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Post-translational modifications (PTMs) diversify protein functions and dynamically 
coordinate their signalling networks, influencing most aspects of cell physiology. 
Nevertheless, their genetic regulation or influence on complex traits is not fully 
understood. Here, we compare for the first time the genetic regulation of the same PTM 
of two proteins – glycosylation of transferrin and immunoglobulin G (IgG). By 
performing genome-wide association analysis of transferrin glycosylation, we identified 
10 significantly associated loci, all novel. Comparing these with IgG glycosylation-
associated genes, we note protein-specific associations with genes encoding glycosylation 
enzymes (transferrin - MGAT5, ST3GAL4, B3GAT1; IgG - MGAT3, ST6GAL1) as well 
as shared associations (FUT6, FUT8). Colocalisation analyses of the latter suggest that 
different causal variants in the FUT genes regulate fucosylation of the two proteins. We 
propose that they affect the binding of different transcription factors in different 
tissues, with fucosylation of IgG being regulated by IKZF1 in B-cells and of transferrin 
by HNF1A in liver.  
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Introduction 

Post-translational modifications (PTMs) are essential mechanisms used by cells to diversify 
and extend their protein functions beyond what is dictated by protein-coding sequences in the 
genome. These chemical reactions range from the addition of small moieties, such as 
phosphate (phosphorylation), complex biomolecules, as in glycosylation, to proteolytic 
cleavage1. PTMs alter the structure and properties of proteins and are thus involved in the 
dynamic regulation of most cellular events. It is common for a PTM enzyme to target 
multiple substrates or interact with multiple sites. For example, only 18 histone deacetylases 
target more than 3600 acetylation sites on 1750 proteins2. Environmental or pathological 
conditions can lead to dysregulation of PTM activities, which has been related to aging3 and 
several diseases, including cancer, diabetes, and neurodegeneration4–10. Despite their 
importance, little is known about genetic regulation of post-translational modifications.  

N-glycosylation is one of the most common protein PTMs, where carbohydrate structures 
called glycans are covalently attached to an asparagine (Asn) residue of a polypeptide 
backbone. N-glycans are characterised by vast structural diversity and high complexity. 
While polypeptides are encoded by a single gene, N-glycan structures result from a 
sophisticated interplay of glycosyltransferases, glycosidases, transporters, transcription 
factors, and other proteins11. Protein N-glycosylation is involved in a multitude of biological 
processes12. Accordingly, changes in N-glycosylation patterns have been associated with 
aging13 and a wide range of diseases, including Parkinson’s disease14, lower back pain15, 
rheumatoid arthritis16, ulcerative colitis17, Crohn’s disease17, type 2 diabetes18 and cancer19–21. 
In addition, N-glycans are considered as potential therapeutic targets22 and prognostic 
biological markers18,23–25. 

As with other PTMs, genetic regulation of N-glycosylation is not yet fully understood. 
Previous genome-wide association studies (GWAS) have so far focused either on the N-
glycome of total blood plasma proteins as a whole or on glycosylation of one specific protein 
- immunoglobulin G (IgG)26–33. IgG antibodies are one of the most abundant proteins in 
human serum, and their alternative N-glycosylation is suggested to trigger different immune 
response and thus impacts the action of the immune system34. N-glycan structures are 
predominantly of the biantennary complex type and vary due to additions of core fucose, 
galactose, sialic acid, and bisecting N-acetylglucosamine (GlcNAc), with disialylated 
digalactosylated biantennary glycan with core fucose and bisecting GlcNAc being the most 
complex N-glycan structure on IgG35. While a clear overlap in genetic control between total 
plasma proteins and IgG N-glycosylation was highlighted by previous studies28, it was not 
possible, until now, to identify protein-specific N-glycosylation pathways for glycoproteins 
other than IgG due to technical challenges hampering isolation of other glycoproteins in large 
cohorts. 

Here we report genes associated with the regulation of transferrin N-glycosylation and 
compare these with the genetic regulation of glycosylation of a different protein (IgG). 
Transferrins are blood plasma glycoproteins regulating the level of iron in an organism. Iron 
plays a central role in many essential biochemical processes of human physiology: the cells’ 
need for iron in the face of potential danger as an oxidant has given rise to a complex system 
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that tightly regulates iron levels, tissue distribution, and bioavailability36. Human transferrin 
has two N-glycosylation sites – at the N432 and N630 residues, with biantennary disialylated 
digalactosylated glycan structure without fucose being the most abundant glycan 
attached37,38. We performed, for the first time, genome-wide association meta-analysis 
(GWAMA) of 35 transferrin N-glycan traits (N=1890) and compared it with GWAMA of 24 
IgG N-glycan traits (N=2020) in European-descent cohorts, discovering both protein-specific 
and shared associations. For loci associated with the N-glycosylation PTM of both transferrin 
and IgG, we used colocalisation analysis to assess whether the underlying causal variants are 
protein-specific or rather shared between these proteins. We then suggested a molecular 
mechanism by which these independent causal variants could regulate the expression of 
glycosylation related genes in different tissues. To the best of our knowledge, this is the first 
study investigating whether the same PTM of two proteins is regulated by the same genes and 
whether they are driven by the same causal genetic variants. 
 

 

Results 

 

Loci associated with transferrin N-glycosylation 

To investigate the genetic control of transferrin N-glycosylation and assess whether the same 
genes and underlying causal variants are associated with N-glycosylation of both transferrin 
and IgG, we first performed GWAS of glycosylation for each protein (i.e. transferrin and 
IgG). A more extensive GWAS on the genetic regulation of IgG glycosylation has already 
been published30, so we focus here on glycosylation of transferrin. We performed GWAS of 
35 ultra-high-performance liquid chromatography (UHPLC)-measured transferrin N-glycan 
traits and Haplotype Reference Consortium (HRC) r1.1-imputed genetic data in two cohorts 
of European descent (N=1890). To identify secondary association signals at each genomic 
region, we  performed approximate conditional analysis on transferrin N-glycan traits using 
GCTA-COJO software39. Overall, we identified 26 independently contributing variants, 
located in 10 genomic loci significantly associated (p-value ≤ 1.43×10-9, Bonferroni adjusted 
for the number of glycan traits) with at least one of the 35 transferrin N-glycan traits (Table 1, 
Figure 1, complete list of all associations in Supplementary Table 1). Multiple SNPs 
independently contributed to transferrin N-glycans variation in 6 out of 10 loci, all mapping 
to glycosyltransferase genes, plus the transferrin (TF) gene. The highest number of 
independently associated SNPs (7) was observed for the sialyltransferase locus, ST3GAL4, 
followed by 4 SNPs in the acetylglucosaminyltransferase locus, MGAT5, and in the 
glucuronyltransferase locus, B3GAT1. Lastly, 2 SNPs independently contributed to 
transferrin glycosylation in the fucosyltransferase loci, FUT8 and FUT6, and also the 
transferrin (TF) locus itself (Supplementary Table 2). 
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Table 1. Loci genome-wide significantly associated with at least one of the 35 transferrin 
N-glycan traits in GWAMA. Glycosyltransferase loci are reported at the top of the table, 
while other loci are listed at the bottom of the table. Each locus is represented by the SNP 
with the strongest association in the region. 

Locus Gene SNP EA OA EAF No. of 
SNPs 

Lead 
glycan 

Phe. 
var. 

No. of 
glycans 

Beta SE P 

2:134839539-
135024803 

MGAT5 rs2442046 C G 0.747 4 TfGP23 0.071 4 -0.44 0.037 1.38x10-32 

11:12605298
8-126312874 

ST3GAL4 rs4055121 T C 0.12 7 TfGP17 0.131 9 0.782 0.046 9.67x10-64 

11:13390630
2-134613230 

B3GAT1 rs74622686 A G 0.905 4 TfGP21 0.144 3 0.931 0.053 8.53x10-70 

14:65751627-
66281192 

FUT8 rs2411815 A T 0.306 2 TfGP20 0.092 3 -0.469 0.035 2.69x10-41 

19:5813766-
5841356 

FUT6 rs12019136 A G 0.039 2 TfGP32 0.079 5 -1.016 0.083 2.00x10-34 

3:133433470-
133499063 

TF rs6785596 A T 0.047 2 TfGP3 0.065 3 0.787 0.075 1.57x10-25 

5:169535155-
169535155 

FOXI1 rs11539930
7 

T C 0.018 1 TfGP23 0.031 1 0.941 0.152 5.18x10-10 

8:15831868-
16623073 

MSR1 rs41341748 A G 0.027 1 TfGP35 0.031 1 0.778 0.109 1.16x10-12 

11:11438144
8-114384985 

NXPE1/ 
NXPE4 

rs1671819 A G 0.454 1 TfGP14 0.02 1 -0.2 0.032 3.32x10-10 

12:12142026
3-121424861 

HNF1A rs2393775 A G 0.638 1 TfGP28 0.019 1 -0.203 0.033 8.97x10-10 

Locus - coded as “chromosome: locus start–locus end” (GRCh37 human genome build); Gene - suggested candidate gene; SNP - variant with the 
strongest association in the locus; EA - SNP allele for which the effect estimate is reported; OA - other allele; EAF - frequency of the effect allele; 
No. of SNPs - number of SNPs in the locus independently contributing to trait variation according to GCTA-COJO; Lead glycan - glycan trait with 
the strongest association to the reported SNP; Phe. var. - proportion of variance in phenotype explained by the strongest associated SNP; No. of 
glycans - number of glycan traits significantly associated with variants at the given locus; Beta - effect estimate for the SNP and glycan with the 
strongest association in the locus; SE - standard error of the effect estimate, P - p-value of the effect estimate. 
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Prioritising candidate genes associated with transferrin N-glycosylation 

 
For the 10 loci associated with the transferrin N-glycome, we identified plausible candidate 
genes following multiple lines of evidence, such as evaluating the biological role of the 
candidate gene in the context of protein N-glycosylation, assessing SNP pleiotropy with 
eQTLs, and investigating variant effects on the coding sequence or on putative transcription 
factor binding sites. 
 

Positional mapping and biological role. The majority of genes that were closest to 
transferrin N-glycosylation-associated variants had a clear biological link to protein N-
glycosylation. In particular, for 5 out of 10 loci the closest genes (i.e. MGAT5, ST3GAL4, 
B3GAT1, FUT8, and FUT6) encode glycosyltransferases, key enzymes in protein 
glycosylation, that have been previously associated with IgG and/or total plasma protein 
glycosylation (Supplementary Table 3). Another gene closest to transferrin N-glycosylation-
associated variants and with a validated functional role in plasma proteins glycosylation is 
HNF1A, a transcription factor previously associated with protein fucosylation 
(Supplementary Table 3). On the other hand, we also identified 3 loci that had not been 
associated with N-glycosylation. A locus on chromosome 3 contains the transferrin (TF) 
gene, which encodes the transferrin glycoprotein. A locus on chromosome 5 contains FOXI1, 
encoding a member of the forkhead family of transcription factors (Forkhead box I1). Finally, 
a locus on chromosome 8 contains the MSR1 gene, encoding the class A macrophage 
scavenger receptor, a trimeric integral membrane glycoprotein. Another gene of potential 
biological relevance at the chromosome 8 locus is the tumour suppressor candidate 3 
(TUSC3), which encodes a protein localised to the endoplasmic reticulum and acting as a 
component of the oligosaccharyltransferase complex, responsible for N-linked protein 
glycosylation. 
 
Overlap and colocalisation with eQTL. Using eQTL analysis in PhenoScanner, transferrin 
N-glycan-associated genetic variants (and their proxies, LD r2 > 0.8) were identified to be 
significantly associated with the expression of multiple genes in several human tissues 
involved in transferrin metabolism (Supplementary Table 4a). For example, transferrin 
glycosylation variants were associated with ST3GAL4 expression in liver and whole blood, 
with B3GAT1 expression in visceral adipose omentum, liver, and whole blood, with TF 
expression in several adipose tissues and with HNF1A, FUT8, and MGAT5 expression in 
whole blood. The majority of these genes were also the closest to the strongest association in 
the locus. We next used Summary data-based Mendelian Randomization (SMR) analysis 
followed by the Heterogeneity in Dependent Instruments (HEIDI) test41 to assess whether 
expression of these genes colocalises with transferrin glycosylation (TfGP) traits. SMR-
HEIDI provided evidence of pleiotropy, suggesting that the same underlying causal SNPs are 
likely to regulate both transferrin glycosylation traits and gene expression, for B3GAT1 in 
liver and peripheral blood and ST3GAL4 in liver (Supplementary Table 4b).  
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Analysis of possible effects on amino acid sequence. We next explored whether any of the 
SNPs independently contributing to transferrin glycosylation (or their proxies) result in a 
change of amino acid sequence using the Ensembl Variant Effect Predictor (VEP)42. While 
the majority of associated variants (> 60%) were classified as intronic, several SNPs were 
identified as missense variants: rs115399307 (5_169535155_T/C) causes the substitution of 
the non-polar, aliphatic amino acid isoleucine (I) to the polar, hydrophilic amino acid 
threonine (T) in the FOXI1 transcription factor. Similarly, NXPE4 variant rs550897 
(11_114442103_A/G, r2=0.94 with rs1671819) causes an amino acid substitution from 
tyrosine (Y) to histidine (H), while FUT6 variant rs17855739 (19_5831840_T/C, r2=0.95 
with rs12019136) encodes a change from negatively charged glutamic acid (E) to positively 
charged lysine (K), which leads to a full-length, but inactive, enzyme43. Genetic variant 
rs41341748 (8_16012594_A/G) disrupts a stop codon sequence in MSR1, causing an 
elongated transcript with the amino acid arginine (Arg) added to the protein chain 
(Supplementary Table 5). 
 
Analysis of possible effects on transcription factor binding sites. Finally, we used the 
regulatory sequence analysis tools (RSAT)44 to assess if transferrin N-glycosylation-
associated genetic variants overlap transcription factor-binding sites (TFBSs) and are likely 
to affect transcription factor (TF) binding. From the list of prioritised genes, we selected the 
two encoding transcription factors, FOXI1 and HNF1A, and checked whether associated 
variants in the remaining 8 loci were likely to affect their binding. Overall, binding of both 
FOXI1 and HNF1A transcription factors is likely to be affected by the sentinel variant (the 
SNP with lowest p-value in the region for the given glycan trait) in the FUT8 gene. In 
addition, binding of HNF1A is likely to be affected also by the sentinel variants in the TF and 
ST3GAL4 loci (Supplementary Table 6). 
 
 
Shared genetic associations with complex traits and diseases 
 
To assess whether transferrin glycosylation variants were also associated with complex traits 
and diseases we used PhenoScanner45, followed by SMR-HEIDI to determine whether the 
shared associations are caused by the same underlying causal variant (pleiotropy). We 
observed an overlap of transferrin N-glycan-associated SNPs and their proxies with variants 
associated with complex trait- and disease-associated variants for 5 out of 10 glycosylation 
loci (Supplementary Table 7a). Glycosylation SNPs at the NXPE1/NXPE4 locus were 
pleiotropic with ulcerative colitis, and those from the HNF1A locus with C-reactive protein 
levels, LDL and total cholesterol (Supplementary Table 7b). For the remaining shared 
associations, we had no power to assess pleiotropy (Supplementary Results for further 
details). Interestingly, variants at the TF locus have been previously associated with serum 
concentration of carbohydrate-deficient transferrins (CDT) (Supplementary Table 7a), less 
glycosylated transferrin isoforms traditionally used as a biomarker of excessive alcohol 
consumption46, thus corroborating our finding for a related trait. 
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Comparison of genetic regulation of glycosylation of transferrin and immunoglobulin G 
 
One of the main aims of this study is to understand if the N-glycosylation of two proteins is 
regulated by the same enzymes and if so, whether the same underlying genetic variant or a set 
of variants are driving the process. To address this question, in addition to the already 
described GWAMA of transferrin glycosylation, we performed a GWAMA of 24 UHPLC 
IgG N-glycan traits in the same individuals (N=2020), following the same protocol. 13 loci 
were significantly associated with at least one of the 24 IgG N-glycan traits (Figure 1, 
Supplementary Table 8). The IgG N-glycome GWAS was annotated using genes or sets of 
genes prioritised by Klarić et al.30 By comparing the two GWAS we discovered mainly 
protein-specific associations, but also two genomic regions that were associated with 
glycosylation of both proteins (Figure 1). The protein-specific associations were with genes 
encoding known glycosylation enzymes (transferrin - MGAT5, ST3GAL4, B3GAT1; IgG - 
ST6GAL1, MGAT3), but also with transcription factors (transferrin - HNF1A, FOXI1; IgG - 
IKZF1, RUNX3), the protein itself (transferrin - TF; IgG - TMEM121, gene in proximity of 
IGH genes encoding immunoglobulin heavy chains) as well as other genes (transferrin - 
MSR1; IgG - TXLNB, ABCF2, SMARCB1 region, HLA-region). Interestingly, the regions 
containing FUT8 and FUT6, genes encoding fucosyltransferases, enzymes adding core and 
antennary fucose, respectively, to the synthetized glycan, were associated with glycosylation 
of both proteins (Figure 1). We then proceeded to assess whether the same underlying causal 
variants in these regions are controlling the process for both proteins using colocalisation 
analysis. 
 

 
Figure 1. Transferrin and IgG N-glycome GWAMA summary Miami plot. Miami plot 
pooling together meta-analysis results obtained across all 35 transferrin glycan traits at the 
top in orange, and across all 24 IgG glycan traits at the bottom in blue. For transferrin N-
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glycome associations, * marks loci previously reported in total blood plasma N-glycome 
GWAS26–28, while ~ marks loci previously reported in IgG N-glycome GWAS30–32,40. For 
simplicity, SNPs with p-value > 1×10−3 are not plotted. The Bonferroni-corrected genome-
wide significance threshold for the transferrin N-glycome meta-analysis (horizontal red line 
in the top part of the plot) corresponds to 1.43×10-9, while the Bonferroni-corrected genome-
wide significance threshold for the IgG N-glycome meta-analysis (horizontal red line in the 
bottom part of the plot) corresponds to 2.08×10-9. Gene or sets of genes annotated for 
transferrin N-glycome loci have been prioritised in this study; gene or sets of genes annotated 
for IgG N-glycome loci are those prioritised by Klarić et al.30 

 

Given that multiple glycan traits of the same protein can be associated with the same locus, 
we first asked whether all glycan traits of the same protein associated with a certain locus, 
colocalise (Supplementary Figure 1). Indeed, we found strong support for colocalisation 
(PP.H4 > 80 %, where PP.H4 represents the posterior probability for the same underlying 
causal variant contributing to trait variation), suggesting that for a given protein, all glycan 
traits associated with these loci are regulated by the same underlying causal variant 
(Supplementary Table 9, Supplementary Figure 2-4). One example of within-protein 
colocalisation can be seen in Figure 2. We next tested whether at the same genomic region, 
glycosylation of two different proteins is regulated by the same underlying causal variants. 
For this, we selected as the protein-representative glycan trait the one with the lowest p-value 
in the given region (one pair for each locus - transferrin TfGP20 and IgG GP7 for the FUT8 
locus and transferrin TfGP32 and IgG GP20 for the FUT6 locus) and proceeded to test for 
colocalisation between glycosylation of the two proteins. We found strong support against 
colocalisation in both genomic regions (PP.H3 = 100% at FUT8 locus, PP.H3 = 99.71% at 
FUT6 locus, where PP.H3 represents the posterior probability for different underlying causal 
variants contributing to trait variation) (Figure 3 and Figure 4, Supplementary Table 10). 
Since colocalisation methods are sensitive to multiple independent variants in the region 
contributing to the trait variation, which was the case here, we validated our findings with the 
PwCoCo approach47 (Methods) and again, obtained robust evidence against the colocalisation 
hypothesis for all tested traits in both loci (Supplementary Table 10 and Supplementary 
Results for further details). 
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Figure 2. Local association patterns for transferrin (A) TfGP32 and (B) TfGP34 
glycans, and (C) their colocalisation pattern at the FUT6 locus. TfGP32 and TfGP34 
association patterns colocalise, with PP.H4 (posterior probability for hypothesis 4, of 
colocalisation) of 99.87%. c) The logarithm of Approximate Bayes Factor (ABF) of each 
SNP for transferrin TfGP32 and transferrin TfGP34 in the FUT6 region shows that TfGP32 
and TfGP34 associations are concordant (the patterns of ln(ABF) calculated for each SNP of 
both traits overlap), suggesting that the same underlying causal variant is associated with both 
traits.  
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Figure 3. Local association patterns for (A) transferrin TfGP20 and (B) IgG GP7 
glycans at the FUT8 locus. TfGP20 and IgG GP7 association patterns do not colocalise 
(PP.H3 = 100% - posterior probability for hypothesis 3, of different causal variants). 
Colocalisation patterns are not reported since the width of the FUT8 region makes the plot 
non-informative. 

 
 
 

  

Figure 4. Local association patterns for (A) transferrin TfGP32 and (B) IgG GP20 
glycans, and (C) their colocalisation pattern at the FUT6 locus. TfGP32 and IgG GP20 
association patterns do not colocalise (PP.H3, posterior probability for hypothesis 3, of 
different causal variants = 99.7%). The logarithm of Approximate Bayes Factor (ABF) of 
each SNP for transferrin TfGP32 and IgG GP20 in the FUT6 region shows that TfGP32 and 
GP20 associations are not concordant (the patterns of ln(ABF) calculated for each SNP of 
both traits do not overlap), suggesting that two different underlying causal variants in this 
region regulate glycosylation of these two proteins. 

 

 
Having established that different underlying causal variants regulate glycosylation at the 
FUT6 and FUT8 loci, we next explored the potential mechanisms behind these associations. 
The sentinel transferrin glycosylation SNP in the FUT8 region is likely to affect binding of 
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the HNF1A transcription factor (Supplementary Table 6) and it was previously shown that 
sentinel IgG glycosylation SNP in the same region potentially affects binding of the IKZF1 
transcription factor30. In addition, we observed protein-specific associations with two 
transcription factors: transferrin glycosylation was associated with variants in the HNF1A 
locus and IgG glycosylation was associated with variants in the IKZF1 locus (Figure 1). We 
therefore checked expression of these genes in tissues where the two proteins are 
predominantly expressed. It is known that plasma transferrin, encoded by TF gene, is mostly 
secreted by hepatocytes48, while IgG, the heavy chain constant region of which is encoded by 
IGHG gene, is predominantly synthesised by the antibody-secreting plasma cells, the fully 
differentiated form of B-lymphocytes49. Indeed, we see that IGHG1 (encoding the most 
prevalent IgG1 subclass) is highly expressed in plasma cells and has low expression in 
hepatocytes, while the converse is true for TF (Figure 5). Similarly, the transcription factor 
encoded by HNF1A is predominantly expressed in the hepatocytes, while IKZF1 is mainly 
expressed in plasma cells (Figure 5). Altogether these suggest that two distinct causal variants 
regulating glycosylation of transferrin and IgG in the FUT8 locus are likely to have tissue-
specific effects, where the transferrin-associated variant affects the binding of HNF1A in 
liver and the IgG-associated variant affects the binding of IKZF1 in plasma cells, with both 
influencing expression of the FUT8 gene and therefore affecting fucosylation of the two 
proteins.  
 

 
Figure 5. Expression of HNF1A and IKZF1 in main tissues for transferrin and IgG 
proteins synthesis. Log2 of median transcripts per million (TPM) and interquartile ranges are 
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reported for TF (encoding transferrin protein), HNF1A, IGHG1 (encoding the constant region 
of immunoglobulin heavy chains) and IKZF1 genes in plasma cells and hepatocytes. Gene 
expression data was obtained from the ARCHS4 portal50.  
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Discussion 

The post-translational modifications (PTMs) are essential mechanisms that dynamically 
regulate a large portion of cellular events by altering the structure and properties of proteins1. 
Similarly to other PTMs, genetic regulation of protein N-glycosylation has not been 
extensively investigated. Here, we performed genome-wide association meta-analysis of 
glycosylation of two proteins - transferrin and IgG - and compared how glycosylation of the 
two different proteins is genetically regulated. In the first GWAS of the transferrin N-
glycome, (N=1890), we identified 10 significantly associated loci, three of which (near TF, 
FOXI1 and MSR1) were never previously associated with the glycome of any protein. The 
other seven have been previously associated with glycosylation of total plasma proteins 
and/or IgG (Supplementary Table 2). The total plasma glycome quantifies the glycome of all 
proteins in plasma, but without information on which glycan was bound to which protein. 
Given that IgG and transferrin are among the most abundant plasma glycoproteins12, an 
overlap in genetic control of transferrin and IgG N-glycomes with that of total plasma 
proteins is to be expected. Sharapov et al.28 previously indicated that some of the genomic 
loci associated with the plasma glycome overlap with loci associated with IgG N-
glycosylation. The present work suggests that the MGAT5, ST3GAL4, and B3GAT1 loci, that 
were also observed in the total plasma protein GWAS, might be capturing a signal within 
plasma protein glycosylation that comes mainly from transferrin N-glycosylation. 
 
We then compared the genetic architecture underlying glycosylation of transferrin and IgG 
proteins. Using the GWAS from this study we showed that there are both protein-specific and 
shared genetic loci. Looking specifically at glycosyltransferase enzymes, the main “drivers” 
of this post-translational modification, that catalyse the transfer of saccharide moieties from a 
donor to an acceptor molecule, MGAT5, ST3GAL4, and B3GAT1 were only associated with 
transferrin while ST6GAL1 and MGAT3 were only associated with glycosylation of IgG. On 
the other hand, two fucosyltransferase genes, FUT8 and FUT6, were associated with both 
proteins. Even though the genes encoding these enzymes were associated with glycosylation 
of both proteins, using Approximate Bayes Factor colocalisation analysis, we showed that 
associations with transferrin and IgG N-glycosylation at these genomic regions is driven by 
independent underlying causal variants, where one variant regulates fucosylation of 
transferrin and the other of IgG. Our results suggest that while the same fucosyltransferase 
enzymes are involved in N-glycosylation of both transferrin and IgG proteins, the process is 
independently regulated by protein-specific causal variants. 
 
There are at least two mechanisms that could explain how different variants in an enzyme-
coding gene could have distinct effects on two different substrates. If the two variants were in 
the coding region of the gene and affected the amino-acid sequence of the enzyme, they could 
affect the enzyme’s specificity for binding each protein. However, none of the sentinel 
variants in the FUT8 and FUT6 loci were in strong linkage disequilibrium (LD) with coding 
variants from the enzymes’ active sites, suggesting that this is likely not the mechanism of 
regulation of fucosylation of the two proteins. In addition, overall, SNPs associated with 
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transferrin glycosylation predominantly mapped to regulatory rather than coding regions of 
the genome (Supplementary Table 5).  
The other hypothesis is that these two variants affect the expression of enzymes in different 
tissues. In common with all other antibodies, most of IgG found in blood plasma is produced 
by bone marrow plasma cells, the fully differentiated form of B-cells49. The transferrin found 
in blood plasma is mostly produced by liver hepatocytes48. In addition, the glycomes of the 
two proteins were also associated with different transcription factor genes, namely, variants 
in IKZF1 region were associated with IgG glycosylation, and variants in HNF1A region with 
transferrin glycosylation. IKZF1, a transcription factor predominantly expressed in immune 
cells and tissues, has been functionally validated as a regulator of IgG core fucosylation: 
IKZF1 binds to regulatory regions of FUT8 and, in turn, knockdown of IKZF1 results in 
increased expression of FUT8 and increased core fucosylation of IgG30. On the other hand, 
we showed that transferrin glycosylation-associated variants in the FUT8 region might affect 
the binding of HNF1A, a transcription factor predominantly expressed in the liver. HNF1A 
has already been shown to regulate the expression of FUT8 and FUT6 and affects 
fucosylation of total plasma proteins27. Overall, we hypothesise that the two different causal 
variants affect the binding of different transcription factors in different tissues and therefore  
regulate the glycosylation of the two plasma proteins in a tissue-specific manner. 
In addition to HNF1A, FUT8 glycosylation-associated variants might also be affecting the 
binding of the FOXI1 transcription factor. However, unlike HNF1A, possible involvement of 
FOXI1 in the regulation of the transferrin fucosylation is to date unknown and would require 
functional validation. We also found that HNF1A binding could also be affected by 
associated variants in the TF and ST3GAL4 genes. While these relationships were hitherto 
undocumented and need further supporting evidence, they may suggest that HNF1A might 
regulate multiple genes associated with transferrin N-glycosylation. 
 
Finally, our findings are not only relevant for unravelling the genetic mechanisms behind N-
glycosylation PTM but also contribute to understanding changes in N-glycan patterns 
involved in disease. The most strongly N-glycosylation-associated variant for the TF gene, 
rs6785596, was suggested by McClain et al.36 to regulate TF expression in adipose tissue 
(also evident in GTEx v7) and consequently modulating insulin sensitivity. Excessive body 
iron stores represent a risk factor for decreased insulin sensitivity and diabetes51. McClain et 
al.36 argue that genetic downregulation of TF expression in adipocytes has functional 
consequences for these cells' iron homeostasis and is sufficient to cause insulin resistance in 
humans and in a cell culture model. However, this SNP has so far not been associated with 
diabetes or diabetes-related traits, suggesting that this relationship needs to be explored 
further. Moreoever, while TF variant rs6785596 is not associated with transferrin protein 
levels (pQTL), we can consider it as an example of a “cis-glyQTL”: a genomic locus that 
explains variation in glycosylation levels and is local to the gene encoding the protein being 
glycosylated. Similar was observed for IgG glycosylation, where associated variants were 
mapping to the IGH locus32, a genetic region encoding the heavy chain of immunoglobulin G. 
In addition, glycosylation SNPs in NXPE1/NXPE4 locus were pleiotropic with ulcerative 
colitis, a disease with abberant glycosylation patterns. 
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In conclusion, by performing the first GWAS of the plasma transferrin N-glycome and 
comparing it with that of the IgG N-glycome, we were for the first time able to describe 
similarities and differences in the genetic regulation of post-translational modification of two 
different proteins. When focusing on glycosyltransferases, main enzymes of this PTM, we 
showed that there are both associations specific to each protein, but also those that are shared 
in glycosylation of the two proteins. For the shared associations, we showed that fucosylation 
of transferrin and IgG are regulated by independent, protein-specific variants in the FUT8 and 
FUT6 genes. In the FUT8 region these variants are likely to regulate fucosylation of 
transferrin and IgG in a tissue-specific manner, acting through tissue-specific transcription 
factors. Additional studies, with larger sample sizes and focusing on other non-IgG proteins, 
will be necessary to further unravel the genetic architecture of the N-glycosylation and other 
PTMs and to understand their relationship with human diseases and complex traits. 
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Materials and Methods 
 
Population cohorts 
 
The CROATIA-Korcula isolated population cohort includes samples of blood DNA, plasma 
and serum, anthropometric and physical measurements, information related to general health, 
medical history, lifestyle, and diet for ~3000 residents of the Croatian island of Korčula52. 
Written informed consent was given and the study was approved by the Ethics Committee of 
the Medical School, University of Split (approval id: 2181-198-03-04/10-11-0008). The 
Viking Health Study - Shetland (VIKING) is a family-based, cross-sectional study that seeks 
to identify genetic factors influencing cardiovascular and other disease risk in the population 
isolate of the Shetland Isles in northern Scotland53. Genetic diversity in this population is 
decreased compared to mainland Scotland, consistent with the high levels of endogamy. 2105 
participants were recruited between 2013 and 2015, most having at least three grandparents 
from Shetland. Fasting blood samples were collected and many health-related phenotypes and 
environmental exposures were measured in each individual. All participants gave written 
informed consent and the study was approved by the South East Scotland Research Ethics 
Committee, NHS Lothian (reference: 12/SS/0151). Details of cohort-specific demographics, 
genotyping, quality control, and imputation performed before GWAS can be found in 
Supplementary Table 11. 
 
 
Phenotypic data 
 
Transferrin and IgG N-glycome quantification. Transferrin and IgG N-glycome 
quantification for CROATIA-Korcula and VIKING samples was performed at Genos 
Glycobiology Laboratory. Isolation of the protein of interest and N-glycan quantification is 
described in more detail in Supplementary Materials and Methods for transferrin and by  
Trbojević-Akmačić et al.54 for IgG. Briefly, proteins were first isolated from blood plasma 
(IgG depleted blood plasma in the case of transferrin) using affinity chromatography binding 
respectively to anti-transferrin antibodies plates for transferrin and protein G plates for IgG. 
The proteins isolation step was followed by enzymatic release and labelling of N-glycans 
with 2-AB (2-aminobenzamide) fluorescent dye. N-glycans were then separated and 
quantified by hydrophilic interaction ultra-high-performance liquid chromatography (HILIC-
UHPLC). As a result, transferrin and IgG samples were separated into 35 (transferrin: 
TfGP1− TfGP35) and 24 (IgG: GP1−GP24) chromatographic peaks. It is worth noting that 
there is no correspondence structure-wise between transferrin TfGP and IgG GP traits 
labelled with the same number. 
 
Normalisation and batch correction of glycan traits. Prior to genetic analysis, raw N-
glycan UHPLC data was normalised and batch corrected to reduce the experimental variation 
in measurements. Total area normalisation was performed by dividing the area of each 
chromatographic peak (35 for transferrin, 24 for IgG) by the total area of the corresponding 
chromatogram. Due to the multiplicative nature of measurement error and right-skewness of 
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glycan data, normalised glycan measurements were log10-transformed. Batch correction was 
then performed using the empirical Bayes approach implemented in the “ComBat” function 
of the “sva” R package55, modelling the technical source of variation (96-well plate number) 
as batch covariate. Batch corrected measurements where then exponentiated back to the 
original scale. 
 
 
Genome-wide association analysis 
 
Genome-wide association analyses (GWAS) were performed in the two cohorts of European 
descent, CROATIA-Korcula and VIKING. Associations with 35 transferrin N-glycan traits 
were performed in 948 samples from CROATIA-Korcula and 959 samples from VIKING. 
Associations with 24 IgG N-glycan traits were performed in 951 samples from CROATIA-
Korcula and 1086 samples from VIKING. The sample size of the same cohort differs 
between transferrin and IgG due to the different number of samples successfully measured 
for each protein. Prior to GWAS, each glycan trait was rank transformed to normal 
distribution using the “rntransform” function from the “GenABEL” R package56 and then 
adjusted for age and sex, as fixed effects, and relatedness (estimated as the kinship matrix 
calculated from genotyped data) as random effect in a linear mixed model, calculated using 
the “polygenic” function from the “GenABEL” R package56. Residuals of covariate and 
relatedness correction were tested for association with HRC (Haplotype Reference 
Consortium) imputed SNP dosages using the RegScan v. 0.5 software57, applying an additive 
genetic model of association.  
 
 
Meta-analysis 
 
Meta-analysis. Prior to meta-analysis the following quality control was performed on cohort-
level GWAS summary statistics. We removed all SNPs with a difference in allele frequency 
between the two cohorts higher than +/- 0.3, as well as variants showing a minor allele count 
(MAC) lower or equal to 6. Cohort-level GWAS were then meta-analysed (N=1890 for 
transferrin and N=2020 for IgG N-glycans, for ~12 million SNPs) using METAL software58, 
applying the fixed effect inverse-variance method, followed by genomic control correction. 
Mean genomic control inflation factor (λGC) was 0.997 (range 0.982-1.011) for transferrin N-
glycans and 0.995 (range 0.981-1.008) for IgG N-glycans meta-analysis, showing that the 
confounding effects of family structure were correctly accounted for. 
 
Multiple test correction. The standard genome-wide significance threshold was Bonferroni 
corrected for the number of N-glycan traits analysed: variants were considered statistically 
significant if their p-value was lower than 5×10−8/35 = 1.43×10-9 for transferrin and 
5×10−8/24= 2.08×10-9 for IgG N-glycan traits. 
 
Locus definition. We used a positional approach to define genomic regions significantly 
associated with transferrin N-glycan traits, following the procedure adopted by Sharapov et 
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al.28 For each glycan trait, we grouped all genetic variants located within a 500 kb window 
(+/- 250 kb) from the sentinel SNP in the same locus. To obtain a unique list of loci that are 
independent of the specific glycan trait, we then merged this list of sentinel SNP-glycan trait 
pairs for all 35 glycan traits and applied a similar procedure - all SNP-glycan trait pairs 
within a 1000 kb window (+/-500 kb from sentinel SNP) were grouped in the same locus, 
resulting in a unique list of sentinel SNP-top glycan trait pairs, summarising the genomic 
regions most strongly associated with N-glycans across all traits. For all sentinel SNP-top 
glycan trait pairs, regional association plots were created with LocusZoom59 and visually 
checked - in case of overlapping patterns of association, only the sentinel SNP-top glycan 
trait pair showing the lowest p-value was selected as a locus representative. 
 
 
Transferrin N-glycan traits post-meta-analysis follow-up 
 
The meta-analysis follow-up analyses were performed only for the transferrin N-glycans 
meta-analysis, since genetic regulation of IgG N-glycosylation has already been explored in a 
larger, IgG-specific study30 and is beyond the scope of the present work. 
 
Conditional analysis and phenotypic variance explained. To capture the overall 
contribution to phenotypic variation at each genomic region and identify secondary 
association signals at a locus, we performed approximate conditional analysis using the 
GCTA-COJO39 stepwise model selection, “cojo-slct”, with the transferrin N-glycan meta-
analysis summary statistics and genotypes of 10,000 unrelated individuals of white British 
ancestry from UK Biobank60 as independent LD reference panel. Collinearity was restricted 
to 0.9 and the p-value threshold was set to 1.43×10-9. Reported joint p-values were then 
adjusted by the genomic control method61. The list of samples for the independent LD 
reference panel was created with R 3.6.0, while the panel itself was generated using Plink 
2.062. After samples extraction from the UK Biobank full dataset, SNP deduplication was 
performed both by position (removing all SNPs not carrying a unique position on the 
chromosome) and marker name (--rm-dup exclude-all function). The proportion of variance 
in phenotype (Y) explained by sentinel SNPs at each transferrin N-glycans associated locus 
was calculated with the following formula 
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Gene prioritisation. For all genome-wide significant loci we suggested plausible candidate 
genes combining different evidence, namely evaluating biological role in the context of 
protein N-glycosylation of genes nearest to sentinel variants (positional mapping), assessing 
pleiotropy of sentinel variants with gene expression (expression quantitative trait loci, eQTL) 
or investigating associated variant’s predicted effects on the protein sequence or on putative 
transcription factor binding sites (TFBSs). Positional gene mapping was performed using 
FUMA v1.3.5e SNP2GENE function63. Genes having a clear biological link to protein N-
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glycosylation (e.g. genes coding for enzymes involved in biochemical pathway of protein 
glycosylation) and genes previously associated with IgG and/or total blood plasma proteins 
N-glycome were given a priority. The overlap of independent significant SNPs identified by 
COJO with eQTL was investigated using PhenoScanner v1.1 database45, taking into account 
significant genetic association (p-value < 5×10–8) at the same or strongly (LD r2 > 0.8) linked 
SNPs in populations of European ancestry. The Ensembl Variant Effect Predictor (VEP v 97) 
tool42 was used to determine putative functional effect and impact on a transcript or protein of 
independent significant SNPs and their strongly (LD r2 > 0.8) linked SNPs in populations of 
European ancestry. Among genes prioritised so far, two were transcription factors (i.e. 
HNF1A and FOXI1), while the remaining were non transcription factor protein-coding genes 
(i.e. MGAT5, TF, MSR1, NXPE1/NXPE4, ST3GAL4, B3GAT1, FUT8 and FUT6). Using the 
Regulatory sequence analysis tools (RSAT) program matrix-scan44, we applied a pattern-
matching procedure to search for sequences recognized as binding sites for HNF1A and 
FOXI1 transcription factors in associated regions of the other 8 prioritised genes. Position-
specific scoring matrices (PSSMs), representing the frequency of each nucleotide at each 
position of the transcription factor motif, were downloaded for HNF1A and FOXI1 from the 
JASPAR64 database. For each of the 8 genomic regions explored for possible transcription 
factor binding sites, we included the most strongly associated SNP and a 60 bp surrounding 
sequence (30 bp either side of the sentinel SNP). The significance threshold was set to the p-
value ≤ 0.003, Bonferroni corrected for 16 tests performed (8 putative transcription factor 
binding sites tested for 2 transcription factors). 
 
Overlap and colocalization analysis with gene expression levels and complex traits. The 
PhenoScanner v1.1 database45 was used to investigate the overlap of significant transferrin 
glycosylation SNPs with gene expression levels and complex human traits. As previously 
described, we considered traits with genome-wide significant association (p-value < 5×10–8) 
at the same or strongly (LD r2 > 0.8) linked SNPs in populations of European ancestry. We 
then used Summary data-based Mendelian Randomization (SMR) analysis followed by the 
Heterogeneity in Dependent Instruments (HEIDI) test41 to assess whether overlapping 
expression and complex traits, identified by PhenoScanner, were also colocalising with 
transferrin glycosylation (TfGP) traits. The SMR test indicates whether two traits are 
associated with the same locus, and HEIDI test specifies whether both traits are affected by 
the same underlying functional SNP. Each of 10 sentinel SNPs – TfGP pair (Table 1) was 
used for SMR/HEIDI analysis with gene expression levels and several complex traits. 
Summary statistics for gene expression levels in tissues/cell types were obtained from the 
Blood eQTL study65 (http://cnsgenomics.com/software/smr/#eQTLsummarydata), the 
CEDAR project66 (http://cedar-web.giga.ulg.ac.be/), and the GTEx project version 767 
(https://gtexportal.org). Summary statistics for complex traits were obtained from various 
resources. In total, we used data for 3 tissues/cell types: CD19+ B lymphocytes (CEDAR), 
GTEx liver (GTEx) and peripheral blood (the Blood eQTL study) and 8 complex traits. Full 
list of GWAS collections, tissues and complex traits see in Supplementary Table 12. 
SMR/HEIDI analysis was performed according to the protocol described by Zhu et al.41 We 
used sets of SNPs having the following properties: (1) being located within ± 250 kb from the 
sentinel SNPs identified in the present study; (2) being present in both the primary GWAS 
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and eQTL data/GWAS for the complex trait; (3) having MAF ≥ 0.03 in both datasets; (4) 
having squared Z-test value ≥ 10 in the primary GWAS. Those SNPs that met criteria (1), (2), 
(3), (4), had the lowest P-value in the primary GWAS and were in high LD (r2�>�0.8) with 
the sentinel SNPs were used as instrumental variables to elucidate the relationship between 
gene expression/disease and TfGP (we define them as “top SNPs”). It should be noted that 
SMR/HEIDI analysis does not identify a causative SNP affecting both traits. It can be either 
the top SNP or any other SNP in strong LD. After defining the set of eligible SNPs for each 
locus, we made the “target” and “rejected” SNP sets and added the top SNP to the “target” 
set. Then we performed the following iterative procedure of SNP filtration: if the SNP from 
the eligible SNP set with the lowest PSMR had r2 > 0.9 with any SNP in the “target” SNP 
set, it was added to the “rejected” set; otherwise, it was added to the “target” set. The 
procedure was repeated until eligible SNP set was exhausted, or the “target” set had 20 SNPs. 
If we were unable to select three or more SNPs, the HEIDI test was not conducted. HEIDI 
statistics was calculated as ������ �  ∑ �����

	

� , where m is the number of SNPs selected for 

analysis,  
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The results of the SMR test were considered statistically significant if PSMR < 1.7 × 10-4 
(0.05/302, where 302 is a total number of tests corresponding to analyzed loci and gene 
expression/disease traits). Inference of whether a functional variant may be shared between 
the TfGP and gene expression/disease were made based on the HEIDI test: PHEIDI  ≥ 0.001 
(possibly shared), and PHEIDI < 0.001 (sharing is unlikely). 

 
 
Colocalisation analysis for transferrin and IgG N-glycan traits 
 
The FUT8 and FUT6 genomic regions were significantly associated with both transferrin and 
IgG N-glycans. To investigate a possible overlap in genetic control of glycosylation between 
the two proteins, we used the approximate Bayes factor colocalisation analysis, developed by 
Giambartolomei et al.68 and implemented in “coloc” R package, followed by pairwise 
conditional and colocalization analysis (PwCoCo)47 in case of multiple independent variants 
contributing to the trait variation. A posterior probability (PP) > 80% was considered as 
robust evidence supporting the tested hypothesis. 
 
Overview of the overall procedure can be seen in Supplementary Figure 1. First, we assessed 
whether for one protein all glycans that are associated with the same genomic region (p-value 
� 5x10-8) are regulated by the same underlying variants. For each protein (i.e. transferrin and 
IgG) and each genomic region (i.e. FUT8 and FUT6), we tested separately the group of 
glycans carrying only one independent association signal at locus and the group of glycan 
traits showing multiple independent signals of association (Supplementary figure 1). Pairs of 
glycan traits obtaining a PP.H4 > 80% (suggestive of colocalisation) were pooled in the same 
colocalisation group, following the principle that if trait A colocalises with trait B and trait B 
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colocalises with trait C, thus also trait A and trait C colocalise. For each within-protein 
colocalisation group identified, the glycan trait with the lowest p-value was selected as group 
representative and carried on to the next step, where traits with single and multiple 
independent associations for each protein were tested for colocalisation. Similar to previous 
steps, glycan traits were grouped together on the basis of their colocalisation analysis results 
and the lowest p-value representative was chosen for the next step, where finally 
representative transferrin and IgG glycans were tested for between-protein colocalisation. 
 
For glycan traits with multiple independent association signals and lacking strong evidence 
for colocalisation, we applied PwCoCo47  approach. Briefly, the PwCoCo approach tests not 
only the traits’ full, complete GWAS association statistics for colocalisation, but also 
summary statistics conditioned for the top primary association, testing whether any of the 
underlying causal variants between traits colocalise. For example, assuming that each trait is 
carrying two conditionally independent association signals in the tested region, colocalisation 
analysis will be conducted between both full and conditioned association statistics 
(conditioned for each independent variable), for a total of nine pairwise combinations. 
Secondary association signals at FUT8 and FUT6 loci for both transferrin and IgG N-glycans 
were assessed using GCTA-COJO approximate conditional analysis stepwise model 
selection39 and an LD reference panel of 10,000 unrelated, white British ancestry individuals 
from UK Biobank60. We then performed the association analysis conditional on identified 
secondary association signals at FUT8 and FUT6 loci using GCTA-COJO39 “cojo-cond” and 
the same 10,000 UK Biobank samples LD reference panel, with 5×10-8 p-value threshold and 
used those for pairwise colocalisation analyses.  
 
Expression of N-glycome associated genes in transferrin and IgG relevant tissues  
Gene expression data for TF, IGHG1, HNF1A and IKZF1,  expressed in gene counts, for 
hepatocytes (529 samples) and plasma cells (648 samples) was obtained from ARCHS4 
portal50. Samples with total number of gene counts less than 5,000,000 were filtered out. 513 
hepatocyte and 53 plasma cell samples were undergone further analysis. Gene counts were 
scaled to transcripts per million (TPM) and log2(1+TPM) transformed. 
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