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Abstract

Graph representations are traditionally used to represent protein structures in sequence
design protocols where the folding pattern is known. This infrequently extends to
machine learning projects: existing graph convolution algorithms have shortcomings
when representing protein environments. One reason for this is the lack of emphasis on
edge attributes during massage-passing operations. Another reason is the traditionally
shallow nature of graph neural network architectures. Here we introduce an improved
message-passing operation that is better equipped to model local kinematics problems
such as protein design. Our approach, XENet, pays special attention to both incoming
and outgoing edge attributes.

We compare XENet against existing graph convolutions in an attempt to decrease
rotamer sample counts in Rosetta’s rotamer substitution protocol. This use case is
motivating because it allows larger protein design problems to fit onto near-term
quantum computers. XENet outperformed competing models while also displaying a
greater tolerance for deeper architectures. We found that XENet was able to decrease
rotamer counts by 40% without loss in quality. This decreased the problem size of our
use case by more than a factor of 3. Additionally, XENet displayed an ability to handle
deeper architectures than competing convolutions.

Author summary

Graphs data structures are ubiquitous in the field of protein design and are at the core
of the recent advances in artificial intelligence brought forth by graph neural networks
(GNNs). GNNs have led to some impressive results in modeling protein interactions, but
are not as common as other tensor representations.

Most GNN architectures tend to put little to no emphasis on the information stored
on edges; however, protein modeling tools often use edges to represent vital geometric
relationships about residue pair interactions. In this paper, we show that a more
advanced processing of edge attributes can lead to considerable benefits when modeling
chemical data.

We introduce XENet, a new member of the GNN family that is shown to have
improved ability to model protein residue environments based on chemical and geometric
data. We use XENet to intelligently simplify the optimization problem that is solved
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when designing proteins. This task is important to us and others because it allows
larger proteins to be designed on near-term quantum computers. We show that XENet
is able to train on our protein modeling data better than existing methods, successfully
resulting in a dramatic decrease in protein design sample space with no loss in quality.

Introduction 1

Protein design involves astronomically large search problems beyond the capabilities of 2

even the largest supercomputers. [1] Current computational methods make use of 3

stochastic search algorithms such as simulated annealing to handle this large space. [2] 4

This task traditionally involves assuming a static protein backbone and representing all 5

candidate sidechain conformations and identities as discrete possibilities called 6

“rotamers”. [3, 4] A single sequence position on the protein can have hundreds of 7

candidate rotamers when spanning all twenty native amino acids. 8

Quantum computing offers a new alternative for solving these complex tasks to 9

power the development of new protein-based therapeutics and enzymes of industrial 10

interest. [5] In previous work, we demonstrated how the protein design problem can be 11

expressed as a combinatorial optimization problem and solved using quantum annealing 12

hardware and hybrid quantum-classical solvers. [6] Critically, we were able to show the 13

system’s applicability to real-world protein design problems without reducing the 14

complexity of the problem. 15

This method used the Rosetta software suite to model these backbone-dependent 16

rotamers and to calculate the one- and two-body interactions between them [7–9]. Our 17

goal was to find the set of rotamers that minimizes the protein’s computed energy, 18

measured in Rosetta Energy Units (REU). Rosetta does this using simulated annealing, 19

in a process called “packing” and “rotamer substitution” [4, 10]. 20

Mapping large protein design problems directly to quantum hardware was limited by 21

a number of factors including noise and the number of qubits available. Even using a 22

hybrid solver proved impractical for large problems as noise and time constraints 23

effectively placed an upper barrier to the size of problems that could be solved. 24

Additionally, we have evidence that the modeling of some atomic interactions, like 25

hydrogen bonds, would be improved with a finer granularity of rotamer sampling, 26

suggesting that our problem has reason to grow even larger [11]. 27

Our goal for this project was to use machine learning to adaptively decrease sample 28

space for arbitrary protein design problems by eliminating rotamers from consideration. 29

Scientists are having rapidly-increasing success using artifical neural networks to design 30

proteins using a variety of representations [12, 13]. We have recently seen success 31

representing proteins by passing contact maps into image-inspired 2D 32

convolutions [14, 15], 3D convolutions on voxelized representations [16, 17], and even 33

language models on protein sequences [18–20]. The representation that interests us the 34

most is the graph-based representation found in graph neural networks [21–23]. 35

Graphs are intuitive representations for protein modeling cases in which the 36

backbone structure is already established, as it is in protein design. In fact, traditional 37

protein modeling tools such as Rosetta use graphs internally to model interactions 38

during their own protocols [7, 24–26]. These residue-centric graphs represent each 39

sequence position as a node, with edges connecting positions that are close in 3D space. 40

Node attributes generally encode the residue’s backbone geometry and possibly some 41

representation of its sidechain identity. Edge attributes are used to model the 42

interactions and geometry between residue positions. 43

Graph neural networks (GNNs) are a class of machine learning models designed to 44

process graph-structured data. While the seminal research on GNNs dates back to the 45

works of Sperduti et al. [27], Gori et al. [28], and Scarselli et al. [29], recent research 46
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efforts have led to a rapid growth of the field and have achieved state-of-the-art results 47

on a large variety of applications, ranging from social networks [30–32], to 48

chemistry [33,34], biology [21,35,36], and physics [37]. 49

The growth of the field has led to the development of many diverse GNN 50

architectures, notably including the works in references [38–43]. Of particular interest to 51

this work are those models that can be expressed as message-passing architectures [44]. 52

In particular, message-passing GNNs act on the node attributes of a graph according to 53

the following general scheme: 54

x0

i = γ
�

xi,åj2N (i) φ
�

xi,xj , e(j,i)
��

, 8i 2 V (1)

where φ is a message function that depends on the graph’s node and edge attributes 55

(resp. X and E), å is any permutation-invariant operation that aggregates messages 56

coming from the neighborhood of i, and γ is an update function (see our Notation 57

section on the next page for the remaining symbols). Intuitively, message-passing GNNs 58

transform the attributes of the graph by exchanging information between neighboring 59

nodes. 60

While the definition of Eq. (1) allows the message function to depend on the edge 61

attribute between a node and its neighbor, the majority of GNN architectures are 62

designed for non-attributed edges. Among those GNNs that are designed to process 63

edge attributes, we mention the Edge-Conditioned Convolutions (ECCs) introduced by 64

Simonovsky and Komodakis [45]. ECCs make use of an auxiliary model called a 65

filter-generating network (FGN) that takes as input edge attributes and produces 66

output parameters that replace what conventionally would be the learnable parameters 67

of φ in Eq. (1) that would ordinarily be fixed. ECCs can bring significant advantages 68

when processing graphs for which edge attributes are important and have been used to 69

process molecular graphs [46]. However, the FGN can be difficult to train due to the 70

absence of a strong supervision signal (which is particularly difficult to achieve when 71

stacking many layers) and ECCs are mostly effective in processing edge attributes with 72

a one-hot representation. 73

In recent years, other types of GNNs have been proposed that process edge 74

attributes directly in the message function, without relying on a FGN. These usually 75

concatenate [47] or sum [48] the edge attributes to the node attributes of the neighbors. 76

In particular, here we consider the work of Xie et al. [47], based on concatenation, which 77

we denote as CrystalConv in the following. 78

We note, however, that all of the methods mentioned above suffer from two key 79

issues. First, none of them are designed to take into account the case of symmetric 80

directed graphs with asymmetric edge attributes (i.e., graphs for which the existence of 81

edge (i, j) implies the existence of edge (j, i) and vice versa, but the corresponding 82

attributes can differ). This is particularly relevant for our work due to the geometric 83

nature of our edge attributes: our edges themselves have no directionality but nearly 84

every edge feature has some degree of asymmetry. Second, most existing methods are 85

not designed to update edge attributes, which are considered as static inputs 86

throughout the network. The updating of edge attributes is not a novel idea per se, 87

since it was proposed both in the Graph Network model by Battaglia et al. [49] and in 88

the Typed Graph Network of Prates et al. [50] (where both are works that attempt to 89

unify GNNs in a similar spirit to the message passing framework), but to the best of our 90

knowledge it is seldom applied in practice. 91

Here we propose XENet, a GNN model that addresses both concerns while also avoid 92

the computational issues introduced by FGNs. XENet is a message-passing GNN that 93

simultaneously accounts for both the incoming and outgoing neighbors of each node, 94

such that a node’s representation is based on the messages it receives as well as those it 95

sends. We demonstrate XENet’s advantage over ECC and CrystalConv by testing their 96

abilities to eliminate rotamer candidates in real-world protein design problems. 97
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Materials and methods 98

Notation Let a graph be a tuple G = (V, E), with node set V = {1, . . . , N} and edge 99

set E 7 V å V s.t. (i, j) 2 E is a directed edge from node i to node j. Additionally, let 100

xi 2 R
F indicate a vector attribute associated with node i and let ei,j 2 R

S indicate a 101

vector attribute associated with edge (i, j). We indicate the neighborhood of a node 102

with N (i) = {j | (j, i) 2 E}. Note that in our case we consider symmetric directed 103

graphs, so that the incoming and outgoing neighbors of a node coincide. 104

To make notation more compact, in the following we denote with X 2 R
NåF the 105

matrix of node attributes, with E 2 R
NåNåS the matrix of edge attributes (we assume 106

the entries of this matrix to be zero if the corresponding edge does not exist), and with 107

A 2 {0, 1}NåN the binary adjacency matrix of the graph. 108

XENet 109

Our architecture, which we refer to as XENet (due to its ability to convolve over both X

and E tensors), is described by the following Equations:

sij = ϕ(s)
ã

xikxjke(i,j)ke(j,i)

;

(2)

s
(out)
i =

X

j2N (i)

a(out)(sij) · sij (3)

s
(in)
i =

X

j2N (i)

a(in)(sij) · sji (4)

x0

i = ϕ(n)
ã

xiks
(out)
i ks

(in)
i

;

(5)

e0(i,j) = ϕ(e)
ã

sij

;

(6)

where ϕ(s), ϕ(n), ϕ(e) are multi-layer perceptrons with Parametric Rectified Linear Unit 110

activations [51], and where a(out) and a(in) are two dense layers with sigmoid activations 111

and a single scalar output. 112

The core of XENet lies in the computation and aggregation of the feature stacks sij 113

in Eqs. (2)-(4). These are obtained by concatenating the node and edge attributes 114

associated with the incoming and outgoing messages (Eq. (2)), so that the multi-layer 115

perceptron ϕ(s) learns to process the two directions separately. The feature stacks are 116

also aggregated separately in the two directions of the flow, using self-attention [52] to 117

compute a weighted sum (Eqs. (3)-(4)). The separate representations are concatenated 118

and used to update the node attributes of the graph (Eq. (5)). Finally, some additional 119

processing of the feature stacks through ϕ(e) lets us compute new edge attributes that 120

are dependent on the message exchange between nodes (Eq. (6)). 121

Generating FixbbGCN Training Data 122

Here we prepare to apply XENet to a specific protein design problem, as described later 123

in the paper. Our goal is to create a GNN that can analyze an intermediate protein 124

state of FastDesign and predict which rotamers are likely to be sampled in the next 125

round of rotamer substitution. We call this trained network “FixbbGCN”. 126

We used an arbitrary subset of structures from the Top8000 dataset for training [53], 127

which ensures that no two protein structures have high similarity. Our training set used 128

967 structures (total of 229,776 residue positions) and our validation set used 239 129

structures (57,584 residue positions). The number of structures we used simply 130

depended on how much CPU time we were willing to commit for generating data. 131
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We ran 5 repeats of the MonomerDesign2019 variant of Rosetta’s FastDesign [54] 132

protocol on each structure but only collected training data for the final 4 repeats. We 133

set Rosetta to generate a larger number of more finely-discretized rotamers by passing 134

the ‘-ex1 -ex2’ commandline flags and used Rosetta’s REF2015 energy function [9]. This 135

accounts for 16 of the 20 rounds of rotamer substitution, though for this project we only 136

use the data from 4 of the 16 rounds due to score function ramping [54]. We therefore 137

ended up with 919,104 training set elements (229,776 residues x 4 rounds per residue) 138

and 230,336 validation elements. 139

For this project, rotamers from the 20 amino acids were binned into 54 categories. 140

Alanine, Proline, and Glycine each had their own bin due to their lack of meaningful χ1 141

attributes. The remaining 17 canonical amino acids had three bins each, which 142

correspond to the three χ1 wells. 143

For each round of rotamer substitution, we tracked the fraction of time that each 144

rotamer was the representative state for its residue position. At the end of the run, any 145

rotamer bin that held the representative state for more than 0.1% of the run was 146

classified as a 1. All other rotamer bins were classified as a 0. Note that this resulted in 147

a multi-label classification problem where every sample was associated with one or more 148

classes. We also ignored data from the fraction of the simulated annealing trajectories 149

where the simulated temperature was above 3 Rosetta Temperature Units (3 REU is 150

intended to correspond with 3 kcal/mol). 151

FixbbGCN Architecture 152

We refer to this family of networks as FixbbGCN, as the Rosetta rotamer substitution 153

protocol is sometimes called “fixbb”. FixbbGCN is schematically represented in Fig 1. 154

The model has three input tensors for X, A, and E. The maximum number of nodes 155

per graph representation is N = 30, the number of attributes per node is F = 46, and 156

the number of attributes per edge is S = 28. The output of the model is a 157

54-dimensional vector which holds one value for each of the rotamer bins described in 158

the “Generating Training Data” section. 159

For all models, the X and E tensors are first fed to dense layers. These 160

fully-connected layers only process one node/edge at a time, so that no information 161

flows between nodes or edges. We then apply one or more steps of message passing, 162

using either XENet, CrystalConv, or ECC layers. We used the Spektral package’s 163

implementation of the latter two layers. [55] 164

Fig 1 shows two rounds of message passing but we tested all models with one, two, 165

and three layers (some XENet models were tested up to five layers, as reported in the 166

SI). We note that the output tensor E from the final round of XENet is never be used 167

by a future layer. The subset of parameters used to build this final E will be implicitly 168

omitted when we tally trainable parameters. 169

We set FixbbGCN up as a single-node classification problem as opposed to a graph 170

classification problem. Thus, after the message-passing stage, we focus on the unique 171

node that represents the residue of interest being evaluated. We concatenate the output 172

from the final message-passing layer with the original input X tensor in an effort to 173

compensate the over-smoothing effect of message passing. We then crop the X tensor to 174

only include the node that represents the protein residue of interest. FixbbGCN finishes 175

off by running that single node’s data through two more fully-connected layers. 176

All dense and message-passing layers have ReLU activation functions except for the 177

final dense layer which has a sigmoid activation. 178
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Dense XENetXENet Concatenate Crop Dense Dense

Xin

Ein E

X

E

X

E

X X Xres Xres Xres

Dense ECC or 

CrystalConv
Concatenate Crop Dense Dense

Xin

Ein E

X X X X Xres Xres Xres

(A)

(B)

ECC or 

CrystalConv

Fig 1. Schematic representation of FixbbGCNs, the networks used in our experiments.
(A) Example layout for a model with two XENet layers. X denotes node attribute
tensor with Xin as the input tensor and Xres as the single-node subset of the X tensor
which represents the protein residue of interest. E denotes the edge attribute tensor
with Ein as the input tensor. Dotted lines are used to represent operations that are
omitted as described in the main text. (B) Example layout for a model with two ECC
or CrystalConv layers using the same notation. The A tensor is omitted from this
diagram because it never changes.

Hidden Layer Sizes 179

We benchmarked two XENet candidates as outlined in Table 1. XENet (s) is sized to 180

have the same hidden layer size as the ECC models. XENet (p) is sized to have the 181

same number of trainable parameters as the ECC models. We tuned these parameters 182

by changing Fh and Sh, which are the number of channels for the hidden X and E 183

layers, respectively, before the cropping layer. The penultimate dense layer always has 184

100 channels and the final layer always has 54 channels. 185

Likewise, we benchmarked two CrystalConv models using the same normalization 186

techniques. The parameter normalization was not perfect but we got as close as possible 187

without varying hyperparameters between depths of the same type. 188

Each XENet layer always used two internal stacking layers with Sh channels each. In 189

other words, the ϕ(s) multi-layer perceptrons always had a depth of two. 190

Node and Edge Attributes 191

Our input data had 46 node attributes and 28 edge attributes, all of which are listed in 192

the Supporting Information. Most of these attributes are direct physical characteristics 193

of residues and physical relationships of residue pairs. We also included more advanced 194

analytics in the form of Rosetta score terms. 195

Many of these attributes require access to the pyrosetta package to compute. [56] 196

These include the Rosetta score terms, hydrogen bond identification, and the residue 197

pair “jump” measurements. A Rosetta “jump” describes the six-dimensional rigid body 198

relationship between the coordinate frames of two protein residues based on their 199

backbone atoms. 200
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Convolution # Layers Parameters Fh Sh

ECC 1 100,067 49 32
ECC 2 181,701 49 32
ECC 3 263,335 49 32

CrystalConv (s) 1 31,271 49 32
CrystalConv (s) 2 44,109 49 32
CrystalConv (s) 3 56,947 49 32
CrystalConv (p) 1 109,283 125 64
CrystalConv (p) 2 188,033 125 64
CrystalConv (p) 3 266,783 125 64

XENet (s) 1 30,421 49 32
XENet (s) 2 47,625 49 32
XENet (s) 3 64,829 49 32
XENet (p) 1 92,928 128 64
XENet (p) 2 179,522 128 64
XENet (p) 3 266,116 128 64

Table 1. Hidden layer sizes and number of trainable parameters for all models. Fh is
the number of channels for hidden X layers and Sh is the number of channels for hidden
E layers.

MentenGCN Package 201

We have created a public Python package in an effort to make protein processing with 202

GNNs more portable and easier to share. MentenGCN [57] has a library of tensor 203

decorators that were used for this project to generate the X, A, and E input tensors 204

directly from Rosetta’s protein representation. The configuration class for the GNN 205

used in this paper is available within the MentenGCN package under the name 206

“Maguire Grattarola 2021”. Please refer to the Supporting Information section for 207

more detail on how to access this feature. 208

Training and Evaluating FixbbGCN Models 209

Each model configuration was trained between 6 and 12 times, loosely depending on the 210

amount of resources required to train each model. We show later that the performance 211

of a given architecture generally has narrow variance so we did not see the need to 212

expand this sampling. 213

Each model was trained using Keras’s implementation of the Adam optimizer with a 214

starting learning rate of 0.001 and the binary crossentropy loss function [58,59]. The 215

learning rate was reduced by a factor of 10 whenever the validation loss plateaued for 2 216

consecutive epochs (min delta=0.001). Training was halted whenever the validation 217

loss plateaued for 5 consecutive epochs. We evaluated all models with binary 218

crossentropy and Receiver Operating Characteristic (ROC) area-under-curve (AUC) on 219

our validation set. 220

Benchmarking FixbbGCN Implementation On Classical 221

Computer 222

As we will show in the Results section, the best model observed was XENet (p) with 3 223

layers. We benchmarked the applicability of this model by using it alongside Rosetta’s 224

packing protocol on six backbones of various sizes. For each backbone, we ran each 225

residue position through our model and compared the 54 final values against a tuneable 226

cutoff. Rotamers were eliminated if the final value for their respective bin fell below the 227
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cutoff. We performed this benchmark with a range of cutoffs between 0 and 1. We also 228

included a cutoff of -1.0 as a control (so that no rotamers were eliminated, since the 229

sigmoid activation has a minimum of 0). The larger the cutoff, the more aggressively 230

rotamers were eliminated. We ran each cutoff on each structure 10 times and tracked 231

the final Rosetta score in units of Rosetta Energy Units (REU) where more negative is 232

better. 233

The Protein Data Bank codes for the six backbones used for this benchmark are 234

1SFX, 1ECO, 1D4O, 1W2C, 1O4S, and 1PJ5 in order of increasing size. All six of these 235

structures are also from the top8000 dataset [53] so they are expected to have low 236

homology with the training and validation data used to train the model. Staying 237

consistent with the training data collection, Rosetta built rotamers with the “-ex1 -ex2” 238

commandline flags and used Rosetta’s REF2015 score function [9]. 239

Benchmarking FixbbGCN Implementation On Quantum 240

Computer 241

This quantum benchmark used all of the same Rosetta parameters and FixbbGCN 242

cutoffs as the classical benchmark. We could not fit the previous test cases on the 243

quantum machine so we used a subset of the smallest problem (protein data bank code: 244

1SFX). We used Rosetta’s LayerSelector tool to design the 10 residues in the core of the 245

protein. [60] All other residue positions were held immutable, decreasing our maximum 246

rotamer count from 63183 to 5686. 247

Our quantum rotamer sampling protocol was identical to that described in Mulligan 248

et al. [6] Like the classical benchmark, we ran 10 annealing trajectories for each 249

FixbbGCN cutoff and reported the mean and standard deviation across those 10 250

samples. We also measured Random Access Memory (RAM) usage for each problem 251

size. The RAM usage is expected to scale quadratically with rotamer count due to the 252

need to calculate all residue pair energies between neighboring sequence positions. 253

Results and Discussion 254

FixbbGCN Model Comparisons 255

Our goal for this test was to find the graph convolution that would best represent our 256

protein modeling data. XENet is our attempt to engineer a new GNN layer that makes 257

further use of the edge tensors, including updating their features as the result of the 258

convolution. As baseline model for this experiment we considered ECC, since it is one of 259

the first and most widely used GNNs designed to process edge attributes, and we 260

compare it against different configurations of CrystalConv and XENet to ensure a fair 261

comparison. XENet (s) and CrystalConv (s) are normalized by the channel depth of 262

each hidden layer. XENet (p) and CrystalConv (p) are normalized by the trainable 263

parameter count. 264

The models were tasked with a multi-label classification problem to predict which 265

protein sidechain rotamers would be sampled at a given sequence position during a 266

round of Rosetta’s rotamer subsitution protocol with simulated annealing. [10] We see 267

in Table 2 that the XENet models outperform their ECC and CrystalConv counterparts, 268

although some of the CrystalConv models are in close competition with the best XENet 269

models. In addition to having better loss and AUC scores, XENet convolutions appear 270

to perform better with deeper architectures. XENet slightly improves when the third 271

graph convolution layer is introduced, whereas ECC and CrystalConv exhibit a 272

consistent drop in performance at that depth. 273
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Convolution # Layers Loss σ Loss AUC σ AUC # Models

ECC 1 0.188 0.004 0.9772 0.0009 8
ECC 2 0.213 0.071 0.9674 0.0224 6
ECC 3 5.442 0.462 0.6248 0.0284 6

CrystalConv (s) 1 0.173 0.001 0.9807 0.0003 8
CrystalConv (s) 2 0.155 0.002 0.9844 0.0003 8
CrystalConv (s) 3 4.520 0.258 0.6872 0.0179 8
CrystalConv (p) 1 0.158 0.002 0.9837 0.0005 8
CrystalConv (p) 2 0.145 0.002 0.9865 0.0004 8
CrystalConv (p) 3 5.522 0.345 0.6238 0.0368 8

XENet (s) 1 0.155 0.001 0.9844 0.0003 10
XENet (s) 2 0.147 0.002 0.9860 0.0005 8
XENet (s) 3 0.143 0.001 0.9868 0.0002 8
XENet (p) 1 0.143 0.001 0.9869 0.0002 10
XENet (p) 2 0.137 0.002 0.9878 0.0004 12
XENet (p) 3 0.134 0.002 0.9883 0.0004 8

Table 2. Training Results. Mean binary crossentropy loss and mean AUC for trained
models. σ denotes standard deviation. Lower loss values are considered better whereas
higher AUC values are better.

The reasons for these differences in performance can be readily motivated by 274

considering the differences between the models themselves. First, ECC’s FGN is an 275

indirect way of processing edge attributes and requires a strong supervision signal in 276

order to be trained effectively, which may not be easy to attain especially within deeper 277

architectures. Second, ECC was often shown to be most effective when processing data 278

with one-hot encoded attributes [45, 46], which is not the case here. 279

Since CrystalConv does not use a FGN to process the edges, it does not have the 280

same problems as ECC and its performance is more in line with XENet’s. However, the 281

asymmetric processing of XENet, paired with its ability to update edge attributes to 282

obtain a richer representation, make it more suitable for this particular type of data and 283

results in a better overall performance in all configurations. 284

We show in Fig 2 that XENet can even handle depths of 4 and 5 GNN layers. The 285

additional layers did not give us an advantage in validation loss; however, deeper 286

architectures will theoretically be more advantageous for use cases that require more 287

expansive message passing than our benchmark. For this reason, the mere ability to 288

handle deeper architectures may prove to be a strength of XENet. XENet did encounter 289

occasional failures with the deeper architectures but the majority of deeper models 290

finished with competitive validation losses. We did not test CrystalConv or ECC with 291

architectures of 4 or 5 layers due to their lack of success with 3 layers. 292

Quantum FixbbGCN Benchmark 293

Now that we have these trained models, we want to see how much they can decrease the 294

sizes our quantum annealing use cases. We wrapped the best model for each 295

architecture in Rosetta rotamer-elimination machinery and named it FixbbGCN 296

(“fixbb” is a popular name for Rosetta’s fixed-backbone packing protocol). 297

We cannot run full-sized quantum benchmarks for the same reason that this project 298

was motivated: our protein design benchmarks are too large to be run on the quantum 299

computers. The best we can currently do is use FixbbGCN to design a subset of the 300

protein on the quantum annealer and save the larger problems for the classical 301

benchmark presented later in the article. 302
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Fig 2. Depth Comparison With Fixed Parameter Count. We plot the losses of all
trained ECC, CrystalConv (p), and XENet (p) models against the number of graph
convolutional layers in each model. Transparency was applied to the points to help
illustrate density. ECC and CrystalConv have no points with 4 or 5 layers.
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Fig 3. Quantum FixbbGCN Benchmark Results. (A) Mean Rosetta Scores for various
cutoffs and convolutions types. Lines connect points of the same convolution and the
line to the first drop in design quality is drawn thick. X-axis values are the number of
surviving rotamers for a cutoff/convolution pair divided by the number of rotamers in
the control case. (B) Same results as (A) but plotting against annealer memory usage
instead of rotamer count. Both y-axes are truncated for the sake of readability.

For this test, we needed a very small problem size. We took the smallest test case 303

from our benchmark set but restricted sampling to only include the core of the protein. 304

We used Rosetta’s definition of the core, which identified 10 residue positions that were 305

sufficiently isolated from solvent exposure. 306

We chose this benchmark because the core is the most combinatorially challenging 307

part of the protein to design. Rosetta samples core rotamers more finely than 308

solvent-exposed residues so the rotamer count per position is higher. Additionally, these 309

residue positions tend to have more neighbors, resulting in a more complex energy 310

optimization problem. 311

XENet shows in Fig 3 an ability to decrease the rotamer count to roughly 60% 312

before the dip in Rosetta score appears. ECC drops in quality near 70% and 313

CrystalConv drops near 64%. 314

We did not report runtime for this benchmark because we had no way to decouple 315

time spent running the annealer from time spent sending our data over the internet and 316

waiting in the quantum computer’s queue. We do expect that runtime will correlate 317

linearly with RAM usage as both have quadratic relationships with the rotamer count. 318

Using RAM as our guide, XENet is able to reduce our problem size to 32% before 319

the decrease in design quality appears. The CrystalConv model came close with a 320

decrease to 36% and the ECC only model shrunk the problem to 43%. 321
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Fig 4. FixbbGCN Benchmark Results. Results of running Rosetta’s rotamer
substitution protocol on six different protein backbones. FixbbGCN was used with
various cutoffs to decrease the total rotamer count of each sample. The mean Rosetta
scores (measured in REU) and standard deviations are displayed for each cutoff. The
y-axes are truncated for the sake of readability.

Classical FixbbGCN-XENet Benchmark 322

The goal for the final benchmark was to assess to what extent XENet’s pattern 323

observed in the quantum benchmark persists for full-sized use cases. Unfortunately, 324

these full-sized design cases are too large for us to run on quantum computers so we ran 325

these benchmarks using Rosetta’s simulated annealer. This is the best we can do with 326

current technology but hopefully a more complete test will be possible someday. 327

Similar to the quantum benchmark, this benchmark applies the XENet classifier 328

with various cutoffs to Rosetta’s set of rotamers for six different protein design 329

problems. This time, however, the entire protein structures are being designed. 330

Rotamers are pruned if their predicted value from the classifier is below the cutoff. The 331

“control” data point with the largest rotamer count for a given use case is the standard 332

Rosetta packing protocol with no influence from the classifier. 333

We see in Fig 4 that we can use FixbbGCN to decrease the number of rotamers 334

without a loss in design quality to a limited extent. The Rosetta score will generally stay 335

in range of the control data down to the range of 55-60% of the original rotamer count. 336

The results in Fig 4 supports the idea that FixbbGCN’s ability to eliminate 337

rotamers for small problem sizes translates to larger problem sizes too. It is up to the 338

user to decide how risky they want to be with FixbbGCN, but our results suggests that 339

decreasing rotamer counts to roughly 60% is safe. 340

Conclusion 341

Graph neural networks have great potential for modeling residue-level protein 342

interactions. We show that our new convolution, XENet, can model residue-level 343

environments better than existing methods ECC and CrystalConv. Not only does the 344

usage of XENet result in lower validation losses, but we show that XENet can 345

withstand deeper architectures. 346

To demonstrate XENet’s value, we use it to create a tool capable of fitting larger 347
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protein design problems onto quantum computers by eliminating sidechain 348

conformations that are unlikely to be selected by an annealer. XENet was consistently 349

able to reduce rotamer counts by 40% without loss in design quality. As a result, we 350

measured a 68% decrease in total problem size, which has a quadratic relationship with 351

rotamer count. 352

Supporting information 353

Abbreviations 354

AUC Area Under Curve (used with respect to ROC)
ECC Edge-Conditioned Convolution
FGN Filter-Generating Network
GCN Graph Convolutional Network
GNN Graph Neural Network
RAM Random Access Memory
REU Rosetta Energy Units
ROC Receiver Operating Characteristic

355

Quantum Benchmark Results 356

XENet 357

Cutoff Rotamers Frac. Rotamers RAM (GB) Score (REU) σ Score

-1 5686 1.00 11.92 -158.4 0.6
0.25 4706 0.83 7.78 -158.8 0.3
0.5 4623 0.81 7.45 -158.6 0.8
0.75 4334 0.76 6.38 -158.5 0.6
0.85 4206 0.74 5.98 -158.4 0.7
0.9 4089 0.72 5.62 -158.8 0.5
0.95 3851 0.68 4.92 -158.5 0.7
0.97 3649 0.64 4.35 -159.0 0.5
0.98 3452 0.61 3.87 -158.6 0.5
0.99 3331 0.59 3.58 -147.3 0.3
0.995 3057 0.54 2.97 -147.4 0.4
0.9995 1984 0.35 1.32 -137.8 0.2

358

Table S1. Results of Core Redesign on the quantum computer with XENet. σ 359

denotes standard deviation. 360

ECC 361

Cutoff Rotamers Frac. Rotamers RAM (GB) Score (REU) σ Score

-1 5686 1.00 11.92 -158.4 0.6
0.25 4937 0.87 8.65 -158.6 0.3
0.5 4500 0.79 7.07 -158.7 0.5
0.6 4340 0.76 6.51 -158.5 0.7
0.7 4208 0.74 6.09 -158.7 0.5
0.74 4013 0.71 5.38 -158.8 0.5
0.75 4002 0.70 5.35 -147.4 0.5
0.85 3559 0.63 4.20 -147.0 0.5
0.9 3408 0.60 3.91 -147.5 0.3
0.95 2884 0.51 2.79 -141.0 0.5
0.97 2644 0.47 2.33 -141.1 0.4
0.98 2365 0.42 1.93 -138.0 0.3

362
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Table S2. Results of Core Redesign on the quantum computer with ECC. σ denotes 363

standard deviation. 364

CrystalConv 365

Cutoff Rotamers Frac. Rotamers RAM (GB) Score (REU) σ Score

-1 5686 1.00 11.92 -158.4 0.6
0.25 4812 0.85 8.16 -158.6 0.6
0.75 4416 0.78 6.91 -158.6 0.6
0.85 4094 0.72 5.65 -158.8 0.7
0.9 3947 0.69 5.12 -158.7 0.6
0.91 3865 0.68 4.98 -158.4 0.7
0.92 3779 0.66 4.73 -158.8 0.5
0.93 3637 0.64 4.34 -158.9 0.5
0.95 3566 0.63 4.18 -147.5 0.5
0.97 3449 0.61 3.91 -147.3 0.3
0.98 3416 0.60 3.91 -147.1 0.3
0.99 3008 0.53 2.96 -142.5 0.5
0.995 2805 0.49 2.56 -142.1 0.4
0.9995 1515 0.27 0.81 -131.8 0.1

366

Table S3. Results of Core Redesign on the quantum computer with CrystalConv. σ 367

denotes standard deviation. 368

Node and Edge attributes for FixbbGCN 369

46 Node Features: 370

1 : 1 if the node is the focus residue, 0 otherwise 371

2 : 1 if residue is A, 0 otherwise 372

3 : 1 if residue is C, 0 otherwise 373

4 : 1 if residue is D, 0 otherwise 374

5 : 1 if residue is E, 0 otherwise 375

6 : 1 if residue is F, 0 otherwise 376

7 : 1 if residue is G, 0 otherwise 377

8 : 1 if residue is H, 0 otherwise 378

9 : 1 if residue is I, 0 otherwise 379

10 : 1 if residue is K, 0 otherwise 380

11 : 1 if residue is L, 0 otherwise 381

12 : 1 if residue is M, 0 otherwise 382

13 : 1 if residue is N, 0 otherwise 383

14 : 1 if residue is P, 0 otherwise 384

15 : 1 if residue is Q, 0 otherwise 385

16 : 1 if residue is R, 0 otherwise 386

17 : 1 if residue is S, 0 otherwise 387

18 : 1 if residue is T, 0 otherwise 388

19 : 1 if residue is V, 0 otherwise 389

20 : 1 if residue is W, 0 otherwise 390

21 : 1 if residue is Y, 0 otherwise 391

22 : Phi of the given residue, measured in radians. 392

Spans from -pi to pi 393

23 : Psi of the given residue, measured in radians. 394

Spans from -pi to pi 395

24 : Sine of chi angle number 1 of each residue. 396

Spans from -1 to 1, 0 if chi angle is not valid for this residue 397
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25 : Cosine of chi angle number 1 of each residue. 398

Spans from -1 to 1, 0 if chi angle is not valid for this residue 399

26 : Sine of chi angle number 2 of each residue. 400

Spans from -1 to 1, 0 if chi angle is not valid for this residue 401

27 : Cosine of chi angle number 2 of each residue. 402

Spans from -1 to 1, 0 if chi angle is not valid for this residue 403

28 : Sine of chi angle number 3 of each residue. 404

Spans from -1 to 1, 0 if chi angle is not valid for this residue 405

29 : Cosine of chi angle number 3 of each residue. 406

Spans from -1 to 1, 0 if chi angle is not valid for this residue 407

30 : Sine of chi angle number 4 of each residue. 408

Spans from -1 to 1, 0 if chi angle is not valid for this residue 409

31 : Cosine of chi angle number 4 of each residue. 410

Spans from -1 to 1, 0 if chi angle is not valid for this residue 411

32 : fa_atr onebody term using ref2015 412

33 : fa_rep onebody term using ref2015 413

34 : fa_sol onebody term using ref2015 414

35 : fa_intra_rep onebody term using ref2015 415

36 : fa_intra_sol_xover4 onebody term using ref2015 416

37 : lk_ball_wtd onebody term using ref2015 417

38 : fa_elec onebody term using ref2015 418

39 : pro_close onebody term using ref2015 419

40 : hbond_bb_sc onebody term using ref2015 420

41 : omega onebody term using ref2015 421

42 : fa_dun onebody term using ref2015 422

43 : p_aa_pp onebody term using ref2015 423

44 : yhh_planarity onebody term using ref2015 424

45 : ref onebody term using ref2015 425

46 : rama_prepro onebody term using ref2015 426

427

28 Edge Features: 428

1 : 1.0 if the two residues are polymer-bonded, 429

0.0 otherwise (symmetric) 430

2 : Euclidean distance between the CA atoms of each residue, 431

measured in Angstroms (symmetric) 432

3 : Euclidean distance between the two CB atoms of each residue, 433

measured in Angstroms (symmetric) 434

4 : CA-CB-CB-CA torsion angle in radians, 435

spans from -pi to pi (symmetric) 436

5 : N1-CA1-CB1-CB2 torsion angle in radians, 437

spans from -pi to pi (asymmetric) 438

6 : CA1-CB1-CB2 bond angle in radians, spans from 0 to pi (asymmetric) 439

7 : Natural Log of the sequence distance between the two residues 440

(i.e., number of residues between these two residues 441

in sequence space, plus one). -1.0 if the two residues 442

belong to different chains. (symmetric) 443

8-10 : Translation vector for the Rosetta jump. 444

Distances are measured in Angstroms (asymmetric) 445

11-13 : Euler angles for the Rosetta jump (asymmetric) 446

14 : Total number of backbone-backbone hydrogen bonds (symmetric) 447

15 : Total number of backbone-sidechain hydrogen bonds (symmetric) 448

16 : Total number of sidechain-sidechain hydrogen bonds (symmetric) 449
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17 : Number of hydrogen bonds in which 450

the first residue is the donor (asymmetric) 451

18 : Number of hydrogen bonds in which 452

the first residue is the acceptor (asymmetric) 453

19 : fa_atr twobody term using ref2015 (symmetric) 454

20 : fa_rep twobody term using ref2015 (symmetric) 455

21 : fa_sol twobody term using ref2015 (symmetric) 456

22 : lk_ball_wtd twobody term using ref2015 (symmetric) 457

23 : fa_elec twobody term using ref2015 (symmetric) 458

24 : hbond_sr_bb twobody term using ref2015 (symmetric) 459

25 : hbond_lr_bb twobody term using ref2015 (symmetric) 460

26 : hbond_bb_sc twobody term using ref2015 (symmetric) 461

27 : hbond_sc twobody term using ref2015 (symmetric) 462

28 : dslf_fa13 twobody term using ref2015 (symmetric) 463

These attributes can be reproduced with the following python code 464

# pip install menten-gcn 465

import menten_gcn as mg 466

467

data_maker = mg.published.Maguire_Grattarola_2021() 468

data_maker.summary() 469

470

# This check ensures that the data_maker gives the expected values 471

data_maker.run_consistency_check() 472

473

# Visit https://menten-gcn.readthedocs.io/ to see 474

# how to use this data_maker with your protein 475

Raw Data 476

This section attempts to comply with PLOS Computational Biology’s data policy. We 477

provide all individual data points that are only summarized as means in the main text. 478

Downloadables 479

Raw training data is publicly available at https://menten-ai-public.s3.us-east- 480

2.amazonaws.com/Maguire-XENet-2021/all training data.tar.gz 481

Raw testing data is publicly available at https://menten-ai-public.s3.us-east- 482

2.amazonaws.com/Maguire-XENet-2021/all testing data.tar.gz 483

Our best ECC model (used for quantum benchmark) is available in Keras h5 format 484

at https://menten-ai-public.s3.us-east-2.amazonaws.com/Maguire-XENet- 485

2021/best ECC.h5 486

Our best CrystalConv model (used for quantum benchmark) is available in Keras h5 487

format at https://menten-ai-public.s3.us-east-2.amazonaws.com/Maguire-XENet- 488

2021/best CrystalConv.h5 489

Our best XENet model (used for quantum and classical benchmarks) is available in 490

Keras h5 format at https://menten-ai-public.s3.us-east-2.amazonaws.com/Maguire- 491

XENet-2021/best XENet.h5 492

Training Losses 493

Each table below lists the data points for the means and standard deviations reported 494

in Table 2 (columns 3 and 4) of the main text. 495
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ECC 1 ECC 2 ECC 3
0.1823 0.1642 4.8554
0.1855 0.1708 4.8884
0.1868 0.3053 5.5053
0.1868 0.1664 5.6768
0.1883 0.1675 5.8551
0.1889 0.3027 5.8732
0.1935
0.1940

496

CrystalConv (s) 1 CrystalConv (s) 2 CrystalConv (s) 3
0.171 0.153 4.203
0.172 0.153 4.327
0.172 0.154 4.379
0.173 0.156 4.398
0.173 0.156 4.481
0.173 0.156 4.599
0.174 0.157 4.809
0.175 0.157 4.967

497

CrystalConv (p) 1 CrystalConv (p) 2 CrystalConv (p) 3
0.156 0.142 5.047
0.157 0.143 5.209
0.157 0.143 5.316
0.158 0.144 5.319
0.158 0.145 5.690
0.160 0.146 5.770
0.161 0.146 5.789
0.162 0.148 6.035

498

XENet (s) 1 XENet (s) 2 XENet (s) 3
0.1534 0.1444 0.1413
0.1535 0.1445 0.1423
0.1540 0.1458 0.1425
0.1545 0.1459 0.1427
0.1549 0.1460 0.1428
0.1550 0.1461 0.1432
0.1551 0.1488 0.1434
0.1565 0.1516 0.1444
0.1566
0.1577

499

XENet (p) 1 XENet (p) 2 XENet (p) 3 XENet (p) 4 XENet (p) 5
0.1414 0.1346 0.1311 0.1325 0.1332
0.1415 0.1353 0.1327 0.1326 0.1349
0.1416 0.1353 0.1328 0.1326 0.1355
0.1420 0.1364 0.1333 0.1330 0.1361
0.1422 0.1365 0.1335 0.1330 6.4491
0.1426 0.1366 0.1340 0.1377
0.1428 0.1366 0.1368 6.4531
0.1431 0.1376 0.1372
0.1436 0.1379
0.1446 0.1388

0.1406
0.1419

500
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AUCs 501

Each table below lists the data points for the means and standard deviations reported 502

in Table 2 (columns 5 and 6) of the main text. 503

ECC 1 ECC 2 ECC 3
0.9772 0.9826 0.6144
0.9779 0.9810 0.6173
0.9770 0.9379 0.6662
0.9760 0.9820 0.5860
0.9775 0.9818 0.6160
0.9757 0.9391 0.6488
0.9775
0.9785

504

CrystalConv (s) 1 CrystalConv (s) 2 CrystalConv (s) 3
0.9811 0.9844 0.6693
0.9805 0.9848 0.6788
0.9803 0.9841 0.6877
0.9809 0.9843 0.6851
0.9807 0.9846 0.6723
0.9805 0.9841 0.6891
0.9809 0.9848 0.6881
0.9805 0.9843 0.7274

505

CrystalConv (p) 1 CrystalConv (p) 2 CrystalConv (p) 3
0.9840 0.9865 0.6208
0.9833 0.9869 0.6587
0.9833 0.9861 0.6569
0.9838 0.9868 0.6434
0.9843 0.9858 0.5513
0.9841 0.9867 0.6494
0.9839 0.9866 0.6136
0.9829 0.9862 0.5962

506

XENet (s) 1 XENet (s) 2 XENet (s) 3
0.9846 0.9865 0.9869
0.9841 0.9861 0.9865
0.9846 0.9862 0.9867
0.9848 0.9862 0.9869
0.9847 0.9850 0.9867
0.9844 0.9861 0.9869
0.9842 0.9865 0.9870
0.9839 0.9857 0.9867
0.9844
0.9845

507
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XENet (p) 1 XENet (p) 2 XENet (p) 3 XENet (p) 4 XENet (p) 5
0.9871 0.9881 0.9883 0.9885 0.9885
0.9867 0.9880 0.9885 0.9887 0.9882
0.9867 0.9872 0.9885 0.5893 0.5903
0.9866 0.9879 0.9889 0.9886 0.9881
0.9865 0.9882 0.9884 0.9885 0.9878
0.9868 0.9883 0.9885 0.9884
0.9871 0.9884 0.9878 0.9877
0.9870 0.9881 0.9876
0.9870 0.9879
0.9869 0.9874

0.9877
0.9869

508
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Quantum Benchmark Scores 509

ECC:

Cutoff Scores
0.25 -258.74 -258.32 -258.33 -258.71 -258.94 -258.79 -258.96 -258.11 -258.39 -259.09
0.5 -259.26 -259.26 -258.16 -258.71 -259.26 -258.81 -258.82 -258.87 -258.37 -257.75
0.6 -257.09 -258.51 -257.89 -258.59 -258.71 -258.89 -257.94 -259.35 -258.64 -259.35
0.7 -258.87 -258.82 -259.65 -258.69 -257.79 -258.59 -258.50 -258.14 -258.79 -259.04
0.74 -259.26 -258.42 -258.29 -259.09 -258.25 -259.52 -258.57 -258.13 -259.19 -259.39
0.75 -247.93 -247.02 -247.63 -246.94 -246.69 -246.71 -247.80 -247.93 -247.77 -247.73
0.85 -247.57 -247.31 -246.83 -246.10 -246.42 -247.15 -247.63 -246.80 -247.02 -247.21
0.9 -247.13 -247.36 -247.62 -247.94 -247.24 -247.45 -247.59 -247.26 -247.86 -247.76
0.95 -241.84 -241.09 -241.70 -240.38 -240.53 -241.51 -240.88 -240.59 -240.63 -241.24
0.97 -240.68 -241.59 -241.08 -241.19 -240.95 -240.51 -241.81 -240.96 -240.71 -241.61
0.98 -237.76 -238.11 -238.26 -238.34 -237.59 -237.48 -238.07 -237.88 -238.23 -238.45
0.99 -232.58 -232.35 -232.39 -232.40 -232.53 -232.09 -232.31 -232.47 -232.57 -231.97
0.995 -229.95 -230.16 -229.77 -230.00 -230.35 -229.65 -229.89 -229.67
0.9995 -197.13 -196.87 -196.88 -196.86 -196.88 -196.87 -196.78 -197.05

510

CrystalConv:

Cutoff Scores
0.25 -258.56 -259.01 -257.93 -258.32 -258.23 -259.09 -259.65 -259.05 -258.63 -257.70
0.75 -257.88 -258.64 -258.89 -259.57 -259.09 -258.26 -258.80 -258.25 -257.82 -258.97
0.85 -259.39 -257.46 -259.26 -259.26 -258.63 -258.66 -259.32 -259.26 -257.94 -258.96
0.9 -258.10 -258.06 -258.15 -258.18 -259.13 -258.64 -258.29 -259.52 -259.39 -259.09
0.91 -258.42 -258.84 -257.44 -259.26 -259.13 -258.67 -258.79 -257.63 -257.78 -257.89
0.92 -259.09 -258.29 -258.60 -258.64 -258.26 -259.65 -259.65 -259.17 -258.48 -258.64
0.93 -258.40 -259.05 -259.52 -258.59 -259.19 -258.66 -258.29 -259.39 -259.65 -258.52
0.95 -246.94 -246.56 -247.08 -247.72 -247.79 -247.86 -247.89 -247.45 -247.63 -247.75
0.97 -247.47 -247.49 -247.85 -247.00 -247.34 -247.22 -247.56 -247.07 -247.35 -246.79
0.98 -247.33 -247.35 -247.14 -246.76 -247.76 -247.31 -247.19 -246.59 -247.21 -246.87
0.99 -243.07 -242.06 -243.18 -242.85 -242.95 -242.72 -241.83 -242.52 -241.87 -242.12
0.995 -242.33 -241.28 -242.24 -241.93 -242.32 -242.53 -242.41 -242.44 -242.08 -241.72
0.9995 -231.85 -231.66 -231.63 -231.67 -231.98 -231.88 -231.80 -231.79 -231.90 -231.51

511
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XENet:

Cutoff Scores
-1 -258.30 -258.67 -258.52 -257.66 -258.68 -259.52 -258.23 -259.05 -258.31 -257.44
0.25 -258.84 -258.89 -258.60 -259.26 -259.13 -258.89 -258.69 -258.89 -258.60 -258.42
0.5 -258.98 -258.13 -259.06 -258.17 -259.26 -257.11 -259.01 -258.64 -259.65 -257.94
0.75 -258.17 -258.60 -258.96 -258.66 -259.09 -258.41 -258.29 -257.17 -259.35 -258.11
0.85 -258.87 -258.60 -258.30 -257.61 -258.69 -259.04 -259.57 -257.00 -258.60 -258.13
0.9 -258.63 -258.08 -257.79 -259.07 -258.82 -258.50 -259.09 -259.26 -259.35 -259.09
0.95 -258.30 -257.56 -257.92 -259.26 -259.32 -257.66 -258.11 -259.26 -258.79 -259.02
0.97 -258.39 -258.89 -259.52 -258.46 -258.32 -258.95 -259.57 -259.65 -259.26 -259.26
0.98 -258.73 -258.95 -258.03 -257.82 -257.93 -258.60 -258.64 -258.51 -259.26 -259.39
0.99 -246.71 -246.96 -247.05 -247.67 -247.89 -247.47 -247.14 -247.48 -247.35 -247.23
0.995 -246.80 -247.62 -247.86 -246.88 -247.89 -247.76 -247.17 -247.71 -247.25 -247.39
0.9995 -237.68 -238.05 -238.02 -237.93 -238.09 -238.02 -237.62 -237.75 -237.56 -237.48

512

Note the -1 cutoff value from XENet table was used as the control for the entire experiment. No rotamers were eliminated with that cutoff so it 513

is a global control. 514
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