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Abstract

Context. Functional genomics studies have revealed genomic regions with regulatory and
evolutionary significance. Such information independent of association analysis may benefit
fine-mapping and genomic selection of economically important traits. However, systematic
evaluation of the use of functional information in mapping, and genomic selection of cattle
traits is lacking. Also, Single Nucleotide Polymorphisms (SNPs) from the high-density (HD)
panel are known to tag informative variants, but the performance of genomic prediction using
HD SNPs together with variants supported by different functional genomics is unknown.
Aims. We selected six sets of functionally important variants and modelled each set together
with HD SNPs in Bayesian models to map and predict protein, fat, and milk yield as well as
mastitis, somatic cell count and temperament of dairy cattle.

Methods. Two models were used: 1) BayesR which includes priors of four distribution of
variant-effects, and 2) BayesRC which includes additional priors of different functional
classes of variants. Bayesian models were trained in 3 breeds of 28,000 cows of Holstein,

Jersey and Australian Red and predicted into 2,600 independent bulls.
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Key results. Adding functionally important variants significantly increased the enrichment of
genetic variance explained for mapped variants, suggesting improved genome-wide mapping
precision. Such improvement was significantly higher when the same set of variants were
modelled by BayesRC than by BayesR. Combining functional variant sets with HD SNPs
improves genomic prediction accuracy in the majority of the cases and such improvement
was more common and stronger for non-Holstein breeds and traits like mastitis, somatic cell
count and temperament. In contrast, adding a large number of random sequence variants to
HD SNPs reduces mapping precision and has a worse or similar prediction accuracy,
compared to using HD SNPs alone to map or predict. While BayesRC tended to have better
genomic prediction accuracy than BayesR, the overall difference in prediction accuracy
between the two models was insignificant.

Conclusions. Our findings demonstrate the usefulness of functional data in genomic mapping
and prediction.

Implications. We highlight the need for effective tools exploiting complex functional
datasets to improve genomic prediction.

Key words: Functional genomics, Animal breeding, Genetic mapping, Quantitative genetics
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Introduction

Emerging evidence shows that genomic variants with causal roles in biology can be used to
improve genomic prediction of complex traits. The biological function of genomic variants
provides information independent of genotype-trait associations which are usually
confounded by linkage disequilibrium (LD). Such independent information can be exploited
to identify informative variants. Once identified, informative variants can be used to improve
genomic prediction (Xiang, MacLeod, Daetwyler, de Jong, O’Connor, Schrooten,
Chamberlain & Goddard, 2021). While the use of functional data in improving genomic
mapping and prediction has been reported in humans (Amariuta, Ishigaki, Sugishita, Ohta,
Koido, Dey, Matsuda, Murakami, Price & Kawakami, 2020; Weissbrod, Hormozdiari,
Benner, Cui, Ulirsch, Gazal, Schoech, Van De Geijn, Reshef & Marquez-Luna, 2020), using
functional data in predicting the genetic merit of animal traits has not been comprehensively
examined. However, there is evidence in cattle supporting the advantage of the use of
functional information in genomic mapping and prediction with the linear mixed model
(Fang, Sahana, Ma, Su, Yu, Zhang, Lund & Sgrensen, 2017a; Fang, Sahana, Ma, Su, Yu,
Zhang, Lund & Sgrensen, 2017b; Liu, Fang, Zhou, Santos, Xiang, Daetwyler, Chamberlain,
Cole, Li, Yu, Ma, Zhang & Liu, 2019; Xiang, Berg, MacLeod, Hayes, Prowse-Wilkins,
Wang, Bolormaa, Liu, Rochfort, Reich, Mason, Vander Jagt, Daetwyler, Lund, Chamberlain
& Goddard, 2019; Xu, Gao, Wang, Xu, Liu, Chen, Xu, Gao, Zhang & Gao, 2020).

The Functional Annotation of ANimal Genomes (FAANG) consortium (Clark, Archibald,
Daetwyler, Groenen, Harrison, Houston, Kiihn, Lien, Macqueen & Reecy, 2020) provides
many types of sequencing data indicating the functionality of genome-wide sites (examples
reviewed in (Clark et al., 2020)). While these public datasets await exploitation, the structure
and information content of different functional datasets vary significantly. For example, we

recently showed that amongst all analysed functional datasets, a set of 300,000+ sequence
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variants within sites highly conserved across 100 vertebrate species had the strongest
enrichment with cattle trait heritability (Xiang et al., 2019), which primarily influences
genomic prediction accuracy. Additionally, a few thousand variants affecting the
concentration of milk fat metabolites, i.e., metabolic mQTLs, also had significantly higher
variance than SNPs in the 50K panel for cattle traits. Millions of variants that change gene
expression levels (geQTLs) or RNA splicing (sQTLs) are also enriched with complex trait
QTL (Fink, Lopdell, Tiplady, Handley, Johnson, Spelman, Davis, Snell & Littlejohn, 2020;
Li, van de Geijn, Raj, Knowles, Petti, Golan, Gilad & Pritchard, 2016; Lopdell, Tiplady,
Struchalin, Johnson, Keehan, Sherlock, Couldrey, Davis, Snell & Spelman, 2017; Silva,
Fonseca, Pinheiro, Magalhades, Muniz, Ferro, Baldi, Chardulo, Schnabel & Taylor, 2020;
Xiang, Hayes, Vander Jagt, MacLeod, Khansefid, Bowman, Yuan, Prowse-Wilkins, Reich,
Mason, Garner, Marett, Chen, Bolormaa, Daetwyler, Chamberlain & Goddard, 2018).
However, recent studies showed that variants close to genes with high or specific expression
patterns had limited improvement in prediction accuracy (de Las Heras-Saldana, Lopez,
Moghaddar, Park, Park, Chung, Lim, Lee, Shin & van der Werf, 2020; Fang, Cai, Liu,
Canela-Xandri, Gao, Jiang, Rawlik, Li, Schroeder & Rosen, 2020). Another common type of
functional data is peaks from ChIP-seq for histone modifications which are enriched with
promoters and/or enhancers regulating gene activities (Carey, Peterson & Smale, 2009). Our
work showed that hundreds of thousands of variants under ChIP-seq peaks are enriched for
complex trait QTL in cattle (Prowse-Wilkins, Wang, Xiang, Goddard & Chamberlain, 2021;
Xiang et al., 2019). In addition, variants within the gene coding regions are expected to have
a high impact on complex traits. However, we and others previously found coding-related
variants (around 100,000) have limited contributions to cattle trait heritability (Koufariotis,
Chen, Stothard & Hayes, 2018; Xiang et al., 2019), although their use in improving genomic

prediction has not been studied.
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94 One way to assess the information content of functional data is to compare variants
95  prioritised by functional data with SNPs from standard genotyping panels. We have
96  previously performed such assessment using the standard SOK bovine SNP chip and showed
97  that functional information can improve genomic prediction accuracy compared to the S0K
98  chip SNPs (Xiang et al., 2021). However, denser panels such as the high-density (HD) SNP
99  chip containing ~700,000 SNPs across the genome may be able to tag many functional
100  elements via LD, although it is not routinely used in animal genomic evaluation. With the
101  development of animal breeding, the HD panel may be intensively used in the future genomic
102 evaluation. Therefore, it is of interest to know if functional information can provide any
103 advantage in genomic mapping and prediction when HD SNPs are used. Also, since causal
104  variants are expected to have similar phenotypic effects across different breeds, we aim to
105  compare the use of functionally important variants in genomic prediction across different
106  breeds.
107  In the present study, we evaluate sequence variant sets prioritised by 6 types of functional and
108  evolutionary data in combination with the standard HD SNPs in genomic mapping and
109  prediction of 6 dairy cattle traits. We train the prediction equations using the BayesR method
110  (Erbe, Hayes, Matukumalli, Goswami, Bowman, Reich, Mason & Goddard, 2012) which fits
111 a mixture of 4 distributions of variant-effects and using the BayesRC method which fits
112 different distributions for each functional class of variant classifications (MacLeod, Bowman,
113 Vander Jagt, Haile-Mariam, Kemper, Chamberlain, Schrooten, Hayes & Goddard, 2016).
114  Genomic predictors were trained using 28,000 cows that included 3 breeds: Holstein, Jersey
115  and Australian Red. Genomic estimated breeding values (2EBVs) were predicted and
116  validated in 2,500 Holstein, Jersey and Australian Red bulls. We compare the results of
117  mapping and genomic prediction across the above-described scenarios, discuss these results

118  and provide suggestions for future studies.
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119

120 Materials and Methods

121 The phenotype data analysed in this study were collected by DataGene Australia

122 (http://www.datagene.com.au/) and no further live animal experimentation was required for

123 our analyses. A set of 28,049 Australian cows were used as the discovery population and a set
124 of 2,567 bulls were used as the validation population. The bull phenotypes were obtained as
125  daughter trait deviations: i.e. the average trait deviations of a bull’s daughters pre-corrected
126  for known fixed effects by DataGene. The cow phenotypes were measured on themselves.
127  Note that these bulls and cows were not included in those 44,000+ animals used to discover
128  functional variants (Xiang et al., 2019; Xiang et al., 2021; Xiang, van den Berg, MacLeod,
129  Daetwyler & Goddard, 2020). We also checked the pedigree to make sure that bulls used in
130  the validation population were not the sires of cows from the discovery population. Cows in
131  the discovery set included 24,305 Holstein, 2,486 Jersey, 1,258 Australian Red. Bulls in the
132 validation datasets contained 2,091 Holstein, 385 Jersey, 91 Australian Red. Traits

133 considered in the analysis included protein yield (Prot), fat yield (Fat), milk yield (Milk),
134 Mastitis (Mas), somatic cell count (Scc) and temperament (Temp).

135  The genotypes used in the study were imputed sequence variants based on Run7 of the 1000
136 Bull Genomes Project (Daetwyler, Capitan, Pausch, Stothard, Van Binsbergen, Brgndum,
137  Liao, Djari, Rodriguez & Grohs, 2014; Hayes & Daetwyler, 2018) based on the ARS-

138  UCDI1.2 reference bovine genome

139  (https://www.ncbi.nlm.nih.gov/assembly/GCF 002263795.1/) (Rosen, Bickhart, Schnabel,

140  Koren, Elsik, Tseng, Rowan, Low, Zimin & Couldrey, 2020). Variants with Minimac3
141 (Fuchsberger, Abecasis & Hinds, 2014; Howie, Fuchsberger, Stephens, Marchini & Abecasis,
142 2012) imputation accuracy R? > 0.4 and minor allele frequency (MAF) > 0.005 in bulls and

143 cows. Most bulls were genotyped with a medium-density SNP array (50K) or a high-density
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144 SNP array and most cows were genotyped with a low-density panel of approximately 6,900
145  SNPs overlapping with the standard-50K panel (BovineSNP50 beadchip, [lumina Inc). The
146  low-density genotypes were first imputed to the Standard-50K panel and then all 50K

147  genotypes were imputed to the HD panel using Fimpute v3 (Sargolzaei, Chesnais &

148  Schenkel, 2014; Xiang et al., 2019). Then, all HD genotypes were imputed to sequence using
149 Minimac3 with Eagle (v2) to pre-phase genotypes (Howie et al., 2012; Loh, Danecek,

150  Palamara, Fuchsberger, Reshef, Finucane, Schoenherr, Forer, McCarthy & Abecasis, 2016).
151  We aimed to test whether variant sets selected from different functional and/or evolutionary
152 information, in addition to the standard HD SNP panel, can be useful for genomic prediction.
153  Therefore, we first included a baseline set, which is 610,764 SNPs from the standard bovine
154  high-density panel. There were six functional and/or evolutionary variant sets: 549,007

155  variants under multiple ChIP-seq peaks (Kern, Wang, Xu, Pan, Halstead, Chanthavixay,

156  Saelao, Waters, Xiang & Chamberlain, 2021; Prowse-Wilkins et al., 2021) (‘ChiPseq’),

157 106,538 variants annotated as related to coding activities by Ensembl Variant Effect Predictor
158  (McLaren, Gil, Hunt, Riat, Ritchie, Thormann, Flicek & Cunningham, 2016) (‘Coding’),

159 943,315 variants affecting RNA splicing sQTLs from 4 cattle tissues (Chamberlain, Hayes,
160  Xiang, Vander Jagt, Reich, Macleod, Prowse-Wilkins, Mason, Daetwyler & Goddard, 2018;
161  Daetwyler, Xiang, Yuan, Bolormaa, Vander Jagt, Hayes, van der Werf, Pryce, Chamberlain
162 & Macleod, 2019; Xiang et al., 2018) (‘sQTL’), 65,394 finely mapped variants with

163  pleiotropic effects genome-wide (Xiang et al., 2021) (‘Finemap80k’), 4,871 variants affecting
164  milk fat metabolites mQTLs (Xiang et al., 2019) (‘mQTL’) and 317,279 conserved sites

165  across 100 vertebrates (Xiang et al., 2019) (‘Cons100w’). Note that some of these functional
166  variant sets were initially determined on the UMD3.1 genome and were from different cattle
167  populations. These sets were lifted over from the older genome to ARS-UCD]1.2 and filtered

168  with imputation accuracy and MAF in the new cattle populations.
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169  The model training of the above-described data used BayesR (Erbe et al., 2012) and

170  BayesRC (MacLeod et al., 2016), which are now implemented via BayesR3, with improved
171  efficiency using blocks. BayesR jointly models all variants together with different effect

172 distribution priors. BayesRC follows the same approach but in addition allows a ‘C’ prior
173 which models classes of variants. Another aim is to see whether there are differences in

174  genomic prediction accuracy by modelling the same variants using BayesR and BayesRC. To
175  aid this comparison, we combined each functional variant set with the HD variants which led
176  to 6 combined variant sets: 1) ChIP-seq peak tagged variants + HD SNPs (‘ChiPseq_HD’), 2)
177  coding variants + HD variants (‘Coding_HD”), 3) sQTL variants + HD SNPs (‘sQTL_HD”’),
178  4) finely mapped variants + HD SNPs (‘Finemap80k_HD’), 5) mQTL variants + HD SNPs
179  (‘mQTL_HD’) and 6) conserved variants + HD SNPs (‘Cons100w_HD’). The average minor
180 allele frequency of these sets of variants were 0.22 (+0.00014) for ChiPseq_HD,

181  0.25(x0.0002) for Coding_HD, 0.24 (£0.0001) for sQTL_HD, 0.27 (+0.0002) for

182  Finemap80k_HD, 0.27 (£0.0002) for mQTL_HD, 0.23 (£0.0002) for Cons100w_HD, and
183  0.27 (£0.0002) for HD alone.

184  In single-trait BayesR, we directly model these 6 variant sets one set at a time. To create a
185  reference baseline, we also used single-trait BayesR to fit the HD variant set (‘HD’) alone. In
186  single-trait BayesRC, for each of the same 6 combined variant sets, we specify 2 different
187  variant classes: 1) Variants appeared in the functional and/or evolutionary set and 2) variants
188  only appeared in the HD variant set.

189  Both BayesR and BayesRC modelled variant effects as a mixture distribution of four normal

190  distributions including a null distribution, N (0, 0.002 g), and three others: N(0,0.00010? g),
191  N(0,0.00102,), N(0,0.0102,), where 0%, was the additive genetic variance for the trait.

192 The starting value of ¢ g for each trait was estimated using GREML implemented in the
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193  MTG?2 (Lee & Van der Werf, 2016) with a single genomic relationship matrix made of all
194  sequence variants. The statistical model used in the single-trait BayesR and BayesRC in was:
195 y = Wv + Xb + e (equation 1)

196  where y was a vector of phenotypic records; W was the design matrix of marker genotypes;
197  centred and standardised to have a unit variance; v was the vector of variant effects,

198  distributed as a mixture of the four distributions as described above; X was the design matrix
199  allocating phenotypes to fixed effects; b was the vector of fixed effects, including breeds;
200  e=vector of residual errors. As a result, the effect b for each variant jointly estimated with
201  other variants were obtained for further analysis.

202  BayesRC used the same linear model as BayesR. The C component of BayesRC had two
203  categories c(c = 2) as described above. Within each category c, an uninformative Dirichlet
204  prior (o) was used for the proportion of effects in each of the four normal distributions of
205  variant effects: P,~Dir(a.), where a, = [1,1,1,1]. a, was updated each iteration within
206  each category: P.~Dir(a. + f5.), where 5. was the current number of variants in each of the
207  four distributions within category c, as estimated from the data.

208  Two metrics were evaluated for mapping results. One is the mixing proportion, i.e., the

209  proportion of variants with small effect N (0,0.000102 g)» medium effect N (0, 0.00102 g)
210  and large effect N(0,0.0102,) for each BayesRC run across the functional variant class and
211  the HD SNP class. This metric shows the information content of the two classes. The other
212 metric was the percentage of S0kb segments needed by the model to explain 50% of the

213 cumulative sum of posterior probability (PP), which indicated the mapping precision. For
214  each variant, PP was calculated as 1 — Py where Py was the probability for the variant to be
215  within the zero-effect distribution N (0, 0.0¢2 g)- The sum of PP across all variants estimates
216  the number of variants causing genetic variance in the trait. The smaller amount of genomic

217  segments needed to explain a cumulative sum of PP, the higher the mapping precision. We
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218  also compared genomic prediction accuracy, defined as the Pearson correlation r between
219  genomic estimated breeding value (gEBV) and phenotype in the validation populations.

220  gEBYV of the validation animals was calculated as gEBV = Z§ (equation 2), where Z was a
221  matrix of the standardisd genotypes of animals in the validation set, and § was the vector of
222 variant effects from the training model. In addition, to test if adding a large number of

223 random variants to the HD panel can increase mapping precision and prediction accuracy, a
224  random set of 944,616 variants matching the size of the largest set of functional variants

225  (sQTL, 943,315 variants) was also selected and added to the HD panel (‘Random_HD”). This
226  random set was analysed for BayesR, mapping precision and prediction accuracy in the same
227  fashion as other variant sets described above.

228

229  Results

230  Information content in the functional variant sets

231  Averaged across mixing proportions from single-trait BayesRC, we show that compared to
232 HD SNPs, the finely mapped variants had consistently higher enrichment with variants

233 showing small, medium and large effects (Figure 1). Variants within coding regions showed
234 higher enrichment than HD SNPs for large- and medium-effect variants. Interestingly,

235 mQTLs, which were variants affecting the concentration of milk fat metabolites (Benedet,
236  Ho, Xiang, Bolormaa, De Marchi, Goddard & Pryce, 2019; Xiang et al., 2019), had lower
237  enrichment of small-effect variants than HD SNPs, but had higher enrichment of medium and
238  large-effect variants than HD SNPs.

239  Mapping precision

240  Across traits, we show that all models using functional variants, except mQTL, needed a
241  smaller amount of genome-wide segments to explain 50% of the cumulative sum of PP,

242 compared to HD SNPs (Figure 2). This means that when adding to the HD SNPs, most


https://doi.org/10.1101/2021.05.05.442705
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.05.442705; this version posted May 10, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

243  functional variants increased mapping precision. In contrast, adding randomly selected

244 944,000 variants to HD SNPs increased the amount of genome-wide segments (by 2.82%=+
245  0.13%) across scenarios to explain 50% of the cumulative sum of PP, compared to only using
246  HD SNPs. This suggested that adding random variants to HD decreases mapping precision. It
247  is worth noting that when using 106,538 coding variants and 65,394 finely mapped variants,
248  BayesRC provided a further increase in mapping precision over HD SNPs than BayesR. On
249  the other hand, when using 549,007 ChIP-seq tagged variants and 943,315 sQTL variants,
250  BayesRC had less increase in mapping precision over HD SNPs than BayesR. This could be
251  due to the reduced signal-to-noise ratio in large variant sets of ChIP-seq tagged variants and
252 sQTLs.

253  Genomic prediction of traits

254  In total, we evaluated the genomic prediction accuracy in 216 scenarios, across 6 single-trait
255  analysis, 6 functional categories, 4 breeds in the validation population, and 2 Bayesian

256  methods. Out of these 216 scenarios, 142 (66%) times, HD SNPs combined with functional
257  variants increased genomic prediction accuracy, compared to the prediction only using the
258  HD SNPs (Figure 3 and 4). In 51 out of 216 times (24%), the increase in prediction accuracy
259 ([rfunctional - rHD] X 100%) was greater than 1%. These 51 cases were almost all accounted
260  for by Jersey (15/51) and Australian Red (34/51), with only 2 cases in Holstein cattle. In 29
261  analyses (14%), the increase in prediction accuracy over HD SNPs was greater than 2%. All
262  these 29 cases were for non-Holstein breeds. Amongst tested functional sets, genomic

263  prediction accuracy was the best when the HD variants were combined with conserved

264  variants (Cons100w_HD). In contrast, averaged across tested scenarios, adding randomly
265  selected 944,000 variants to HD had a slightly worse or no improvement in prediction

266  accuracy (-0.5%=0.49%) compared to only using the HD panel to predict.
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267  As shown in Figure 3, the genomic prediction accuracy of milk production traits using HD
268  SNPs in Holstein cattle was already high (around 0.7) and the increases in accuracy from
269  functional variants were very small. However, larger increases were evident in Jersey and
270  Australian Red. For milk production traits, 10 out of 18 times the genomic prediction

271  accuracy was the most improved by conserved variants and coding variants combined with
272  HD SNPs, followed by finely mapped variants combined with HD SNPs (4/18), ChIP-seq
273  tagged variants (3/18) combined with HD SNPs. sQTL combined with HD variants had the
274  highest accuracy when predicting protein yield in Holstein.

275  As shown in Figure 4, the greatest increases in prediction accuracy for traits mastitis, somatic
276  cell count and temperament were again seen in non-Holstein breeds. Chip-seq peak tagged
277  variants combined with HD SNPs (5/18 times) and conserved variants combined with HD
278  SNPs (5/18 times) had the best performances in predicting mastitis, somatic cell count and
279  temperament.

280  Across all scenarios, we did not see a clear distinction in prediction accuracy between

281  BayesR and BayesRC in the current study. There may be some tendencies where BayesRC
282  had a higher accuracy than BayesR for somatic cell count, mastitis and temperament.

283  However, none of these differences were significant.

284

285 Discussion

286  Our systematic evaluations show that functional information can improve genomic mapping
287  and prediction of cattle traits, even when HD SNPs are used, although there were times where
288  HD SNPs alone still had robust performances. It is usually the less represented breeds, such
289  as Jersey and Australian Red who benefited the most from the improvements using functional
290  data. This suggests functional information can well complement HD SNPs especially in

291  breeds with smaller training sets. Adding randomly selected variants to the HD panel reduces
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292  mapping precision and provided no improvement in prediction accuracy compared to only
293  using the HD panel. This supports that the The benefit provided via selecting variants based
294  on functional importance can not simply be achieved by adding more sequence variants.

295  We show that the biological information content which can be used to benefit mapping and/or
296  prediction is different between functional datasets. One of the top-performing functional

297  variant sets in mapping large-effect variants was the finely mapped 80,000 variants (Xiang et
298  al., 2021). This result is somewhat expected as these variants combined information from
299  multiple functional datasets and also included variants affecting multiple dairy cattle traits.
300 These finely mapped 80,000 variants outperformed the SNPs from the SOK panel in previous
301  evaluations (Xiang et al., 2021). Furthermore, finely mapped 80,000 variants showed

302  enhanced enrichment of large-effect variants and improvement in mapping precision when
303  modelled with BayesRC. This suggests that this much more refined set of variants (chosen
304  because they were more relevant to the traits of interest) are likely more enriched for variants
305 that are more strongly associated with the trait or are causal. BayesRC would only

306  outperform BayesR when there is strong enrichment for QTL in at least one of the defined
307  classes. The other functional groups tested are not trait specific (except mQTL for fat) so

308 likely less enriched relative to each trait.

309  Previous results showed that coding-related variants did not explain a significant amount of
310  heritability (Koufariotis et al., 2018; Xiang et al., 2019). In the current study, coding-related
311  variants combined with HD SNPs showed enhanced enrichment with large-effect variants
312  and improvement in mapping precision. This implies that variants affecting protein coding
313  may not necessarily be good at capturing all the genetic variance of polygenic traits. The

314  small set of mQTLs, derived from milk fat showed strong enrichment of large-effect variants
315  but did not show improvement in mapping precision over HD SNPs. This set of variants

316  needs future investigations.
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317  Unlike the results in mapping large-effect variants, for genomic prediction, the top-

318  performing variant set is the conserved variants combined with HD SNPs. The advantage of
319  adding conserved variants to HD SNPs was particularly evident when predicting somatic cell
320  count, mastitis and temperament of non-Holstein breeds (Figure 4). In fact, in these scenarios
321  HD SNPs alone did not perform so well and this leaves more room for functional variants to
322 improve the prediction accuracy. Another variant set that performed well in genomic

323  prediction is the set of ChIP-seq peak tagged variants. Again, such an advantage was the most
324  evident when predicting somatic cell count, mastitis and temperament in non-Holstein breeds.
325 Interestingly, ChIP-seq variants combined with HD SNPs appear to show some particular
326  advantages in predicting temperament. There may be some large-effect variants for

327  temperament captured by ChIP-seq peaks.

328  We found that sQTL variants combined with HD SNPs had variable performances in

329  mapping and prediction. This set did not show good performance in detecting enrichment of
330 informative variants, but overall significantly increased mapping precision over HD SNPs. In
331  genomic prediction, its performance was not impressive. This is somewhat different from
332 previous studies which showed that SQTLs are enriched with complex trait QTL(Li ez al.,
333  2016; Xiang et al., 2019; Xiang et al., 2018). One explanation is that sSQTLs or any other

334  eQTLs were not trait specific and are plagued by LD, which is particularly strong for

335  Holstein breeds that dominated the discovery population. Another explanation is that the

336  sample size with which we used to discover sQTLs is still small (N~120) and we should re-
337  discover and re-evaluate this set of variants when there is a larger sample size.

338  As mentioned earlier, BayesRC would only outperform BayesR when there is strong

339  enrichment for QTL in at least one of the defined classes. It would also require functional
340 information to be trait-specific. We saw advantages in BayesRC over BayesR in detecting

341  enrichment with large-effect variants using finely mapped variants, coding variants and
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342 mQTLs. BayesRC also had advantages over BayesR in mapping precision when used with
343 finely mapped variants and coding variants. While these functional data are expected to be
344  informative, they did not provide consistent advantages for BayesRC to predict traits over
345  BayesR. Across all tested cases, we did not see strong advantages in BayesRC over BayesR
346  in genomic prediction (Figure 4). BayesRC may have some tendencies to better predict

347  somatic cell count, mastitis and temperament than BayesR. However, the differences were
348  not statistically significant. The reason behind these observations may be complex.

349  We know that not all variants in the functional datasets are informative and many sequence
350  variants are in strong LD. BayesR and BayesRC both have limitations where variants are in
351  very strong LD. In addition, if most causal variants are quite well tagged by HD variants and
352  if validation animals are highly related to the discovery animals, the room to improve

353  prediction accuracy is limited. Also, there may be less common variants that are not tagged
354 by HD SNPs, but these variants are not well imputed. Further, the optimal tissues and/or
355  experimental conditions to generate functional data that can be better used for improving
356  genomic prediction are usually not known. Therefore, the marriage between functional data
357  and genomic prediction is still at its very early stage.

358  We therefore suggest two future research directions to improve on the current results. The
359  firstis to increase the information content in functional datasets. This can be achieved by
360 either increasing the sample size (biological replicates, tissues and experimental conditions)
361  of functional datasets or by developing better bioinformatic tools to increase the signal-to-
362 noise ratio in functional datasets before they can be processed by genomic prediction models.
363  The second direction is to improve the current genomic prediction models. Because the type
364  and complexity of functional data will keep growing, it will be necessary to develop more
365  sophisticated and flexible methods to better extract information from complex functional

366  data. For example, an extended BayesRC that can model quantitative biological priors,
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367 instead of qualitative classes will be needed. Similarly, in the future we will use larger sample
368  sizes and diverse breeds in the training model to reduce LD between sequence variants. This
369  will also increase the need for Bayesian methods to be more efficient.

370  In conclusion, our evaluation of Bayesian genomic prediction using functional and

371  evolutionary information with HD SNPs provides novel insights into this emerging area. We
372  show that functional datasets of conserved variants, coding variants, ChIP-seq peaks and

373  previously finely mapped variants can improve genomic mapping and/or genomic prediction,
374  even when HD SNPs are used. Such improvements usually benefit non-Holstein breeds,

375  given the current available functional datasets. We found that by using informative biological
376  priors, BayesRC has significant advantages over BayesR in detecting enrichment with large-
377  effect variants and in mapping precision. However, the advantage of BayesRC over BayesR
378  for genomic prediction was not consistent. Our results highlight the need to develop better
379  tools to extract information from complex functional datasets which will benefit genomic
380  prediction in large datasets. Fusing functional genomics with genomic selection presents

381  great opportunities to develop new technologies that improve animal breeding and genetics.
382

383 Acknowledgments

384  Australian Research Council’s Discovery Projects (DP160101056 and DP200100499)

385  supported R.X. and M.E.G. DairyBio, a joint venture project between Agriculture Victoria
386  (Melbourne, Australia), Dairy Australia (Melbourne, Australia) and the Gardiner Foundation
387  (Melbourne, Australia), funded computing resources used in the analysis. The authors also
388  thank the University of Melbourne, Australia for supporting this research. No funding bodies
389  participated in the design of the study nor analysis, or interpretation of data nor in writing the
390  manuscript. DataGene and CRV provided access to the reference data used in this study. We

391  thank Gert Nieuwhof, Kon Konstantinov and Timothy P. Hancock (DataGene) and staff from


https://doi.org/10.1101/2021.05.05.442705
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.05.442705; this version posted May 10, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

392  DairyNZ for the preparation and provision of data. We thank Dr. Sunduimijid Bolormaa for
393  the sequence variant data imputation. We thank Drs. lona M. MaclLeod and Hans D.
394  Daetwyler for critical reading of the manuscript.

395
396 Conflict of interest

397  The authors declare no conflicts of interest.

398
399 References:

400  Amariuta, T., Ishigaki, K., Sugishita, H., Ohta, T., Koido, M., Dey, K.K., Matsuda, K.,

401  Murakami, Y., Price, A.L. & Kawakami, E. 2020. Improving the trans-ancestry portability of
402  polygenic risk scores by prioritizing variants in predicted cell-type-specific regulatory

403  elements. Nature Genetics, 52(12):1346-1354.

404  Benedet, A., Ho, P., Xiang, R., Bolormaa, S., De Marchi, M., Goddard, M. & Pryce, J. 2019.
405  The use of mid-infrared spectra to map genes affecting milk composition. Journal of dairy
406  science, 102(8):7189-7203.

407  Carey, M.F., Peterson, C.L. & Smale, S.T. 2009. Chromatin immunoprecipitation (chip).
408  Cold Spring Harbor Protocols, 2009(9):pdb. prot5279.

409  Chamberlain, A., Hayes, B., Xiang, R., Vander Jagt, C., Reich, C., Macleod, I., Prowse-
410  Wilkins, C., Mason, B., Daetwyler, H. & Goddard, M. 2018. Identification of regulatory
411  wvariation in dairy cattle with RNA sequence data.254.

412  Clark, E.L., Archibald, A.L., Daetwyler, H.D., Groenen, M.A., Harrison, P.W., Houston,
413  R.D., Kiihn, C., Lien, S., Macqueen, D.J. & Reecy, J.M. 2020. From FAANG to fork:

414  application of highly annotated genomes to improve farmed animal production. Genome
415  Biology, 21(1):1-9.

416  Daetwyler, H., Xiang, R., Yuan, Z., Bolormaa, S., Vander Jagt, C., Hayes, B., van der Werf,
417 1., Pryce, J., Chamberlain, A. & Macleod, 1. 2019. Integration of functional genomics and
418  phenomics into genomic prediction raises its accuracy in sheep and dairy cattle. Proceedings
419  of the Association for the Advancement of Animal Breeding and Genetics, Armidale, NSW,
420  Australia:11-14.

421 Daetwyler, H.D., Capitan, A., Pausch, H., Stothard, P., Van Binsbergen, R., Brgndum, R.F.,
422 Liao, X., Djari, A., Rodriguez, S.C. & Grohs, C. 2014. Whole-genome sequencing of 234
423 bulls facilitates mapping of monogenic and complex traits in cattle. Nature genetics,

424 46(8):858.

425  de Las Heras-Saldana, S., Lopez, B.1., Moghaddar, N., Park, W., Park, J.-e., Chung, K.Y\,
426  Lim, D., Lee, S.H., Shin, D. & van der Werf, J.H. 2020. Use of gene expression and whole-
427  genome sequence information to improve the accuracy of genomic prediction for carcass
428  traits in Hanwoo cattle. Genetics Selection Evolution, 52(1):1-16.

429  Erbe, M., Hayes, B., Matukumalli, L., Goswami, S., Bowman, P., Reich, C., Mason, B. &
430  Goddard, M. 2012. Improving accuracy of genomic predictions within and between dairy
431  cattle breeds with imputed high-density single nucleotide polymorphism panels. Journal of
432 dairy science, 95(7):4114-4129.


https://doi.org/10.1101/2021.05.05.442705
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.05.442705; this version posted May 10, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

433  Fang, L., Cai, W., Liu, S., Canela-Xandri, O., Gao, Y., Jiang, J., Rawlik, K., Li, B,

434 Schroeder, S.G. & Rosen, B.D. 2020. Comprehensive analyses of 723 transcriptomes

435  enhance genetic and biological interpretations for complex traits in cattle. Genome research,
436  30(5):790-801.

437  Fang, L., Sahana, G., Ma, P., Su, G., Yu, Y., Zhang, S., Lund, M.S. & Sgrensen, P. 2017a.
438  Exploring the genetic architecture and improving genomic prediction accuracy for mastitis
439  and milk production traits in dairy cattle by mapping variants to hepatic transcriptomic

440  regions responsive to intra-mammary infection. Genetics Selection Evolution, 49(1):1-18.
441  Fang, L., Sahana, G., Ma, P., Su, G., Yu, Y., Zhang, S., Lund, M.S. & Sgrensen, P. 2017b.
442  Use of biological priors enhances understanding of genetic architecture and genomic

443  prediction of complex traits within and between dairy cattle breeds. BMC genomics,

444 18(1):604.

445  Fink, T., Lopdell, T.J., Tiplady, K., Handley, R., Johnson, T.J., Spelman, R.J., Davis, S.R.,
446  Snell, R.G. & Littlejohn, M.D. 2020. A new mechanism for a familiar mutation—bovine

447  DGATI1 K232A modulates gene expression through multi-junction exon splice enhancement.
448  BMC genomics, 21(1):1-13.

449  Fuchsberger, C., Abecasis, G.R. & Hinds, D.A. 2014. minimac?2: faster genotype imputation.
450  Bioinformatics, 31(5):782-784.

451  Hayes, B.J. & Daetwyler, H.D. 2018. 1000 Bull Genomes Project to Map Simple and

452  Complex Genetic Traits in Cattle: Applications and Outcomes. Annual review of animal

453  biosciences.

454  Howie, B., Fuchsberger, C., Stephens, M., Marchini, J. & Abecasis, G.R. 2012. Fast and
455  accurate genotype imputation in genome-wide association studies through pre-phasing.

456  Nature genetics, 44(8):955.

457  Kern, C., Wang, Y., Xu, X., Pan, Z., Halstead, M., Chanthavixay, G., Saelao, P., Waters, S.,
458  Xiang, R. & Chamberlain, A. 2021. Functional annotations of three domestic animal

459  genomes provide vital resources for comparative and agricultural research. Nature

460  Communications, 12(1):1-11.

461 Koufariotis, L.T., Chen, Y.-P.P., Stothard, P. & Hayes, B.J. 2018. Variance explained by
462  whole genome sequence variants in coding and regulatory genome annotations for six dairy
463  traits. BMC genomics, 19(1):237.

464  Lee, S.H. & Van der Werf, J.H. 2016. MTG2: an efficient algorithm for multivariate linear
465  mixed model analysis based on genomic information. Bioinformatics, 32(9):1420-1422.

466  Li, Y.L, van de Geijn, B., Raj, A., Knowles, D.A., Petti, A.A., Golan, D., Gilad, Y. &

467  Pritchard, J.K. 2016. RNA splicing is a primary link between genetic variation and disease.
468  Science, 352(6285):600-604.

469  Liu, S., Fang, L., Zhou, Y., Santos, D.J.A., Xiang, R., Daetwyler, H.D., Chamberlain, A.J.,
470  Cole, J.B.,Li, C.J., Yu, Y., Ma, L., Zhang, S. & Liu, G.E. 2019. Analyses of inter-individual
471  variations of sperm DNA methylation and their potential implications in cattle. BMC

472  Genomics, 20(1):888.

473  Loh, P.-R., Danecek, P., Palamara, P.F., Fuchsberger, C., Reshef, Y.A., Finucane, H.K.,

474  Schoenherr, S., Forer, L., McCarthy, S. & Abecasis, G.R. 2016. Reference-based phasing
475  using the Haplotype Reference Consortium panel. Nature genetics, 48(11):1443.

476  Lopdell, T.J., Tiplady, K., Struchalin, M., Johnson, T.J., Keehan, M., Sherlock, R., Couldrey,
477  C., Davis, S.R., Snell, R.G. & Spelman, R.J. 2017. DNA and RNA-sequence based GWAS
478  highlights membrane-transport genes as key modulators of milk lactose content. BMC

479  genomics, 18(1):1-18.

480  MacLeod, I., Bowman, P., Vander Jagt, C., Haile-Mariam, M., Kemper, K., Chamberlain, A.,
481  Schrooten, C., Hayes, B. & Goddard, M. 2016. Exploiting biological priors and sequence


https://doi.org/10.1101/2021.05.05.442705
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.05.442705; this version posted May 10, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

482  variants enhances QTL discovery and genomic prediction of complex traits. BMC genomics,
483  17(1):144.

484  McLaren, W., Gil, L., Hunt, S.E., Riat, H.S., Ritchie, G.R.S., Thormann, A., Flicek, P. &
485  Cunningham, F. 2016. The Ensembl Variant Effect Predictor. Genome Biology, 17(1):122.
486  Prowse-Wilkins, C., Wang, J., Xiang, R., Goddard, M. & Chamberlain, A. 2021. Putative
487  causal variants are enriched in annotated functional regions from 6 bovine tissues. Submitted.
488  Rosen, B.D., Bickhart, D.M., Schnabel, R.D., Koren, S., Elsik, C.G., Tseng, E., Rowan, T.N.,
489  Low, W.Y., Zimin, A. & Couldrey, C. 2020. De novo assembly of the cattle reference

490  genome with single-molecule sequencing. GigaScience, 9(3):giaa021.

491  Sargolzaei, M., Chesnais, J.P. & Schenkel, F.S. 2014. A new approach for efficient genotype
492  imputation using information from relatives. BMC Genomics, 15(1):478.

493  Silva, D.B., Fonseca, L.F., Pinheiro, D.G., Magalhaes, A.F., Muniz, M.M., Ferro, J.A., Baldi,
494  F., Chardulo, L.A., Schnabel, R.D. & Taylor, J.F. 2020. Spliced genes in muscle from Nelore
495  Cattle and their association with carcass and meat quality. Scientific reports, 10(1):1-13.

496  Weissbrod, O., Hormozdiari, F., Benner, C., Cui, R., Ulirsch, J., Gazal, S., Schoech, A.P.,
497  Van De Geijn, B., Reshef, Y. & Marquez-Luna, C. 2020. Functionally informed fine-

498  mapping and polygenic localization of complex trait heritability. Nature Genetics,

499  52(12):1355-1363.

500 Xiang, R., Berg, l.v.d., MacLeod, .M., Hayes, B.J., Prowse-Wilkins, C.P., Wang, M.,

501 Bolormaa, S., Liu, Z., Rochfort, S.J., Reich, C.M., Mason, B.A., Vander Jagt, C.J.,

502  Daetwyler, H.D., Lund, M.S., Chamberlain, A.J. & Goddard, M.E. 2019. Quantifying the
503  contribution of sequence variants with regulatory and evolutionary significance to 34 bovine
504  complex traits. Proceedings of the National Academy of Sciences, 116(39):19398-19408.

505  Xiang, R., Hayes, B.J., Vander Jagt, C.J., MacLeod, I.M., Khansefid, M., Bowman, P.J.,

506  Yuan, Z., Prowse-Wilkins, C.P., Reich, C.M., Mason, B.A., Garner, J.B., Marett, L.C., Chen,
507 Y., Bolormaa, S., Daetwyler, H.D., Chamberlain, A.J. & Goddard, M.E. 2018. Genome

508  variants associated with RNA splicing variations in bovine are extensively shared between
509  tissues. BMC Genomics, 19(1):521.

510 Xiang, R., MacLeod, .M., Daetwyler, H.D., de Jong, G., O’Connor, E., Schrooten, C.,

511  Chamberlain, A.J. & Goddard, M.E. 2021. Genome-wide fine-mapping identifies pleiotropic
512 and functional variants that predict many traits across global cattle populations. Nature

513  Communications, 12(1):860.

514  Xiang, R., van den Berg, 1., MacLeod, .M., Daetwyler, H.D. & Goddard, M.E. 2020. Effect
515  direction meta-analysis of GWAS identifies extreme, prevalent and shared pleiotropy in a
516  large mammal. Commun Biol, 3(1):88.

517 Xu, L., Gao, N., Wang, Z., Xu, L., Liu, Y., Chen, Y., Xu, L., Gao, X., Zhang, L. & Gao, H.
518  2020. Incorporating Genome Annotation Into Genomic Prediction for Carcass Traits in

519  Chinese Simmental Beef Cattle. Frontiers in Genetics, 11.

520

521


https://doi.org/10.1101/2021.05.05.442705
http://creativecommons.org/licenses/by-nc-nd/4.0/

522
523

524
525
526
527
528
529

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.05.442705; this version posted May 10, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

B Functional variants  HD SNPs

Small effect Medium effect Large effect
0.08-
0.15-
3.
0.06-
0.10-
2
52
S 0.04-
=]
=3
0.05-

1.

0.02-

0 0.00- =— = -*HL 0.00- == i -l
O 0 o o 8 o O o o o a o 0O O o o o o
I L I I I T ?:J I I I T T ij I I I I T
F 222§ & F 22 5 8 F P22 5 8
a 8 @ @ g =& a 8 © o 9 3 g 8 2 O g @
= o E woH ] E O E w % © £ O E won ©
o 5 & o 5§ § o 5 §

©  c O = 0 <
w s (VY

Figure 1. The proportion of small-effect, medium effect and large effect variants in
functional variants and HD SNPs. The mean and standard error bars are averaged across 6
traits. ChiPseq_HD: ChIP-seq peaks + HD SNPs. Coding_HD: coding variants + HD SNPs.
mQTL_HD: mQTLs + HD SNPs. sQTL_HD: sQTL variants + HD SNPs. Cons100w_HD:
conserved variants across 100 vertebrates + HD SNPs. Finemap80k_HD: finely mapped
variants + HD SNPs.
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531  Figure 2. Mapping precision of different models. The Y-axes represent the percentage of
532 50kb segments needed by the model to explain 50% of the cumulative sum of posterior

533  probability (PP) of variants. A shorter bar means less amount of segments the model needs to
534  explain the same amount of genetic variance, indicating higher mapping precision. Black
535  dashed line indicates the Y value for the HD SNPs, fitted along in BayesR. ChiPseq_HD:
536  ChIP-seq peaks + HD SNPs. Coding_HD: coding variants + HD SNPs. mQTL_HD: mQTLs
537 + HD SNPs. sQTL_HD: sQTL variants + HD SNPs. Cons100w_HD: conserved variants

538  across 100 vertebrates + HD SNPs. Finemap80k_HD: finely mapped variants + HD SNPs.
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541  Figure 3. Genomic prediction accuracy (Pearson correlation coefficient, Y -axis) for

542  production traits, across different functional/evolutionary variant sets, breeds and Bayesian
543  methods. A black border and a dashed line of a bar indicate that it has the highest genomic
544  prediction accuracy in the panel. HOL: Holstein breed. JER: Jersey breed. RED: Prot: milk
545  protein yield. Fat: milk fat yield. Milk: milk yield. Australian Red. ChiPseq_HD: ChIP-seq
546  peaks + HD SNPs. Coding_HD: coding variants + HD SNPs. mQTL_HD: mQTLs + HD

547  SNPs. sQTL_HD: sQTL variants + HD SNPs. Cons100w_HD: conserved variants across 100
548  vertebrates + HD SNPs. Finemap80k_HD: finely mapped variants + HD SNPs.
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Figure 4. Genomic prediction accuracy (Pearson correlation coefficient, Y-axis) for mastitis,
somatic cell count and temperament across different functional/evolutionary variant sets,
breeds and Bayesian methods. A black border and a dashed line of a bar indicate that it has
the highest genomic prediction accuracy in the panel. HOL: Holstein breed. JER: Jersey
breed. RED: Australian Red. Mas: mastitis. Scc: somatic cell count. Temp: temperament.
ChiPseq_HD: ChIP-seq peaks + HD SNPs. Coding_HD: coding variants + HD SNPs.
mQTL_HD: mQTLs + HD SNPs. sQTL_HD: sQTL variants + HD SNPs. Cons100w_HD:
conserved variants across 100 vertebrates + HD SNPs. Finemap80k_HD: finely mapped
variants + HD SNPs.
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