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 10 

Abstract 11 

Context. Functional genomics studies have revealed genomic regions with regulatory and 12 

evolutionary significance. Such information independent of association analysis may benefit 13 

fine-mapping and genomic selection of economically important traits. However, systematic 14 

evaluation of the use of functional information in mapping, and genomic selection of cattle 15 

traits is lacking. Also, Single Nucleotide Polymorphisms (SNPs) from the high-density (HD) 16 

panel are known to tag informative variants, but the performance of genomic prediction using 17 

HD SNPs together with variants supported by different functional genomics is unknown.  18 

Aims. We selected six sets of functionally important variants and modelled each set together 19 

with HD SNPs in Bayesian models to map and predict protein, fat, and milk yield as well as 20 

mastitis, somatic cell count and temperament of dairy cattle.  21 

Methods. Two models were used: 1) BayesR which includes priors of four distribution of 22 

variant-effects, and 2) BayesRC which includes additional priors of different functional 23 

classes of variants. Bayesian models were trained in 3 breeds of 28,000 cows of Holstein, 24 

Jersey and Australian Red and predicted into 2,600 independent bulls.  25 
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Key results. Adding functionally important variants significantly increased the enrichment of 26 

genetic variance explained for mapped variants, suggesting improved genome-wide mapping 27 

precision. Such improvement was significantly higher when the same set of variants were 28 

modelled by BayesRC than by BayesR. Combining functional variant sets with HD SNPs 29 

improves genomic prediction accuracy in the majority of the cases and such improvement 30 

was more common and stronger for non-Holstein breeds and traits like mastitis, somatic cell 31 

count and temperament. In contrast, adding a large number of random sequence variants to 32 

HD SNPs reduces mapping precision and has a worse or similar prediction accuracy, 33 

compared to using HD SNPs alone to map or predict. While BayesRC tended to have better 34 

genomic prediction accuracy than BayesR, the overall difference in prediction accuracy 35 

between the two models was insignificant.  36 

Conclusions. Our findings demonstrate the usefulness of functional data in genomic mapping 37 

and prediction. 38 

Implications. We highlight the need for effective tools exploiting complex functional 39 

datasets to improve genomic prediction. 40 

 41 
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Introduction 44 

Emerging evidence shows that genomic variants with causal roles in biology can be used to 45 

improve genomic prediction of complex traits. The biological function of genomic variants 46 

provides information independent of genotype-trait associations which are usually 47 

confounded by linkage disequilibrium (LD). Such independent information can be exploited 48 

to identify informative variants. Once identified, informative variants can be used to improve 49 

genomic prediction (Xiang, MacLeod, Daetwyler, de Jong, O9Connor, Schrooten, 50 

Chamberlain & Goddard, 2021). While the use of functional data in improving genomic 51 

mapping and prediction has been reported in humans (Amariuta, Ishigaki, Sugishita, Ohta, 52 

Koido, Dey, Matsuda, Murakami, Price & Kawakami, 2020; Weissbrod, Hormozdiari, 53 

Benner, Cui, Ulirsch, Gazal, Schoech, Van De Geijn, Reshef & Márquez-Luna, 2020), using 54 

functional data in predicting the genetic merit of animal traits has not been comprehensively 55 

examined. However, there is evidence in cattle supporting the advantage of the use of 56 

functional information in genomic mapping and prediction with the linear mixed model 57 

(Fang, Sahana, Ma, Su, Yu, Zhang, Lund & Sørensen, 2017a; Fang, Sahana, Ma, Su, Yu, 58 

Zhang, Lund & Sørensen, 2017b; Liu, Fang, Zhou, Santos, Xiang, Daetwyler, Chamberlain, 59 

Cole, Li, Yu, Ma, Zhang & Liu, 2019; Xiang, Berg, MacLeod, Hayes, Prowse-Wilkins, 60 

Wang, Bolormaa, Liu, Rochfort, Reich, Mason, Vander Jagt, Daetwyler, Lund, Chamberlain 61 

& Goddard, 2019; Xu, Gao, Wang, Xu, Liu, Chen, Xu, Gao, Zhang & Gao, 2020). 62 

The Functional Annotation of ANimal Genomes (FAANG) consortium (Clark, Archibald, 63 

Daetwyler, Groenen, Harrison, Houston, Kühn, Lien, Macqueen & Reecy, 2020) provides 64 

many types of sequencing data indicating the functionality of genome-wide sites (examples 65 

reviewed in (Clark et al., 2020)). While these public datasets await exploitation, the structure 66 

and information content of different functional datasets vary significantly. For example, we 67 

recently showed that amongst all analysed functional datasets, a set of 300,000+ sequence 68 
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variants within sites highly conserved across 100 vertebrate species had the strongest 69 

enrichment with cattle trait heritability (Xiang et al., 2019), which primarily influences 70 

genomic prediction accuracy. Additionally, a few thousand variants affecting the 71 

concentration of milk fat metabolites, i.e., metabolic mQTLs, also had significantly higher 72 

variance than SNPs in the 50K panel for cattle traits. Millions of variants that change gene 73 

expression levels (geQTLs) or RNA splicing (sQTLs) are also enriched with complex trait 74 

QTL (Fink, Lopdell, Tiplady, Handley, Johnson, Spelman, Davis, Snell & Littlejohn, 2020; 75 

Li, van de Geijn, Raj, Knowles, Petti, Golan, Gilad & Pritchard, 2016; Lopdell, Tiplady, 76 

Struchalin, Johnson, Keehan, Sherlock, Couldrey, Davis, Snell & Spelman, 2017; Silva, 77 

Fonseca, Pinheiro, Magalhães, Muniz, Ferro, Baldi, Chardulo, Schnabel & Taylor, 2020; 78 

Xiang, Hayes, Vander Jagt, MacLeod, Khansefid, Bowman, Yuan, Prowse-Wilkins, Reich, 79 

Mason, Garner, Marett, Chen, Bolormaa, Daetwyler, Chamberlain & Goddard, 2018). 80 

However, recent studies showed that variants close to genes with high or specific expression 81 

patterns had limited improvement in prediction accuracy (de Las Heras-Saldana, Lopez, 82 

Moghaddar, Park, Park, Chung, Lim, Lee, Shin & van der Werf, 2020; Fang, Cai, Liu, 83 

Canela-Xandri, Gao, Jiang, Rawlik, Li, Schroeder & Rosen, 2020). Another common type of 84 

functional data is peaks from ChIP-seq for histone modifications which are enriched with 85 

promoters and/or enhancers regulating gene activities (Carey, Peterson & Smale, 2009). Our 86 

work showed that hundreds of thousands of variants under ChIP-seq peaks are enriched for 87 

complex trait QTL in cattle (Prowse-Wilkins, Wang, Xiang, Goddard & Chamberlain, 2021; 88 

Xiang et al., 2019). In addition, variants within the gene coding regions are expected to have 89 

a high impact on complex traits. However, we and others previously found coding-related 90 

variants (around 100,000) have limited contributions to cattle trait heritability (Koufariotis, 91 

Chen, Stothard & Hayes, 2018; Xiang et al., 2019), although their use in improving genomic 92 

prediction has not been studied. 93 
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One way to assess the information content of functional data is to compare variants 94 

prioritised by functional data with SNPs from standard genotyping panels. We have 95 

previously performed such assessment using the standard 50K bovine SNP chip and showed 96 

that functional information can improve genomic prediction accuracy compared to the 50K 97 

chip SNPs (Xiang et al., 2021). However, denser panels such as the high-density (HD) SNP 98 

chip containing ~700,000 SNPs across the genome may be able to tag many functional 99 

elements via LD, although it is not routinely used in animal genomic evaluation. With the 100 

development of animal breeding, the HD panel may be intensively used in the future genomic 101 

evaluation. Therefore, it is of interest to know if functional information can provide any 102 

advantage in genomic mapping and prediction when HD SNPs are used. Also, since causal 103 

variants are expected to have similar phenotypic effects across different breeds, we aim to 104 

compare the use of functionally important variants in genomic prediction across different 105 

breeds. 106 

In the present study, we evaluate sequence variant sets prioritised by 6 types of functional and 107 

evolutionary data in combination with the standard HD SNPs in genomic mapping and 108 

prediction of 6 dairy cattle traits. We train the prediction equations using the BayesR method 109 

(Erbe, Hayes, Matukumalli, Goswami, Bowman, Reich, Mason & Goddard, 2012) which fits 110 

a mixture of 4 distributions of variant-effects and using the BayesRC method which fits 111 

different distributions for each functional class of variant classifications (MacLeod, Bowman, 112 

Vander Jagt, Haile-Mariam, Kemper, Chamberlain, Schrooten, Hayes & Goddard, 2016). 113 

Genomic predictors were trained using 28,000 cows that included 3 breeds: Holstein, Jersey 114 

and Australian Red. Genomic estimated breeding values (gEBVs) were predicted and 115 

validated in 2,500 Holstein, Jersey and Australian Red bulls. We compare the results of 116 

mapping and genomic prediction across the above-described scenarios, discuss these results 117 

and provide suggestions for future studies. 118 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 10, 2021. ; https://doi.org/10.1101/2021.05.05.442705doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.05.442705
http://creativecommons.org/licenses/by-nc-nd/4.0/


 119 

Materials and Methods 120 

The phenotype data analysed in this study were collected by DataGene Australia 121 

(http://www.datagene.com.au/) and no further live animal experimentation was required for 122 

our analyses. A set of 28,049 Australian cows were used as the discovery population and a set 123 

of 2,567 bulls were used as the validation population. The bull phenotypes were obtained as 124 

daughter trait deviations: i.e. the average trait deviations of a bull9s daughters pre-corrected 125 

for known fixed effects by DataGene. The cow phenotypes were measured on themselves. 126 

Note that these bulls and cows were not included in those 44,000+ animals used to discover 127 

functional variants (Xiang et al., 2019; Xiang et al., 2021; Xiang, van den Berg, MacLeod, 128 

Daetwyler & Goddard, 2020). We also checked the pedigree to make sure that bulls used in 129 

the validation population were not the sires of cows from the discovery population. Cows in 130 

the discovery set included 24,305 Holstein, 2,486 Jersey, 1,258 Australian Red. Bulls in the 131 

validation datasets contained 2,091 Holstein, 385 Jersey, 91 Australian Red. Traits 132 

considered in the analysis included protein yield (Prot), fat yield (Fat), milk yield (Milk), 133 

Mastitis (Mas), somatic cell count (Scc) and temperament (Temp). 134 

The genotypes used in the study were imputed sequence variants based on Run7 of the 1000 135 

Bull Genomes Project (Daetwyler, Capitan, Pausch, Stothard, Van Binsbergen, Brøndum, 136 

Liao, Djari, Rodriguez & Grohs, 2014; Hayes & Daetwyler, 2018) based on the ARS-137 

UCD1.2 reference bovine genome 138 

(https://www.ncbi.nlm.nih.gov/assembly/GCF_002263795.1/) (Rosen, Bickhart, Schnabel, 139 

Koren, Elsik, Tseng, Rowan, Low, Zimin & Couldrey, 2020). Variants with Minimac3 140 

(Fuchsberger, Abecasis & Hinds, 2014; Howie, Fuchsberger, Stephens, Marchini & Abecasis, 141 

2012) imputation accuracy R2 > 0.4 and minor allele frequency (MAF) > 0.005 in bulls and 142 

cows. Most bulls were genotyped with a medium-density SNP array (50K) or a high-density 143 
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SNP array and most cows were genotyped with a low-density panel of approximately 6,900 144 

SNPs overlapping with the standard-50K panel (BovineSNP50 beadchip, Ilumina Inc). The 145 

low-density genotypes were first imputed to the Standard-50K panel and then all 50K 146 

genotypes were imputed to the HD panel using Fimpute v3 (Sargolzaei, Chesnais & 147 

Schenkel, 2014; Xiang et al., 2019). Then, all HD genotypes were imputed to sequence using 148 

Minimac3 with Eagle (v2) to pre-phase genotypes (Howie et al., 2012; Loh, Danecek, 149 

Palamara, Fuchsberger, Reshef, Finucane, Schoenherr, Forer, McCarthy & Abecasis, 2016). 150 

We aimed to test whether variant sets selected from different functional and/or evolutionary 151 

information, in addition to the standard HD SNP panel, can be useful for genomic prediction. 152 

Therefore, we first included a baseline set, which is 610,764 SNPs from the standard bovine 153 

high-density panel. There were six functional and/or evolutionary variant sets: 549,007 154 

variants under multiple ChIP-seq peaks (Kern, Wang, Xu, Pan, Halstead, Chanthavixay, 155 

Saelao, Waters, Xiang & Chamberlain, 2021; Prowse-Wilkins et al., 2021) (8ChiPseq9), 156 

106,538 variants annotated as related to coding activities by Ensembl Variant Effect Predictor 157 

(McLaren, Gil, Hunt, Riat, Ritchie, Thormann, Flicek & Cunningham, 2016) (8Coding9), 158 

943,315 variants affecting RNA splicing sQTLs from 4 cattle tissues (Chamberlain, Hayes, 159 

Xiang, Vander Jagt, Reich, Macleod, Prowse-Wilkins, Mason, Daetwyler & Goddard, 2018; 160 

Daetwyler, Xiang, Yuan, Bolormaa, Vander Jagt, Hayes, van der Werf, Pryce, Chamberlain 161 

& Macleod, 2019; Xiang et al., 2018) (8sQTL9), 65,394 finely mapped variants with 162 

pleiotropic effects genome-wide (Xiang et al., 2021) (8Finemap80k9), 4,871 variants affecting 163 

milk fat metabolites mQTLs (Xiang et al., 2019) (8mQTL9) and 317,279 conserved sites 164 

across 100 vertebrates (Xiang et al., 2019) (8Cons100w9). Note that some of these functional 165 

variant sets were initially determined on the UMD3.1 genome and were from different cattle 166 

populations. These sets were lifted over from the older genome to ARS-UCD1.2 and filtered 167 

with imputation accuracy and MAF in the new cattle populations.  168 
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The model training of the above-described data used BayesR (Erbe et al., 2012) and 169 

BayesRC (MacLeod et al., 2016), which are now implemented via BayesR3, with improved 170 

efficiency using blocks. BayesR jointly models all variants together with different effect 171 

distribution priors. BayesRC follows the same approach but in addition allows a 8C9 prior 172 

which models classes of variants. Another aim is to see whether there are differences in 173 

genomic prediction accuracy by modelling the same variants using BayesR and BayesRC. To 174 

aid this comparison, we combined each functional variant set with the HD variants which led 175 

to 6 combined variant sets: 1) ChIP-seq peak tagged variants + HD SNPs (8ChiPseq_HD9), 2) 176 

coding variants + HD variants (8Coding_HD9), 3) sQTL variants + HD SNPs (8sQTL_HD9), 177 

4) finely mapped variants + HD SNPs (8Finemap80k_HD9), 5) mQTL variants + HD SNPs 178 

(8mQTL_HD9) and 6) conserved variants + HD SNPs (8Cons100w_HD9). The average minor 179 

allele frequency of these sets of variants were 0.22 (±0.00014) for ChiPseq_HD, 180 

0.25(±0.0002) for Coding_HD, 0.24 (±0.0001) for sQTL_HD, 0.27 (±0.0002) for 181 

Finemap80k_HD, 0.27 (±0.0002) for mQTL_HD, 0.23 (±0.0002) for Cons100w_HD, and 182 

0.27 (±0.0002) for HD alone.  183 

In single-trait BayesR, we directly model these 6 variant sets one set at a time. To create a 184 

reference baseline, we also used single-trait BayesR to fit the HD variant set (8HD9) alone. In 185 

single-trait BayesRC, for each of the same 6 combined variant sets, we specify 2 different 186 

variant classes: 1) Variants appeared in the functional and/or evolutionary set and 2) variants 187 

only appeared in the HD variant set.  188 

Both BayesR and BayesRC modelled variant effects as a mixture distribution of four normal 189 

distributions including a null distribution, �(0, 0.0�2Ā), and three others: �(0, 0.0001�2Ā), 190 �(0, 0.001�2Ā), �(0, 0.01�2Ā), where �2Ā  was the additive genetic variance for the trait. 191 

The starting value of �2Ā  for each trait was estimated using GREML implemented in the 192 
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MTG2 (Lee & Van der Werf, 2016) with a single genomic relationship matrix made of all 193 

sequence variants. The statistical model used in the single-trait BayesR and BayesRC in was: 194 � = ÿ� + Ā� + � (equation 1) 195 

where y was a vector of phenotypic records; W was the design matrix of marker genotypes; 196 

centred and standardised to have a unit variance; v was the vector of variant effects, 197 

distributed as a mixture of the four distributions as described above; X was the design matrix 198 

allocating phenotypes to fixed effects; b was the vector of fixed effects, including breeds; 199 

e = vector of residual errors. As a result, the effect Ā for each variant jointly estimated with 200 

other variants were obtained for further analysis. 201 

BayesRC used the same linear model as BayesR. The C component of BayesRC had two 202 

categories ā(ā = 2) as described above. Within each category ā, an uninformative Dirichlet 203 

prior (ÿ) was used for the proportion of effects in each of the four normal distributions of 204 

variant effects: ��~ÿ��(ÿ�), where ÿ� = [1, 1, 1, 1]. ÿ� was updated each iteration within 205 

each category: ��~ÿ��(ÿ� + Ā�), where Ā� was the current number of variants in each of the 206 

four distributions within category c, as estimated from the data.  207 

Two metrics were evaluated for mapping results. One is the mixing proportion, i.e., the 208 

proportion of variants with small effect �(0, 0.0001�2Ā), medium effect �(0, 0.001�2Ā) 209 

and large effect �(0, 0.01�2Ā) for each BayesRC run across the functional variant class and 210 

the HD SNP class. This metric shows the information content of the two classes. The other 211 

metric was the percentage of 50kb segments needed by the model to explain 50% of the 212 

cumulative sum of posterior probability (PP), which indicated the mapping precision. For 213 

each variant, PP was calculated as 1 – P0 where P0 was the probability for the variant to be 214 

within the zero-effect distribution �(0, 0.0�2Ā). The sum of PP across all variants estimates 215 

the number of variants causing genetic variance in the trait. The smaller amount of genomic 216 

segments needed to explain a cumulative sum of PP, the higher the mapping precision. We 217 
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also compared genomic prediction accuracy, defined as the Pearson correlation r between 218 

genomic estimated breeding value (gEBV) and phenotype in the validation populations. 219 

gEBV of the validation animals was calculated as �Ā�� = ��̂ (equation 2), where � was a 220 

matrix of the standardisd genotypes of animals in the validation set, and �̂ was the vector of 221 

variant effects from the training model. In addition, to test if adding a large number of 222 

random variants to the HD panel can increase mapping precision and prediction accuracy, a 223 

random set of 944,616 variants matching the size of the largest set of functional variants 224 

(sQTL, 943,315 variants) was also selected and added to the HD panel (8Random_HD9). This 225 

random set was analysed for BayesR, mapping precision and prediction accuracy in the same 226 

fashion as other variant sets described above. 227 

 228 

Results 229 

Information content in the functional variant sets 230 

Averaged across mixing proportions from single-trait BayesRC, we show that compared to 231 

HD SNPs, the finely mapped variants had consistently higher enrichment with variants 232 

showing small, medium and large effects (Figure 1). Variants within coding regions showed 233 

higher enrichment than HD SNPs for large- and medium-effect variants. Interestingly, 234 

mQTLs, which were variants affecting the concentration of milk fat metabolites (Benedet, 235 

Ho, Xiang, Bolormaa, De Marchi, Goddard & Pryce, 2019; Xiang et al., 2019), had lower 236 

enrichment of small-effect variants than HD SNPs, but had higher enrichment of medium and 237 

large-effect variants than HD SNPs.  238 

Mapping precision 239 

Across traits, we show that all models using functional variants, except mQTL, needed a 240 

smaller amount of genome-wide segments to explain 50% of the cumulative sum of PP, 241 

compared to HD SNPs (Figure 2). This means that when adding to the HD SNPs, most 242 
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functional variants increased mapping precision. In contrast, adding randomly selected 243 

944,000 variants to HD SNPs increased the amount of genome-wide segments (by 2.82%± 244 

0.13%) across scenarios to explain 50% of the cumulative sum of PP, compared to only using 245 

HD SNPs. This suggested that adding random variants to HD decreases mapping precision. It 246 

is worth noting that when using 106,538 coding variants and 65,394 finely mapped variants, 247 

BayesRC provided a further increase in mapping precision over HD SNPs than BayesR. On 248 

the other hand, when using 549,007 ChIP-seq tagged variants and 943,315 sQTL variants, 249 

BayesRC had less increase in mapping precision over HD SNPs than BayesR. This could be 250 

due to the reduced signal-to-noise ratio in large variant sets of ChIP-seq tagged variants and 251 

sQTLs. 252 

Genomic prediction of traits 253 

In total, we evaluated the genomic prediction accuracy in 216 scenarios, across 6 single-trait 254 

analysis, 6 functional categories, 4 breeds in the validation population, and 2 Bayesian 255 

methods. Out of these 216 scenarios, 142 (66%) times, HD SNPs combined with functional 256 

variants increased genomic prediction accuracy, compared to the prediction only using the 257 

HD SNPs (Figure 3 and 4). In 51 out of 216 times (24%), the increase in prediction accuracy 258 

([�ÿþÿ�ý�Āÿ�� 2 ���] × 100%) was greater than 1%. These 51 cases were almost all accounted 259 

for by Jersey (15/51) and Australian Red (34/51), with only 2 cases in Holstein cattle. In 29 260 

analyses (14%), the increase in prediction accuracy over HD SNPs was greater than 2%. All 261 

these 29 cases were for non-Holstein breeds. Amongst tested functional sets, genomic 262 

prediction accuracy was the best when the HD variants were combined with conserved 263 

variants (Cons100w_HD). In contrast, averaged across tested scenarios, adding randomly 264 

selected 944,000 variants to HD had a slightly worse or no improvement in prediction 265 

accuracy (-0.5%±0.49%) compared to only using the HD panel to predict. 266 
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As shown in Figure 3, the genomic prediction accuracy of milk production traits using HD 267 

SNPs in Holstein cattle was already high (around 0.7) and the increases in accuracy from 268 

functional variants were very small. However, larger increases were evident in Jersey and 269 

Australian Red. For milk production traits, 10 out of 18 times the genomic prediction 270 

accuracy was the most improved by conserved variants and coding variants combined with 271 

HD SNPs, followed by finely mapped variants combined with HD SNPs (4/18), ChIP-seq 272 

tagged variants (3/18) combined with HD SNPs. sQTL combined with HD variants had the 273 

highest accuracy when predicting protein yield in Holstein.  274 

As shown in Figure 4, the greatest increases in prediction accuracy for traits mastitis, somatic 275 

cell count and temperament were again seen in non-Holstein breeds. Chip-seq peak tagged 276 

variants combined with HD SNPs (5/18 times) and conserved variants combined with HD 277 

SNPs (5/18 times) had the best performances in predicting mastitis, somatic cell count and 278 

temperament. 279 

Across all scenarios, we did not see a clear distinction in prediction accuracy between 280 

BayesR and BayesRC in the current study. There may be some tendencies where BayesRC 281 

had a higher accuracy than BayesR for somatic cell count, mastitis and temperament. 282 

However, none of these differences were significant. 283 

 284 

Discussion 285 

Our systematic evaluations show that functional information can improve genomic mapping 286 

and prediction of cattle traits, even when HD SNPs are used, although there were times where 287 

HD SNPs alone still had robust performances. It is usually the less represented breeds, such 288 

as Jersey and Australian Red who benefited the most from the improvements using functional 289 

data. This suggests functional information can well complement HD SNPs especially in 290 

breeds with smaller training sets. Adding randomly selected variants to the HD panel reduces 291 
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mapping precision and provided no improvement in prediction accuracy compared to only 292 

using the HD panel. This supports that the The benefit provided via selecting variants based 293 

on functional importance can not simply be achieved by adding more sequence variants. 294 

We show that the biological information content which can be used to benefit mapping and/or 295 

prediction is different between functional datasets. One of the top-performing functional 296 

variant sets in mapping large-effect variants was the finely mapped 80,000 variants (Xiang et 297 

al., 2021). This result is somewhat expected as these variants combined information from 298 

multiple functional datasets and also included variants affecting multiple dairy cattle traits. 299 

These finely mapped 80,000 variants outperformed the SNPs from the 50K panel in previous 300 

evaluations (Xiang et al., 2021). Furthermore, finely mapped 80,000 variants showed 301 

enhanced enrichment of large-effect variants and improvement in mapping precision when 302 

modelled with BayesRC. This suggests that this much more refined set of variants (chosen 303 

because they were more relevant to the traits of interest) are likely more enriched for variants 304 

that are more strongly associated with the trait or are causal. BayesRC would only 305 

outperform BayesR when there is strong enrichment for QTL in at least one of the defined 306 

classes. The other functional groups tested are not trait specific (except mQTL for fat) so 307 

likely less enriched relative to each trait. 308 

Previous results showed that coding-related variants did not explain a significant amount of 309 

heritability (Koufariotis et al., 2018; Xiang et al., 2019). In the current study, coding-related 310 

variants combined with HD SNPs showed enhanced enrichment with large-effect variants 311 

and improvement in mapping precision. This implies that variants affecting protein coding 312 

may not necessarily be good at capturing all the genetic variance of polygenic traits. The 313 

small set of mQTLs, derived from milk fat showed strong enrichment of large-effect variants 314 

but did not show improvement in mapping precision over HD SNPs. This set of variants 315 

needs future investigations. 316 
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Unlike the results in mapping large-effect variants, for genomic prediction, the top-317 

performing variant set is the conserved variants combined with HD SNPs. The advantage of 318 

adding conserved variants to HD SNPs was particularly evident when predicting somatic cell 319 

count, mastitis and temperament of non-Holstein breeds (Figure 4). In fact, in these scenarios 320 

HD SNPs alone did not perform so well and this leaves more room for functional variants to 321 

improve the prediction accuracy. Another variant set that performed well in genomic 322 

prediction is the set of ChIP-seq peak tagged variants. Again, such an advantage was the most 323 

evident when predicting somatic cell count, mastitis and temperament in non-Holstein breeds. 324 

Interestingly, ChIP-seq variants combined with HD SNPs appear to show some particular 325 

advantages in predicting temperament. There may be some large-effect variants for 326 

temperament captured by ChIP-seq peaks. 327 

We found that sQTL variants combined with HD SNPs had variable performances in 328 

mapping and prediction. This set did not show good performance in detecting enrichment of 329 

informative variants, but overall significantly increased mapping precision over HD SNPs. In 330 

genomic prediction, its performance was not impressive. This is somewhat different from 331 

previous studies which showed that sQTLs are enriched with complex trait QTL(Li et al., 332 

2016; Xiang et al., 2019; Xiang et al., 2018). One explanation is that sQTLs or any other 333 

eQTLs were not trait specific and are plagued by LD, which is particularly strong for 334 

Holstein breeds that dominated the discovery population. Another explanation is that the 335 

sample size with which we used to discover sQTLs is still small (N~120) and we should re-336 

discover and re-evaluate this set of variants when there is a larger sample size. 337 

As mentioned earlier, BayesRC would only outperform BayesR when there is strong 338 

enrichment for QTL in at least one of the defined classes. It would also require functional 339 

information to be trait-specific. We saw advantages in BayesRC over BayesR in detecting 340 

enrichment with large-effect variants using finely mapped variants, coding variants and 341 
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mQTLs. BayesRC also had advantages over BayesR in mapping precision when used with 342 

finely mapped variants and coding variants. While these functional data are expected to be 343 

informative, they did not provide consistent advantages for BayesRC to predict traits over 344 

BayesR. Across all tested cases, we did not see strong advantages in BayesRC over BayesR 345 

in genomic prediction (Figure 4). BayesRC may have some tendencies to better predict 346 

somatic cell count, mastitis and temperament than BayesR. However, the differences were 347 

not statistically significant. The reason behind these observations may be complex. 348 

We know that not all variants in the functional datasets are informative and many sequence 349 

variants are in strong LD. BayesR and BayesRC both have limitations where variants are in 350 

very strong LD. In addition, if most causal variants are quite well tagged by HD variants and 351 

if validation animals are highly related to the discovery animals, the room to improve 352 

prediction accuracy is limited. Also, there may be less common variants that are not tagged 353 

by HD SNPs, but these variants are not well imputed. Further, the optimal tissues and/or 354 

experimental conditions to generate functional data that can be better used for improving 355 

genomic prediction are usually not known. Therefore, the marriage between functional data 356 

and genomic prediction is still at its very early stage.  357 

We therefore suggest two future research directions to improve on the current results. The 358 

first is to increase the information content in functional datasets. This can be achieved by 359 

either increasing the sample size (biological replicates, tissues and experimental conditions) 360 

of functional datasets or by developing better bioinformatic tools to increase the signal-to-361 

noise ratio in functional datasets before they can be processed by genomic prediction models. 362 

The second direction is to improve the current genomic prediction models. Because the type 363 

and complexity of functional data will keep growing, it will be necessary to develop more 364 

sophisticated and flexible methods to better extract information from complex functional 365 

data. For example, an extended BayesRC that can model quantitative biological priors, 366 
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instead of qualitative classes will be needed. Similarly, in the future we will use larger sample 367 

sizes and diverse breeds in the training model to reduce LD between sequence variants. This 368 

will also increase the need for Bayesian methods to be more efficient. 369 

In conclusion, our evaluation of Bayesian genomic prediction using functional and 370 

evolutionary information with HD SNPs provides novel insights into this emerging area. We 371 

show that functional datasets of conserved variants, coding variants, ChIP-seq peaks and 372 

previously finely mapped variants can improve genomic mapping and/or genomic prediction, 373 

even when HD SNPs are used. Such improvements usually benefit non-Holstein breeds, 374 

given the current available functional datasets. We found that by using informative biological 375 

priors, BayesRC has significant advantages over BayesR in detecting enrichment with large-376 

effect variants and in mapping precision. However, the advantage of BayesRC over BayesR 377 

for genomic prediction was not consistent. Our results highlight the need to develop better 378 

tools to extract information from complex functional datasets which will benefit genomic 379 

prediction in large datasets. Fusing functional genomics with genomic selection presents 380 

great opportunities to develop new technologies that improve animal breeding and genetics. 381 
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522 

Figure 1. The proportion of small-effect, medium effect and large effect variants in 523 

functional variants and HD SNPs. The mean and standard error bars are averaged across 6 524 

traits. ChiPseq_HD: ChIP-seq peaks + HD SNPs. Coding_HD: coding variants + HD SNPs. 525 

mQTL_HD: mQTLs + HD SNPs. sQTL_HD: sQTL variants + HD SNPs. Cons100w_HD: 526 

conserved variants across 100 vertebrates + HD SNPs. Finemap80k_HD: finely mapped 527 

variants + HD SNPs.  528 
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 530 

Figure 2. Mapping precision of different models. The Y-axes represent the percentage of 531 

50kb segments needed by the model to explain 50% of the cumulative sum of posterior 532 

probability (PP) of variants. A shorter bar means less amount of segments the model needs to 533 

explain the same amount of genetic variance, indicating higher mapping precision. Black 534 

dashed line indicates the Y value for the HD SNPs, fitted along in BayesR. ChiPseq_HD: 535 

ChIP-seq peaks + HD SNPs. Coding_HD: coding variants + HD SNPs. mQTL_HD: mQTLs 536 

+ HD SNPs. sQTL_HD: sQTL variants + HD SNPs. Cons100w_HD: conserved variants 537 

across 100 vertebrates + HD SNPs. Finemap80k_HD: finely mapped variants + HD SNPs. 538 

 539 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 10, 2021. ; https://doi.org/10.1101/2021.05.05.442705doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.05.442705
http://creativecommons.org/licenses/by-nc-nd/4.0/


 540 

Figure 3. Genomic prediction accuracy (Pearson correlation coefficient, Y-axis) for 541 

production traits, across different functional/evolutionary variant sets, breeds and Bayesian 542 

methods. A black border and a dashed line of a bar indicate that it has the highest genomic 543 

prediction accuracy in the panel. HOL: Holstein breed. JER: Jersey breed. RED: Prot: milk 544 

protein yield. Fat: milk fat yield. Milk: milk yield. Australian Red. ChiPseq_HD: ChIP-seq 545 

peaks + HD SNPs. Coding_HD: coding variants + HD SNPs. mQTL_HD: mQTLs + HD 546 

SNPs. sQTL_HD: sQTL variants + HD SNPs. Cons100w_HD: conserved variants across 100 547 

vertebrates + HD SNPs. Finemap80k_HD: finely mapped variants + HD SNPs. 548 
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 550 

Figure 4. Genomic prediction accuracy (Pearson correlation coefficient, Y-axis) for mastitis, 551 

somatic cell count and temperament across different functional/evolutionary variant sets, 552 

breeds and Bayesian methods. A black border and a dashed line of a bar indicate that it has 553 

the highest genomic prediction accuracy in the panel. HOL: Holstein breed. JER: Jersey 554 

breed. RED: Australian Red. Mas: mastitis. Scc: somatic cell count. Temp: temperament. 555 

ChiPseq_HD: ChIP-seq peaks + HD SNPs. Coding_HD: coding variants + HD SNPs. 556 

mQTL_HD: mQTLs + HD SNPs. sQTL_HD: sQTL variants + HD SNPs. Cons100w_HD: 557 

conserved variants across 100 vertebrates + HD SNPs. Finemap80k_HD: finely mapped 558 

variants + HD SNPs. 559 
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