bioRxiv preprint doi: https://doi.org/10.1101/2021.05.05.442729; this version posted May 5, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

XENet: Using a new graph convolution to accelerate the
timeline for protein design on quantum computers

Jack B. Maguire'”, Daniele Grattarola?, Eugene Klyshko!, Vikram Khipple Mulligan?,
Hans Melo®

1 Menten Al Inc., Palo Alto, CA, USA

2 Faculty of Informatics, Universita della Svizzera italiana, Lugano, Switzerland
3 Department of Physics, University of Toronto, Toronto, ON, Canada

4 Center for Computational Biology, Flatiron Institute, New York, NY, USA

* jbmaguire@menten.ai

Abstract

Graph representations are traditionally used to represent protein structures in sequence
design protocols where the folding pattern is known. This infrequently extends to
machine learning projects: existing graph convolution algorithms have shortcomings
when representing protein environments. One reason for this is the lack of emphasis on
edge attributes during massage-passing operations. Another reason is the traditionally
shallow nature of graph neural network architectures. Here we introduce an improved
message-passing operation that is better equipped to model local kinematics problems
such as protein design. Our approach, XENet, pays special attention to both incoming
and outgoing edge attributes.

We compare XENet against existing graph convolutions in an attempt to decrease
rotamer sample counts in Rosetta’s rotamer substitution protocol. This use case is
motivating because it allows larger protein design problems to fit onto near-term
quantum computers. XENet outperformed competing models while also displaying a
greater tolerance for deeper architectures. We found that XENet was able to decrease
rotamer counts by 40% without loss in quality. This decreased the problem size of our
use case by more than a factor of 3. Additionally, XENet displayed an ability to handle
deeper architectures than competing convolutions.

Author summary

Graphs data structures are ubiquitous in the field of protein design and are at the core
of the recent advances in artificial intelligence brought forth by graph neural networks
(GNNs). GNNs have led to some impressive results in modeling protein interactions, but
are not as common as other tensor representations.

Most GNN architectures tend to put little to no emphasis on the information stored
on edges; however, protein modeling tools often use edges to represent vital geometric
relationships about residue pair interactions. In this paper, we show that a more
advanced processing of edge attributes can lead to considerable benefits when modeling
chemical data.

We introduce XENet, a new member of the GNN family that is shown to have
improved ability to model protein residue environments based on chemical and geometric
data. We use XENet to intelligently simplify the optimization problem that is solved

April 26, 2021

1/26

https://doi.org/10.1101/2021.05.05.442729
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2021.05.05.442729
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2021.05.05.442729
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2021.05.05.442729
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2021.05.05.442729
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2021.05.05.442729
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2021.05.05.442729
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2021.05.05.442729
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2021.05.05.442729
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2021.05.05.442729
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2021.05.05.442729
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2021.05.05.442729
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2021.05.05.442729
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2021.05.05.442729
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2021.05.05.442729
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2021.05.05.442729
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2021.05.05.442729
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2021.05.05.442729
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2021.05.05.442729
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2021.05.05.442729
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2021.05.05.442729
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.05.442729; this version posted May 5, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

when designing proteins. This task is important to us and others because it allows

larger proteins to be designed on near-term quantum computers. We show that XENet
is able to train on our protein modeling data better than existing methods, successfully
resulting in a dramatic decrease in protein design sample space with no loss in quality.

Introduction

Protein design involves astronomically large search problems beyond the capabilities of
even the largest supercomputers. [1] Current computational methods make use of
stochastic search algorithms such as simulated annealing to handle this large space. [2]
This task traditionally involves assuming a static protein backbone and representing all
candidate sidechain conformations and identities as discrete possibilities called
“rotamers”. [3,4] A single sequence position on the protein can have hundreds of
candidate rotamers when spanning all twenty native amino acids.

Quantum computing offers a new alternative for solving these complex tasks to
power the development of new protein-based therapeutics and enzymes of industrial
interest. [5] In previous work, we demonstrated how the protein design problem can be
expressed as a combinatorial optimization problem and solved using quantum annealing
hardware and hybrid quantum-classical solvers. [6] Critically, we were able to show the
system’s applicability to real-world protein design problems without reducing the
complexity of the problem.

This method used the Rosetta software suite to model these backbone-dependent
rotamers and to calculate the one- and two-body interactions between them [7-9]. Our
goal was to find the set of rotamers that minimizes the protein’s computed energy,
measured in Rosetta Energy Units (REU). Rosetta does this using simulated annealing,
in a process called “packing” and “rotamer substitution” [4,10].

Mapping large protein design problems directly to quantum hardware was limited by
a number of factors including noise and the number of qubits available. Even using a
hybrid solver proved impractical for large problems as noise and time constraints
effectively placed an upper barrier to the size of problems that could be solved.
Additionally, we have evidence that the modeling of some atomic interactions, like
hydrogen bonds, would be improved with a finer granularity of rotamer sampling,
suggesting that our problem has reason to grow even larger [11].

Our goal for this project was to use machine learning to adaptively decrease sample
space for arbitrary protein design problems by eliminating rotamers from consideration.
Scientists are having rapidly-increasing success using artifical neural networks to design
proteins using a variety of representations [12,13]. We have recently seen success
representing proteins by passing contact maps into image-inspired 2D
convolutions [14,15], 3D convolutions on voxelized representations [16,17], and even
language models on protein sequences [18-20]. The representation that interests us the
most is the graph-based representation found in graph neural networks [21-23].

Graphs are intuitive representations for protein modeling cases in which the
backbone structure is already established, as it is in protein design. In fact, traditional
protein modeling tools such as Rosetta use graphs internally to model interactions
during their own protocols [7,24-26]. These residue-centric graphs represent each
sequence position as a node, with edges connecting positions that are close in 3D space.
Node attributes generally encode the residue’s backbone geometry and possibly some
representation of its sidechain identity. Edge attributes are used to model the
interactions and geometry between residue positions.

Graph neural networks (GNNs) are a class of machine learning models designed to
process graph-structured data. While the seminal research on GNNs dates back to the
works of Sperduti et al. [27], Gori et al. [28], and Scarselli et al. [29], recent research

April 26, 2021

2/26

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

https://doi.org/10.1101/2021.05.05.442729
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.05.442729; this version posted May 5, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

efforts have led to a rapid growth of the field and have achieved state-of-the-art results
on a large variety of applications, ranging from social networks [30-32], to
chemistry [33,34], biology [21,35,36], and physics [37].

The growth of the field has led to the development of many diverse GNN
architectures, notably including the works in references [38—43]. Of particular interest to

this work are those models that can be expressed as message-passing architectures [44].

In particular, message-passing GNNs act on the node attributes of a graph according to
the following general scheme:

x; =7 (x5, Ojen) ¢ (xi,%j,€(.0))), Vi€V (1)
where ¢ is a message function that depends on the graph’s node and edge attributes
(resp. X and E), O is any permutation-invariant operation that aggregates messages
coming from the neighborhood of i, and + is an update function (see our Notation
section on the next page for the remaining symbols). Intuitively, message-passing GNNs
transform the attributes of the graph by exchanging information between neighboring
nodes.

While the definition of Eq. (1) allows the message function to depend on the edge
attribute between a node and its neighbor, the majority of GNN architectures are
designed for non-attributed edges. Among those GNNs that are designed to process
edge attributes, we mention the Edge-Conditioned Convolutions (ECCs) introduced by
Simonovsky and Komodakis [45]. ECCs make use of an auxiliary model called a
filter-generating network (FGN) that takes as input edge attributes and produces
output parameters that replace what conventionally would be the learnable parameters
of ¢ in Eq. (1) that would ordinarily be fixed. ECCs can bring significant advantages
when processing graphs for which edge attributes are important and have been used to
process molecular graphs [46]. However, the FGN can be difficult to train due to the
absence of a strong supervision signal (which is particularly difficult to achieve when
stacking many layers) and ECCs are mostly effective in processing edge attributes with
a one-hot representation.

In recent years, other types of GNNs have been proposed that process edge
attributes directly in the message function, without relying on a FGN. These usually

concatenate [47] or sum [48] the edge attributes to the node attributes of the neighbors.

In particular, here we consider the work of Xie et al. [47], based on concatenation, which
we denote as CrystalConv in the following.

We note, however, that all of the methods mentioned above suffer from two key
issues. First, none of them are designed to take into account the case of symmetric
directed graphs with asymmetric edge attributes (i.e., graphs for which the existence of
edge (7, 7) implies the existence of edge (j,¢) and vice versa, but the corresponding
attributes can differ). This is particularly relevant for our work due to the geometric
nature of our edge attributes: our edges themselves have no directionality but nearly
every edge feature has some degree of asymmetry. Second, most existing methods are
not designed to update edge attributes, which are considered as static inputs
throughout the network. The updating of edge attributes is not a novel idea per se,
since it was proposed both in the Graph Network model by Battaglia et al. [49] and in
the Typed Graph Network of Prates et al. [50] (where both are works that attempt to
unify GNNs in a similar spirit to the message passing framework), but to the best of our
knowledge it is seldom applied in practice.

Here we propose XENet, a GNN model that addresses both concerns while also avoid
the computational issues introduced by FGNs. XENet is a message-passing GNN that
simultaneously accounts for both the incoming and outgoing neighbors of each node,
such that a node’s representation is based on the messages it receives as well as those it
sends. We demonstrate XENet’s advantage over ECC and CrystalConv by testing their
abilities to eliminate rotamer candidates in real-world protein design problems.

April 26, 2021

3/26

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

04

95

96

97

https://doi.org/10.1101/2021.05.05.442729
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.05.442729; this version posted May 5, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

Materials and methods

Notation Let a graph be a tuple G = (V,€), with node set V = {1,..., N} and edge
set ECV x Vst (i,7) € € is a directed edge from node i to node j. Additionally, let
x; € R indicate a vector attribute associated with node i and let e; ; € R indicate a
vector attribute associated with edge (7, 7). We indicate the neighborhood of a node
with V(i) = {j | (j,i) € £}. Note that in our case we consider symmetric directed
graphs, so that the incoming and outgoing neighbors of a node coincide.

To make notation more compact, in the following we denote with X € RV*¥ the
matrix of node attributes, with E € RVXN*S the matrix of edge attributes (we assume
the entries of this matrix to be zero if the corresponding edge does not exist), and with
A € {0,1}V*¥ the binary adjacency matrix of the graph.

XENet

Our architecture, which we refer to as XENet (due to its ability to convolve over both X
and E tensors), is described by the following Equations:

sij =) (xillxslleqi e) (2)

Sl(-OUt) _ Z a(out) (sij> -Sij (3)
JEN(9)

st = 37 a(sy) sy (4)
JEN(9)

x; = ™ (x5 15" (5)

e = ¢ (Sij) (6)

where ¢(*), o™ ©(©) are multi-layer perceptrons with Parametric Rectified Linear Unit
activations [51], and where a(®"®) and (™) are two dense layers with sigmoid activations
and a single scalar output.

The core of XENet lies in the computation and aggregation of the feature stacks s;;
in Egs. (2)-(4). These are obtained by concatenating the node and edge attributes
associated with the incoming and outgoing messages (Eq. (2)), so that the multi-layer
perceptron ¢(*) learns to process the two directions separately. The feature stacks are
also aggregated separately in the two directions of the flow, using self-attention [52] to
compute a weighted sum (Eqgs. (3)-(4)). The separate representations are concatenated
and used to update the node attributes of the graph (Eq. (5)). Finally, some additional
processing of the feature stacks through ¢(¢) lets us compute new edge attributes that
are dependent on the message exchange between nodes (Eq. (6)).

Generating FixbbGCN Training Data

Here we prepare to apply XENet to a specific protein design problem, as described later
in the paper. Our goal is to create a GNN that can analyze an intermediate protein
state of FastDesign and predict which rotamers are likely to be sampled in the next
round of rotamer substitution. We call this trained network “FixbbGCN”.

We used an arbitrary subset of structures from the Top8000 dataset for training [53],
which ensures that no two protein structures have high similarity. Our training set used
967 structures (total of 229,776 residue positions) and our validation set used 239
structures (57,584 residue positions). The number of structures we used simply
depended on how much CPU time we were willing to commit for generating data.

April 26, 2021

4/26

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

https://doi.org/10.1101/2021.05.05.442729
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.05.442729; this version posted May 5, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

We ran 5 repeats of the MonomerDesign2019 variant of Rosetta’s FastDesign [54]
protocol on each structure but only collected training data for the final 4 repeats. We
set Rosetta to generate a larger number of more finely-discretized rotamers by passing
the ‘-ex1 -ex2’ commandline flags and used Rosetta’s REF2015 energy function [9]. This
accounts for 16 of the 20 rounds of rotamer substitution, though for this project we only
use the data from 4 of the 16 rounds due to score function ramping [54]. We therefore
ended up with 919,104 training set elements (229,776 residues x 4 rounds per residue)
and 230,336 validation elements.

For this project, rotamers from the 20 amino acids were binned into 54 categories.
Alanine, Proline, and Glycine each had their own bin due to their lack of meaningful x1
attributes. The remaining 17 canonical amino acids had three bins each, which
correspond to the three x1 wells.

For each round of rotamer substitution, we tracked the fraction of time that each
rotamer was the representative state for its residue position. At the end of the run, any
rotamer bin that held the representative state for more than 0.1% of the run was
classified as a 1. All other rotamer bins were classified as a 0. Note that this resulted in
a multi-label classification problem where every sample was associated with one or more
classes. We also ignored data from the fraction of the simulated annealing trajectories
where the simulated temperature was above 3 Rosetta Temperature Units (3 REU is
intended to correspond with 3 kcal/mol).

FixbbGCN Architecture

We refer to this family of networks as FixbbGCN, as the Rosetta rotamer substitution
protocol is sometimes called “fixbb”. FixbbGCN is schematically represented in Fig 1.
The model has three input tensors for X, A, and E. The maximum number of nodes
per graph representation is N = 30, the number of attributes per node is F' = 46, and
the number of attributes per edge is S = 28. The output of the model is a
54-dimensional vector which holds one value for each of the rotamer bins described in
the “Generating Training Data” section.

For all models, the X and E tensors are first fed to dense layers. These
fully-connected layers only process one node/edge at a time, so that no information
flows between nodes or edges. We then apply one or more steps of message passing,
using either XENet, CrystalConv, or ECC layers. We used the Spektral package’s
implementation of the latter two layers. [55]

Fig 1 shows two rounds of message passing but we tested all models with one, two,
and three layers (some XENet models were tested up to five layers, as reported in the
SI). We note that the output tensor E from the final round of XENet is never be used
by a future layer. The subset of parameters used to build this final E will be implicitly
omitted when we tally trainable parameters.

We set FixbbGCN up as a single-node classification problem as opposed to a graph
classification problem. Thus, after the message-passing stage, we focus on the unique
node that represents the residue of interest being evaluated. We concatenate the output
from the final message-passing layer with the original input X tensor in an effort to
compensate the over-smoothing effect of message passing. We then crop the X tensor to
only include the node that represents the protein residue of interest. FixbbGCN finishes
off by running that single node’s data through two more fully-connected layers.

All dense and message-passing layers have ReLU activation functions except for the
final dense layer which has a sigmoid activation.

April 26, 2021

5/26

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

172

173

174

175

176

177

178

https://doi.org/10.1101/2021.05.05.442729
http://creativecommons.org/licenses/by/4.0/

Xin — X X X — X Xres | Xres | Xres

(A)

E, — E E | E
Dense Concatenate Crop Dense Dense
|]
Xin X X X X Xres Xres Xres
E, —1 E
Dense Concatenate Crop Dense Dense

Fig 1. Schematic representation of FixbbGCNs, the networks used in our experiments.

(A) Example layout for a model with two XENet layers. X denotes node attribute
tensor with Xj, as the input tensor and X,.s as the single-node subset of the X tensor
which represents the protein residue of interest. E denotes the edge attribute tensor
with Ei, as the input tensor. Dotted lines are used to represent operations that are
omitted as described in the main text. (B) Example layout for a model with two ECC
or CrystalConv layers using the same notation. The A tensor is omitted from this
diagram because it never changes.

Hidden Layer Sizes

We benchmarked two XENet candidates as outlined in Table 1. XENet (s) is sized to
have the same hidden layer size as the ECC models. XENet (p) is sized to have the
same number of trainable parameters as the ECC models. We tuned these parameters
by changing F}, and Sy, which are the number of channels for the hidden X and E
layers, respectively, before the cropping layer. The penultimate dense layer always has
100 channels and the final layer always has 54 channels.

Likewise, we benchmarked two CrystalConv models using the same normalization
techniques. The parameter normalization was not perfect but we got as close as possible
without varying hyperparameters between depths of the same type.

Each XENet layer always used two internal stacking layers with Sy, channels each. In
other words, the ¢(*) multi-layer perceptrons always had a depth of two.

Node and Edge Attributes

Our input data had 46 node attributes and 28 edge attributes, all of which are listed in
the Supporting Information. Most of these attributes are direct physical characteristics
of residues and physical relationships of residue pairs. We also included more advanced
analytics in the form of Rosetta score terms.

Many of these attributes require access to the pyrosetta package to compute. [56]
These include the Rosetta score terms, hydrogen bond identification, and the residue
pair “jump” measurements. A Rosetta “jump” describes the six-dimensional rigid body
relationship between the coordinate frames of two protein residues based on their
backbone atoms.

April 26, 2021

6,26

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

Convolution \ # Layers \ Parameters \ Fy \ Sh

ECC 1 100,067 49 | 32
ECC 2 181,701 49 | 32
ECC 3 263,335 49 | 32
CrystalConv (s) 1 31,271 49 | 32
CrystalConv (s) 2 44,109 49 | 32
CrystalConv (s) 3 56,947 49 | 32
CrystalConv (p) 1 109,283 125 | 64
CrystalConv (p) 2 188,033 125 | 64
CrystalConv (p) 3 266,783 125 | 64
XENet (s) 1 30,421 | 49 | 32
XENet (s) 2 47,625 | 49 | 32
XENet (s) 3 64,829 49 | 32
XENet (p) 1 92,028 | 128 | 64
XENet (p) 2 179,522 | 128 | 64
XENet (p) 3 266,116 | 128 | 64

Table 1. Hidden layer sizes and number of trainable parameters for all models. Fy, is
the number of channels for hidden X layers and Sy, is the number of channels for hidden
E layers.

MentenGCN Package

We have created a public Python package in an effort to make protein processing with
GNNs more portable and easier to share. MentenGCN [57] has a library of tensor
decorators that were used for this project to generate the X, A, and E input tensors
directly from Rosetta’s protein representation. The configuration class for the GNN
used in this paper is available within the MentenGCN package under the name
“Maguire _Grattarola_2021”. Please refer to the Supporting Information section for
more detail on how to access this feature.

Training and Evaluating FixbbGCN Models

Each model configuration was trained between 6 and 12 times, loosely depending on the
amount of resources required to train each model. We show later that the performance
of a given architecture generally has narrow variance so we did not see the need to
expand this sampling.

Each model was trained using Keras’s implementation of the Adam optimizer with a
starting learning rate of 0.001 and the binary crossentropy loss function [58,59]. The
learning rate was reduced by a factor of 10 whenever the validation loss plateaued for 2
consecutive epochs (min_delta=0.001). Training was halted whenever the validation
loss plateaued for 5 consecutive epochs. We evaluated all models with binary
crossentropy and Receiver Operating Characteristic (ROC) area-under-curve (AUC) on
our validation set.

Benchmarking FixbbGCN Implementation On Classical
Computer

As we will show in the Results section, the best model observed was XENet (p) with 3
layers. We benchmarked the applicability of this model by using it alongside Rosetta’s
packing protocol on six backbones of various sizes. For each backbone, we ran each

residue position through our model and compared the 54 final values against a tuneable
cutoff. Rotamers were eliminated if the final value for their respective bin fell below the

April 26, 2021

7/26

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

cutoff. We performed this benchmark with a range of cutoffs between 0 and 1. We also
included a cutoff of -1.0 as a control (so that no rotamers were eliminated, since the
sigmoid activation has a minimum of 0). The larger the cutoff, the more aggressively
rotamers were eliminated. We ran each cutoff on each structure 10 times and tracked
the final Rosetta score in units of Rosetta Energy Units (REU) where more negative is
better.

The Protein Data Bank codes for the six backbones used for this benchmark are
1SFX, 1ECO, 1D40, 1W2C, 10485, and 1PJ5 in order of increasing size. All six of these
structures are also from the top8000 dataset [53] so they are expected to have low
homology with the training and validation data used to train the model. Staying
consistent with the training data collection, Rosetta built rotamers with the “-exl -ex2”
commandline flags and used Rosetta’s REF2015 score function [9].

Benchmarking FixbbGCN Implementation On Quantum
Computer

This quantum benchmark used all of the same Rosetta parameters and FixbbGCN
cutoffs as the classical benchmark. We could not fit the previous test cases on the
quantum machine so we used a subset of the smallest problem (protein data bank code:
1SFX). We used Rosetta’s LayerSelector tool to design the 10 residues in the core of the
protein. [60] All other residue positions were held immutable, decreasing our maximum
rotamer count from 63183 to 5686.

Our quantum rotamer sampling protocol was identical to that described in Mulligan
et al. [6] Like the classical benchmark, we ran 10 annealing trajectories for each
FixbbGCN cutoff and reported the mean and standard deviation across those 10
samples. We also measured Random Access Memory (RAM) usage for each problem
size. The RAM usage is expected to scale quadratically with rotamer count due to the
need to calculate all residue pair energies between neighboring sequence positions.

Results and Discussion

FixbbGCN Model Comparisons

Our goal for this test was to find the graph convolution that would best represent our
protein modeling data. XENet is our attempt to engineer a new GNN layer that makes
further use of the edge tensors, including updating their features as the result of the
convolution. As baseline model for this experiment we considered ECC, since it is one of
the first and most widely used GNNs designed to process edge attributes, and we
compare it against different configurations of CrystalConv and XENet to ensure a fair
comparison. XENet (s) and CrystalConv (s) are normalized by the channel depth of
each hidden layer. XENet (p) and CrystalConv (p) are normalized by the trainable
parameter count.

The models were tasked with a multi-label classification problem to predict which
protein sidechain rotamers would be sampled at a given sequence position during a
round of Rosetta’s rotamer subsitution protocol with simulated annealing. [10] We see
in Table 2 that the XENet models outperform their ECC and CrystalConv counterparts,
although some of the CrystalConv models are in close competition with the best XENet
models. In addition to having better loss and AUC scores, XENet convolutions appear
to perform better with deeper architectures. XENet slightly improves when the third
graph convolution layer is introduced, whereas ECC and CrystalConv exhibit a
consistent drop in performance at that depth.

April 26, 2021

8/26

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

Convolution \ # Layers H Loss \ o Loss H AUC \ o AUC H # Models

ECC 1 0.188 | 0.004 0.9772 | 0.0009 8
ECC 2 0.213 | 0.071 0.9674 | 0.0224 6
ECC 3 5.442 | 0.462 0.6248 | 0.0284 6
CrystalConv (s) 1 0.173 | 0.001 || 0.9807 | 0.0003 8
CrystalConv (s) 2 0.155 | 0.002 || 0.9844 | 0.0003 8
CrystalConv (s) 3 4.520 | 0.258 || 0.6872 | 0.0179 8
CrystalConv (p) 1 0.158 | 0.002 0.9837 | 0.0005 8
CrystalConv (p) 2 0.145 | 0.002 || 0.9865 | 0.0004 8
CrystalConv (p) 3 5.522 | 0.345 || 0.6238 | 0.0368 8
XENet (s) 1 0.155 | 0.001 0.9844 | 0.0003 10
XENet (s) 2 0.147 | 0.002 0.9860 | 0.0005 8
XENet (s) 3 0.143 | 0.001 0.9868 | 0.0002 8
XENet (p) 1 0.143 | 0.001 0.9869 | 0.0002 10
XENet (p) 2 0.137 | 0.002 0.9878 | 0.0004 12
XENet (p) 3 0.134 | 0.002 0.9883 | 0.0004 8

Table 2. Training Results. Mean binary crossentropy loss and mean AUC for trained
models. o denotes standard deviation. Lower loss values are considered better whereas
higher AUC values are better.

The reasons for these differences in performance can be readily motivated by
considering the differences between the models themselves. First, ECC’s FGN is an
indirect way of processing edge attributes and requires a strong supervision signal in
order to be trained effectively, which may not be easy to attain especially within deeper
architectures. Second, ECC was often shown to be most effective when processing data
with one-hot encoded attributes [45,46], which is not the case here.

Since CrystalConv does not use a FGN to process the edges, it does not have the
same problems as ECC and its performance is more in line with XENet’s. However, the
asymmetric processing of XENet, paired with its ability to update edge attributes to
obtain a richer representation, make it more suitable for this particular type of data and
results in a better overall performance in all configurations.

We show in Fig 2 that XENet can even handle depths of 4 and 5 GNN layers. The
additional layers did not give us an advantage in validation loss; however, deeper
architectures will theoretically be more advantageous for use cases that require more
expansive message passing than our benchmark. For this reason, the mere ability to
handle deeper architectures may prove to be a strength of XENet. XENet did encounter
occasional failures with the deeper architectures but the majority of deeper models
finished with competitive validation losses. We did not test CrystalConv or ECC with
architectures of 4 or 5 layers due to their lack of success with 3 layers.

Quantum FixbbGCN Benchmark

Now that we have these trained models, we want to see how much they can decrease the
sizes our quantum annealing use cases. We wrapped the best model for each
architecture in Rosetta rotamer-elimination machinery and named it FixbbGCN
(“fixbb” is a popular name for Rosetta’s fixed-backbone packing protocol).

We cannot run full-sized quantum benchmarks for the same reason that this project
was motivated: our protein design benchmarks are too large to be run on the quantum
computers. The best we can currently do is use FixbbGCN to design a subset of the
protein on the quantum annealer and save the larger problems for the classical
benchmark presented later in the article.

April 26, 2021

9/26

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

ECC

o L)
§ 4
p 2
.0 1
S 05
- [J
o 0.25 ¢ .
0.125
1 2 3 4 5
. CrystalConv
) L]
§ 4
p 2
Q 1
S 05
g 0.25 !
0.125 ®
1 2 3 4 5
XENet
8
§ 4
p 2
Q 1
3 05
§ 0.25
0.125 L o .
1 2 3 4 5

Number of Graph Conv. Layers

Fig 2. Depth Comparison With Fixed Parameter Count. We plot the losses of all
trained ECC, CrystalConv (p), and XENet (p) models against the number of graph
convolutional layers in each model. Transparency was applied to the points to help
illustrate density. ECC and CrystalConv have no points with 4 or 5 layers.

April 26, 2021 10/26

(A) -135.0

5 -140.0 -
w S ¥
5 =X
® -145.0
S 2
(2]
© -150.0
E
2
2 -155.0
T ;3 ik L
-160.0 s i

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Rotamers Kept

Control e XENet
(B -135.0
-140.0
-145.0

-150.0

Rosetta Score (REU) ~

-155.0

-160.0 Sk il 3

0 2 4 6 8 10 12
RAM (GB)

Fig 3. Quantum FixbbGCN Benchmark Results. (A) Mean Rosetta Scores for various
cutoffs and convolutions types. Lines connect points of the same convolution and the
line to the first drop in design quality is drawn thick. X-axis values are the number of
surviving rotamers for a cutoff/convolution pair divided by the number of rotamers in
the control case. (B) Same results as (A) but plotting against annealer memory usage
instead of rotamer count. Both y-axes are truncated for the sake of readability.

For this test, we needed a very small problem size. We took the smallest test case

from our benchmark set but restricted sampling to only include the core of the protein.

We used Rosetta’s definition of the core, which identified 10 residue positions that were
sufficiently isolated from solvent exposure.

We chose this benchmark because the core is the most combinatorially challenging
part of the protein to design. Rosetta samples core rotamers more finely than
solvent-exposed residues so the rotamer count per position is higher. Additionally, these
residue positions tend to have more neighbors, resulting in a more complex energy
optimization problem.

XENet shows in Fig 3 an ability to decrease the rotamer count to roughly 60%
before the dip in Rosetta score appears. ECC drops in quality near 70% and
CrystalConv drops near 64%.

We did not report runtime for this benchmark because we had no way to decouple
time spent running the annealer from time spent sending our data over the internet and
waiting in the quantum computer’s queue. We do expect that runtime will correlate
linearly with RAM usage as both have quadratic relationships with the rotamer count.

Using RAM as our guide, XENet is able to reduce our problem size to 32% before
the decrease in design quality appears. The CrystalConv model came close with a
decrease to 36% and the ECC only model shrunk the problem to 43%.

April 26, 2021

11/26

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

102 Positions, 63k Rotamers 136 Positions, 112k Rotamers 177 Positions, 163k Rotamers
338 -425 -600

H{ o I
= = g |

-3

B
S

-430

o JW |

-3

B
s}

-344

Rosetta Score
Rosetta Score
Rosetta Score

346 -445 625
-348 -450 -630
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Fraction of Rotamers Kept Fraction of Rotamers Kept Fraction of Rotamers Kept
265 Positions, 243k Rotamers 375 Positions, 356k Rotamers 827 Positions, 836k Rotamers
-885 -1220 -2900
-890 1240 ; 2920 $
o -895 h o] o -2940 i
S -900 g 1260 S -2960
a a i a
= -905 { © -1280 © -2080 %
g 910 ﬁ 2 1300 id g -3000
& 915 { & it ¢ & 3020 ﬂ
920 1320 -3040 2% :
-925 -1340 -3060
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Fraction of Rotamers Kept Fraction of Rotamers Kept Fraction of Rotamers Kept

Fig 4. FixbbGCN Benchmark Results. Results of running Rosetta’s rotamer
substitution protocol on six different protein backbones. FixbbGCN was used with
various cutoffs to decrease the total rotamer count of each sample. The mean Rosetta
scores (measured in REU) and standard deviations are displayed for each cutoff. The
y-axes are truncated for the sake of readability.

Classical FixbbGCN-XENet Benchmark

The goal for the final benchmark was to assess to what extent XENet’s pattern
observed in the quantum benchmark persists for full-sized use cases. Unfortunately,
these full-sized design cases are too large for us to run on quantum computers so we ran
these benchmarks using Rosetta’s simulated annealer. This is the best we can do with
current technology but hopefully a more complete test will be possible someday.

Similar to the quantum benchmark, this benchmark applies the XENet classifier
with various cutoffs to Rosetta’s set of rotamers for six different protein design
problems. This time, however, the entire protein structures are being designed.
Rotamers are pruned if their predicted value from the classifier is below the cutoff. The
“control” data point with the largest rotamer count for a given use case is the standard
Rosetta packing protocol with no influence from the classifier.

We see in Fig 4 that we can use FixbbGCN to decrease the number of rotamers
without a loss in design quality to a limited extent. The Rosetta score will generally stay

in range of the control data down to the range of 55-60% of the original rotamer count.

The results in Fig 4 supports the idea that FixbbGCN’s ability to eliminate
rotamers for small problem sizes translates to larger problem sizes too. It is up to the
user to decide how risky they want to be with FixbbGCN, but our results suggests that
decreasing rotamer counts to roughly 60% is safe.

Conclusion

Graph neural networks have great potential for modeling residue-level protein
interactions. We show that our new convolution, XENet, can model residue-level
environments better than existing methods ECC and CrystalConv. Not only does the
usage of XENet result in lower validation losses, but we show that XENet can
withstand deeper architectures.

To demonstrate XENet’s value, we use it to create a tool capable of fitting larger

April 26, 2021

12/26

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

protein design problems onto quantum computers by eliminating sidechain

conformations that are unlikely to be selected by an annealer. XENet was consistently

able to reduce rotamer counts by 40% without loss in design quality. As a result, we

measured a 68% decrease in total problem size, which has a quadratic relationship with

rotamer count.

Supporting information

Abbreviations

AUC
ECC
FGN
GCN
GNN
RAM
REU
ROC

Quantum Benchmark Results

XENet

Cutoff | Rotamers | Frac. Rotamers | RAM (GB) || Score (REU) | o Score

Area Under Curve (used with respect to ROC)

Edge-Conditioned Convolution
Filter-Generating Network
Graph Convolutional Network
Graph Neural Network
Random Access Memory
Rosetta Energy Units

Receiver Operating Characteristic

-1
0.25
0.5
0.75
0.85
0.9
0.95
0.97
0.98
0.99
0.995
0.9995

5686
4706
4623
4334
4206
4089
3851
3649
3452
3331
3057
1984

1.00
0.83
0.81
0.76
0.74
0.72
0.68
0.64
0.61
0.59
0.54
0.35

11.92
7.78
7.45
6.38
5.98
5.62
4.92
4.35
3.87
3.58
297
1.32

-158.4
-158.8
-158.6
-158.5
-158.4
-158.8
-158.5
-159.0
-158.6
-147.3
-147.4
-137.8

0.6
0.3
0.8
0.6
0.7
0.5
0.7
0.5
0.5
0.3
0.4
0.2

Table S1. Results of Core Redesign on the quantum computer with XENet. o

denotes standard deviation.

ECC

Cutoff ‘ Rotamers

Frac. Rotamers | RAM (GB) || Score (REU) | o Score

-1
0.25
0.5
0.6
0.7
0.74
0.75
0.85
0.9
0.95
0.97
0.98

5686
4937
4500
4340
4208
4013
4002
3559
3408
2884
2644
2365

1.00
0.87
0.79
0.76
0.74
0.71
0.70
0.63
0.60
0.51
0.47
0.42

11.92
8.65
7.07
6.51
6.09
5.38
9.35
4.20
3.91
2.79
2.33
1.93

-158.4
-158.6
-158.7
-158.5
-158.7
-158.8
-147.4
-147.0
-147.5
-141.0
-141.1
-138.0

0.6
0.3
0.5
0.7
0.5
0.5
0.5
0.5
0.3
0.5
0.4
0.3

April 26, 2021

13/26

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

Table S2. Results of Core Redesign on the quantum computer with ECC. o denotes
standard deviation.

Cutoff | Rotamers | Frac. Rotamers | RAM (GB) || Score (REU) | o Score

CrystalConv
-1 5686
0.25 4812
0.75 4416
0.85 4094
0.9 3947
0.91 3865
0.92 3779
0.93 3637
0.95 3566
0.97 3449
0.98 3416
0.99 3008
0.995 | 2805
0.9995 | 1515

1.00
0.85
0.78
0.72
0.69
0.68
0.66
0.64
0.63
0.61
0.60
0.53
0.49
0.27

11.92
8.16
6.91
5.65
5.12
4.98
4.73
4.34
4.18
3.91
3.91
2.96
2.56
0.81

-158.4
-158.6
-158.6
-158.8
-158.7
-158.4
-158.8
-158.9
-147.5
-147.3
-147.1
-142.5
-142.1
-131.8

0.6
0.6
0.6
0.7
0.6
0.7
0.5
0.5
0.5
0.3
0.3
0.5
0.4
0.1

Table S3. Results of Core Redesign on the quantum computer with CrystalConv. o

denotes standard deviation.

Node and Edge attributes for FixbbGCN

46 Node Features:
the node is the

1 if
if
if
if
if
if
if
if
if

© 00 N O O W N =
T e

—
o

: 1 if
11 1 if
12 . 1 if
13 : 1 if
14 : 1 if
16 : 1 if
16 : 1 if
17 . 1 if
18 : 1 if
19 : 1 if
20 @ 1 if
21 @ 1 if

22 : Phi

Spans from

23 : Psi

Spans from

residue
residue
residue
residue
residue
residue
residue
residue
residue
residue
residue
residue
residue
residue
residue
residue
residue
residue
residue
residue

is
is
is
is
is
is
is
is

is
is
is
is
is
is
is
is
is
is
is
is

. .

-

. .

-

HDQTMEOQ>E

<~ =< HWnWxXoOovY"v=2 X~

v e v .

-

v v v e .

-

-pi to pi

O O O O O O oo

O O O OO OO OO oo

0

focus residue,

otherwise
otherwise
otherwise
otherwise
otherwise
otherwise
otherwise
otherwise

otherwise
otherwise
otherwise
otherwise
otherwise

otherwise

otherwise
otherwise
otherwise
otherwise

otherwise

otherwise
of the given residue, measured in radians.

0 otherwise

of the given residue, measured in radians.

-pi to pi

24 : Sine of chi angle number 1 of each residue.

Spans from -1 to 1, O if chi angle is not valid for this residue

April 26, 2021

14/26

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

25 : Cosine of chi angle number 1 of each residue.
Spans from -1 to 1, 0 if chi angle is not valid for
26 : Sine of chi angle number 2 of each residue.
Spans from -1 to 1, 0 if chi angle is not valid for
27 : Cosine of chi angle number 2 of each residue.
Spans from -1 to 1, O if chi angle is not valid for
28 : Sine of chi angle number 3 of each residue.
Spans from -1 to 1, 0 if chi angle is not valid for
29 : Cosine of chi angle number 3 of each residue.
Spans from -1 to 1, O if chi angle is not valid for
30 : Sine of chi angle number 4 of each residue.
Spans from -1 to 1, O if chi angle is not valid for
31 : Cosine of chi angle number 4 of each residue.
Spans from -1 to 1, 0 if chi angle is not valid for
32 : fa_atr onebody term using ref2015

33 : fa_rep onebody term using ref2015

34 : fa_sol onebody term using ref2015

35 : fa_intra_rep onebody term using ref2015

36 : fa_intra_sol_xover4 onebody term using ref2015
37 : lk_ball_wtd onebody term using ref2015

38 : fa_elec onebody term using ref2015

39 : pro_close onebody term using ref2015

40 : hbond_bb_sc onebody term using ref2015

41 : omega onebody term using ref2015

42 : fa_dun onebody term using ref2015

43 : p_aa_pp onebody term using ref2015

44 : yhh_planarity onebody term using ref2015

45 : ref onebody term using ref2015

46 : rama_prepro onebody term using ref2015

28 Edge Features:
1 : 1.0 if the two residues are polymer-bonded,
0.0 otherwise (symmetric)

this

this

this

this

this

this

this

residue

residue

residue

residue

residue

residue

residue

2 : Euclidean distance between the CA atoms of each residue,

measured in Angstroms (symmetric)

3 : Euclidean distance between the two CB atoms of each residue,

measured in Angstroms (symmetric)

4 : CA-CB-CB-CA torsion angle in radianms,
spans from -pi to pi (symmetric)

5 : N1-CA1-CB1-CB2 torsion angle in radiams,
spans from -pi to pi (asymmetric)

6 : CA1-CB1-CB2 bond angle in radians, spans from O to pi (asymmetric)
7 : Natural Log of the sequence distance between the two residues

(i.e., number of residues between these two residues

in sequence space, plus one). -1.0 if the two residues

belong to different chains. (symmetric)
8-10 : Translation vector for the Rosetta jump.
Distances are measured in Angstroms (asymmetric)

11-13 : Euler angles for the Rosetta jump (asymmetric)
14 : Total number of backbone-backbone hydrogen bonds (symmetric)

15 : Total number of backbone-sidechain hydrogen bonds (symmetric)
16 : Total number of sidechain-sidechain hydrogen bonds (symmetric)

April 26, 2021

15/26

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

17 : Number of hydrogen bonds in which

the first residue is the donor (asymmetric)

18 : Number of hydrogen bonds in which

the first residue is the acceptor (asymmetric)

19 : fa_atr twobody term using ref2015 (symmetric)

20 : fa_rep twobody term using ref2015 (symmetric)

21 : fa_sol twobody term using ref2015 (symmetric)

22 : lk_ball_wtd twobody term using ref2015 (symmetric)
23 : fa_elec twobody term using ref2015 (symmetric)

24 : hbond_sr_bb twobody term using ref2015 (symmetric)
25 : hbond_lr_bb twobody term using ref2015 (symmetric)
26 : hbond_bb_sc twobody term using ref2015 (symmetric)
27 : hbond_sc twobody term using ref2015 (symmetric)

28 : dslf_fal3 twobody term using ref2015 (symmetric)

These attributes can be reproduced with the following python code

pip install menten-gcn
import menten_gcn as mg

data_maker = mg.published.Maguire_Grattarola_2021()
data_maker.summary ()

This check ensures that the data_maker gives the expected values
data_maker.run_consistency_check()

Visit https://menten-gcn.readthedocs.io/ to see
how to use this data_maker with your protein

Raw Data
This section attempts to comply with PLOS Computational Biology’s data policy. We

provide all individual data points that are only summarized as means in the main text.

Downloadables

Raw training data is publicly available at https://menten-ai-public.s3.us-east-
2.amazonaws.com/Maguire-XENet-2021/all_training_data.tar.gz

Raw testing data is publicly available at https://menten-ai-public.s3.us-east-
2.amazonaws.com/Maguire-XENet-2021/all_testing_data.tar.gz

Our best ECC model (used for quantum benchmark) is available in Keras h5 format
at https://menten-ai-public.s3.us-east-2.amazonaws.com/Maguire-XENet-
2021 /best_ECC.h5

Our best CrystalConv model (used for quantum benchmark) is available in Keras h5
format at https://menten-ai-public.s3.us-east-2.amazonaws.com/Maguire-XENet-
2021 /best_CrystalConv.h5

Our best XENet model (used for quantum and classical benchmarks) is available in
Keras hb format at https://menten-ai-public.s3.us-east-2.amazonaws.com/Maguire-
XENet-2021/best_XENet.h5

Training Losses

Each table below lists the data points for the means and standard deviations reported
in Table 2 (columns 3 and 4) of the main text.

April 26, 2021

16/26

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

ECC1 | ECC 2

ECC 3

0.1823 | 0.1642
0.1855 | 0.1708
0.1868 | 0.3053
0.1868 | 0.1664
0.1883 | 0.1675
0.1889 | 0.3027
0.1935
0.1940
CrystalConv (s) 1

4.8554
4.8884
5.5053
5.6768
5.8551
5.8732

CrystalConv (s) 2

CrystalConv (s) 3

0.171

0.153

4.203

0.172 0.153 4.327
0.172 0.154 4.379
0.173 0.156 4.398
0.173 0.156 4.481
0.173 0.156 4.599
0.174 0.157 4.809
0.175 0.157 4.967
CrystalConv (p) 1 | CrystalConv (p) 2 | CrystalConv (p) 3
0.156 0.142 5.047
0.157 0.143 5.209
0.157 0.143 5.316
0.158 0.144 5.319
0.158 0.145 5.690
0.160 0.146 9.770
0.161 0.146 5.789
0.162 0.148 6.035
XENet (s) 1 | XENet (s) 2 | XENet (s) 3
0.1534 0.1444 0.1413
0.1535 0.1445 0.1423
0.1540 0.1458 0.1425
0.1545 0.1459 0.1427
0.1549 0.1460 0.1428
0.1550 0.1461 0.1432
0.1551 0.1488 0.1434
0.1565 0.1516 0.1444
0.1566
0.1577
XENet (p) 1 | XENet (p) 2 | XENet (p) 3 | XENet (p) 4 | XENet (p) 5
0.1414 0.1346 0.1311 0.1325 0.1332
0.1415 0.1353 0.1327 0.1326 0.1349
0.1416 0.1353 0.1328 0.1326 0.1355
0.1420 0.1364 0.1333 0.1330 0.1361
0.1422 0.1365 0.1335 0.1330 6.4491
0.1426 0.1366 0.1340 0.1377
0.1428 0.1366 0.1368 6.4531
0.1431 0.1376 0.1372
0.1436 0.1379
0.1446 0.1388
0.1406
0.1419

496

497

498

499

500

April 26, 2021

17/26

AUCs

Each table below lists the data points for the means and standard deviations reported
in Table 2 (columns 5 and 6) of the main text.

ECC1 | ECC2

ECC 3

0.9772 | 0.9826
0.9779 | 0.9810
0.9770 | 0.9379
0.9760 | 0.9820

0.9775 | 0.9818
0.9757 | 0.9391
0.9775
0.9785

0.6144
0.6173
0.6662
0.5860
0.6160
0.6488

CrystalConv (s) 1 | CrystalConv (s) 2 | CrystalConv (s) 3
0.9811 0.9844 0.6693
0.9805 0.9848 0.6788
0.9803 0.9841 0.6877
0.9809 0.9843 0.6851
0.9807 0.9846 0.6723
0.9805 0.9841 0.6891
0.9809 0.9848 0.6881
0.9805 0.9843 0.7274
CrystalConv (p) 1 | CrystalConv (p) 2 | CrystalConv (p) 3
0.9840 0.9865 0.6208
0.9833 0.9869 0.6587
0.9833 0.9861 0.6569
0.9838 0.9868 0.6434
0.9843 0.9858 0.5513
0.9841 0.9867 0.6494
0.9839 0.9866 0.6136
0.9829 0.9862 0.5962
XENet (s) 1 | XENet (s) 2 | XENet (s) 3
0.9846 0.9865 0.9869

0.9841 0.9861 0.9865

0.9846 0.9862 0.9867

0.9848 0.9862 0.9869

0.9847 0.9850 0.9867

0.9844 0.9861 0.9869

0.9842 0.9865 0.9870

0.9839 0.9857 0.9867

0.9844

0.9845

April 26, 2021

18/26

501

502

503

504

505

506

507

XENet (p) 1 | XENet (p) 2 | XENet (p) 3 | XENet (p) 4 | XENet (p) 5
0.9871 0.9881 0.9883 0.9885 0.9885
0.9867 0.9880 0.9885 0.9887 0.9882
0.9867 0.9872 0.9885 0.5893 0.5903
0.9866 0.9879 0.9889 0.9886 0.9881
0.9865 0.9882 0.9884 0.9885 0.9878
0.9868 0.9883 0.9885 0.9884
0.9871 0.9884 0.9878 0.9877
0.9870 0.9881 0.9876
0.9870 0.9879
0.9869 0.9874

0.9877

0.9869

April 26, 2021

19/26

508

1202 ‘92 [1dy

9z/0%

Quantum Benchmark Scores

Cutoff | Scores
0.25 -258.74 -258.32 -258.33 -258.71 -258.94 -258.79 -258.96 -258.11 -258.39 -259.09
0.5 -259.26 -259.26 -258.16 -258.71 -259.26 -258.81 -258.82 -258.87 -258.37 -257.75
0.6 -257.09 -258.51 -257.89 -258.59 -258.71 -258.89 -257.94 -259.35 -258.64 -259.35
0.7 -258.87 -258.82 -259.65 -258.69 -257.79 -258.59 -258.50 -258.14 -258.79 -259.04
0.74 -259.26 -258.42 -258.29 -259.09 -258.25 -259.52 -258.57 -258.13 -259.19 -259.39
0.75 -247.93 -247.02 -247.63 -246.94 -246.69 -246.71 -247.80 -247.93 -247.77 -247.73
ECC: 0.85 -247.57 -247.31 -246.83 -246.10 -246.42 -247.15 -247.63 -246.80 -247.02 -247.21
0.9 -247.13 -247.36 -247.62 -247.94 -247.24 -247.45 -247.59 -247.26 -247.86 -247.76
0.95 -241.84 -241.09 -241.70 -240.38 -240.53 -241.51 -240.88 -240.59 -240.63 -241.24
0.97 -240.68 -241.59 -241.08 -241.19 -240.95 -240.51 -241.81 -240.96 -240.71 -241.61
0.98 -237.76 -238.11 -238.26 -238.34 -237.59 -237.48 -238.07 -237.88 -238.23 -238.45
0.99 -232.58 -232.35 -232.39 -232.40 -232.53 -232.09 -232.31 -232.47 -232.57 -231.97
0.995 | -229.95 -230.16 -229.77 -230.00 -230.35 -229.65 -229.89 -229.67
0.9995 | -197.13 -196.87 -196.88 -196.86 -196.88 -196.87 -196.78 -197.05
Cutoff | Scores
0.25 -258.56 -259.01 -257.93 -258.32 -258.23 -259.09 -259.65 -259.05 -258.63 -257.70
0.75 -257.88 -258.64 -258.89 -259.57 -259.09 -258.26 -258.80 -258.25 -257.82 -258.97
0.85 -259.39 -257.46 -259.26 -259.26 -258.63 -258.66 -259.32 -259.26 -257.94 -258.96
0.9 -258.10 -258.06 -258.15 -258.18 -259.13 -258.64 -258.29 -259.52 -259.39 -259.09
0.91 -258.42 -258.84 -257.44 -259.26 -259.13 -258.67 -258.79 -257.63 -257.78 -257.89
CrystalConv: 0.92 -259.09 -258.29 -258.60 -258.64 -258.26 -259.65 -259.65 -259.17 -258.48 -258.64
0.93 -258.40 -259.05 -259.52 -258.59 -259.19 -258.66 -258.29 -259.39 -259.65 -258.52
0.95 -246.94 -246.56 -247.08 -247.72 -247.79 -247.86 -247.89 -247.45 -247.63 -247.75
0.97 -247.47 -247.49 -247.85 -247.00 -247.34 -247.22 -247.56 -247.07 -247.35 -246.79
0.98 -247.33 -247.35 -247.14 -246.76 -247.76 -247.31 -247.19 -246.59 -247.21 -246.87
0.99 -243.07 -242.06 -243.18 -242.85 -242.95 -242.72 -241.83 -242.52 -241.87 -242.12
0.995 | -242.33 -241.28 -242.24 -241.93 -242.32 -242.53 -242.41 -242.44 -242.08 -241.72
0.9995 | -231.85 -231.66 -231.63 -231.67 -231.98 -231.88 -231.80 -231.79 -231.90 -231.51

509

510

511

1202 ‘92 [1dy

9z/1¢

Cutoff | Scores
-1 -258.30 -258.67 -258.52 -257.66 -258.68 -259.52 -258.23 -259.05 -258.31 -257.44
0.25 -258.84 -258.89 -258.60 -259.26 -259.13 -258.89 -258.69 -258.89 -258.60 -258.42
0.5 -258.98 -258.13 -259.06 -258.17 -259.26 -257.11 -259.01 -258.64 -259.65 -257.94
0.75 -258.17 -258.60 -258.96 -258.66 -259.09 -258.41 -258.29 -257.17 -259.35 -258.11
0.85 -258.87 -258.60 -258.30 -257.61 -258.69 -259.04 -259.57 -257.00 -258.60 -258.13
XENet: 0.9 -258.63 -258.08 -257.79 -259.07 -258.82 -258.50 -259.09 -259.26 -259.35 -259.09
0.95 -258.30 -257.56 -257.92 -259.26 -259.32 -257.66 -258.11 -259.26 -258.79 -259.02
0.97 -258.39 -258.89 -259.52 -258.46 -258.32 -258.95 -259.57 -259.65 -259.26 -259.26
0.98 -258.73 -258.95 -258.03 -257.82 -257.93 -258.60 -258.64 -258.51 -259.26 -259.39
0.99 -246.71 -246.96 -247.05 -247.67 -247.89 -247.47 -247.14 -247.48 -247.35 -247.23
0.995 -246.80 -247.62 -247.86 -246.88 -247.89 -247.76 -247.17 -247.71 -247.25 -247.39
0.9995 | -237.68 -238.05 -238.02 -237.93 -238.09 -238.02 -237.62 -237.75 -237.56 -237.48

Note the -1 cutoff value from XENet table was used as the control for the entire experiment. No rotamers were eliminated with that cutoff so it

is a global control.

512

513

514

Acknowledgments

We thank Dr. Andrew Leaver-Fay and Brian Coventry for various Rosetta developments
that made our workflow easier and Sergey Lyskov and Dan Farrell for their assistance in

overcoming technical hurdles. We also thank D-Wave Systems, Inc. for useful
discussions and support.

April 26, 2021

22/26

515

516

517

518

519

References

1.

10.

11.

12.

13.

14.

15.

16.

Huang PS, Boyken SE, Baker D. The coming of age of de novo protein design.
Nature. 2016;537(7620):320-327.

Kuhlman B, Bradley P. Advances in protein structure prediction and design. Nat
Rev Mol Cell Biol. 2019;20(11):681-697.

Dunbrack RL. Rotamer libraries in the 21st century. Curr Opin Struct Biol.
2002;12(4):431-440.

Kuhlman B, Dantas G, Ireton GC, Varani G, Stoddard BL, Baker D. Design of a
novel globular protein fold with atomic-level accuracy. Science.
2003;302(5649):1364-1368.

Outeiral C, Strahm M, Shi J, Morris GM, Benjamin SC, Deane CM. The
prospects of quantum computing in computational molecular biology.
2020;d0i:10.1002/wcems.1481.

Mulligan VK, Melo H, Merritt HI, Slocum S, Weitzner BD, Watkins AM, et al.
Designing Peptides on a Quantum Computer. bioRxiv. 2020;doi:10.1101/752485.

Leaver-Fay A, Tyka M, Lewis SM, Lange OF, Thompson J, Jacak R, et al.
ROSETTAS3: an object-oriented software suite for the simulation and design of
macromolecules. Methods Enzymol. 2011;487:545-574.

Leman JK, Weitzner BD, Lewis SM, Adolf-Bryfogle J, Alam N, Alford RF, et al.
Macromolecular modeling and design in Rosetta: recent methods and frameworks.
Nat Methods. 2020;17(7):665-680.

Park H, Bradley P, Greisen P, Liu Y, Mulligan VK, Kim DE, et al. Simultaneous
Optimization of Biomolecular Energy Functions on Features from Small
Molecules and Macromolecules. J Chem Theory Comput. 2016;12(12):6201-6212.

Kuhlman B, Baker D. Native protein sequences are close to optimal for their
structures. Proc Natl Acad Sci U S A. 2000;97(19):10383-10388.

Maguire JB, Boyken SE, Baker D, Kuhlman B. Rapid Sampling of Hydrogen
Bond Networks for Computational Protein Design. J Chem Theory Comput.
2018;14(5):2751-2760.

Gao W, Mahajan SP, Sulam J, Gray JJ. Deep Learning in Protein Structural
Modeling and Design. Patterns. 2020;1(9):100142.
doi:10.1016/j.patter.2020.100142.

Yang KK, Wu Z, Arnold FH. Machine-learning-guided directed evolution for
protein engineering. Nature Methods. 2019;16(8):687—-694.
doi:10.1038/s41592-019-0496-6.

Anishchenko I, Chidyausiku TM, Ovchinnikov S, Pellock SJ, Baker D. De novo
protein design by deep network hallucination. bioRxiv.
2020;d0i:10.1101,/2020.07.22.211482.

Linder J, Seelig G. Fast differentiable DNA and protein sequence optimization for
molecular design; 2020.

Anand-Achim N, Eguchi RR, Derry A, Altman RB, Huang PS. Protein sequence
design with a learned potential. bioRxiv. 2020;doi:10.1101/2020.01.06.895466.

April 26, 2021

23/26

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Zhang Y, Chen Y, Wang C, Lo CC, Liu X, Wu W, et al. ProDCoNN: Protein
design using a convolutional neural network. Proteins: Structure, Function, and
Bioinformatics. 2020;88(7):819-829. doi:https://doi.org/10.1002/prot.25868.

Xu Y, Verma D, Sheridan RP, Liaw A, Ma J, Marshall NM, et al. Deep Dive into
Machine Learning Models for Protein Engineering. Journal of Chemical
Information and Modeling. 2020;60(6):2773-2790. doi:10.1021/acs.jcim.0c00073.

Sabban S, Markovsky M. RamaNet: Computational de novo helical protein
backbone design using a long short-term memory generative neural network.
bioRxiv. 2020;d0i:10.1101/671552.

LuoY, Vo L, Ding H, Su'Y, Liu Y, Qian WW, et al. Evolutionary
context-integrated deep sequence modeling for protein engineering. bioRxiv.
2020;d0i:10.1101/2020.01.16.908509.

Gligorijevic V, Renfrew PD, Kosciolek T, Leman JK, Berenberg D, Vatanen T,
et al. Structure-Based Protein Function Prediction using Graph Convolutional
Networks. bioRxiv. 2020;d0i:10.1101/786236.

Strokach A, Becerra D, Corbi-Verge C, Perez-Riba A, Kim PM. Fast and flexible
design of novel proteins using graph neural networks. bioRxiv.
2020;d0i:10.1101/868935.

Sanyal S, Anishchenko I, Dagar A, Baker D, Talukdar P. ProteinGCN: Protein
model quality assessment using Graph Convolutional Networks. bioRxiv.
2020;d0i:10.1101/2020.04.06.028266.

Boyken SE, Chen Z, Groves B, Langan RA, Oberdorfer G, Ford A, et al. De novo
design of protein homo-oligomers with modular hydrogen-bond network-mediated
specificity. Science. 2016;352(6286):680—687.

Bowerman S, Wereszczynski J. Detecting Allosteric Networks Using Molecular
Dynamics Simulation. Methods Enzymol. 2016;578:429-447.

Canutescu AA, Shelenkov AA, Dunbrack RL. A graph-theory algorithm for rapid
protein side-chain prediction. Protein Sci. 2003;12(9):2001-2014.

Sperduti A, Starita A. Supervised neural networks for the classification of
structures. IEEE Transactions on Neural Networks. 1997;8(3):714-735.

Gori M, Monfardini G, Scarselli F. A new model for learning in graph domains.
In: Proceedings. 2005 IEEE International Joint Conference on Neural Networks,
2005.. vol. 2. IEEE; 2005. p. 729-734.

Scarselli F, Gori M, Tsoi AC, Hagenbuchner M, Monfardini G. The graph neural
network model. IEEE transactions on neural networks. 2008;20(1):61-80.

Qiu J, Tang J, Ma H, Dong Y, Wang K, Tang J. Deepinf: Social influence
prediction with deep learning. In: Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining; 2018. p.
2110-2119.

Liu Y, Shi X, Pierce L, Ren X. Characterizing and forecasting user engagement
with in-app action graph: A case study of snapchat. In: Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining;
2019. p. 2023-2031.

April 26, 2021

24/26

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

Wu Y, Lian D, Xu Y, Wu L, Chen E. Graph convolutional networks with markov
random field reasoning for social spammer detection. In: Proceedings of the
AAAT Conference on Artificial Intelligence. vol. 34; 2020. p. 1054-1061.

Duvenaud D, Maclaurin D, Aguilera-Iparraguirre J, Gémez-Bombarelli R, Hirzel
T, Aspuru-Guzik A, et al. Convolutional networks on graphs for learning
molecular fingerprints. arXiv preprint arXiv:150909292. 2015;.

Do K, Tran T, Venkatesh S. Graph transformation policy network for chemical
reaction prediction. In: Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining; 2019. p. 750-760.

Choi E, Xu Z, Li Y, Dusenberry M, Flores G, Xue E, et al. Learning the
graphical structure of electronic health records with graph convolutional
transformer. In: Proceedings of the AAAI Conference on Artificial Intelligence.
vol. 34; 2020. p. 606-613.

Fout AM. Protein interface prediction using graph convolutional networks.
Colorado State University; 2017.

Shlomi J, Battaglia P, Vlimant JR. Graph neural networks in particle physics.
Machine Learning: Science and Technology. 2020;2(2):021001.

Bruna J, Zaremba W, Szlam A, LeCun Y. Spectral networks and locally
connected networks on graphs. arXiv preprint arXiv:13126203. 2013;.

Defferrard M, Bresson X, Vandergheynst P. Convolutional neural networks on
graphs with fast localized spectral filtering. In: Advances in Neural Information
Processing Systems; 2016. p. 3844-3852.

Kipf TN, Welling M. Semi-supervised classification with graph convolutional
networks. International Conference of Learning Representations (ICLR). 2017;.

Hamilton W, Ying Z, Leskovec J. Inductive representation learning on large
graphs. In: Advances in Neural Information Processing Systems; 2017. p.
1024-1034.

Velickovic P, Cucurull G, Casanova A, Romero A, Lio P, Bengio Y. Graph
attention networks. International Conference of Learning Representations (ICLR).
2018;.

Xu K, Hu W, Leskovec J, Jegelka S. How Powerful are Graph Neural Networks?
arXiv preprint arXiv:181000826. 2018;.

Gilmer J, Schoenholz SS, Riley PF, Vinyals O, Dahl GE. Neural message passing
for quantum chemistry. In: Proceedings of the 34th International Conference on
Machine Learning-Volume 70. JMLR. org; 2017. p. 1263—-1272.

Simonovsky M, Komodakis N. Dynamic edgeconditioned filters in convolutional
neural networks on graphs. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition; 2017.

Simonovsky M, Komodakis N. Graphvae: Towards generation of small graphs
using variational autoencoders. In: International Conference on Artificial Neural
Networks. Springer; 2018. p. 412-422.

Xie T, Grossman JC. Crystal graph convolutional neural networks for an
accurate and interpretable prediction of material properties. Physical review
letters. 2018;120(14):145301.

April 26, 2021

25/26

48.

49.

50.

ol.

92.

93.

54.

95.

96.

o7.

98.
99.

60.

Li G, Xiong C, Thabet A, Ghanem B. Deepergcn: All you need to train deeper
gens. arXiv preprint arXiv:200607739. 2020;.

Battaglia PW, Hamrick JB, Bapst V, Sanchez-Gonzalez A, Zambaldi V,
Malinowski M, et al. Relational inductive biases, deep learning, and graph
networks. arXiv preprint arXiv:180601261. 2018;.

Prates MO, Avelar PH, Lemos H, Gori M, Lamb L. Typed graph networks.
arXiv preprint arXiv:190107984. 2019;.

He K, Zhang X, Ren S, Sun J. Delving Deep into Rectifiers: Surpassing
Human-Level Performance on ImageNet Classification; 2015.

Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, et al.
Attention is all you need. arXiv preprint arXiv:170603762. 2017;.

8000 Filtered Structures;.
http://kinemage.biochem.duke.edu/databases/top8000.php.

Maguire JB, Haddox HK, Strickland D, Halabiya SF, Coventry B, Griffin JR,
et al. Perturbing the energy landscape for improved packing during
computational protein design. Proteins. 2020;.

Grattarola D, Alippi C. Graph Neural Networks in TensorFlow and Keras with
Spektral; 2020.

Chaudhury S, Lyskov S, Gray JJ. PyRosetta: a script-based interface for
implementing molecular modeling algorithms using Rosetta. Bioinformatics.
2010;26(5):689-691.

Maguire J. MentenGCN; 2021. Available from:
https://menten-gcn.readthedocs.io/en/latest/.

Chollet F, et al.. Keras; 2015. https://keras.io.

Kingma DP, Ba J. Adam: A Method for Stochastic Optimization; 2014.
Available from: http://arxiv.org/abs/1412.6980.

ResidueSelectors;.
https://www.rosettacommons.org/docs/latest/scripting_documentation/
RosettaScripts/ResidueSelectors/ResidueSelectors#residueselectors_
conformation-dependent-residue-selectors_layerselector.

April 26, 2021

26/26

