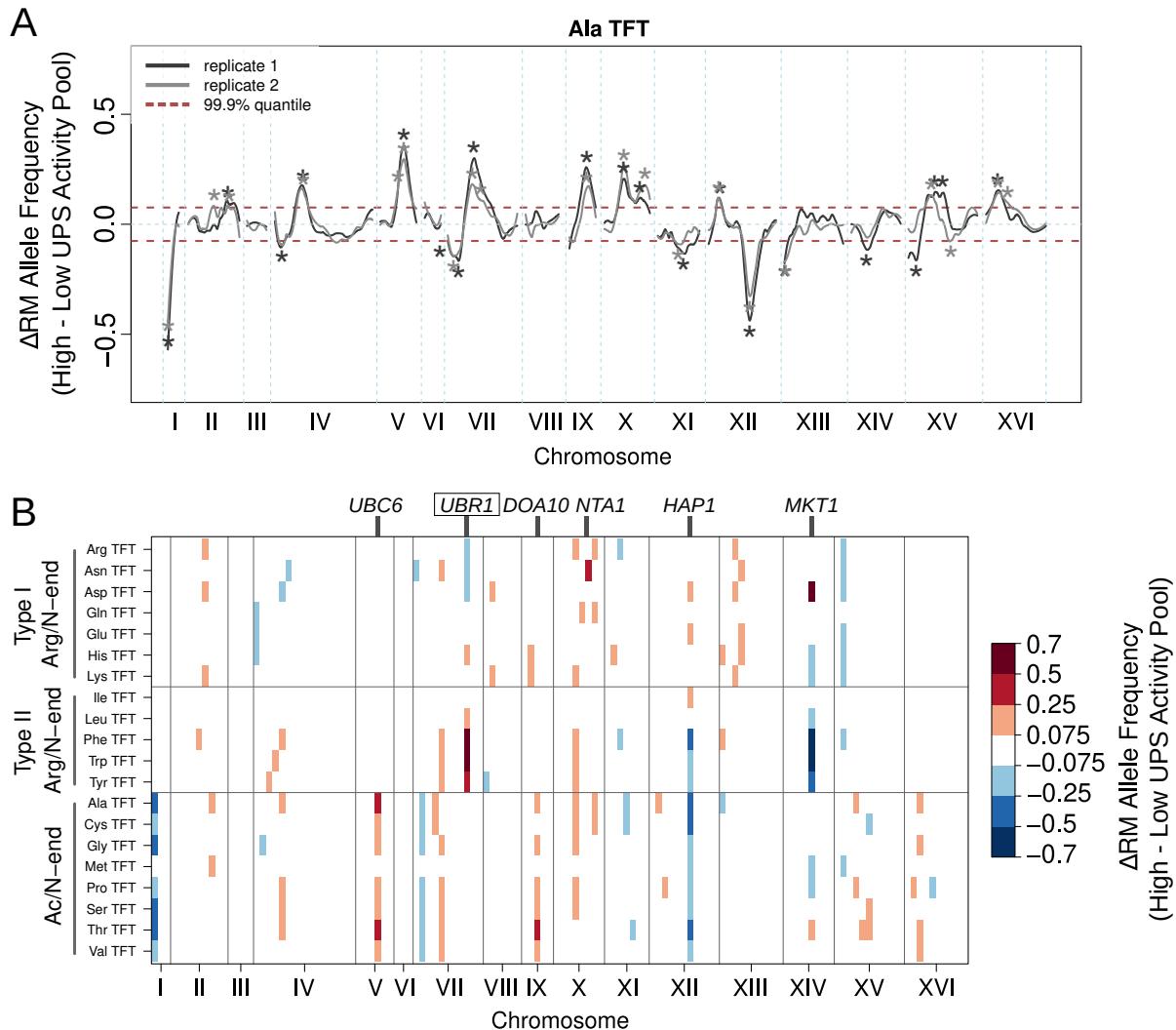


Figure 3: Bulk segregant analysis QTL mapping overview. A. Schematic of the approach for mapping UPS activity QTLs. B. Density plot of the UPS activity distribution for a segregant population. Dashed vertical lines show the gates that were used to collect cells. C. Backplot of the 201 cells in the gates in B. onto a scatter plot of GFP (x axis) and RFP (y axis).

202 **Global Analysis of UPS Activity QTLs**

203 We identified 149 UPS activity QTLs across the set of 20 N-degron TFTs (Figure 4B, Supplementary Table 2). The number of QTLs per reporter ranged from 1 (for the Ile TFT) to 15 (for the 204 Ala TFT) with a median of 7. As expected, replicating QTLs had significantly higher LOD scores 205 (t-test $p = 4e-14$) and significantly greater absolute magnitudes of allele frequency differences (t- 206 test $p = 8e-30$) than non-replicating QTLs (Supplementary Figure 4). Our results show that UPS 207 activity is a genetically complex trait, shaped by many loci throughout the genome. The genetic 208 architecture of UPS activity is characterized by a continuous distribution containing many loci of 209 small effect and few loci of large effect (Figure 4A/B, Supplementary Figure 4). 210

211

212

Figure 4: UPS QTL Mapping Results. A. Results from the alanine N-degron TFT are shown as an example of the results and reproducibility of the method. Asterisks denote QTLs. B. The heatmap shows the QTL mapping results for all 20 N-degron reporters. Colored blocks denote QTLs detected in each of two biological replicates, which are colored according to the direction and magnitude of the allele frequency difference. Validated (enclosed in a box) and candidate (unboxed) causal genes for select QTLs are annotated above the plot.

214 Analysis of the set of UPS QTLs revealed several patterns. First, we observed that the RM allele
 215 was associated with higher UPS activity in the majority of our UPS QTLs. Across all reporters,
 216 the RM allele was associated with higher UPS activity in 89 out of 149 UPS activity QTLs (60%,
 217 Supplementary Figure 5). This fraction was significantly different than the 0.5 value expected by
 218 chance (binomial test $p = 0.021$). We plotted the histogram of allele frequency differences and
 219 observed an especially strong enrichment for RM alleles associated with higher UPS activity in the
 220 range of 0.2 to 0.3, where there were approximately twice as many QTLs than the corresponding

221 range of -0.2 to -0.3 (Supplementary Figure 5). These results are consistent with our flow cytometry
222 results, where we observed that RM had higher UPS activity for 15 of 20 N-degrons (Figure 2D,
223 Supplementary Table 1), suggesting that the QTLs we have mapped underlie a substantial portion
224 of the heritable UPS activity difference between BY and RM.

225

226 The number and patterns of QTLs differed between the Ac/N-end and Arg/N-end pathways.
227 The Ac/N-end pathway had a significantly higher median number of QTLs per reporter than the
228 Arg/N-end pathway (9 versus 7, respectively, Wilcoxon test $p = 0.021$). A notable difference in the
229 patterns of QTLs between pathways was the presence of several large effect QTLs for the Arg/N-
230 end pathway but not for the Ac/N-end pathway (Figure 4B, Supplementary Figure 5). The QTLs
231 of large effect in the Arg/N-end pathway were found in multiple reporters on chromosomes VII and
232 XIV.

233

234 We then evaluated the extent to which individual QTLs were shared across multiple reporters.
235 To do so, we divided each chromosome into adjacent 100 kb bins. We considered a QTL to be
236 shared between reporters if the peak position for two or more QTLs were within the same bin.
237 We observed that many QTLs were unique to an individual N-degron (Figure 4B, Supplementary
238 Figure 6), highlighting the complexity of genetic influences on N-end rule pathways. There was
239 relatively little sharing of QTLs within the Arg/N-end pathway, for which only one QTL affected the
240 majority of reporters (Figure 4B, Supplementary Figure 6). By contrast, the Ac/N-end reporters
241 tended to share more of their QTLs (Figure 4B, Supplementary Figure 6). In particular, a QTL
242 on chromosome XII affected all Ac/N-end reporters and Ac/N-end-specific QTLs on chromosomes
243 I, V, and VII affected 7 of 8 Ac/N-end reporters (Figure 4B). These results suggest that genetic
244 influences on the degradation of Ac/N-end rule substrates may act more broadly than those of
245 the Arg/N-end pathway. This notion is consistent with the molecular mechanisms that generate
246 Ac/N-degrons, which share several molecular events that create functional Ac/N-end degrons^{33,58}.
247 By contrast, the mechanisms that generate Arg/N-degrons are less general³³, consistent with the
248 largely N-degron-specific QTL architectures we observe for this pathway. Taken together, our QTL
249 results suggest that individual UPS pathways are shaped by distinct, complex genetic architectures
250 and that genetic influences on UPS activity are often specific to an individual pathway.

251 **Analysis of Individual UPS Activity QTLs**

252 We next examined individual QTLs to better understand potential molecular mechanisms of variant
253 effects on UPS activity. We first sought to identify QTLs resulting from genetic variation in UPS
254 genes, reasoning that pathway-specific QTLs could result from variants in genes encoding compo-
255 nents of the Arg/N-end or Ac/N-end pathways. A QTL on chromosome VII was detected for 8

256 of 12 Arg/N-end TFTs. The peak position for the QTL occurred at 861,950 bp, placing it in the
257 *UBR1* E3 ubiquitin ligase gene. Arg/N-degrons can be divided into basic and bulky hydrophobic
258 degrons, which are recognized and bound by the Ubr1p Type 1 and Type 2 sites, respectively. The
259 RM allele of this QTL is associated with lower UPS activity for Type 1 N-degrons, with the excep-
260 tion of the His N-degron, and higher activity for Type 2 N-degrons (Figure 4B). The QTL's effect
261 size, as measure by the allele frequency difference values, were among the highest in our set of QTLs.

262

263 A QTL on chromosome V was specific to the Ac/N-end pathway and was detected for 7 of 8
264 Ac/N-end reporters (Figure 4B). For all 7 reporters, the RM allele was associated with higher UPS
265 activity. The QTL interval spans a region containing *UBC6*, the E2 ligase for *DOA10*^{68,69}. The
266 RM allele of *UBC6* contains a 3 bp deletion in the gene's promoter and a missense variant that
267 exchanges an aspartic acid residue with a charged, bulky side chain for a glycine residue with a
268 small, uncharged side chain at amino acid 229 in the protein. An expression QTL ("eQTL") in
269 this same region influences the abundance of the *UBC6* mRNA⁴⁵, suggesting that this QTL may
270 shape Ac/N-end pathway activity through effects on *UBC6* expression. An Ac/N-end QTL on
271 chromosome IX detected for 6 of 8 Ac/N-end TFTs was centered on the *DOA10* gene. The RM
272 allele of this QTL was associated with higher UPS activity in all 6 TFTs for which the QTL was
273 detected. No local QTLs for *DOA10*⁴⁵ have been found, but the RM *DOA10* allele contains 3
274 missense variants. The other Ac/N-end specific QTLs were located on chromosomes V and VII
275 and their intervals did not contain Ac/N-end-specific recognition components or binding factors.

276

277 A QTL on chromosome X was found only for the Asn N-degron of the Arg/N-end pathway.
278 The QTL peak is centered on the *NTA1* gene, which encodes an amidase that converts N-terminal
279 Asn and Gln residues to Asp and Glu residues, respectively. This conversion is necessary for the
280 recognition and degradation of substrates with N-terminal Asn and Gln residues by the Arg/N-end
281 pathway. The RM allele of the *NTA1* locus is associated with higher degradation of Asn N-degrons.
282 RM *NTA1* contains two missense variants near the proton donor active site, D111E and E129G.
283 *NTA1* is not affected by a local eQTL, making these missense variants strong candidate causal
284 nucleotides. More broadly, these results suggest that genetic variation can influence the full se-
285 quence of individual molecular events involved in the processing, recognition, ubiquitination, and
286 degradation of a given UPS substrate.

287


288 The BY/RM cross has been extensively used for genetic mapping of a variety of complex cellular
289 and organismal traits, including gene expression at the mRNA and protein levels^{42–45,61,62,70–73}.
290 We examined the overlap of our UPS activity QTLs with QTLs previously identified in BY/RM
291 genetic mapping studies. The most frequently observed UPS QTL was detected for 8 of 8 Ac/N-end
292 and 6 of 12 Arg/N-end TFTs and was located on chromosome XII (Figure 4B). The average peak

293 position of the QTL was 657,046 bp, placing it in the immediate vicinity of a Ty1 element found in
294 the *HAP1* transcription factor gene in the BY strain⁷⁴. The Ty1 insertion in *HAP1* exerts strongly
295 pleiotropic effects on gene expression, altering the expression of 3,755 genes⁴⁵. Similarly, a QTL on
296 chromosome XIV affected 10 of our 20 N-degron TFTs and was not specific to an individual UPS
297 pathway. The average peak position of the chromosome XIV QTL was 465,450 bp, which is located
298 in the *MKT1* gene. *MKT1* encodes a poorly-understood, multi-functional RNA binding protein
299 involved in the post-transcriptional regulation of gene expression^{12,75,76}. Variation in *MKT1* is
300 highly pleiotropic, and the *MKT1* locus has been shown to influence the expression of 4,550 genes⁴⁵.
301 Thus, while *HAP1* and *MKT1* are promising candidate causal genes for their associated QTLs, the
302 molecular mechanisms by which they influence UPS activity are likely complex and indirect.

303 Fine-Mapping of the *UBR1* QTL

304 Our analyses showed a prominent, pathway-specific role of a QTL on chromosome VII in shaping
305 UPS activity. We selected this QTL for further molecular dissection. To test if the QTL is caused
306 by variation in the *UBR1* gene located at its peak, we used CRISPR-Swap⁷⁷ to engineer BY strains
307 with alternative *UBR1* alleles (Table 4, Supplementary Table 4). The full RM allele (comprising
308 the promoter, open-reading frame [ORF], and terminator) significantly altered the degradation of
309 all tested N-degrons (Figure 5A/B, Supplementary Table 6). Thus, *UBR1* is the causal gene at
310 this locus.

311

312

Figure 5: Fine-Mapping of the *UBR1* QTL. BY strains were engineered to carry alternative *UBR1* alleles and their UPS activity towards the indicated Arg/N-degrons was characterized by flow cytometry. Individual circles show the median of 10,000 cells for each of 16 independent biological replicates per strain per N-degron. “BY” is the wild-type strain. “*UBR1* BY” is a negative control strain which underwent allelic editing, but carries the BY *UBR1* allele. The remaining strains contain RM *UBR1* alleles as indicated. “pr” = “promoter”, “term” = terminator. A. Results for the Type I Asn and Asp Arg/N-degrons. B. Results for the Type II Phe and Trp Arg/N-degrons. C. Results for the Type II Phe and Trp Arg/N-degrons with additional strains harboring single nucleotide variants in the *UBR1* promoter as indicated. In all plots, “*” = $0.05 > p > 1e-6$ and “#” = $p < 1e-6$ for Tukey HSD test of the indicated strain versus BY.

313

314 *UBR1* contains 2 promoter, 8 missense, and 8 terminator variants between BY and RM (Sup-
315 plementary Table 4). We engineered BY strains carrying chimeric *UBR1* alleles to assess the effects
316 of variants in the *UBR1* promoter, ORF, and terminator on Arg/N-end pathway activity. Because
317 the chromosome VII QTL exerted divergent effects on Type 1 and 2 Arg/N-end substrates, we
318 tested the effects of RM *UBR1* alleles on the Type 1 N-degrons Asn and Asp and the Type 2
319 N-degrons Phe and Trp.

320

321 Variants in the *UBR1* promoter significantly decreased the degradation rate of the Asp N-degron
322 (Figure 5A), did not affect the degradation rate of the Asn N-degron (Figure 5A), and significantly
323 increased the degradation rate of the Phe and Trp N-degrons (Figure 5B, Supplementary Table
324 5). In contrast, the RM *UBR1* ORF significantly decreased the degradation rate of both the Asn
325 and Asp N-degrons (Figure 5A, Supplementary Table 5). While both the promoter and the ORF
326 variants significantly increased the degradation rate of the Phe and Trp N-degrons (Figure 5B),
327 the effect of the promoter variants on the Trp N-degron were markedly stronger than those caused
328 by the ORF variants (Figure 5B). The RM *UBR1* terminator significantly decreased the degra-
329 dation of the Asn N-degron without affecting any of the other N-degrons tested (Figure 5A/B).
330 Thus, the *UBR1* QTL contains multiple causal variants in different regions of the gene that ex-
331 erter unique effects on the activity of the Arg/N-end pathway through distinct molecular mechanisms.

332

333 To identify the specific causal variant in the RM *UBR1* promoter that affects the degradation of
334 Type 2 Arg/N-end degrons, we engineered BY strains harboring the two individual RM promoter
335 variants, -469A>T and -197T>G. We tested the influence of these variants on the degradation rate
336 of the Phe and Trp N-degrons. The -469A>T variant significantly increased the degradation rate
337 of both the Phe and Trp N-degrons (Figure 5C, Supplementary Table 5). The -197T>G did not
338 alter the degradation of either N-degron (Figure 5C, Supplementary Table 5). The magnitude of
339 the effect caused by the -469A>T variant suggests that this variant accounts for the majority of
340 the *UBR1* QTL's effects on the degradation of Type 2 Arg/N-end substrates (Figure 5B/C).

341 Discussion

342 The activity of the ubiquitin-proteasome system (UPS) is dynamic and shaped by a diverse array
343 of regulatory mechanisms^{1,3,33}. Yet, to what extent genetic variation shapes UPS activity and
344 associated regulatory mechanisms is almost entirely unknown. We combined recent advances in
345 the design of fluorescent reporters of UPS protein degradation^{48,49} with a powerful genetic map-
346 ping method^{44,71,78} to systematically characterize genetic influences on UPS activity in the yeast
347 *Saccharomyces cerevisiae*.

348

349 Our results establish several principles for understanding how individual genetic differences cre-
350 ate heritable variation in UPS activity. Most prominently, UPS activity is a genetically complex
351 trait, shaped by variation at many loci throughout the genome. We identified 149 UPS activity
352 QTLs across 20 N-degrons, with a median of 7 QTLs per degron (Figure 4B, Supplementary Table
353 2). Similar to many other genetically complex traits⁴⁰⁻⁴², the distribution of QTL effect sizes was
354 continuous and composed of many loci with small effects and few loci with large effects. At a
355 majority of QTLs, the RM allele was associated with higher UPS activity. This excess matches
356 our observation that RM had significantly higher UPS activity for most N-degrons in both the
357 Ac/N-end and Arg/N-end pathways (Figure 2D, Supplementary Figures 2 and 3). Collectively,
358 these results suggest that we have identified key sources of the genetic basis of the difference in
359 UPS activity in these two strains and that heritable differences in UPS activity can arise through
360 multiple, distinct genetic architectures. This considerable complexity in yeast suggests that a simi-
361 lar diversity of complex architectures may shape the activity of human UPS pathways. In humans,
362 rare individual missense mutations that ablate the function of UPS genes cause a variety of diseases,
363 including neurodegenerative, immune, and metabolic disorders, by impairing the normal regulation
364 of UPS activity^{14, 21, 23, 28}. Our results are consistent with the notion that the collective effects of
365 many loci that more subtly perturb the regulation of UPS activity may contribute to the genetic
366 risk for non-Mendelian forms of these diseases⁷⁹.

367

368 Many of the QTLs we discovered were specific to the Ac/N-end or Arg/N-end pathways. Sub-
369 strates for these pathways are recognized and processed through unique sets of molecular effec-
370 tors^{33, 57, 58}. Differences in the number and patterns of loci we detected between pathways likely
371 reflect the distinct mechanisms by which Arg/N-end and Ac/N-end substrates are recognized and
372 degraded and highlights the complexity of genetic influences of UPS activity.

373

374 Reporters for the Ac/N-end pathway had a higher number of QTLs per reporter than those of
375 the Arg/N-end pathway. This difference was driven, in part, by a set of QTLs that influenced the
376 majority or all of the Ac/N-end degrons. By contrast, we detected no QTLs that influenced all 12
377 Arg/N-degrons and only a few QTLs that influenced the majority of Arg/N-degrons. Unlike the
378 shared Ac/N-end QTLs, many of the Arg/N-end QTLs that were detected with multiple reporters
379 had divergent effects on Type 1 and Type 2 Arg/N-degrons. These results suggest that genetic
380 effects on Ac/N-end substrates may be more general than those influencing Arg/N-end substrates.

381

382 Ac/N-degrons are generated by the co-translational excision of N-terminal Met residues, fol-
383 lowed by acetylation of the newly exposed N-terminal amino acid^{33, 50, 58}. The Met amino peptidases
384 and N-terminal acetyltransferases that mediate these reactions act broadly on Ac/N-degrons³³ and
385 our results suggest that genetic influences on Ac/N-end pathway substrates are similarly broad in

386 their effects. Arg/N-degrons comprise the set of amino acids with side chains too large to accommodate
387 Met amino peptidases^{33,80}. Instead, Arg/N-degrons appear result from cleavage by proteases
388 other than Met-aminopeptidases, though the mechanisms of this process are less well-characterized
389 than those that produce Ac/N-degrons³³. Some Arg/N-end degrons undergo further modification
390 in a manner analogous to the N-terminal acetylation of Ac/N-degrons, but these processes affect
391 only a handful of N-terminal amino acids. For example, N-terminal Asn and Gln residues are
392 deamidated by Nta1p to produce N-terminal Asp and Glu residues, which are subsequently arginy-
393 lated to yield functional Arg/N-degrons⁸¹. We identified a QTL centered on the *NTA1* gene for
394 our Asn TFT, suggesting the processing of pro-Arg/N-degrons may also be shaped by degron- and
395 pathway-specific genetic variation. More broadly, the high level of pathway-specificity in our set of
396 N-end rule QTLs raises the possibility that other UPS pathways are also shaped by unique patterns
397 of genetic influences on the sequence of molecular events comprising the recognition, processing,
398 and degradation of their substrates.

399

400 We showed that an Arg/N-end-specific QTL was caused by variation in the *UBR1* gene, which
401 encodes the E3 ligase of the Arg/N-end pathway. The QTL had divergent effects on Type 1 and
402 Type 2 Ubr1p Arg/N-end substrates, wherein the RM allele increased the degradation of Type 2
403 substrates and the Type 1 His N-degron and decreased the degradation of the other Type 1 sub-
404 strates (Figure 5B). Remarkably, *UBR1* harbored multiple causal variants in the *UBR1* promoter,
405 ORF, and terminator that each differentially affected Type 1 and 2 Arg/N-degrons (Figure 5A/B).
406 We identified the causal variant in the *UBR1* promoter as an A to T substitution at position -469
407 (Figure 5C). A previous study showed that this variant increases gene expression as measured
408 in a synthetic reporter system⁸². Taken together, these results suggest that the -469 variant alters
409 Arg/N-end pathway activity by increasing the expression of *UBR1*. Moreover, the existence of at
410 least two additional causal variants in the *UBR1* ORF and terminator demonstrates that genetic
411 effects on UPS activity engage diverse regulatory mechanisms, even within a single gene.

412

413 Our results add to an emerging picture of how variation in *UBR1* shapes a variety of cellular and
414 organismal traits. Mutations in human *UBR1* cause Johanson-Blizzard syndrome (JBS)²⁶, an auto-
415 somal recessive disorder associated with a variety of congenital abnormalities, including pancreatic
416 insufficiency, cognitive defects, and morphological abnormalities^{26,83}. The majority of JBS-causing
417 mutations are nonsense, frameshift, and splice site variants that abolish Ubr1 function^{79,83}. A
418 series of missense mutations in *UBR1* also cause JBS. However, the associated phenotypes in these
419 patients are much less severe and the mutant forms of *UBR1* still retain some activity towards their
420 cognate degrons^{79,84}. Our results suggest that these findings represent one extreme of a continuous
421 distribution of variant effects on *UBR1*. A more complete understanding of the genetic regulation
422 of *UBR1* activity could provide important insights into the many physiological processes regulated

423 by the Arg/N-end pathway^{6,33}. We anticipate that the full complement of genetic effects on *UBR1*
424 abundance and function in humans will be large and comprise diverse molecular mechanisms of
425 effect.

426

427 Finally, the genetic mapping strategy we have developed provides a generalized framework for
428 mapping genetic effects on protein degradation with quantitative precision and high statistical
429 power. Extending our approach to additional protein degradation pathways may reveal additional
430 pathway-specific genetic architectures. Similarly, our approach represents a viable strategy for
431 mapping genetic effects on the degradation of individual proteins. Considerable discrepancies ex-
432 ist between genetic influences on gene expression at the mRNA and protein levels^{42,71,73}. Many
433 protein-specific QTLs could result from genetic effects on protein degradation, either through loci
434 that alter the activity of protein degradation pathways or the degradation of individual proteins.

435

436 Our genetic mapping strategy revealed that UPS activity is a genetically complex trait, shaped
437 by variation throughout the genome. Individual loci influence UPS activity through diverse molec-
438 ular mechanisms and often in a pathway-specific manner. Our results lay the groundwork for future
439 efforts to understand how heritable differences in UPS activity contribute to variation in complex
440 cellular and organismal traits, including the many diseases marked by aberrant UPS activity.

441 Materials and Methods

442 Tandem Fluorescent Timer (TFT) Ubiquitin-Proteasome System Activity Re- 443 porters

444 We used tandem fluorescent timers (TFTs) to measure ubiquitin-proteasome system (UPS) activ-
445 ity. TFTs are fusions of two fluorescent proteins with distinct spectral profiles and maturation
446 kinetics^{48,49}. In the most common implementation, a TFT consists of a faster maturing green
447 fluorescent protein (GFP) and a slower maturing red fluorescent protein (RFP). Because the FPs
448 in the TFT mature at different rates, the RFP/GFP ratio (hereafter, “TFT ratio”) changes over
449 time. If the RFP’s maturation rate exceeds the TFT’s degradation rate, then the TFT ratio is
450 proportional to the construct’s degradation rate^{48,49} (Figure 1). Thus, when comparing two TFT-
451 tagged substrates, a lower TFT ratio reflects a faster degradation rate and a higher TFT ratio
452 reflects a slower degradation rate.

453

454 We used fluorescent proteins from previously characterized TFTs in our experiments. super-
455 folder GFP⁸⁵ (sfGFP) was used as the GFP in all TFTs. sfGFP matures in approximately 5
456 minutes and has excitation and emission maximums of 485 nm and 510 nm, respectively⁸⁵. The

457 RFP in our TFTs was either mCherry or mRuby. mCherry matures in approximately 40 minutes
458 and has excitation and emission maximums of 587 nm and 610 nm, respectively⁸⁶. The mCherry-
459 sfGFP TFT can detect degradation rate differences in substrates with lifetimes of approximately 80
460 minutes^{49,54}. mRuby matures in approximately 170 minutes and has excitation and emission max-
461 imums of 558 nm and 605 nm, respectively⁸⁷. The mRuby-sfGFP TFT can detect degradation rate
462 differences in substrates with lifetimes of approximately 340 minutes, although it is less sensitive
463 than the mCherry-sfGFP for substrates with half-lives less than 80 minutes^{49,54}. All TFT fluores-
464 cent proteins are monomeric. We separated green and red FPs in each TFT with an unstructured
465 35 amino acid linker sequence to minimize fluorescence resonance energy transfer (FRET)⁴⁹.

466 **Construction of Arg/N-end and Ac/N-end Pathway TFTs**

467 We built and characterized TFTs capable of measuring the activity of the UPS N-end rule path-
468 way^{33,56} which relates a protein's degradation rate to the identity of its N-degron⁵⁵). To generate
469 TFT constructs with defined N-terminal amino acids, we used the ubiquitin-fusion technique^{33,56,60},
470 which involves placing a ubiquitin moiety immediately upstream of a sequence encoding the de-
471 sired N-degron. During translation, ubiquitin-hydrolases cleave the ubiquitin moiety, exposing the
472 N-degron. We obtained DNA encoding the *Saccharomyces cerevisiae* ubiquitin sequence and a
473 peptide linker sequence derived from *Escherichia coli* β -galactosidase previously used to identify
474 components of the Arg/N-end and Ac/N-end pathways⁵⁶ by DNA synthesis (Integrated DNA Tech-
475 nologies [IDT], Coralville, Iowa, USA). The peptide linker sequence is unstructured and contains
476 internal lysine residues required for ubiquitination and degradation by the UPS^{56,58}. Peptide linkers
477 encoding the 20 possible N-terminal amino acids were made by PCR amplifying the linker sequence
478 using oligonucleotides encoding each unique N-terminal amino acid (Supplementary Table 6).

479

480 We then devised a general strategy to assemble TFT-containing plasmids with defined N-
481 terminal amino acids (Supplementary Figure 1). We first obtained sequences encoding each reporter
482 element by PCR or gene synthesis. We codon-optimized the sfGFP, mCherry, mRuby, FMDV2A,
483 and the TFT linker sequences for expression in *S. cerevisiae* using the Java Codon Adaptation
484 Tool (JCaT)⁸⁸ and purchased double-stranded synthetic DNA fragments of each sequence (IDT;
485 Coralville, IA, USA). We used the *TDH3* promoter to drive expression of each TFT reporter. The
486 *TDH3* promoter was PCR-amplified from Addgene plasmid #67639 (a gift from John Wyrick).
487 We used the *ADH1* terminator for all TFT constructs, which we PCR amplified from Addgene
488 plasmid #67639. We used the KanMX cassette⁸⁹ as the selection module for all TFT reporters
489 and obtained this sequence by PCR amplification of Addgene plasmid #41030 (a gift from Michael
490 Boddy). Thus, each construct has the general structure of *TDH3* promoter, N-degron, linker
491 sequence, TFT module, *ADH1* terminator, and the KanMX resistance cassette (Supplementary

492 Figure 1).

493

494 We used Addgene plasmid #35121 (a gift from John McCusker) as the plasmid DNA backbone
495 for all TFT constructs. Digesting this plasmid with BamHI and EcoRV restriction enzymes pro-
496 duces a 2451 bp fragment that we used as a vector backbone for TFT plasmid assembly. We obtained
497 a DNA fragment containing 734 bp of sequence upstream of the *LYP1* start codon, a SwaI restric-
498 tion site, and 380 bp of sequence downstream of the *LYP1* stop codon synthesis (IDT, Coralville,
499 IA, USA). We performed isothermal assembly cloning using the New England Biolabs (NEB) HiFi
500 Assembly Cloning Kit (NEB, Ipswich, MA, USA) to insert the *LYP1* homology sequence into the
501 BamHI/EcoRV digest of Addgene plasmid #35121 to create the final backbone plasmid BFA0190
502 (Supplementary Figure 1). We then combined SwaI digested BFA0190 and the components of each
503 TFT reporter and used the NEB HiFi Assembly Kit (NEB; Ipswich, MA, USA) to produce each
504 TFT plasmid. The 5' and 3' *LYP1* sequences in each TFT contain naturally-occurring SacI and
505 BglII restriction sites, respectively. We digested each TFT with SacI and BglII (NEB; Ipswich,
506 MA, USA) to obtain a linear DNA transformation fragment. The flanking *LYP1* homology and
507 kanMX module in each TFT construct allows selection for reporter integration at the *LYP1* locus
508 using G418⁹⁰ and the toxic amino acid analogue thialysine (S-(2-aminoethyl)-L-cysteine hydrochlo-
509 ride)^{66,67,91} (Supplementary Figure 1). The sequence identity of all assembled plasmids was verified
510 by Sanger sequencing. The full list of plasmids used in this study is found in Supplementary Table
511 8.

512 **Yeast Strains and Handling**

513 **Yeast Strains**

514 We used two strains of the yeast *Saccharomyces cerevisiae* to characterize UPS activity reporters
515 and perform genetic mapping of UPS activity. The BY strain is haploid with genotype MAT α
516 his3 Δ ho Δ and is closely related to the *S. cerevisiae* S288C laboratory strain. The second strain,
517 RM is a haploid strain with genotype MAT α can1 Δ ::STE2pr-SpHIS5 his3 Δ ::NatMX AMN1-BY
518 ho Δ ::HphMX URA3-FY and was isolated from a California vineyard. BY and RM differ at 1 nu-
519 cleotide per 200 base pairs on average and approximately 45,000 single nucleotide variants (SNVs)
520 between the strains can serve as markers in a genetic mapping experiment^{43,44,71,73}.

521

522 We built additional strains for characterizing our UPS activity reporters by deleting individual
523 UPS genes from the BY strain. Each deletion strain was constructed by replacing the targeted
524 gene with the NatMX cassette⁹⁰, which confers resistance to the antibiotic nourseothricin. We
525 PCR amplified the NatMX cassette using Addgene plasmid #35121 with primers with homology
526 to the 5' upstream and 3' downstream sequences of the targeted gene. The oligonucleotides for

Short Name	Genotype	Antibiotic Resistance	Auxotrophies
BY	<i>MATa his3Δ hoΔ</i>		histidine
RM	<i>MATα can1Δ::STE2pr-SpHIS5 his3Δ::NatMX hoΔ::HphMX</i>	clonNAT, hygromycin	histidine
BY <i>rpn4Δ</i>	<i>MATa his3Δ hoΔ rpn4Δ::NatMX</i>	clonNAT	histidine
BY <i>ubr1Δ</i>	<i>MATa his3Δ hoΔ ubr1Δ::NatMX</i>	clonNAT	histidine
BY <i>doa10Δ</i>	<i>MATa his3Δ hoΔ doa10Δ::NatMX</i>	clonNAT	histidine

Table 1: Base strain genotypes

527 each gene deletion cassette amplification are listed in Supplementary Table 6. We created a BY
528 strain lacking the *UBR1* gene, which encodes the Arg/N-end pathway E3 ligase Ubr1p. We refer to
529 this strain hereafter as “BY *ubr1Δ*”. We created a BY strain (“BY *doa10Δ*”) lacking the *DOA10*
530 gene that encodes the Ac/N-end pathway E3 ligase Doa10p. Finally, we created a BY strain (“BY
531 *rpn4Δ*”) lacking the *RPN4* that encodes the proteasome transcription factor Rpn4p. Table 1 lists
532 these strains and their full genotypes. Supplementary Table 8 contains the complete list of strains
533 used in this study.

534

535 Table 2 describes the media formulations used for all experiments. Synthetic complete amino
536 acid powders (SC -lys and SC -his -lys -ura) were obtained from Sunrise Science (Knoxville, TN,
537 USA). Where indicated, we added the following reagents at the indicated concentrations to yeast
538 media: G418, 200 mg/mL (Fisher Scientific, Pittsburgh, PA, USA); clonNAT (nourseothricin sul-
539 fate, Fisher Scientific), 50 mg/L; thialysine (S-(2-aminoethyl)-L-cysteine hydrochloride; Millpore-
540 Sigma, St. Louis, MO, USA), 50 mg/L; canavanine (L-canavanine sulfate, MillporeSigma), 50
541 mg/L.

542

543 Yeast Transformation

544 We used a standard yeast transformation protocol to construct reporter control strains and build
545 strains with TFTs⁹². In brief, we inoculated yeast strains growing on solid YPD medium into
546 5 mL of YPD liquid medium for overnight growth at 30 °C. The following morning, we diluted
547 1 mL of saturated culture into 50 mL of fresh YPD and grew the cells for 4 hours. The cells
548 were then successively washed in sterile ultrapure water and transformation solution 1 (10 mM
549 Tris HCl [pH 8.0], 1 mM EDTA [pH 8.0], and 0.1 M lithium acetate). At each step, we pelleted
550 the cells by centrifugation at 3000 rpm for 2 minutes in a benchtop centrifuge and discarded the
551 supernatant. The cells were suspended in 100 μL of transformation solution 1 along with 50 μg

Media Name	Abbreviation	Formulation
Yeast-Peptone-Dextrose	YPD	10 g/L yeast extract 20 g/L peptone 20 g/L dextrose
Synthetic Complete	SC	6.7 g/L yeast nitrogen base 1.96 g/L amino acid mix -lys 20 g/L dextrose
Haploid Selection	SGA	6.7 g/L yeast nitrogen base 1.74 g/L amino acid mix -his -lys -ura 20 g/L dextrose
Sporulation	SPO	1 g/L yeast extract 10 g/L potassium acetate 0.5 g/L dextrose

Table 2: Media Formulations

552 of salmon sperm carrier DNA and 300 ng of transforming DNA. The cells were incubated at 30 °C
553 for 30 minutes and 700 μ L of transformation solution 2 (10 mM Tris HCl [pH 8.0], 1 mM EDTA
554 [pH 8.0], and 0.1 M lithium acetate in 40% polyethylene glycol [PEG]) was added to each tube,
555 followed by a 30 minute heat shock at 42 °C. We then washed the transformed cells in sterile,
556 ultrapure water. We added 1 mL of liquid YPD medium to each tube and incubated the tubes for
557 90 minutes with rolling at 30 °C to allow for expression of the antibiotic resistance cassettes. After
558 washing with sterile, ultrapure water, we plated 200 μ L of cells on solid SC -lys medium with G418
559 and thialysine, and, for strains with the NatMX cassette, clonNAT. For each strain, we streaked
560 8 independent colonies (biological replicates) from the transformation plate for further analysis.
561 We verified reporter integration and integration site by colony PCR⁹³. The primers used for these
562 experiments are listed in Supplementary Table 6.

563 Yeast Mating and Segregant Populations

564 We created populations of genetically variable, recombinant cells (“segregants”) for genetic mapping
565 using a modified synthetic genetic array (SGA) approach^{66,67}. We first mated BY strains with a
566 given TFT to RM by mixing freshly streaked cells of each strain on solid YPD medium. For each
567 TFT, we mated two independently-derived clones (biological replicates) to the RM strain. Cells
568 were grown overnight at 30 °C and we selected for diploid cells (successful BY-RM matings) by
569 streaking mated cells onto solid YPD medium with G418 (which selects for the KanMX cassette in
570 the TFT in the BY strain) and clonNAT (which selects for the NatMX cassette in the RM strain).

571 We inoculated 5 mL of YPD with freshly streaked diploid cells for overnight growth at 30 °C. The
572 next day, we pelleted the cultures, washed them with sterile, ultrapure water, and resuspended the
573 cells in 5 mL of SPO liquid medium (Table 2). We sporulated the cells by incubating them at
574 room temperature with rolling for 9 days. After confirming sporulation by brightfield microscopy,
575 we pelleted 2 mL of culture, washed cells with 1 mL of sterile, ultrapure water, and resuspended
576 cells in 300 μ L of 1 M sorbitol containing 3 U of Zymolyase lytic enzyme (United States Biological,
577 Salem, MA, USA) to degrade ascus walls. Digestions were carried out at 30 °C with rolling for 2
578 hours. We then washed the spores with 1 mL of 1 M sorbitol, vortexed for 1 minute at the highest
579 intensity setting, resuspended the cells in sterile ultrapure water, and confirmed the release of cells
580 from ascus by brightfield microscopy. We plated 300 μ L of cells onto solid SGA medium containing
581 G418 and canavanine. This media formulation selects for haploid cells with (1) a TFT via G418,
582 (2) the *MATa* mating type via the *Schizosaccharomyces pombe* *HIS5* gene under the control of the
583 *STE2* promoter (which is only active in *MATa* cells), and (3) replacement of the *CAN1* gene with
584 *S. pombe* *HIS5* via the toxic arginine analog canavanine^{66,67}. Haploid segregant populations were
585 grown for 2 days at 30 °C and harvested by adding 10 mL of sterile, ultrapure water and scraping
586 the cells from each plate. We pelleted each cell suspension by centrifugation at 3000 rpm for 10
587 minutes and resuspended the cells in 1 mL of SGA medium. We added 450 μ L of 40% (v/v) sterile
588 glycerol solution to 750 μ L of segregant culture and stored samples in screw cap cryovials at -80
589 30 °C. We stored 2 independent sporulations of each reporter (derived from our initial matings) as
590 independent biological replicates.

591 Flow Cytometry and Fluorescence-Activated Cell Sorting

592 Flow Cytometry

593 Yeast strains were manually inoculated into 400 μ L of liquid SC -lys medium with G418 and grown
594 overnight in 2 mL 96 well plates at 30.0 °C with mixing using a MixMate (Eppendorf, Hamburg,
595 Germany). The following morning, we inoculated a fresh 200 μ L of G418-containing SC -lys media
596 with 4 μ L of saturated cultures from the overnight growth. Cells were grown for an additional
597 3 hours prior to analysis by flow cytometry. All flow cytometry experiments were performed on
598 an LSR II flow cytometer (BD, Franklin Lakes, NJ, USA) equipped with a 20 mW 488 nm laser
599 with 488/10 and 525/50 filters for measuring forward/side scatter and sfGFP, respectively, as well
600 as a 40 mW 561 nm laser and a 610/20 filter for measuring mCherry and mRuby. Table 3 lists
601 the parameters and settings that were used for all flow cytometry and fluorescence-activated cell
602 sorting (FACS) experiments. We recorded 10,000 cells each from 8 biological replicates per clonal
603 strain for our analyses of BY, RM, and reporter control strains.

604

605 We analyzed flow cytometry data using R (R Foundation for Statistical Computing, Vienna

Parameter	Laser Line (nm)	Laser Setting (V)	Filter
forward scatter (FSC)	488	500	488/10
side scatter (SSC)	488	275	488/10
sfGFP	488	500	525/50
mCherry	561	615	610/20
mRuby	561	615	610/20

Table 3: Flow cytometry and FACS settings.

606 Austria) and the flowCore R package⁹⁴. We first filtered each flow cytometry dataset to include
607 only those cells within $10\% \pm$ the forward scatter (a proxy for cell size) median. We empirically
608 determined that this gating approach captured the central peak of cells in the FSC histogram.
609 This gating approach also removed cellular debris, aggregates of multiple cells, and restricted our
610 analyses to cells of the same approximate size.

611
612 To better characterize differences in the degradation rate of N-end rule substrates within and
613 between our strains, we transformed our flow cytometry data as follows. We first scaled the \log_2
614 TFT ratio relative to the sample with lowest degradation rate. Following this transformation,
615 the strain with lowest degradation rate (typically the E3 ligase deletion strain) has a degradation
616 rate of approximately 0 and the now-scaled TFT ratio is directly proportional to the construct's
617 degradation rate. To compare degradation rates between strains and individual TFTs, we then
618 converted scaled TFT ratios to Z scores.

619
620 For our initial characterization of TFTs, we then extracted the mean of the remaining cells from
621 each of 8 biological replicates and used these values for inferential statistics. We used a one-way
622 ANOVA with Tukey's HSD post-hoc test to analyze all parameters and strains. For analyzing
623 segregant populations obtained by FACS, we used the entire FSC-filtered populations of cells for
624 inferential statistics and used ANOVA with Tukey's HSD post-hoc test to compare all populations.

625 **Fluorescence-Activated Cell Sorting**

626 We collected populations of segregant cells for QTL mapping using a previously-described ap-
627 proach for isolating phenotypically extreme cell populations by FACS^{71,73}. Segregant populations
628 were thawed approximately 16 hours prior to cell sorting and grown overnight in 5 mL of SGA
629 medium containing G418 and canavanine. The following morning, 1 mL of cells from each segre-
630 gant population was diluted into a fresh 4 mL of SGA medium containing G418 and canavanine.
631 Segregant populations were then grown for an additional 4 hours prior to sorting. All FACS ex-

632 experiments were carried out using a FACS Aria II cell sorter (BD). We used plots of side scatter
633 (SSC) height by side scatter height and forward scatter (FSC) height by forward scatter width to
634 remove doublets from each sample. We then filtered cells on the basis of FSC area, restricting
635 our sorts to $\pm 7.5\%$ of the central FSC peak, which we empirically determined excluded cellular
636 debris and aggregates and encompassed the primary haploid cell population. Finally, we defined
637 a fluorescence-positive population by comparing each segregant population to negative control BY
638 and RM strains without TFTs. We collected 20,000 cells each from 3 populations of cells for each
639 segregant population:

640 1. Fluorescence-positive cells without further gating, which were used as unsorted, “null” pop-
641 ulations
642 2. The 2% lower tail of the TFT distribution
643 3. The 2% upper tail of the TFT distribution

644 We collected independent biological replicates of each population for each reporter. Each popu-
645 lation of 20,000 cells was collected into sterile 1.5 mL polypropylene tubes containing 1 mL of SGA
646 medium and grown overnight at 30 °C with rolling. The next day, we mixed 750 μ L of cells with
647 450 μ L of 40% (v/v) glycerol and stored this mixture in 2 mL 96 well plates at -80 °C.

648 Genomic DNA Isolation and Whole-Genome Sequencing

649 Genomic DNA Isolation and Library Preparation

650 We extracted genomic DNA from sorted segregant populations for whole-genome sequencing. Deep-
651 well plates containing glycerol stocks of segregant populations were thawed and 800 μ L of each
652 sample was pelleted by centrifugation at 3700 rpm for 10 minutes. We discarded the supernatant
653 and resuspended cell pellets in 800 μ L of a 1 M sorbitol solution containing 0.1 M EDTA, 14.3
654 mM β -mercaptoethanol, and 500 U of Zymolyase lytic enzyme to digest cell walls prior to DNA
655 extraction. The digestion reaction was carried out by resuspending cell pellets with mixing at
656 1000 rpm for 2 minutes followed by incubation for 2 hours at 37 °C. When the digestion reaction
657 finished, we discarded the supernatant, resuspended cells in 50 μ L of phosphate buffered saline,
658 and used the Quick-DNA 96 Plus kit (Zymo Research, Irvine, CA, USA) to extract genomic DNA.
659 We followed the manufacturer’s protocol to extract genomic DNA with the following modifications.
660 We incubated cells in a 20 mg/mL proteinase K solution overnight with incubation at 55 °C. After
661 completing the DNA extraction protocol, we eluted DNA using 40 μ L of DNA elution buffer (10
662 mM Tris-HCl [pH 8.5], 0.1 mM EDTA). The DNA concentration for each sample was determined
663 using the Qubit dsDNA BR assay kit (Thermo Fisher Scientific, Waltham, MA, USA) in a 96 well
664 format using a Synergy H1 plate reader (BioTek Instruments, Winooski, VT, USA).

665

666 We used a previously-described approach to prepare libraries for short-read whole-genome se-
667 quencing on the Illumina Next-Seq platform^{71,73}. We used the Nextera DNA library kit (Illumina,
668 San Diego, CA, USA) according to the manufacturer's instructions with the following modifica-
669 tions. For the tagmentation reaction, 5 ng of genomic DNA from each sample was diluted in a
670 master mix containing 4 μ L of Tagment DNA buffer, 1 μ L of sterile, molecular biology grade wa-
671 ter, and 5 μ L of Tagment DNA enzyme diluted 1:20 in Tagment DNA buffer. The tagmentation
672 reaction was run on a SimpliAmp thermal cycler (Thermo Fisher Scientific) using the following
673 parameters: 55 °C temperature, 20 μ L reaction volume, 10 minute incubation. To prepare libraries
674 for sequencing, we added 10 μ L of the tagmentation reaction to a master mix containing 1 μ L
675 of an Illumina i5 and i7 index primer pair mixture, 0.375 μ L of ExTaq polymerase (Takara Bio,
676 Mountain View, CA, USA), 5 μ L of ExTaq buffer, 4 μ L of a dNTP mixture, and 29.625 μ L of
677 sterile molecular biology grade water. We generated all 96 possible index oligo combinations using
678 8 i5 and 12 i7 index primers. The library amplification reaction was run on a SimpliAmp thermal
679 cycler with the following parameters: initial denaturation at 95 °C for 30 seconds, then 17 cycles
680 of 95 °C for 10 seconds (denaturation), 62 °C for 30 seconds (annealing), and 72 °C for 3 minutes
681 (extension). We quantified the DNA concentration of each reaction using the Qubit dsDNA BR
682 assay kit (Thermo Fisher Scientific) and pooled 10 μ L of each reaction. This pooled mixture was
683 run on a 2% agarose gel and we extracted and purified DNA in the 400 bp to 600 bp region us-
684 ing the Monarch Gel Extraction Kit (New England Biolabs, Ipswich, MA, USA) according to the
685 manufacturer's instructions.

686 Whole-Genome Sequencing

687 We submitted pooled, purified DNA libraries to the University of Minnesota Genomics Center
688 (UMGC) for Illumina sequencing. Prior to sequencing, UMGC staff performed three quality control
689 assays. Library concentration was determined using the PicoGreen dsDNA quantification reagent
690 (Thermo Fisher Scientific). Library size was determined using the Tapestation electrophoresis
691 system (Agilent Technologies, Santa Clara, CA, USA) with libraries in the range of 200 to 700 bp
692 passing QC. Library functionality was determined using the KAPA DNA Library Quantification kit
693 (Roche, Penzberg, Germany), with libraries with a concentration greater than 2 nM passing. All
694 submitted libraries passed each QC assay. We submitted 7 libraries for sequencing at different times.
695 Libraries were sequenced on a NextSeq 550 instrument (Illumina). Depending on the number of
696 samples, we used the following output settings. For libraries with 70 or more samples (2 libraries),
697 75 bp paired end sequencing was performed in high-output mode to generate approximately $360 \times$
698 10^6 reads. For libraries with 50 or fewer samples (5 libraries), 75 bp paired end sequencing was
699 performed in mid-output mode to generate approximately 120×10^6 reads. Read coverage ranged
700 from 9 to 35 with a median coverage of 28 across all libraries. Sequence data de-multiplexing was

701 performed by UMGC. Data are currently being deposited into the NIH Sequence Read Archive.

702 **QTL Mapping**

703 **Raw Sequence Data Processing**

704 We processed sequencing data to identify QTLs using a previously-described approach for genetic
705 mapping by bulk segregant analysis^{44, 71, 73}. We initially filtered reads to include only those reads
706 with mapping quality scores greater than 30. We aligned the filtered reads to the *S. cerevisiae*
707 reference genome (version sacCer3) using BWA⁹⁵ (command: “mem -t 24”). We then used sam-
708 tools to remove mismatches and PCR duplicates (command: “samtools rmdup -S”). Finally, we
709 produced vcf files containing coverage and allelic read counts at each of 18,871 high-confidence,
710 reliable SNPs^{44, 96} (command: “samtools mpileup -vu -t INFO/AD -l”). Because the BY strain is
711 closely related to the S288C *S. cerevisiae* strain, we used BY alleles as reference and RM alleles as
712 alternative alleles.

713 **QTL Mapping**

714 We used the vcf files generated by our raw sequence read processing to detect UPS activity QTLs.
715 We used the MULTIPOOL algorithm to identify significant QTLs⁹⁷. MULTIPOOL estimates
716 logarithm of the odds (LOD) scores, which we used to identify QTLs exceeding an empirically-
717 derived significance threshold (see below). We used MULTIPOOL with the following settings: bp
718 per centiMorgan = 2,200, bin size = 100 bp, effective pool size = 1,000. As in previous QTL mapping
719 in the BY/RM cross by bulk segregant analysis, we excluded variants with alleles with frequencies
720 higher than 0.9 or lower than 0.1^{71, 73}. We also used MULTIPOOL to estimate confidence intervals
721 for each significant QTL, which we defined as a 2-LOD drop from the QTL peak position. To
722 visualize QTLs and gauge their effects, we also computed the allele frequency differences (ΔAF)
723 at each site between our high and low UPS activity pools. Because allele frequencies are affected
724 by random counting noise, we used loess regression to smooth the allele frequency for each sample
725 before computing ΔAF . We used the smoothed values to plot the ΔAF distribution and visualize
726 the association of alleles with UPS activity.

727 **Null Sorts and Empirical False Discovery Rate Estimation**

728 We used a subset of our segregant populations to empirically estimate the false discovery rate
729 (FDR) of our QTL mapping method. We collected 2 separate populations of 20,000 fluorescence-
730 positive, unsorted cells from 8 independently-derived segregant populations. We included these
731 populations in our whole-genome sequencing and used the resultant data to estimate the FDR.
732 Because these cells are obtained from the same unsorted population in the same sample, any ΔAF
733 differences between them are likely the result of technical noise or random variation. We permuted

734 these comparisons across segregant populations with the same TFT reporter for a total of 112 null
735 comparisons. We define the “null QTL rate” at a given LOD threshold as the number of QTLs
736 that exceeded the threshold in these comparisons divided by the number of null comparisons. To
737 determine the FDR for a given LOD score, we then determined the number of QTLs for our
738 experimental comparisons (extreme high TFT ratio versus extreme low TFT ratio). We define
739 the “experimental QTL rate” as the number of experimental QTLs divided by the number of
740 experimental comparisons. We then computed the FDR as follows:

$$741 \text{null QTL rate} = \frac{n. \text{ null QTLs}}{n. \text{ null comparisons}}$$

$$742 \text{experimental QTL rate} = \frac{n. \text{ experimental QTLs}}{n. \text{ experimental comparisons}}$$

$$743 \text{FDR} = \frac{\text{null QTL rate}}{\text{experimental QTL rate}}$$

744

745 We evaluated the FDR over a LOD range of 2.5 to 10 in 0.5 LOD increments. We found that
746 a LOD value of 4.5 led to a null QTL rate of 0.0625 and an FDR of 0.507% and we used this
747 value as our significance threshold for QTL mapping. We further filtered our QTL list by excluding
748 QTLs that were not detected in each of two independent biological replicates. Replicating QTLs
749 were defined as those whose peaks were within 100 kB of each other on the same chromosome with
750 the same direction (positive or negative) of allele frequency difference between high and low UPS
751 activity pools.

752 QTL Fine-Mapping

753 We used “CRISPR-Swap”, a two-step method for scarless allelic editing, to fine-map QTLs to the
754 level of their causal genes and nucleotides⁷⁷. In the first step of CRISPR-Swap, a gene of interest
755 (GOI) is deleted and replaced with a selectable marker. In the second step, cells are co-transformed
756 with (1) a plasmid with CRISPR-cas9 and a guide RNA targeting the selectable marker used to
757 remove the GOI and (2) a repair template encoding the desired allele of the GOI.

758

759 We used CRISPR-Swap to generate BY strains harboring the RM *UBR1* allele, as well as a series
760 of chimeric BY/RM *UBR1* alleles, as described below. To do so, we first replaced the *UBR1* gene
761 in BY with the NatMX selectable marker by transforming a PCR product encoding the NatMX
762 cassette with 40 bp 5' and 3' overhangs homologous to *UBR1*. To generate the *NatMX::ubr1Δ*
763 transformation fragment, we PCR amplified NatMX from Addgene plasmid #35121 using primers
764 OFA1102 and OFA1103 (sequences in Supplementary Table 1) using Phusion Hot Start Flex DNA
765 polymerase (NEB). The NatMX cassette was transformed into the BY strain using the methods

766 described above and transformants were plated onto YPD medium containing clonNAT. We verified
767 the deletion of the wild-type *UBR1* allele from single-colony purified transformants by colony PCR
768 (primer sequences listed in Supplementary Table 6).

769

770 We then modified the original CRISPR-Swap plasmid (PFA0055, Addgene plasmid #131774)
771 to replace its *LEU2* selectable marker with the *HIS3* selectable marker, creating plasmid PFA0227
772 (Supplementary Table 7). To build PFA0277, we first digested PFA0055 with restriction enzymes
773 BsmBI-v2 and HpaI to remove the *LEU2* selectable marker. We synthesized the *S. cerevisiae* *HIS3*
774 selectable marker from plasmid pRS313⁹⁸ with 20 base pairs of overlap to BsmBI-v2/HpaI-digested
775 PFA0055 on both ends. We used this synthetic *HIS3* fragment and BsmBI-v2/HpaI-digested
776 PFA0055 to create plasmid PFA0227 by isothermal assembly cloning using the HiFi Assembly
777 Cloning Kit (NEB) according to the manufacturer's instructions. In addition to the *HIS3* selectable
778 marker, PFA0227 contains the cas9 gene driven by the constitutively active *TDH3* promoter and a
779 guide RNA, gCASS5a, that directs cleavage of a site immediately upstream of the *TEF* promoter
780 used to drive expression of the MX series of selectable markers^{77,90}. We verified the sequence of
781 PFA0227 by Sanger sequencing.

782

783 We used genomic DNA from BY and RM strains to use for PCR amplifying *UBR1* repair
784 templates for the second step of CRISPR-Swap. Genomic DNA was extracted from BY and RM
785 strains using the “10 minute prep” protocol⁹⁹. We amplified full-length *UBR1* repair templates
786 from RM and BY containing the gene’s promoter, open-reading frame (ORF), and terminator
787 using Phusion Hot Start Flex DNA polymerase (NEB). We also created chimeric repair templates
788 containing combinations of BY and RM alleles using PCR splicing by overlap extension¹⁰⁰. Table
789 4 lists the repair templates used for CRISPR swap:

Name	Promoter	ORF	Terminator
<i>UBR1</i> BY	BY	BY	BY
<i>UBR1</i> RM	RM	RM	RM
<i>UBR1</i> RM pr	RM	BY	BY
<i>UBR1</i> RM ORF	BY	RM	BY
<i>UBR1</i> RM term	BY	BY	RM
<i>UBR1</i> -469A>T	-469, RM; all other, BY	BY	BY
<i>UBR1</i> -197T>G	-197, RM; all other, BY	BY	BY

Table 4: *UBR1* CRISPR-Swap repair templates.

790 The sequence of all repair templates was verified by Sanger sequencing.

791

792 To create *UBR1* allele swap strains, we co-transformed BY strains with 200 ng of plasmid
793 PFA0227 and 1.5 μ g of *UBR1* repair template. Transformants were selected and single colony pu-
794 rified on synthetic complete medium lacking histidine and then patched onto solid YPD medium.
795 We tested each strain for the desired exchange of the NatMX selectable marker with a *UBR1* allele
796 by patching strains onto solid YPD medium containing clonNAT. We then verified allelic exchange
797 in strains lacking ClonNAT resistance by colony PCR. We kept 8 independently-derived biological
798 replicates of each allele swap strain. To test the effects of each allele swap, we transformed a subset
799 of TFTs into our allele swap strains and characterized TFT reporter activity by flow cytometry
800 using the methods described above.

801

802 **Data Analysis**

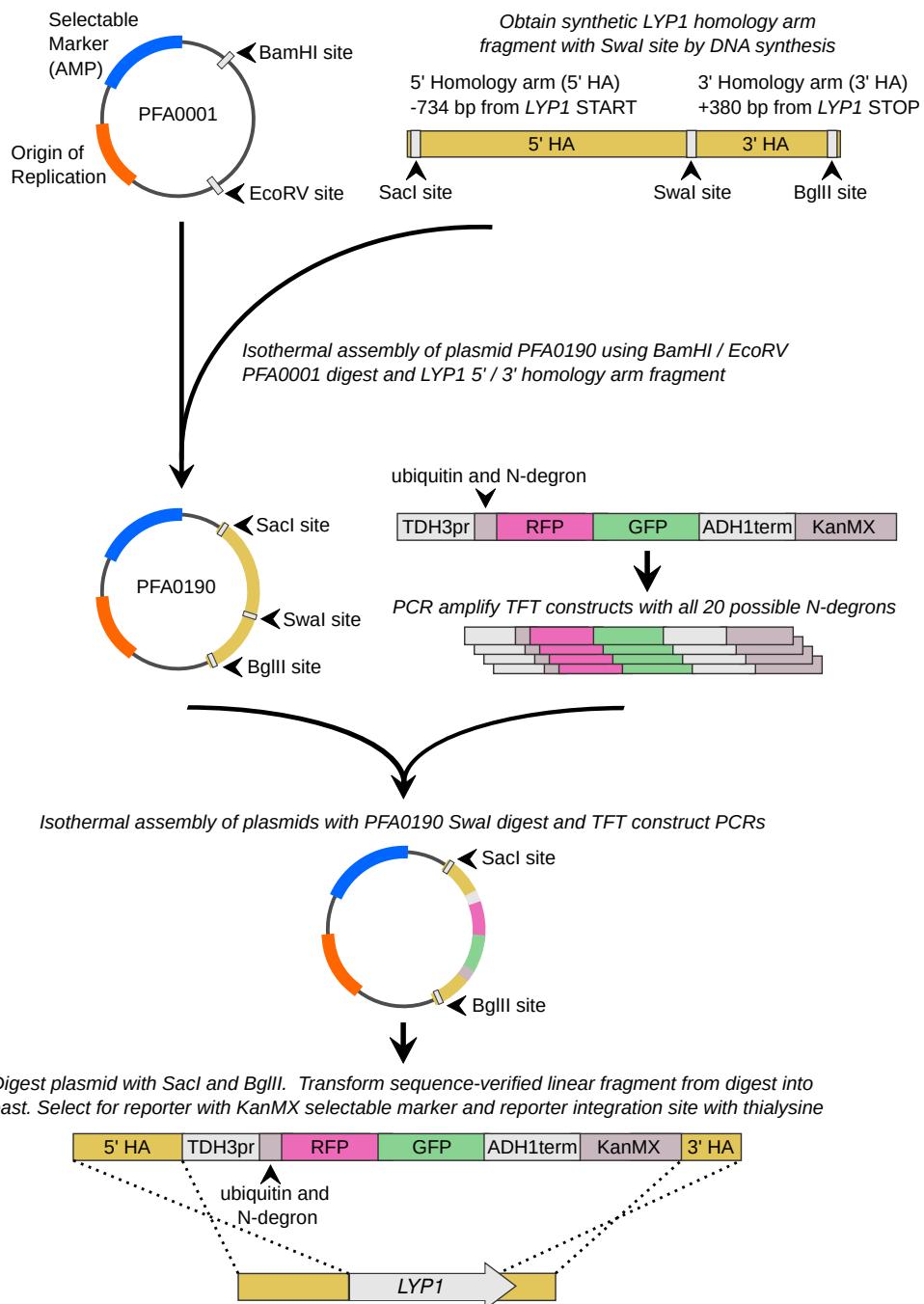
803 All data were analyzed using R (version 3.6). Computational scripts used to process data, for
804 statistical analysis and to generate figures are available at http://www.github.com/mac230/UPS_QTL_paper. Final figures and illustrations were made using Inkscape.
805

806 Acknowledgements

807 We thank Leonid Kruglyak for the BY and RM yeast strains and Michael Knop for technical
808 assistance in implementing the TFT reporter system. We thank the University of Minnesota's
809 Flow Cytometry Resource and Genomics Center for their contributions to the project. We thank
810 the members of the Albert laboratory and the BioKansas Scientific Writing Program for critical
811 feedback on the manuscript.

812 Competing Interests

813 The authors declare that they have no competing interests.


814 Funding

815 This work was supported by NIH grants F32-GM128302 to MAC and R35-GM124676 to FWA, as
816 well as a Pew Scholarship in the Biomedical Sciences from the Pew Charitable Trusts to FWA.

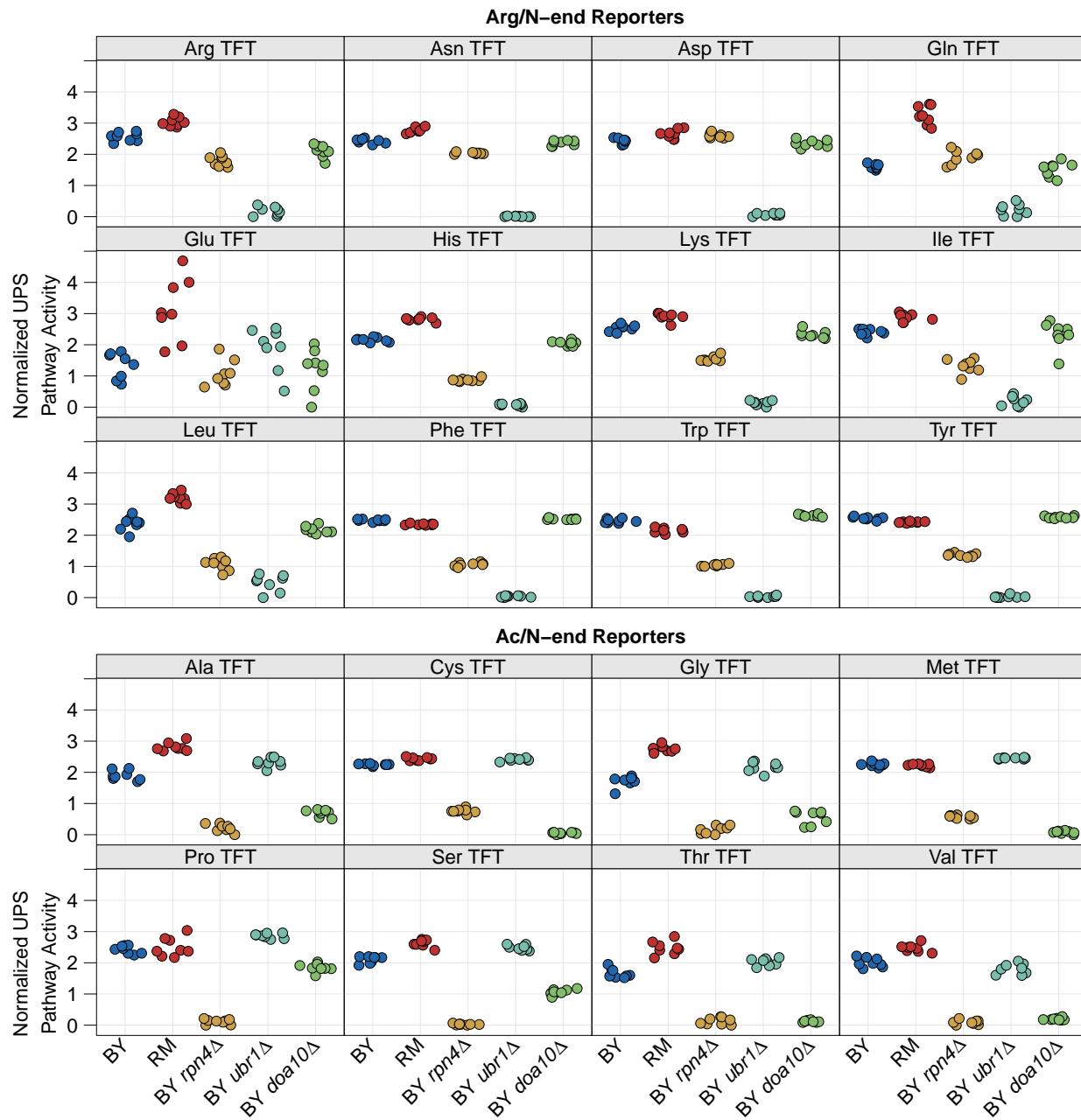
817 Supplementary Materials

818 The following supplementary materials are included with this manuscript:
819 Supplementary Figures 1-6
820 Supplementary Tables 1-8
821 Supplementary File 1: Allele frequency difference and LOD traces for the 20 N-degron TFT QTL
822 mapping experiments


823 **Supplementary Figures**

824

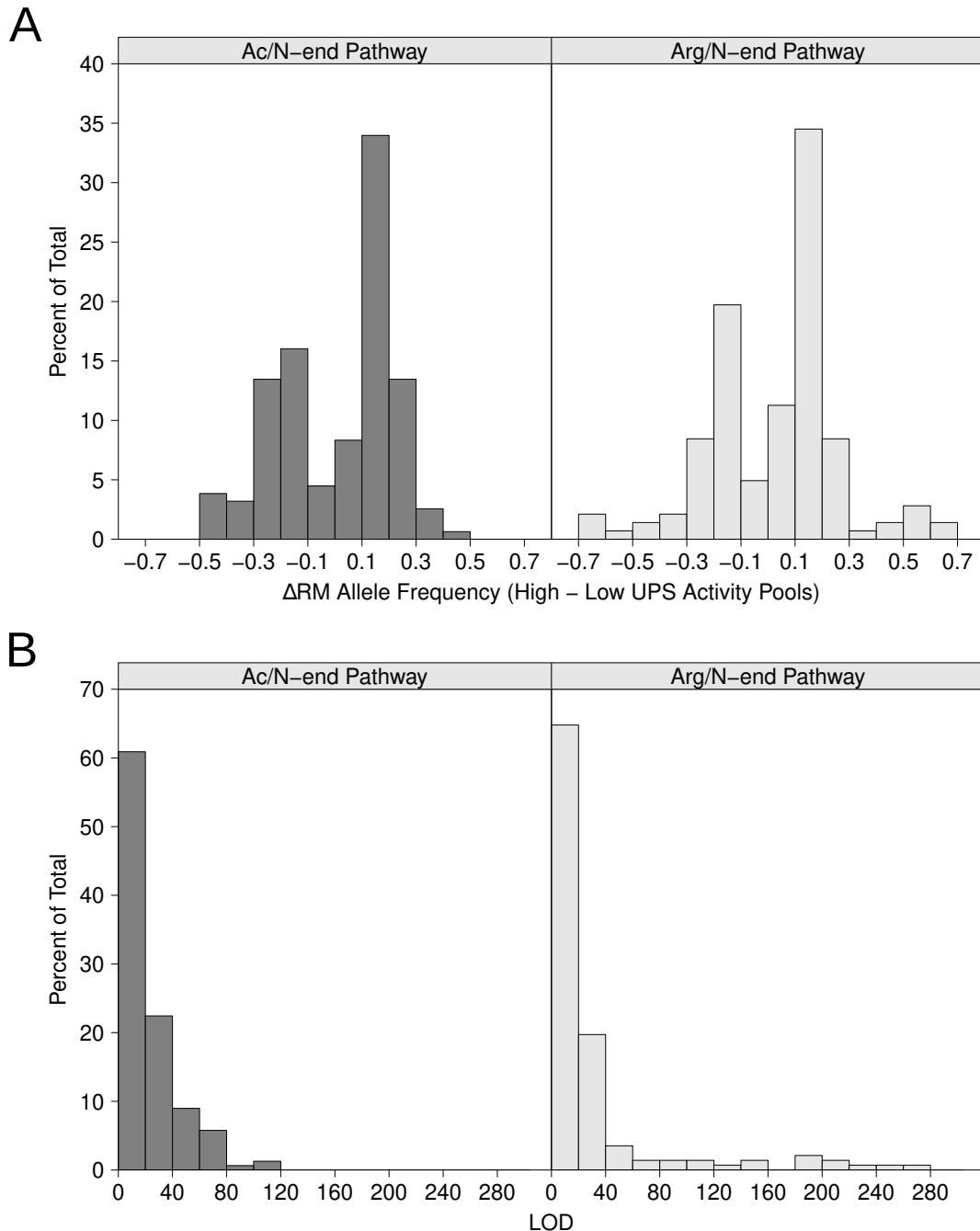
825 **Supplementary Figure 1:** Overview of the constructs and strain construction steps used to
 826 generate yeast strains harboring TFT UPS activity reporters.


827

828

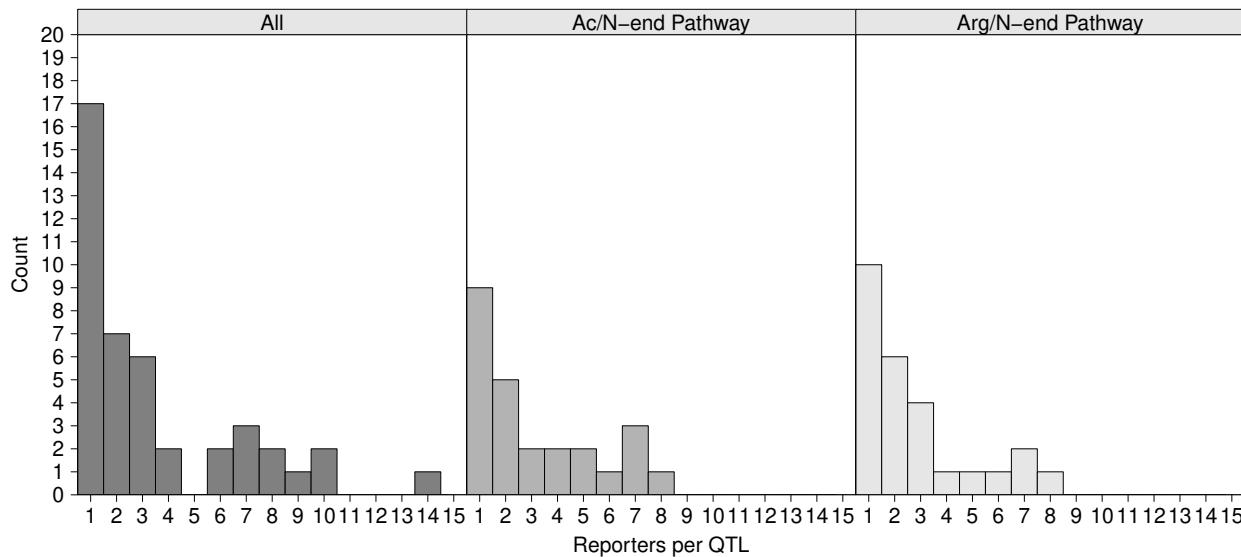

829 **Supplementary Figure 2:** TFT Ratio Density Plots. TFT ratio plots for the full set of 20
830 N-degrons and strains are shown. N-degrons are separated by pathway. Because we used the same
831 flow cytometry settings to acquire all data, there is some fluctuation around 0 for the RFP/GFP
832 ratios for strains in which the TFT is stabilized. The thin lines show the density values for 10,000
833 cells each for each of 8 independent biological replicates per strain per reporter. Thick lines show
834 the average for each strain and reporter.

835


836

837 **Supplementary Figure 3: N-Degron Strip Plots.** The UPS activity for each N-degron and strain
 838 are shown as strip plots. N-degrons are separated by pathway. The median value was extracted
 839 from 10,000 cells from each of 8 independent biological replicates per strain per reporter. The data
 840 was converted to Z-scores and scaled such that high values correspond to high UPS activity and
 841 low values correspond to low UPS activity.

842


843 **Supplementary Figure 4:** Analysis of replicating and non-replicating UPS activity QTLs. A.
844 Allele frequency difference histograms for non-replicating (left) and replicating QTLs (right). B.
845 As in A, but for LOD score.

846

847 **Supplementary Figure 5:** Analysis of Ac/N-end and Arg/N-end QTLs. A. Allele frequency
848 difference histograms for Ac/N-end (left) and Arg/N-end QTLs (right). B. As in A, but for LOD
849 SCORE.

850

851

852 **Supplementary Figure 6:** N-degron QTL Specificity. The histograms show the number of N-
853 degrons affected by individual QTLs for all N-degrons (left), Ac/N-degrons (middle), and Arg/N-
854 degrons (right).

855 References

856 ¹ J. Hanna and D. Finley. A proteasome for all occasions. *FEBS Lett*, 581(15):2854–2861, Jun
857 2007.

858 ² S. Bhattacharyya, H. Yu, C. Mim, and A. Matouschek. Regulated protein turnover: snapshots
859 of the proteasome in action. *Nat Rev Mol Cell Biol*, 15(2):122–133, Feb 2014.

860 ³ C. Pohl and I. Dikic. Cellular quality control by the ubiquitin-proteasome system and autophagy.
861 *Science*, 366(6467):818–822, 11 2019.

862 ⁴ T. Tasaki and Y. T. Kwon. The mammalian N-end rule pathway: new insights into its compo-
863 nents and physiological roles. *Trends Biochem Sci*, 32(11):520–528, Nov 2007.

864 ⁵ C. S. Hwang and A. Varshavsky. Regulation of peptide import through phosphorylation of Ubr1,
865 the ubiquitin ligase of the N-end rule pathway. *Proc Natl Acad Sci U S A*, 105(49):19188–19193,
866 Dec 2008.

867 ⁶ G. C. Turner, F. Du, and A. Varshavsky. Peptides accelerate their uptake by activating a
868 ubiquitin-dependent proteolytic pathway. *Nature*, 405(6786):579–583, Jun 2000.

869 ⁷ Z. Xia, G. C. Turner, C. S. Hwang, C. Byrd, and A. Varshavsky. Amino acids induce peptide
870 uptake via accelerated degradation of CUP9, the transcriptional repressor of the PTR2 peptide
871 transporter. *J Biol Chem*, 283(43):28958–28968, Oct 2008.

872 ⁸ R. G. Hu, H. Wang, Z. Xia, and A. Varshavsky. The N-end rule pathway is a sensor of heme.
873 *Proc Natl Acad Sci U S A*, 105(1):76–81, Jan 2008.

874 ⁹ K. Madura and A. Varshavsky. Degradation of G alpha by the N-end rule pathway. *Science*,
875 265(5177):1454–1458, Sep 1994.

876 ¹⁰ N. Baloghova, T. Lidak, and L. Cermak. Ubiquitin Ligases Involved in the Regulation of Wnt,
877 TGF-, and Notch Signaling Pathways and Their Roles in Mouse Development and Homeostasis.
878 *Genes (Basel)*, 10(10), 10 2019.

879 ¹¹ K. Flick and P. Kaiser. Protein degradation and the stress response. *Semin Cell Dev Biol*,
880 23(5):515–522, Jul 2012.

881 ¹² S. Jain, J. R. Wheeler, R. W. Walters, A. Agrawal, A. Barsic, and R. Parker. ATPase-Modulated
882 Stress Granules Contain a Diverse Proteome and Substructure. *Cell*, 164(3):487–498, Jan 2016.

883 ¹³ J. S. Bett. Proteostasis regulation by the ubiquitin system. *Essays Biochem*, 60(2):143–151, 10
884 2016.

885 14 B. Mészáros, M. Kumar, T. J. Gibson, B. Uyar, and Z. Dosztányi. Degrons in cancer. *Sci
886 Signal*, 10(470), Mar 2017.

887 15 C. W. Fhu and A. Ali. Dysregulation of the Ubiquitin Proteasome System in Human Malig-
888 nancies: A Window for Therapeutic Intervention. *Cancers (Basel)*, 13(7), Mar 2021.

889 16 N. P. Dantuma and L. C. Bott. The ubiquitin-proteasome system in neurodegenerative diseases:
890 precipitating factor, yet part of the solution. *Front Mol Neurosci*, 7:70, 2014.

891 17 J. M. Deger, J. E. Gerson, and R. Kayed. The interrelationship of proteasome impairment and
892 oligomeric intermediates in neurodegeneration. *Aging Cell*, 14(5):715–724, Oct 2015.

893 18 C. Zheng, T. Geetha, and J. R. Babu. Failure of ubiquitin proteasome system: risk for neurode-
894 generative diseases. *Neurodegener Dis*, 14(4):161–175, 2014.

895 19 A. Nencioni, F. Grunebach, F. Patrone, A. Ballestrero, and P. Brossart. The proteasome and
896 its inhibitors in immune regulation and immune disorders. *Crit Rev Immunol*, 26(6):487–498,
897 2006.

898 20 A. L. Schwartz and A. Ciechanover. The ubiquitin-proteasome pathway and pathogenesis of
899 human diseases. *Annu Rev Med*, 50:57–74, 1999.

900 21 S. S. Wing. The UPS in diabetes and obesity. *BMC Biochem*, 9 Suppl 1:S6, Oct 2008.

901 22 S. S. Thomas and W. E. Mitch. Mechanisms stimulating muscle wasting in chronic kidney dis-
902 ease: the roles of the ubiquitin-proteasome system and myostatin. *Clin Exp Nephrol*, 17(2):174–
903 182, Apr 2013.

904 23 D. Sepulveda-Falla, L. Chavez-Gutierrez, E. Portelius, J. I. Vélez, S. Dujardin, A. Barrera-
905 Ocampo, F. Dinkel, C. Hagel, B. Puig, C. Mastronardi, F. Lopera, B. T. Hyman, K. Blennow,
906 M. Arcos-Burgos, B. de Strooper, and M. Glatzel. A multifactorial model of pathology for age of
907 onset heterogeneity in familial Alzheimer's disease. *Acta Neuropathol*, 141(2):217–233, 02 2021.

908 24 T. Sjakste, N. Paramonova, I. Rumba-Rozenfelde, I. Trapina, O. Sugoka, and N. Sjakste. Ju-
909 venile idiopathic arthritis subtype- and sex-specific associations with genetic variants in the
910 PSMA6/PSMC6/PSMA3 gene cluster. *Pediatr Neonatol*, 55(5):393–403, Oct 2014.

911 25 I. Garcia-Martínez, C. Sánchez-Mora, M. Soler Artigas, P. Rovira, M. Pagerols, M. Corrales,
912 E. Calvo-Sánchez, V. Richarte, M. Bustamante, J. Sunyer, B. Cormand, M. Casas, J. A. Ramos-
913 Quiroga, and M. Ribasés. Gene-wide Association Study Reveals RNF122 Ubiquitin Ligase as a
914 Novel Susceptibility Gene for Attention Deficit Hyperactivity Disorder. *Sci Rep*, 7(1):5407, 07
915 2017.

916 26 M. Zenker, J. Mayerle, M. M. Lerch, A. Tagariello, K. Zerres, P. R. Durie, M. Beier,
917 G. Hülskamp, C. Guzman, H. Rehder, F. A. Beemer, B. Hamel, P. Vanlieferinghen, R. Gershoni-
918 Baruch, M. W. Vieira, M. Dumanic, R. Auslender, V. L. Gil-da Silva-Lopes, S. Steinlicht, M. Rauh,
919 S. A. Shalev, C. Thiel, A. B. Ekici, A. Winterpacht, Y. T. Kwon, A. Varshavsky, and A. Reis.
920 Deficiency of UBR1, a ubiquitin ligase of the N-end rule pathway, causes pancreatic dysfunction,
921 malformations and mental retardation (Johanson-Blizzard syndrome). *Nat Genet*, 37(12):1345–
922 1350, Dec 2005.

923 27 K. Arima, A. Kinoshita, H. Mishima, N. Kanazawa, T. Kaneko, T. Mizushima, K. Ichinose,
924 H. Nakamura, A. Tsujino, A. Kawakami, M. Matsunaka, S. Kasagi, S. Kawano, S. Kumagai,
925 K. Ohmura, T. Mimori, M. Hirano, S. Ueno, K. Tanaka, M. Tanaka, I. Toyoshima, H. Sug-
926 ino, A. Yamakawa, K. Tanaka, N. Niikawa, F. Furukawa, S. Murata, K. Eguchi, H. Ida, and
927 K. Yoshiura. Proteasome assembly defect due to a proteasome subunit beta type 8 (PSMB8)
928 mutation causes the autoinflammatory disorder, Nakajo-Nishimura syndrome. *Proc Natl Acad
929 Sci U S A*, 108(36):14914–14919, Sep 2011.

930 28 H. X. Deng, W. Chen, S. T. Hong, K. M. Boycott, G. H. Gorrie, N. Siddique, Y. Yang, F. Fecto,
931 Y. Shi, H. Zhai, H. Jiang, M. Hirano, E. Rampersaud, G. H. Jansen, S. Donkervoort, E. H.
932 Bigio, B. R. Brooks, K. Ajroud, R. L. Sufit, J. L. Haines, E. Mugnaini, M. A. Pericak-Vance,
933 and T. Siddique. Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset ALS
934 and ALS/dementia. *Nature*, 477(7363):211–215, Aug 2011.

935 29 A. Varshavsky. Naming a targeting signal. *Cell*, 64(1):13–15, Jan 1991.

936 30 A. Ciechanover, A. Orian, and A. L. Schwartz. Ubiquitin-mediated proteolysis: biological reg-
937 ulation via destruction. *Bioessays*, 22(5):442–451, May 2000.

938 31 A. Hershko and A. Ciechanover. The ubiquitin system. *Annu Rev Biochem*, 67:425–479, 1998.

939 32 J. A. M. Bard, E. A. Goodall, E. R. Greene, E. Jonsson, K. C. Dong, and A. Martin. Structure
940 and Function of the 26S Proteasome. *Annu Rev Biochem*, 87:697–724, 06 2018.

941 33 A. Varshavsky. The N-end rule pathway and regulation by proteolysis. *Protein Sci.*, 20(8):1298–
942 1345, Aug 2011.

943 34 G. Mannhaupt, R. Schnall, V. Karpov, I. Vetter, and H. Feldmann. Rpn4p acts as a transcription
944 factor by binding to PACE, a nonamer box found upstream of 26S proteasomal and other genes
945 in yeast. *FEBS Lett*, 450(1-2):27–34, Apr 1999.

946 35 Y. Xie and A. Varshavsky. RPN4 is a ligand, substrate, and transcriptional regulator of the 26S
947 proteasome: a negative feedback circuit. *Proc. Natl. Acad. Sci. U.S.A.*, 98(6):3056–3061, Mar
948 2001.

949 36 J. J. S. VerPlank and A. L. Goldberg. Regulating protein breakdown through proteasome
950 phosphorylation. *Biochem J*, 474(19):3355–3371, 09 2017.

951 37 G. A. Collins and A. L. Goldberg. The Logic of the 26S Proteasome. *Cell*, 169(5):792–806, May
952 2017.

953 38 K. Zientara-Rytter and A. Sirko. To deliver or to degrade - an interplay of the ubiquitin-
954 proteasome system, autophagy and vesicular transport in plants. *FEBS J*, 283(19):3534–3555,
955 10 2016.

956 39 R. S. Marshall and R. D. Vierstra. Dynamic Regulation of the 26S Proteasome: From Synthesis
957 to Degradation. *Front Mol Biosci*, 6:40, 2019.

958 40 T. F. Mackay, E. A. Stone, and J. F. Ayroles. The genetics of quantitative traits: challenges
959 and prospects. *Nat Rev Genet*, 10(8):565–577, Aug 2009.

960 41 M. Civelek and A. J. Lusis. Systems genetics approaches to understand complex traits. *Nat Rev
961 Genet*, 15(1):34–48, Jan 2014.

962 42 F. W. Albert and L. Kruglyak. The role of regulatory variation in complex traits and disease.
963 *Nat. Rev. Genet.*, 16(4):197–212, Apr 2015.

964 43 I. M. Ehrenreich, J. P. Gerke, and L. Kruglyak. Genetic dissection of complex traits in yeast:
965 insights from studies of gene expression and other phenotypes in the BYxRM cross. *Cold Spring
966 Harb Symp Quant Biol*, 74:145–153, 2009.

967 44 I. M. Ehrenreich, N. Torabi, Y. Jia, J. Kent, S. Martis, J. A. Shapiro, D. Gresham, A. A. Caudy,
968 and L. Kruglyak. Dissection of genetically complex traits with extremely large pools of yeast
969 segregants. *Nature*, 464(7291):1039–1042, Apr 2010.

970 45 F. W. Albert, J. S. Bloom, J. Siegel, L. Day, and L. Kruglyak. Genetics of trans-regulatory
971 variation in gene expression. *Elife*, 7, 07 2018.

972 46 M. A. Eldeeb, R. Siva-Piragasam, M. A. Ragheb, M. Esmaili, M. Salla, and R. P. Fahlman.
973 A molecular toolbox for studying protein degradation in mammalian cells. *J Neurochem*,
974 151(4):520–533, 2019.

975 47 H. Ella, Y. Reiss, and T. Ravid. The Hunt for Degrons of the 26S Proteasome. *Biomolecules*,
976 9(6), 06 2019.

977 48 A. Khmelinskii and M. Knop. Analysis of protein dynamics with tandem fluorescent protein
978 timers. *Methods Mol. Biol.*, 1174:195–210, 2014.

979 49 A. Khmelinskii, P. J. Keller, A. Bartosik, M. Meurer, J. D. Barry, B. R. Mardin, A. Kaufmann,
980 S. Trautmann, M. Wachsmuth, G. Pereira, W. Huber, E. Schiebel, and M. Knop. Tandem
981 fluorescent protein timers for in vivo analysis of protein dynamics. *Nat. Biotechnol.*, 30(7):708–
982 714, Jun 2012.

983 50 I. Kats, A. Khmelinskii, M. Kschonsak, F. Huber, R. A. Knieß, A. Bartosik, and M. Knop.
984 Mapping Degradation Signals and Pathways in a Eukaryotic N-terminome. *Mol Cell*, 70(3):488–
985 501, 05 2018.

986 51 I. Koren, R. T. Timms, T. Kula, Q. Xu, M. Z. Li, and S. J. Elledge. The Eukaryotic Proteome
987 Is Shaped by E3 Ubiquitin Ligases Targeting C-Terminal Degrons. *Cell*, 173(7):1622–1635, 06
988 2018.

989 52 H. C. Lin, C. W. Yeh, Y. F. Chen, T. T. Lee, P. Y. Hsieh, D. V. Rusnac, S. Y. Lin, S. J. Elledge,
990 N. Zheng, and H. S. Yen. C-Terminal End-Directed Protein Elimination by CRL2 Ubiquitin
991 Ligases. *Mol. Cell*, 70(4):602–613, 05 2018.

992 53 A. Khmelinskii, E. Blaszcak, M. Pantazopoulou, B. Fischer, D. J. Omrus, G. Le Dez,
993 A. Brossard, A. Gunnarsson, J. D. Barry, M. Meurer, D. Kirrmaier, C. Boone, W. Huber,
994 G. Rabut, P. O. Ljungdahl, and M. Knop. Protein quality control at the inner nuclear mem-
995 brane. *Nature*, 516(7531):410–413, Dec 2014.

996 54 A. Khmelinskii, M. Meurer, C. T. Ho, B. Besenbeck, J. F?ller, M. K. Lemberg, B. Bukau,
997 A. Mogk, and M. Knop. Incomplete proteasomal degradation of green fluorescent proteins in
998 the context of tandem fluorescent protein timers. *Mol. Biol. Cell*, 27(2):360–370, Jan 2016.

999 55 A. Varshavsky. N-degron and C-degron pathways of protein degradation. *Proc Natl Acad Sci U
1000 S A*, 116(2):358–366, 01 2019.

1001 56 A. Bachmair, D. Finley, and A. Varshavsky. In vivo half-life of a protein is a function of its
1002 amino-terminal residue. *Science*, 234(4773):179–186, Oct 1986.

1003 57 B. Bartel, I. W?nning, and A. Varshavsky. The recognition component of the N-end rule path-
1004 way. *EMBO J.*, 9(10):3179–3189, Oct 1990.

1005 58 C. S. Hwang, A. Shemorry, and A. Varshavsky. N-terminal acetylation of cellular proteins
1006 creates specific degradation signals. *Science*, 327(5968):973–977, Feb 2010.

1007 59 A. Bachmair and A. Varshavsky. The degradation signal in a short-lived protein. *Cell*,
1008 56(6):1019–1032, Mar 1989.

1009 60 A. Varshavsky. Ubiquitin fusion technique and related methods. *Meth. Enzymol.*, 399:777–799,
1010 2005.

1011 61 R. B. Brem and L. Kruglyak. The landscape of genetic complexity across 5,700 gene expression
1012 traits in yeast. *Proc Natl Acad Sci U S A*, 102(5):1572–1577, Feb 2005.

1013 62 S. Treusch, F. W. Albert, J. S. Bloom, I. E. Kotenko, and L. Kruglyak. Genetic mapping of
1014 MAPK-mediated complex traits Across *S. cerevisiae*. *PLoS Genet*, 11(1):e1004913, Jan 2015.

1015 63 D. K. Gonda, A. Bachmair, I. Wünnig, J. W. Tobias, W. S. Lane, and A. Varshavsky. Universality
1016 and structure of the N-end rule. *J Biol Chem*, 264(28):16700–16712, Oct 1989.

1017 64 E. S. Johnson, P. C. Ma, I. M. Ota, and A. Varshavsky. A proteolytic pathway that recognizes
1018 ubiquitin as a degradation signal. *J Biol Chem*, 270(29):17442–17456, Jul 1995.

1019 65 R. W. Michelmore, I. Paran, and R. V. Kesseli. Identification of markers linked to disease-
1020 resistance genes by bulked segregant analysis: a rapid method to detect markers in specific
1021 genomic regions by using segregating populations. *Proc Natl Acad Sci U S A*, 88(21):9828–9832,
1022 Nov 1991.

1023 66 A. Baryshnikova, M. Costanzo, S. Dixon, F. J. Vizeacoumar, C. L. Myers, B. Andrews, and
1024 C. Boone. Synthetic genetic array (SGA) analysis in *Saccharomyces cerevisiae* and *Schizosac-*
1025 *charomyces pombe*. *Methods Enzymol*, 470:145–179, 2010.

1026 67 E. Kuzmin, M. Costanzo, B. Andrews, and C. Boone. Synthetic Genetic Array Analysis. *Cold*
1027 *Spring Harb Protoc*, 2016(4):pdb.prot088807, Apr 2016.

1028 68 T. Gilon, O. Chomsky, and R. G. Kulka. Degradation signals recognized by the Ubc6p-Ubc7p
1029 ubiquitin-conjugating enzyme pair. *Mol Cell Biol*, 20(19):7214–7219, Oct 2000.

1030 69 T. Sommer and S. Jentsch. A protein translocation defect linked to ubiquitin conjugation at
1031 the endoplasmic reticulum. *Nature*, 365(6442):176–179, Sep 1993.

1032 70 F. W. Albert, D. Muzzey, J. S. Weissman, and L. Kruglyak. Genetic influences on translation
1033 in yeast. *PLoS Genet*, 10(10):e1004692, Oct 2014.

1034 71 F. W. Albert, S. Treusch, A. H. Shockley, J. S. Bloom, and L. Kruglyak. Genetics of single-cell
1035 protein abundance variation in large yeast populations. *Nature*, 506(7489):494–497, Feb 2014.

1036 72 G. Yvert, R. B. Brem, J. Whittle, J. M. Akey, E. Foss, E. N. Smith, R. Mackelprang, and
1037 L. Kruglyak. Trans-acting regulatory variation in *Saccharomyces cerevisiae* and the role of
1038 transcription factors. *Nat Genet*, 35(1):57–64, Sep 2003.

1039 73 C. Brion, S. M. Lutz, and F. W. Albert. Simultaneous quantification of mRNA and protein in
1040 single cells reveals post-transcriptional effects of genetic variation. *Elife*, 9, Nov 2020.

1041 74 M. Gaisne, A. M. Bécam, J. Verdière, and C. J. Herbert. A 'natural' mutation in *Saccharomyces*
1042 *cerevisiae* strains derived from S288c affects the complex regulatory gene HAP1 (CYP1). *Curr*
1043 *Genet*, 36(4):195–200, Oct 1999.

1044 75 R. B. Wickner. MKT1, a nonessential *Saccharomyces cerevisiae* gene with a temperature-
1045 dependent effect on replication of M2 double-stranded RNA. *J Bacteriol*, 169(11):4941–4945,
1046 Nov 1987.

1047 76 T. Icho, H. S. Lee, S. S. Sommer, and R. B. Wickner. Molecular characterization of chromosomal
1048 genes affecting double-stranded RNA replication in *Saccharomyces cerevisiae*. *Basic Life Sci*,
1049 40:165–171, 1986.

1050 77 S. Lutz, C. Brion, M. Kliebhan, and F. W. Albert. DNA variants affecting the expression of
1051 numerous genes in trans have diverse mechanisms of action and evolutionary histories. *PLoS*
1052 *Genet*, 15(11):e1008375, 11 2019.

1053 78 I. M. Ehrenreich, J. Bloom, N. Torabi, X. Wang, Y. Jia, and L. Kruglyak. Genetic architecture of
1054 highly complex chemical resistance traits across four yeast strains. *PLoS Genet*, 8(3):e1002570,
1055 2012.

1056 79 M. Sukalo, A. Fiedler, C. Guzmán, S. Spranger, M. C. Addor, J. N. McHeik, M. Oltra Benavent,
1057 J. M. Cobben, L. A. Gillis, A. G. Shealy, C. Deshpande, B. Bozorgmehr, D. B. Everman,
1058 E. L. Stattin, J. Liebelt, K. M. Keller, D. R. Bertola, C. D. van Karnebeek, C. Bergmann,
1059 Z. Liu, G. Düker, N. Rezaei, F. S. Alkuraya, G. Oğur, A. Alrajoudi, C. A. Venegas-Vega, N. E.
1060 Verbeek, E. J. Richmond, O. Kirbiyik, P. Ranganath, A. Singh, K. Godbole, F. A. Ali, C. Alves,
1061 J. Mayerle, M. M. Lerch, H. Witt, and M. Zenker. Mutations in the human UBR1 gene and the
1062 associated phenotypic spectrum. *Hum Mutat*, 35(5):521–531, May 2014.

1063 80 X. Li and Y. H. Chang. Amino-terminal protein processing in *Saccharomyces cerevisiae* is an
1064 essential function that requires two distinct methionine aminopeptidases. *Proc Natl Acad Sci U*
1065 *S A*, 92(26):12357–12361, Dec 1995.

1066 81 R. T. Baker and A. Varshavsky. Yeast N-terminal amidase. A new enzyme and component of
1067 the N-end rule pathway. *J Biol Chem*, 270(20):12065–12074, May 1995.

1068 82 K. Renganaath, R. Cheung, L. Day, S. Kosuri, L. Kruglyak, and F. W. Albert. Systematic
1069 identification of cis-regulatory variants that cause gene expression differences in a yeast cross.
1070 *Elife*, 9, Nov 2020.

1071 83 M. Zenker, J. Mayerle, A. Reis, and M. M. Lerch. Genetic basis and pancreatic biology of
1072 Johanson-Blizzard syndrome. *Endocrinol Metab Clin North Am*, 35(2):243–253, Jun 2006.

1073 84 C. S. Hwang, M. Sukalo, O. Batygin, M. C. Addor, H. Brunner, A. P. Aytes, J. Mayerle, H. K.
1074 Song, A. Varshavsky, and M. Zenker. Ubiquitin ligases of the N-end rule pathway: assessment of
1075 mutations in UBR1 that cause the Johanson-Blizzard syndrome. *PLoS One*, 6(9):e24925, 2011.

1076 85 J. D. Pedelacq, S. Cabantous, T. Tran, T. C. Terwilliger, and G. S. Waldo. Engineering and
1077 characterization of a superfolder green fluorescent protein. *Nat. Biotechnol.*, 24(1):79–88, Jan
1078 2006.

1079 86 N. C. Shaner, R. E. Campbell, P. A. Steinbach, B. N. Giepmans, A. E. Palmer, and R. Y. Tsien.
1080 Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp.
1081 red fluorescent protein. *Nat. Biotechnol.*, 22(12):1567–1572, Dec 2004.

1082 87 S. Kredel, F. Oswald, K. Nienhaus, K. Deuschle, C. R?cker, M. Wolff, R. Heilker, G. U. Nien-
1083 haus, and J. Wiedenmann. mRuby, a bright monomeric red fluorescent protein for labeling of
1084 subcellular structures. *PLoS ONE*, 4(2):e4391, 2009.

1085 88 A. Grote, K. Hiller, M. Scheer, R. M?nch, B. N?rtemann, D. C. Hempel, and D. Jahn. JCat: a
1086 novel tool to adapt codon usage of a target gene to its potential expression host. *Nucleic Acids
1087 Res.*, 33(Web Server issue):W526–531, Jul 2005.

1088 89 A. Wach, A. Brachat, R. P?hlmann, and P. Philippsen. New heterologous modules for classical
1089 or PCR-based gene disruptions in *Saccharomyces cerevisiae*. *Yeast*, 10(13):1793–1808, Dec 1994.

1090 90 A. L. Goldstein and J. H. McCusker. Three new dominant drug resistance cassettes for gene
1091 disruption in *Saccharomyces cerevisiae*. *Yeast*, 15(14):1541–1553, Oct 1999.

1092 91 J. H. Zwolshen and J. K. Bhattacharjee. Genetic and biochemical properties of thialysine-
1093 resistant mutants of *Saccharomyces cerevisiae*. *J Gen Microbiol*, 122(2):281–287, Feb 1981.

1094 92 R. D. Gietz and R. H. Schiestl. High-efficiency yeast transformation using the LiAc/SS carrier
1095 DNA/PEG method. *Nat Protoc*, 2(1):31–34, 2007.

1096 93 A. C. Ward. Rapid analysis of yeast transformants using colony-PCR. *Biotechniques*, 13(3):350,
1097 Sep 1992.

1098 94 F. Hahne, N. LeMeur, R. R. Brinkman, B. Ellis, P. Haaland, D. Sarkar, J. Spidlen, E. Strain,
1099 and R. Gentleman. flowCore: a Bioconductor package for high throughput flow cytometry.
1100 *BMC Bioinformatics*, 10:106, Apr 2009.

1101 95 H. Li and R. Durbin. Fast and accurate short read alignment with Burrows-Wheeler transform.
1102 *Bioinformatics*, 25(14):1754–1760, Jul 2009.

1103 96 J. S. Bloom, I. M. Ehrenreich, W. T. Loo, T. L. Lite, and L. Kruglyak. Finding the sources of
1104 missing heritability in a yeast cross. *Nature*, 494(7436):234–237, Feb 2013.

1105 97 M. D. Edwards and D. K. Gifford. High-resolution genetic mapping with pooled sequencing.
1106 *BMC Bioinformatics*, 13 Suppl 6:S8, Apr 2012.

1107 98 R. S. Sikorski and P. Hieter. A system of shuttle vectors and yeast host strains designed for
1108 efficient manipulation of DNA in *Saccharomyces cerevisiae*. *Genetics*, 122(1):19–27, May 1989.

1109 99 C. S. Hoffman and F. Winston. A ten-minute DNA preparation from yeast efficiently releases
1110 autonomous plasmids for transformation of *Escherichia coli*. *Gene*, 57(2-3):267–272, 1987.

1111 100 R. M. Horton, H. D. Hunt, S. N. Ho, J. K. Pullen, and L. R. Pease. Engineering hybrid genes
1112 without the use of restriction enzymes: gene splicing by overlap extension. *Gene*, 77(1):61–68,
1113 Apr 1989.