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ABSTRACT

Background: Psychiatric neuroimaging typically proceeds with one of two approaches: encoding models,
which aim to model neural mechanisms, or decoding models, which aim to predict behavioral or clinical
characteristics from brain imaging data. In this study, we seek to combine these aims by developing
interpretable decoding models that offer both accurate prediction and novel neural insights. We demonstrate
the effectiveness of this combined approach in a case study of chronic marijuana use.

Methods: Chronic marijuana (MJ) users (n=195) and non-using healthy controls (n=128) completed a cue-
elicited craving task during functional magnetic resonance imaging. Linear machine learning methods were
used to classify individuals into chronic MJ users and non-users based on task-evoked, whole-brain functional
connectivity. We then used graph theoretic analyses to identify ‘predictive functional connectivities’ among
brain regions that contributed most substantially to the classification of chronic marijuana use.

Results: We obtained high (~80% out-of-sample) accuracy across four different classification models,
demonstrating that task-evoked, whole-brain functional connectivity can successfully differentiate chronic
marijuana users from non-users. Subsequent network analyses revealed key predictive regions (e.g., anterior
cingulate cortex, dorsolateral prefrontal cortex, and precuneus) that are often implicated in neuroimaging
studies of substance use disorders, as well as some key exceptions. We also identified a core set of networks
of brain regions that contributed to successful classification, comprised of many of the same predictive regions.

Conclusions: Our dual aims of accurate prediction and interpretability were successful, producing a predictive
model that also provides interpretability at the neural level. This novel approach may complement other
predictive-exploratory approaches for a more complete understanding of neural mechanisms in drug use and
other neuropsychiatric disorders.
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INTRODUCTION

Psychiatric neuroimaging has two main goals: describing the neural mechanisms of mental dysfunction and
predicting clinical characteristics from neural data’. These goals are typically approached with different
statistical and inferential paradigms, each with their own different strengths and weaknesses?. Common
functional magnetic resonance imaging (fMRI) modeling approaches allow investigations into the neural
mechanisms of psychiatric disorders by testing hypotheses about how mental processes are represented in
brain signals. Such “encoding” approaches model brain activity as a function of different features [i.e.,
estimating p(Brain Activity|Features), or probability of brain activity conditioned upon features], but do not
easily yield inferences about processes or clinical categories from brain activity [i.e., p(Features|Brain Activity)].
Given the functional diversity of the brain regions implicated in psychiatric disorders, establishing the functional
specificity of a brain signal is difficult and limits the ability of encoding models to predict clinical characteristics
from brain imaging data®.

In contrast, “decoding” models provide the opposite type of inference, as in these models, neural data are used
to predict features?, such as clinical diagnosis [i.e., p(Diagnosis|Brain Activity)]. Machine learning (ML) models
are often used for this purpose; in psychiatry, and substance use disorders specifically, numerous machine
learning approaches have been used, including support vector machines*”, logistic regression®'°, and
others'"*. However, decoding models do not necessarily give insight into neural mechanisms, or even
neurobiological plausibility? and are generally considered less interpretable than encoding models.

In recent years, there have been numerous attempts to unify the descriptive and predictive approaches: by
linking patterns of brain activity to known variations between perceptual task stimuli'*='¢, by aligning high-
dimensional functional brain data and subsequently decoding in the aligned space'~?°, and many others®?'-2,
Although each of these classes of models allows unique insights into brain functions, they are still
fundamentally different from the approach we propose here, which explicitly generates a predictive model first,
and only applies interpretation analyses to the model weights. This serial approach of training and subsequent
interpretation is known to be a challenging, understudied, and highly important goal in machine learning®*2¢,

especially in the field of neuroimaging research?’ %,

One way to improve decoding models’ interpretability is through theory-based modeling decisions about the
types of neural features on which to train the model (feature selection)?”-?*3°. For example, there may be more
information about psychiatric dysfunction in the interactions between regions than in the activities of isolated
regions®'. These competing hypotheses can be tested in the same data (model comparison): models trained
features with more relevant information should produce better predictions.

Another way to gain insight from decoding models is to analyze the model weights. Decoding models trained
on functional connectivity indicate the features of network activity that are predictive of the outcome. One novel
approach is to apply network analysis to understand the predictive (i.e., weighted) connectivity. In recent years,
network neuroscience has emerged as a powerful tool to provide essential metrics and methods to uncover
complex brain interactions®~%°. We employ these network analytic methods to infer brain structures critical for
accurate classification. Importantly, the inferences we draw about group differences in network features are
constrained by the predictive performance of the decoding model [i.e., p(Network
Features|(Diagnosis|Connectivity))].

In this study, we use a large fMRI dataset®**’ collected from individuals with and without chronic MJ use (i.e.,
cannabis use disorder). To our knowledge, this is, to date, the largest fMRI sample used in the classification of
substance use disorders (n=323), the first attempt to classify chronic MJ use with fMRI, and the first utilization
of network analysis to interpret a fMRI decoding model. In recent years, reduced perception of adverse effects
of cannabis has coincided with increased usage and legalization efforts**=*'. Although the adverse clinical
effects of cannabis have been well-established®*“?=° research on them has been hampered by the absence of
reliable mechanistic biomarkers of cannabis use disorder. With our predictive and interpretable modeling
approach, we aim to address this critical gap in knowledge.
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We present here a novel modeling approach to balance the dual goals of clinical prediction and mechanistic
understanding. We trained linear decoding models on whole brain functional connectivity from individuals with
chronic use and healthy controls during a marijuana cue-induced craving paradigm. The models predicted
chronic use of MJ with high accuracy in out-of-sample participants (~80%) and outperformed models that used
only regional activities - suggesting that the interactions between brain regions contained more information
about the differences between these groups. Network analyses on the predictive connectivity matrices (i.e.,
functional connectivity weighted by the model coefficients from predictive models) identified brain regions and
networks important to successful use classification, demonstrating the utility of interpretable decoding models
for neurobiological description.
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RESULTS

Model training: classification of chronic marijuana use

We first trained decoding models using two different linear machine learning algorithms (logistic regression
[LR] and linear support vector machine [SVM]) to predict the clinical label of chronic marijuana use from whole-
brain functional connectivity. Two regularization penalty types (L1 and L» penalty) were chosen to be applied to
each learning algorithm, for a total of four candidate classification algorithms. The algorithms’ inputs consisted
of a 4,005-element vector representing pairwise correlation values between every region in the brain as
defined by the Stanford 90 region of interest (ROI) atlas (see Methods for more details). The full dataset (two
runs each from n=195 chronic marijuana users, n=128 non-users) consisted of 646 total runs. Subjects were
divided into training and testing splits: 80% for training (258 subjects, 516 samples), and 20% (65 subjects, 130
samples) for out-of-sample testing. The 80% training set was used to optimize our chosen hyperparameter
(regularization penalty strength [a]) across the algorithms and penalty types, with 10-fold cross-validation. The
20% testing set was used validate the performance of the best-performing models from training. The complete
computational analysis pipeline is depicted in Fig. 1. Cross-validated accuracies for each combination of
hyperparameters are summarized in Table 1.

Model training: hyperparameter performance

Generally, the L, penalty yielded with better performance for both LR and SVM, and lower a (corresponding to
lower regularization strength) improved model performance, indicating that widespread information from many
pairwise region correlations contributed to classification success. Based on these results, we selected 0.0001
as the value of a for the following analyses, given its reliably strong cross-validated performance across all
penalty types and classification algorithms. Since both Ly and L, penalties for both algorithms performed well
for a range of a values, we used both for the final evaluation of the LR and SVM models on the training and
testing sets (2 models x 2 penalties x 1 a level = 4 tested models). The receiver operating characteristic (ROC)
curves shown in Fig. 2 demonstrate the classification performance of these four models across various
decision thresholds within the training set.

Model training: connectivity- vs. activity-based models’ performance

To test our hypothesis that models trained on functional connectivity would have higher prediction accuracy
than models trained on regional activities, we repeated the same model training and evaluation process as
described above with models trained on mean regional activation distances — the pairwise absolute value
differences between regions’ mean estimated activity — as model inputs. Mean distances between the
estimates were used rather than the estimates themselves to keep the number of features consistent across
the models. Three different types of regional activity estimates were tested: mean time courses, mean
marijuana cue betas (mjcue) and the contrast of mean marijuana cue betas minus mean control cue betas
(mjcue>ctlce). In the cross-validation on the training set, the highest performing models from each type of
estimate (time course: 60.4%, Mjcue: 65.1%, Mjcue>Ctlee: 60.5%) had substantially lower accuracy than the best
functional connectivity models. This result supported our hypothesis that functional correlations are more
informative than isolated activities for differentiating chronic MJ users from healthy controls.

Model testing: performance on held-out data

Next, we evaluated the out-of-sample performance of the final four models on the previously held-out test data
(Fig. 1c & d). The resultant performance metrics are summarized in Table 2 in terms of accuracy, AUC, and
precision and recall for each model. Note that the accuracies for these models are much higher than chance
testing set accuracies obtained by simpler/randomized models of three types: models that simply predict the
dominant class (60%) or the averages of the accuracies of the random models generated after shuffling the
training subjects’ labels 1000 times (~53% for all the models).

In addition to their high predictive accuracy, the models also produced very similar predictions, with high
similarity for the pairwise comparisons (Jaccard similarity coefficients: 0.81-0.91), suggesting that all chosen
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algorithms converged on similar results. Together, these findings demonstrated that linear modeling of whole
brain functional correlations was effective in classifying chronic marijuana use.

Model interpretation: predictive connectivity

Next, we interpreted the classification models’ weights to infer the brain connectivity structure implicated in
chronic marijuana use (see Fig. 1d and Methods). The learned model weights had high rank similarity
(Kendall’s tau coefficients: 0.70-0.75), suggesting similar relationships were learned by the different algorithms.
One advantage of using linear models is that the input features and learned model weights share the same
shape: specifically, in our case, the model weights were the signed coefficients of region-to-region connectivity
values that, when added, produced the classification decisions. This enables meaningful interpretability of the
brain connectivity patterns most significantly implicated in differentiating chronic MJ cases from controls. First,
we organized the model weights for each of our four linear models into a 90x90 pairwise region feature weight
matrix (see Methods). Then we combined the model weight matrices with the pairwise correlation magnitudes,
subject by subject, to produce weighted connectivity matrices - which we refer to as “predictive connectivity”
(see Fig. 3). Finally, we used two model interpretation approaches: (1) We evaluated the regions with the
highest predictive importance for each model, and (2) performed a graph theoretic analysis on the model
weight matrices to examine network properties.

Predictive importance of brain regions

First, we calculated the mean weighted correlation for each region with all other regions for every subject and
ranked them by the average across subjects. Across the four models, we observed high consistency in the
ranks of the regions in terms of predictive importance (Kendall’s tau coefficients=0.76-0.83, p-values=8.45¢?'-
4.71e"). Given the similarities in weights, predictions, and regions of predictive importance across models, we
assumed relative stability across the models and selected a representative for subsequent interpretations,
namely the L SVM (a=0.0001) model due to its high and stable performance across the ranges of a tested.
For this model, the top twenty regions in terms of mean predictive importance are shown in Fig. 4a. These
include brain regions such as bilateral anterior cingulate cortex (ACC), left pre/postcentral gyri, right middle
frontal gyrus, and right inferior parietal cortex.

As an exemplar region, bilateral ACC showed high mean predictive importance across all models, so its
unweighted regional connectivity strengths to every other region were further visualized in Fig. 4b. Among the
regional connections to ACC, weighted connectivity correlated highly with original functional connectivity
(rmean=0.478, rs1t=0.0628). Importantly, however, a number of regions showed relatively small magnitudes of
connectivity strengths to ACC but high predictive importance (reflected by high model weights).

To examine whether top 20 regions identified by our top weighted connectivities (Fig. 4a) were consistent with
those reliably implicated in craving, we compared our region-specific predictive importance scores i.e., ranked
weighted connectivities, to uniformity and association maps retrieved from Neurosynth.org* using a term-
based meta-analysis. The ’craving’ keyword yielded aggregated activation maps from 80 published studies
thresholded at FDR-corrected p<0.01. The most significantly active regions identified by this meta-analytic
approach included medial prefrontal cortex, middle cingulate cortex, medial prefrontal cortex, and medial
parietal lobule. Each Neurosynth map was projected onto an anatomical map with the Stanford functional ROls
with high weighted connectivity (predictive importance) overlaid on top (Fig. 5). Map comparisons were
restricted to a qualitative overview due to the highly dissimilar sparsity of the maps, as well as significant
differences in the sizes of Stanford ROIs and the activation loci in the Neurosynth maps. We found that regions
in the meta-analytic craving map qualitatively showed a moderate level of correspondence to regions identified
as having high predictive importance, supporting our interpretation pipeline.

Graph theoretic analysis

Our next goal was to investigate the networks of brain regions that were relevant to distinguishing chronic MJ
users from non-users using a graph theoretic approach. Subject-specific graphs were generated by
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thresholding the weighted connectivity matrices described above (see Fig. 3 and Methods for more details).
Graph properties (see Fig. 6) were calculated for individual nodes in the graph (i.e., individual brain regions),
the full graph (i.e., the entire whole-brain network), and clusters or sub-networks within the full graph that are
highly modular (i.e., highly interconnected communities of brain regions).

At the brain (local) level, we calculated a brain region’s importance for prediction by calculating a subject-
specific degree centrality (DC), or the number of predictively valuable connections a region has with other
regions. Regions were ordered by their mean DC scores, indicating their levels of predictive importance. The
top twenty regions of highest average DC (along with the two lowest for comparison) are shown in Fig. 7.
Regions of high overall importance include bilateral ACC, right inferior parietal/angular gyrus, and right middle
frontal gyrus. Regions from numerous resting state networks are represented in the top twenty regions,
indicating widespread connectivity is important for distinguishing individuals with chronic MJ use from controls.

Next, we analyzed properties of network organization at the whole-brain (global) level by calculating network
efficiency, or its ability to transmit information effectively. An independent samples t-test between the two
groups was not significant, indicating that there were no differences in network efficiency for prediction of users
VS. non-users.

Finally, at the community (meso) scale, we used community detection algorithms to discover modular sub-
networks within the weighted connectivity matrices (see Methods for details). Fig. 8a shows the thresholded
group-average weighted connectivity matrix reorganized by the discovered community structure. Each
community was then ranked by its average degree centrality (DC) score. The highest ranked community
included regions from bilateral ACC, bilateral supplementary motor area, right dorsolateral prefrontal cortex,
and right inferior parietal/angular gyrus. The second top scoring community included right middle frontal gyrus,
left angular gyrus, and bilateral medial precuneus regions. The top 4 modular communities that contributed
most to prediction are visualized in Fig. 8b.

To confirm that this ranking reflected the predictive importance of each community, we performed a stepwise
prediction analysis to determine the minimal number of communities necessary to produce good predictions.
(Fig. 9) Starting with the regions in the highest DC ranked community, each region’s (non-redundant) pairwise
correlations to all other brain regions were used to generate each participant’s distance to the hyperplane. With
the inclusion of each additional community, the best performing decision threshold was determined in the
training data and used to generate testing set predictions. The best testing set prediction came from the first 4
communities with 80% accuracy, outperforming even the overall model - and performing significantly better
than random regions (permutation tested p=0.001).
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DISCUSSION

Model testing: clinical prediction

In this study, we developed a novel modeling approach to balance accurate clinical prediction and model
interpretability. Specifically, this approach classifies chronic marijuana users and healthy controls from task-
based fMRI functional connectivity and subsequently identifies the individual regions and networks most
important for this distinction. In the largest sample of individuals with long-term MJ use and healthy controls to
date, we classified chronic use from functional connectivity during a cue-elicited craving task with nearly 80%
out-of-sample accuracy. We used several different linear modeling approaches, all of which produced highly
similar model weights, predictions, and regions with high mean predictive connectivity - suggesting they
learned similar information. Our accuracies also compare favorably to previous fMRI decoding studies using
functional connectivity to classify drug use, in both nicotine smoking*”*” and cocaine use disorder*® - even
though most studies did not test out-of-sample or featured much smaller sample sizes (both of which can
inflate prediction performance). Furthermore, this is one of the first f/MRI study*®, and the largest to date, to
classify chronic MJ use (i.e., cannabis use disorder) - a relatively understudied drug use disorder.

Model interpretation: predictive connectivity

Functional connectivity-based models outperformed models trained on regional activation estimates -
suggesting there is more information about chronic MJ use in the interactions between regions than in their
isolated activities. Given this, our next goal was to discover brain network patterns that differentiated the
groups, starting with the individual regions that are most critical to successful prediction in the best performing
model - the L2 linear SVC. Regions with high mean predictive connectivity were distributed across diverse
resting state networks, such as the default mode, sensorimotor, salience and executive control networks -
suggesting widespread functional differences between the healthy and MJ-using groups. Regions with
widespread predictive connections were especially of interest and were judged by the number of functional
connections between a region and the rest of the network that helped classify chronic use, so-called ‘predictive
degree centrality’ (i.e., predictive DC). As shown in Fig. 4b, our interpretable model weights approach can
even identify small magnitude connectivities between brain regions that are nevertheless highly important in
differentiating chronic users from healthy controls.

There was high predictive DC in several sensory and motor related regions - including left inferior temporal
gyrus, right inferior temporal cortex (both areas along the ventral visual pathway), bilateral primary
somatosensory cortex and supplementary motor area. Given that the visual and tactile demands of the task
were the same across groups, these regions likely reflect more than the passive reception of sensory
information and output of motor commands. For example, these regions may facilitate the recognition of drug
cues and retrieval of behavioral associations, such as the initiation of drug seeking/use behaviors®. Regions
related to attention and its control also ranked highly on this measure - likely reflecting differential recruitment
of attention during cue processing between the groups. For example, the right middle frontal gyrus, an
important attentional control region and site of convergence for the dorsal and ventral attention networks®', had
the highest predictive DC of any measured region. Bilateral ACC and dorsolateral prefrontal cortex (PFC),
areas that feature dense cannabinoid receptors® also ranked highly on this measure, corroborating previous
reports of dysfunctional attentional and control-like processes during drug cue exposure and craving
generally®*** and in MJ users specifically®>*°. High predictive DC was detected in regions associated with cue-
reactivity and craving, including the precuneus and posterior cingulate cortex, regions that may work together
to process drug cue salience and relevance to the self®” and in the bilateral medial PFC, which has extensive
and recurrent dopaminergic connections with the ventral tegmental area and may direct drug-seeking
behavior®®. These findings suggest our method can recapitulate diverse findings from the literature.

We also discovered sets of brain regions (communities) that were important for to successful classification of
chronic MJ users and controls and ranked them by average DC. The top four communities produced the best
testing set prediction accuracy, even outperforming the inclusion of additional communities. These
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communities contained regions from different canonical resting-state networks (e.g., salience, default mode,
frontoparietal networks), with two communities comprising the majority of predictively important regions. The
first community included regions from bilateral ACC, posterior inferior temporal cortex and superior angular
gyrus, and the second included regions from inferior angular gyrus, middle frontal gyrus, and superior temporal
cortex. It is not obvious how these communities map onto canonical networks, suggesting that these potentially
novel findings may reflect task-specific network organization.

The functional diversity of the regions and communities identified in these analyses suggests widespread
functional differences between MJ users and controls - and the need for tasks that measure a wide range of
structure-function hypotheses concurrently. It is possible that the relatively high accuracy we achieved in this
study was due to the task: multiple sensory modalities and motor processes were engaged, allowing for more
functional differentiation between individuals with MJ use and controls.

Added value, limitations, and next steps

In general, decoding approaches use whole brain information during model fitting, culminating in a single
statistical test, as compared to more standard encoding approaches (e.g., general linear modelling) that
generally perform up to many thousands of tests across the brain and require extensive multiple comparisons
correction. To the best of our knowledge, our proposed approach represents the first use of network analysis to
interpret predictive models. Furthermore, our model interpretations are constrained on high decoding
performance, conditioning our inferences upon the prediction of a real-world clinical label (self-reported
behavior).

There are several limitations to this study. First, these classification accuracies reported are likely not high
enough for direct clinical deployment. Further, the sample was divided only into chronic cannabis users versus
non-users, not allowing us to disentangle continuous effects related to use. We also predicted a categorical
label based upon self-report, not by real world behavior or underlying functional dimensions, and thus are
bound by the accuracy of that label. This study also precludes most inferences about the specificity of the
effects of marijuana use. Future work should compare marijuana users to chronic users of other drugs, as well
as non-drug using individuals with other psychiatric dysfunction, in order to establish marijuana-specific neural
signatures. Additionally, more data-driven parcellation approaches (e.g. using independent components
analysis, gradient-based methods, or multimodal data) may elucidate more robust, replicable, or task-evoked
neural signatures associated with chronic MJ use®*='. Another important direction for this approach clinically
would be a longitudinal study predicting future risk of chronic use, especially in adolescents or young adults.

Many extensions to this joint predictive/explanatory approach are possible. The network analysis may be
refined at the spatial scale, by generating voxel-level connectivity matrices and recalculating network
properties. Another possibility would be to build predictive models from regions of interest, in a more
hypothesis-driven manner (e.g., derived from areas of significant activation in an encoding model). Additionally,
a regression-oriented predictive model would be an improvement over the classifiers outlined here: such
approaches can make stronger inferences about the neural patterns of clinical features directly (e.g., symptom
severity, craving), rather than indirect conclusions about patterns that differentiate clinical groups (i.e., chronic
use or not)*?"?7,

This study is a first step towards building accurate and interpretable predictive models that have both
theoretical and clinical significance. The models performed well in out-of-sample data, indicating their
generalizability. Furthermore, we interpreted the best-performing model to both corroborate prior findings and
discover potentially novel network-level properties in the context of substance use disorders. Future work can
build on this approach of using joint predictive-explanatory models to constrain neurobiological inferences.
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MATERIALS AND METHODS
fMRI data collection

Subjects

This study combined data from two pre-existing fMRI datasets (n=125 and n=198 respectively) measuring cue-
elicited drug craving in participants recruited from the community (i.e. not treatment-seeking or inpatient) in
Albuquerque, NM. The datasets include participants with and without chronic marijuana use (marijuana [MJ]
n=195, healthy controls [HC] n=128 respectively)***". The combined data set has a mean age of 30, with 65%
male participants.

fMRI scanner specifications
The two datasets had different fMRI scanner specifications, as described below.

2009 sample*®: MRI images in this sample were collected in a 3T Siemens Trio scanner over two runs,
for approximately 9 minutes and 22 seconds of scan time. T2* images were collected with a gradient
echo, echo planar imaging protocol, with the following specifications: time to repetition (TR) of 2,000ms,
time to echo (TE) of 27 ms, a: 70°, matrix size: 64 x 64, 32 slices, voxel size 3x3x4 mm3). High
resolution T1-weighted images were collected with a multiecho magnetization prepared gradient echo
(MPRAGE) sequence, TR=2,300ms, TE=2.74ms, flip angle = 8 deg, matrix = 256x256x176 mm, voxel
size = 1x1x1mm.

2016 sample®”: MRI images in this sample were collected using a 3T Philips scanner, over two runs for
a total scan time of 7 minutes 54 seconds. T2*-weighted images were collected using a gradient echo,
echo-planar sequence (TR: 2,000 ms, TE: 29 ms, flip angle: 75deg, matrix size: 64 x 64 x 39, voxel
size: 3.44 x 3.44 x 3.5mm?®). High resolution T1-weighted images were collected with an MPRAGE
sequence with the following parameters: TR/TE = 29/2,000 ms, flip angle=12 deg, matrix=256x256x160
mm, voxel size =1x1x1mm.

Task design

For the Filbey 2009 dataset®, the task consists of two runs of a pseudo randomized order of 12 tactile/visual
stimulus presentations. Two types of stimuli are presented: (1) a marijuana cue (pipe, bong, blunt, joint), and
(2) a neutral cue (pencil). Cues are presented for 20 s, followed by a 5 s rating period, during which craving
ratings are self-reported on an 11-point scale. This is followed by a 20 s fixation period. The full task consists of
a total of 12 pseudorandomized cue presentations. The task structure for the Filbey 2016 dataset®’ is largely
similar, but also includes a naturalistic cue (participant’s chosen fruit) for a total of 3 cue types and 18
presentations per run. Craving ratings are measured just as described above.

All 323 subjects (195 subjects with clinical label of chronic use) had two runs of data. Run length varied by the
dataset from which the subject was taken. The subjects from the 2009 dataset had 281 TRs, and the subjects
from the 2016 dataset had 405 TRs. For every subject, these TRs represented the totality of the run, including
cue stimulus presentation periods, rating periods, and inter-trial intervals.

fMRI data preparation

Preprocessing of fMRI

Results included in this manuscript come from preprocessing performed using FMRIPREP version stable®, a
Nipype®® based tool. Each T1w (T1-weighted) volume was corrected for INU (intensity non-uniformity) using
N4BiasFieldCorrection v2.1.0% and skull-stripped using antsBrainExtraction.sh v2.1.0 (using the OASIS
template). Brain surfaces were reconstructed using recon-all from FreeSurfer v6.0.1%°, and the brain mask
estimated previously was refined with a custom variation of the method to reconcile ANTs-derived and
FreeSurfer-derived segmentations of the cortical gray-matter of Mindboggle®. Spatial normalization to the
ICBM 152 Nonlinear Asymmetrical template version 2009¢®” was performed through nonlinear registration with
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the antsRegistration tool of ANTs v2.1.0%, using brain-extracted versions of both T1w volume and template.
Brain tissue segmentation of cerebrospinal fluid (CSF), white-matter (WM) and gray-matter (GM) was
performed on the brain-extracted T1w using fast® (FSL v5.0.9). Functional data was slice time corrected using
3dTshift from AFNI v16.2.077° and motion corrected using mcflirt’' (FSL v5.0.9). This was followed by co-
registration to the corresponding T1w using boundary-based registration’ with six degrees of freedom, using
bbregister (FreeSurfer v6.0.1). Motion correcting transformations, BOLD-to-T1w transformation and T1w-to-
template (MNI) warp were concatenated and applied in a single step using antsApplyTransforms (ANTs v2.1.0)
using Lanczos interpolation. Physiological noise regressors were extracted applying CompCor’. Principal
components were estimated for the two CompCor variants: temporal (tCompCor) and anatomical (aCompCor).
A mask to exclude signals with cortical origin was obtained by eroding the brain mask, ensuring it only
contained subcortical structures. Six tCompCor components were then calculated including only the top 5%
variable voxels within that subcortical mask. For aCompCor, six components were calculated within the
intersection of the subcortical mask and the union of CSF and WM masks calculated in T1w space, after their
projection to the native space of each functional run. Framewise displacement’® was calculated for each
functional run using the implementation of Nipype. Combined task/nuisance regression was then performed on
the minimally preprocessed data using SPM12 (Wellcome Trust Centre for Neuroimaging). The nuisance
regressor set consisted of the six realignment parameters, aCompCor regressors, discrete cosine-basis
regressors, and a framewise displacement regressor. The task regressor set included onsets for marijuana cue
presentation, marijuana cue rating period, control cue presentation, control cue rating period, and washouts for
each cue. In addition, the Filbey 2016 dataset included regressors for fruit cue presentation and fruit cue rating
period.

Parcellation

The noise-regressed voxelwise data were then parcellated using the Stanford functional ROlIs for volumetric
regions and networks, a highly validated scheme that is widely used for ROI-based and connectivity-based
analyses’. The mean time series of each parcellated region was then computed by averaging the fMRI signal
at every time point across voxels. This procedure served a dual purpose: first, it increased signal-to-noise ratio
for relevant brain regions compared to voxel-based analyses. Second, it reduced the dimensionality of the data
for subsequent analyses. The Stanford ROI atlas contains 90 regions, so the parcellation results in a 90 x (# of
time points) matrix of whole brain activity for each subject.

Functional connectivity

Each region’s preprocessed time series was then correlated (Pearson) to all other regions’ time series.
Pearson correlation automatically standardizes each region’s mean time series, so it is insensitive to
differences in activation magnitude (i.e., scale) between the regions. Instead, it gives estimates of the pairwise
timeseries activation similarities.

The decision to use parcellated functional connectivities was to 1) reduce the data dimensionality and the
number of features relative to the number of observations, which is important in model fitting; 2) test the ability
of network information to predict clinical label; and 3) improve our ability to subsequently interpret the fitted
models, by using network analysis approaches. Further, functional connectivity has shown promise in other
predictive modeling studies®'. This approach each yielded a 646x90x90 matrix. To eliminate redundancy, only
the upper triangles of the symmetric correlation matrices were retained (diagonal is each region’s correlation
with itself), leading to a final vector input size of (902 - 90)/2 = 4,005 features.

Linear Classifiers

To train and evaluate classifiers, the full dataset was then divided into training and testing sets, using an 80/20
split: the training set included 516 samples (0.80 * 646) and the testing set included 130 (0.20 * 646). The
training set was used for the 10-fold cross validated classifier training, hyperparameter optimization, and the
final model selection. The testing set was set aside until the very end to test the out-of-sample fit of the four
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best performing models. The training-testing split was constructed to balance the overall clinical label (MJ or
HC) proportions and include both runs of any subject completely in either the training or testing set. This part of
the analytical workflow is shown in Fig. 1b and 1c.

Four linear classifiers, namely Li- and Lz-regularized Logistic Regression (LR) and L1- and L2-regularized
linear kernel Support Vector Machine (SVM)’®, were used to predict the target clinical label, i.e., chronic MJ
use or not from the functional connectivity data. These classifiers were implemented using the scikit-learn
Python package’”’®. Generally, to separate classes, these classifiers learn a linear decision boundary in the
feature space, generally referred to as a hyperplane, that then can be used to make class label predictions for
new, out-of-sample data. In other words, the prediction (i.e., clinical label) is made based on the learnt
weighted linear combination of the input features.

In particular, LR learns the logistic function that best fits the observations; the resulting sigmoid function gives
the probabilities that each observation is in either class, which were thresholded at 0.5 in our implementation to
produce the binary class predictions. In contrast, SVM learns a classification hyperplane that separates the two
classes by the largest margin. In this case, the distances of the observations (each subject’s brain-wide
pairwise functional correlations) to the hyperplane were converted to probabilities using Platt’s method, as
implemented in scikit-learn””"8,

L+ and L regularization were used with both LR and SVM to penalize different types of information in the
resultant models. L (“Lasso”) regularization penalizes the magnitudes of feature weights, and in doing so,
produces a “sparse” feature space, such that only the features (e.g., region-region correlations) most
informative to successful prediction will have a non-zero weight. Thus, L regularization reduces the number of
features included in the model, which can improve interpretability, as well as predictive performance in case of
many noisy and/or irrelevant features’®. In contrast, L, (“Ridge”) regularization penalizes the squares of
squares of feature weights and minimizes their values, reducing their variance while retaining all of the
features. This can improve prediction performance in cases where all the features can contribute useful
information to the model. Various regularization strengths (a=1e-10, 1e-7, 1e-4, 0.1, 1, 10, 100, 1000) were
tested in all classifiers, with larger strengths reflecting stronger penalization.

The four classification algorithms (L1- and Lz-regularized LR and SVM), in combination with the values of «
specified above, were evaluated in a 10-fold cross-validation setup (Fig. 1b). Here, the training set was
randomly split into ten equally sized subsets (folds), stratified by class label to ensure the proportion of class
labels was the same as in the larger dataset. Next, a model was trained on nine of the folds, and used to make
predictions on the remaining tenth fold. This process was then repeated with each of the ten folds as the
prediction set.

Each algorithm’s performance was then calculated by comparing the full prediction set with the available true
labels of chronic MJ use in the training set. This performance was measured mainly in terms of prediction
accuracy and the Area Under the Receiver Operating Characteristic (ROC) Curve (AUC) score®’. soln general,
low regularization was found to have the highest cross-validated training performance. The a parameter
resulting in the highest overall accuracy in the training set was selected for the subsequent analyses (a =1e-4).
Finally, a model was learnt from the whole training set for each of the four classification algorithms. These
models were then evaluated on the independent test set created earlier in terms of the evaluation measures
mentioned above (Fig. 1¢). Prediction accuracy, AUC, and weighted precision and recall measures® were
used for out-of-sample performance evaluation.

Each of the above final linear models returned a set of trained model weights that, when considered along with
the values of the input features, are interpretable as the importances in determining the class label. These
model weights were further explored using network analyses, as described below.

Comparing functional activity to connectivity
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To test our hypothesis that functional brain region correlations are more informative than more standard
measures of activation magnitude, we also ran classification models with pairwise mean distances between
activations of brain regions as model inputs. Three different mean distance controls were performed. In the
first, the time series were averaged for each region and pairwise distances were calculated and used as the
model inputs. In the second, the pairwise distances between regions’ average marijuana cue betas (from the
task regression) were used. In the third, contrasts were generated between marijuana cues and control cues
(marijuana > control), and the pairwise distances between regions’ contrast values were used. These control
models were developed using the same process as described above for the functional connectivity inputs
(features).

Predictive importance analysis

Our next goal was to infer which functional correlations were most important to the predictions. Since linear
models use the weighted sum of the weights and inputs to produce predictions, the contribution of a given
functional correlation to the model’s predictions is given by the product of the model weight and the correlation
values (i.e., the model weighted correlation values; see Fig. 3). For example, a positive weight and positive
input (weightes™ correlationpes) makes a “positive” class prediction more likely, whereas a negative weight and
positive input value makes a “negative” class ( weight.eg * correlationpes) more likely, and so on. Similarly, the
magnitude of a functional correlation’s contribution to classification depends on the magnitude of the product of
the weight and input: a larger absolute value means a larger contribution of the functional correlation to the
prediction.

Predictive importance analysis started by averaging the 90x90 connectivity matrices for each of the subjects in
the training set used for classification model development. Next, the model weights were obtained for each
linear model, and the element-wise product (i.e., Hadamard product) was computed between each model's
weight matrix and the group-averaged connectivity matrix to generate the weighted connectivity matrix
expected to indicate the predictive importance of each pairwise connectivity.

For each row in this matrix, corresponding to the weighted connectivity vector associated with a particular
region, the mean of the absolute values in the vector was calculated to represent the overall importance of the
region’s weighted connectivity for the prediction of the clinical label. Four such scores for as many linear
classification models were generated for each of the 90 regions and ranked by their average importance
across all four models. Model-specific rankings were statistically compared using Kendall’s tau to assess
correspondence between each pair of models. The top twenty regions of highest weighted connectivity, or
highest predictive importance, were selected to visually examine their individual connectivity patterns and
corresponding weights.

Region-specific predictive importance scores were validated by comparing them to meta-analytic uniformity
and association maps retrieved from Neurosynth*®. The keyword ‘craving’ was used to yield maps aggregated
from 80 published studies. The uniformity and association maps each provide unique information; the
uniformity map displays regions of consistent activation across all studies, while the association map displays
regions that are active over and above maps from other keywords. Maps were thresholded at p<0.01 with FDR
correction and projected on the Stanford functional ROls. For each ROI, the proportion of non-zero voxels, and
average non-zero signal was calculated, indicating average ROI activity in the meta-analytic map. Finally,
these scores were thresholded to limit reporting of voxel activity in regions that contained too few active voxels.
Given the relative sparsity of the association map compared to the uniformity map, the former was thresholded
at 5% voxel participation and the latter at 25%.

Network Analysis

Given the fact that we used functional connectivity as our input features, we then used network analysis to
analyze the distributed patterns of the connectivity important for prediction.
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The first step in preparing weighted connectivity data for network analysis was to threshold subject-specific
matrices. Thresholding is a commonly used strategy in network neuroscience to remove spurious network
connections, and improve stability and modularity of network features®'4. The absolute values of the weighted
connectivity values were taken, as the magnitudes of weighted connectivity set as the strength of node-to-node
connections in the graph. The transformed matrix was used to generate a sparse graph, where nodes
represented regions, and the edges represented the strength (i.e., importance) of connectivity values between
two regions to prediction.

Subject-specific weighted connectivity matrices were treated as adjacency matrices corresponding to an
undirected weighted graph. We binarized the dense weighted connectivity matrix at 2% density (top 2% of
values converted to 1 and others to 0) to improve signal-to-noise ratio and remove weak connectivity strengths.
The resultant binary matrix was used to calculate the node- and graph-level properties. Finally, we generate
the graph structure by considering the binarized weighted connectivity matrix as an adjacency matrix using the
networkx package in Python®.

With a unique graph structure for each subject, we calculate subject-specific degree centrality (DC), a node-
level graph property (see Fig. 6a), which refers to the fraction of nodes to which a particular node is connected,
normalized by dividing by the maximum possible connections. In this graph, each node represents a brain
region and connection edges between two nodes represent the importance of the connectivity between those
two nodes for the classifier. Thus, nodes with high degree centrality can be considered to be brain regions
whose connectivities to other regions help the classifier distinguish chronic MJ users from non-users.
Conversely, graph isolates are defined as nodes with lowest degree centrality across participants. In other
words, they are brain regions whose connectivities to other regions do not help the classifier distinguish
between chronic users and healthy controls. DC calculation was performed using networkx’s degree_centrality
function, which accepts a graph structure and calculates the DC of each node. For each brain region (i.e., node
in the network), the distribution of DC for that region was calculated across all participants. Regional DC scores
were ordered by highest median score.

Next, graph-level metrics of the connectivity matrices were calculated next by deriving global efficiency scores
at a subject-specific level (see Fig. 6c). The efficiency between two nodes is defined as the inverse of the
shortest path between them, providing an overall measure of the ability of a network to propagate information
effectively. Efficiency metrics were calculated using the built-in networkx function ‘global_efficiency’. Two-
sample Mann-Whitney U tests were performed to test for differences in median efficiency scores between
users and non-users.

Finally, communities with high predictive importance in classifying chronic marijuana use were identified (see
Fig. 6b). First, a group-average weighted correlation matrix was calculated by taking the mean of all un-
thresholded subject-specific weighted connectivity matrices calculated above. This mean correlation matrix
was then thresholded at 2% density, generating the group-average graph structure. Then, the Girvan-Newman
hierarchical community-detection algorithm was used to detect clusters that were highly interconnected within
the graph. Briefly, the Girvan-Newman algorithm iterates between the following steps: (1) edge betweenness,
defined as number of paths between all nodes that include a particular edge, is calculated for each edge; (2)
edges with the highest betweenness are removed; (3) betweenness of all the edges is recalculated. The final
communities are defined as the node clusters comprised of nodes that are highly connected within the cluster,
but sparsely connected to other clusters. The nodes (rows) in the original weighted correlation matrix were
then reordered based on identified community structure to reveal modular clusters. The communities were then
ranked by their average degree centrality score, with those having the highest ranks defined as the most
predictively important.

The predictive importance of the communities was corroborated using the following stepwise prediction
approach.
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Starting with the highest ranked community, we tested the classification accuracy of the trained model using
correlations obtained from that community. In each subsequent step, the correlations from the next highest
ranked community were added. For each subject, the non-redundant correlations of the regions within that
community to all other regions were used to generate the distances to the decision hyperplane. These
distances were generated by taking the dot product of those correlations and their trained model weights and
adding the intercept from the whole trained model. With each additional community, we selected the optimal
decision threshold for that iteration as the one with the highest prediction accuracy in the training data. This
threshold was then applied to the testing data and prediction accuracy was reported (see Fig. 9). The best
performing subset of communities was determined by the testing set accuracy. To determine whether these
accuracies were a function of the unique, included communities or just the number of pairwise functional
correlations, a permutation approach was used. 1000 permutations were computed using the same approach
as described above, except randomly shuffling the regions included in each community while preserving the
number of pairwise correlations included at each step. The permutation p-value was calculated as the
percentile of the best performing non-permuted accuracy in the distribution of the 1000 permuted accuracies at
that same step and was also reported in Fig. 9.

DATA AND CODE AVAILABILITY

All the code related to analyses in this study is publicly available at https://github.com/kulkarnik/mj classifier.
The data are available in the same repository.
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Fig 1. Machine learning pipeline. (a) Raw voxelwise time series are preprocessed using the fmriprep preprocessing pipeline. Minimally
preprocessed files are brain-masked and smoothed with a 4mm FWHM Gaussian kernel. Nuisance/task regression is performed (see Methods for
list of regressors used). Clean voxelwise time series is parcellated into 90 functional ROIs using Stanford functional atlas. (b) Parcellated data are
divided into 2 sets; the training set is used for training and cross-validation, the testing set is used to evaluate the optimized classification models
(shown in the cylinders). The optimization set is further divided into 10 subsets for cross-validation. Four linear classification algorithms are selected
for hyperparameter tuning (L1, L2 penalized logistic regression and linear support vector classification). An alpha hyperparameter, corresponding to
regularization strength is selected cross-validated accuracy as a metric. (c) The optimized hyperparameter tuned model is re-trained with the full
training dataset and evaluated using the testing dataset. Evaluation parameters include accuracy, and precision/recall scores. (d) The best
performing model (shown in the cylinder) is then trained on the full dataset (training + testing) to prepare for interpretation analysis. The weights
derived from the linear models are converted to a connectivity signature and used to characterize brain connectivity structures important for
prediction of chronic cannabis use. This analysis includes a regional mean predictive importance metric, as well as network characterization of
subject-specific connectivity matrices weighted by the model weights.
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Regularization
strength (a) L1 LR L: LR L, SVM L. SVM

1e-10 0.727 0.734 0.754 0.754
1e-7 0.733 0.742 0.740 0.742

1e-4 0.761 0.722 0.750 0.740

0.1 0.604 0.746 0.604 0.759

1 0.605 0.694 0.605 0.680

10 0.482 0.612 0.482 0.609

100 0.482 0.601 0.482 0.618

1000 0.482 0.482 0.482 0.482

Table 1. Hyperparameter optimization: prediction accuracy. Algorithm prediction accuracy is
compared with 10-fold cross-validation of the training set (516 subjects) varying two hyperparameter
domains: penalty type and regularization strength. Higher alpha values correspond to higher
regularization. Results show that low regularization strength works most effectively across all penalty
types. Generally, L1 and Lz penalties work equally well at low regularization and L2 outperforms L+ at high
regularization. A regularization value of a=0.0001 for both classification methods and penalty types were
chosen for subsequent analyses.
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Fig 2. Receiver operating characteristic (ROC) curves for linear classification algorithms. The
performance in 10-fold cross-validation shown for the four models at a=0.0001 was examined. All four
models performed well in cross-validation metrics with the mean receiver operating characteristic curve
well above chance (red dotted line). The logistic regression algorithm returns class probabilities that can
be directly mapped to the ROC. The linear support vector classification algorithm returns only a decision
function, corresponding to the signed distances to the hyperplane. These distances are converted to
probabilities using Platt’'s method.
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L.LR | L.LR | L,SVM | L.SVM

Accuracy 0.777 | 0.754 | 0.792 0.777

Area Under Curve | 0.772 | 0.728 0.779 0.756

Precision 0.780 | 0.752 | 0.791 0.775

Recall 0.777 | 0.754 | 0.792 0.777

Table 2. Out-of-sample performance metrics. Out-of-sample (OOS) performance metrics are
summarized after re-training each model on the full training set (379 subjects). The precision and
recall values reported here are the average of both classes, weighted by the number of
participants in each class.
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Fig. 3. Generating subject-specific weighted connectivity matrices. For each participant, the absolute values of the

functional connectivity were element-wise multiplied by the absolute values of the L. SVM model weights to produce a
weighted functional connectivity matrix (shown for a single, random subject). The weighted functional connectivity
represents the importance of each model-weighted functional correlation to the resulting prediction for that participant:

larger values represent a larger contribution.
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Fig. 4. Top weighted averaged parcel connectivities for L. SVM classifier. (a) Functional connectivity matrices were averaged across all
subjects, and element-wise multiplication was performed with weights generated after model fitting with the L. SVM algorithm. The resulting matrix
was a weighted region-to-region connectivity matrix. The mean of absolute weighted connectivity was calculated for each region for each algorithm.
The distributions (mean, quartiles and outliers) of the absolute weighted connectivities across all subjects is shown above. The top twenty regions
with highest means of weighted absolute connectivity are shown on the right side of the graph, while the two lowest are shown on the left for
comparison. In the axis labels, ‘L’ represents left lateralized, and ‘R’ represents right lateralized regions. Regions with the highest weighted
connectivity include bilateral ACC, left sensorimotor cortex, middle frontal gyrus and bilateral angular gyrus. (b) For the regions identified as having
high weighted connectivities, region-specific connectivity patterns were assessed at a group level. Here, the connectivity strength and direction are
shown from bilateral ACC, the region with the highest weighted connectivity across participants, to every other region. ACC appears to have have
high connectivity specifically to inferior, middle, and superior frontal cortical areas across multiple functional networks (executive control, ventral
default mode, visuospatial) as well as precuneus/angular gyrus regions. This suggests the presence of an ACC + frontal cortex + lateral parietal
cortex task network, later supported by our community detection analysis (see Fig. 10).
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Fig 5. Meta-analytic comparison with Neurosynth craving maps. To compare our top regions of predictive importance to existing literature,
we performed a direct comparison to association and uniformity maps retrieved from Neurosynth, a meta-analytic database. We used the
‘craving’ keyword to identify activations corresponding to all activations (uniformity) and unique activations (association) related to craving in
the meta-analytic database. The average signal and proportion of voxels activated within-region was calculated and thresholded. Given the
relative sparsity of the association map compared to the uniformity map, association was thresholded at 5% voxel participation and uniformity
at 25% participation. These activations are shown in red, with (a) showing the association map and (b) showing the uniformity map. All the
Stanford ROls are overlaid on the map above at relevant sagittal slices (indicated with ‘x’), with green regions corresponding to ROls identified
as having high predictive importance in our analysis. There is a moderate level of overlap between the craving maps and our predictively
important regions, demonstrating the utility of our approach in identifying regions grounded in previous literature, but also being able to
generate new hypotheses for regions involved in distinguishing cannabis users from non-users.
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Fig 6. Network properties workflow. For each subject, a weighted connectivity matrix is generated
by performing an element-wise multiplication of the original subject connectivity matrix and the
model weights. The resulting matrices are thresholded to 2% sparsity to restrict to only highly
informative connections. Network properties are then calculated at three different levels to
characterize the subject-specific networks. (a) The degree centrality of each node of the network,
i.e. a brain ROI, is obtained by calculating a normalized sum of surviving links to other nodes. In
principle, this provides a measure of the importance of a region’s connections to other regions for
prediction. (b) At the meso-level, community detection algorithms are used to divide the full network
into modular sub-networks that are highly connected to each other. These communities correspond
to brain patterns that together are highly important for prediction of chronic cannabis use. (c) At the
network-level, global efficiency of the network is calculated by determining the inverse average
shortest path. For each node, the distance to every other node is calculated and averaged. The
process is repeated for every node and averaged across nodes. The inverse of this averaged
shortest path length is the efficiency of the network. High efficiency networks exchange information
well because they are densely connected, and thus have fairly low average path lengths.
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Fig. 7. Subject-level degree centrality. Degree centrality represents the normalized number of weighted connections for each brain region
that survive thresholding. In other words, it provides a measure of the level of distributed connectivity displayed by a brain region. In the plot
above, degree centrality is calculated for each region independently, for each subject. The top twenty regions of highest mean degree
centrality are shown, in addition to the lowest two for comparison. Regions identified as having high degree centrality across participants
include middle frontal gyrus, bilateral ACC, and bilateral medial PFC. Note that there is a significant overlap here with regions identified as
having highest absolute weighted connectivity (Fig. 4) but there are significant differences as well.
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Fig. 8. Predictive communities in group-average weighted connectivity matrix. The Girvan-Newman community detection algorithm was
applied to the group-average weighted connectivity matrix. Girvan-Newman segregates communities within a group by iteratively removing
edges with the highest betweenness centrality until a target modularity score is reached. Each disconnected set of nodes is then characterized
as a community. (a) The group-averaged thresholded weighted connectivity is sorted by community assignment. Each colored square
represents one of the top 4 communities by average degree centrality within community. (b) The color-corresponding communities are
projected onto the brain and colored by resting-state network assignment as determined by the Stanford functional parcellation. The top 4
networks are largely bilateral. Community 1 is distributed mainly over posterior aspects of the brain and includes right pre/post-central gyrus,
mid/superior temporal gyrus, precuneus, middle frontal gyrus and inferior parietal cortex. Community 2 contains cerebellar regions, superior
temporal cortex, and left pre/post-central gyrus. Community 3 includes inferior and superior frontal gyri, angular gyri, and bilateral posterior
cingulate. Finally, Community 4 includes bilateral medial PFC, bilateral dorsolateral PFC, bilateral anterior cingulate and right orbitofrontal
cortex.
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R mid-temporal cortex 0.0511 braiq regions with_in thatl community

R inferior parietal/angular gyrus 0.0473 are listed atl)cg‘g with their mean degree

R inferior temporal cortex 0.0472 gentrahty.(. ) across participants.
ommunities are ordered by highest

L middle thalamus 0.0401 average DC within-community.

R precuneus 0.0398

L inferior temporal gyrus 0.0372

L superior temporal gyrus 0.0357

R pre/post-central gyri 0.0289

L mid occipital cortex 0.0256

R inferior cerebellum 0.0240

L inferior parietal cortex 0.0202

R mid occipital cortex 0.0198

L cerebellum 0.0194

Bilateral medial precuneus 0.0175

R cerebellum 0.0131

Community 2

L pre/post-central gyri 0.0504

L superior temporal/auditory 0.0411

R superior temporal/auditory 0.0310

L crus cerebellum 0.0239

Cerebellar vermis 0.0234

Bilateral supplementary motor area 0.0197

L anterior cerebellum 0.0109

Bilateral calcarine cortex 0.0108

Community 3

R lateral angular gyrus 0.0422

Bilateral posterior cingulate 0.0337

Bilateral mid-posterior cingulate 0.0288

L medial angular gyrus 0.0286

R superior frontal gyrus 0.0270

L lateral angular gyrus 0.0250

L ventral precuneus 0.0156

R inferior frontal gyrus 0.0096

Community 4

Bilateral ACC 0.0548

Bilateral mPFC 0.0379

L middle frontal/dIPFC 0.0321

R middle frontal/dIPFC 0.0274

L inferior parietal/angular gyrus 0.0211

L fusiform gyrus 0.0193

L inferior frontal gyrus 0.0174

L superior frontal gyrus 0.0167

R frontal gyrus 0.0158

R middle orbito-frontal cortex 0.0155
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Fig. 9. Predictive accuracies of top communities. A stepwise prediction analysis was performed to confirm the predictive importance of the
top-ranked communities discovered in the community detection analysis. Starting with the highest ranked community, the correlations of all
regions in the community to all other regions were used to generate distances to the hyperplane for each subject. Then, a search was
performed for the optimal decision threshold that maximized prediction accuracy in the training data. Finally, this threshold was applied to the
testing data to produce test set predictions. The best performing subset of communities was determined by the testing accuracy. Permutation
testing (1000 permutations) was performed to judge the relative increase in performance using the top communities vs. using a random set of
correlations while preserving the number of pairwise correlations included at each step. The permutation p-value was calculated as the
percentile of the best performing non-permuted accuracy in the distribution of the 1000 permuted accuracies at that same step. Chance was
defined as a naive classifier that always picks the dominant class (chance=0.60). The best testing set prediction came from the first 4
communities with 80% accuracy, performing significantly better than random regions (permutation tested p=0.001) and above chance.
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