

1 Vitamin C Binds to SARS Coronavirus-2 Main Protease Essential for Viral
2 Replication
3
4

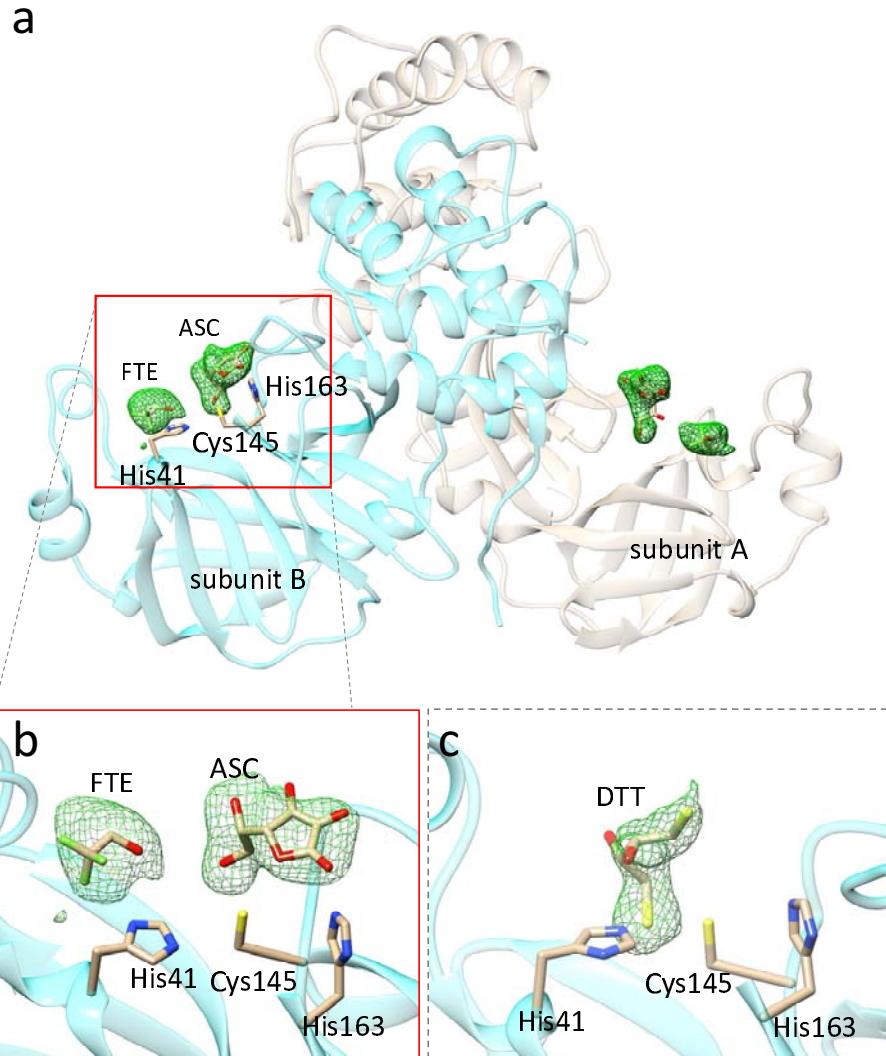
5 Tek Narsingh Malla^{1&}, Suraj Pandey^{1&}, Luis Aldama², Dennisse Feliz^{2,3}, Moraima Noda²,
6 Ishwor Poudyal¹, George N. Phillips Jr.⁴, Emin A. Stojkovic^{2*}, Marius Schmidt^{1*}

7
8 ¹Department of Physics, University of Wisconsin Milwaukee, Milwaukee, WI 53211 USA

9 ²Department of Biology, Northeastern Illinois University, Chicago, IL 60625 USA

10 ³Department of Chemistry, Northeastern Illinois University, Chicago, IL 60625 USA

11 ⁴Department of BioSciences, Rice University, Houston, TX 77005 USA


12 &contributed equally

13 *corresponding authors

14
15 **Abstract**

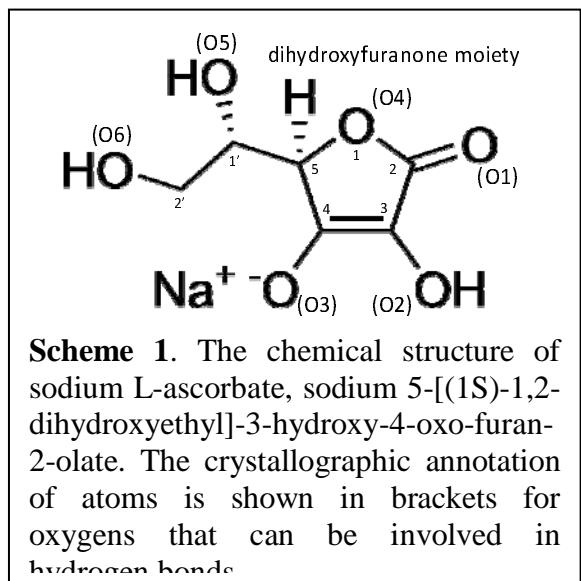
16 There is an urgent need for anti-viral agents that treat and/or prevent Covid-19 caused by SARS-
17 Coronavirus (CoV-2) infections. The replication of the SARS CoV-2 is dependent on the activity
18 of two cysteine proteases, a papain-like protease, PL-pro, and the 3C-like protease known as
19 main protease Mpro or 3CLpro. The shortest and the safest path to clinical use is the repurposing
20 of drugs with binding affinity to PLpro or 3CLpro that have an established safety profile in
21 humans. Several studies have reported crystal structures of SARS-CoV-2 main protease in
22 complex with FDA approved drugs such as those used in treatment of hepatitis C. Here, we
23 report the crystal structure of 3CLpro in complex Vitamin C (L-ascorbate) bound to the protein's
24 active site at 2.5 Ångstrom resolution. The crystal structure of the Vitamin C 3CLpro complex
25 may aid future studies on the effect of Vitamin C not only on the coronavirus main protease but
26 on related proteases of other infectious viruses.

29

Figure 1. Vitamin C and DTT bound in the active site of SARS-CoV-2 3CLpro. (a) The 3CLpro dimer in the asymmetric unit of the orthorhombic crystals soaked with L-ascorbate. Polder difference electron density (Liebschner et al., 2017) in the active sites is shown in green (contour: 2.5 sigma). (b) The L-ascorbate (ASC) in subunit B. The ASC interacts with the catalytic Cys-145 and is stabilized by a hydrogen bond to His-163. A trifluoroethanol (FTE) is located close to the ASC. (c) Dithiothreitol (DTT) is observed in monoclinic (C2) crystal form. It does not bind to Cys-41. It rather binds to His-41 forming a sulfenamide. Difference electron density maps shown in (a) - (c) are obtained after refining the 3CLpro without the addition of ligand. The ascorbate and DTT explain the additional electron density.

30 The Covid-19 pandemic, caused by a novel severe acute respiratory syndrome (SARS)
31 coronavirus 2, has paralyzed public life globally. It has resulted in excess of 500,000 deaths in
32 the US alone as of April 2021. Although potent vaccines are now available, they are optional, not

33 tested in children and potentially not as effective against new viral mutant variants emerging
34 world-wide (LITER). The need for an effective inexpensive treatment and prevention of Covid-
35 19 still exists as large number of infections with potentially severe or lethal outcomes are still
36 reported daily. SARS CoV-2 is a large, enveloped single-stranded RNA betacoronavirus (Cui et
37 al., 2019). The viral RNA encodes two open reading frames that, generates two polyproteins
38 pp1a and pp1ab8. The polyproteins are processed by two viral cysteine proteases: a papain-like
39 protease (PLpro) and a 3C-like protease, also referred to as the main protease (Mpro) or 3CLpro,
40 that cleave multiple sites to release non-structural proteins (nsp1-16). These non-structural
41 proteins form the replicase complex responsible for replication and transcription of the viral
42 genome and have led to 3CLpro and PLpro being the primary targets for antiviral drug
43 development. The 3CLpro is a chymotrypsin-like cysteine protease with a Cys/His dyad in the
44 active site (Fig. 1a). The 3C refers to region 3C in the genome of the *picornaviridae* family,
45 where a similar protease is found (Ramajayam et al., 2011). In coronaviruses, the 3CLpro is
46 located in the non-structural protein (NSP) 5 coding region of the virus RNA genome (Wu et al.,
47 2020).

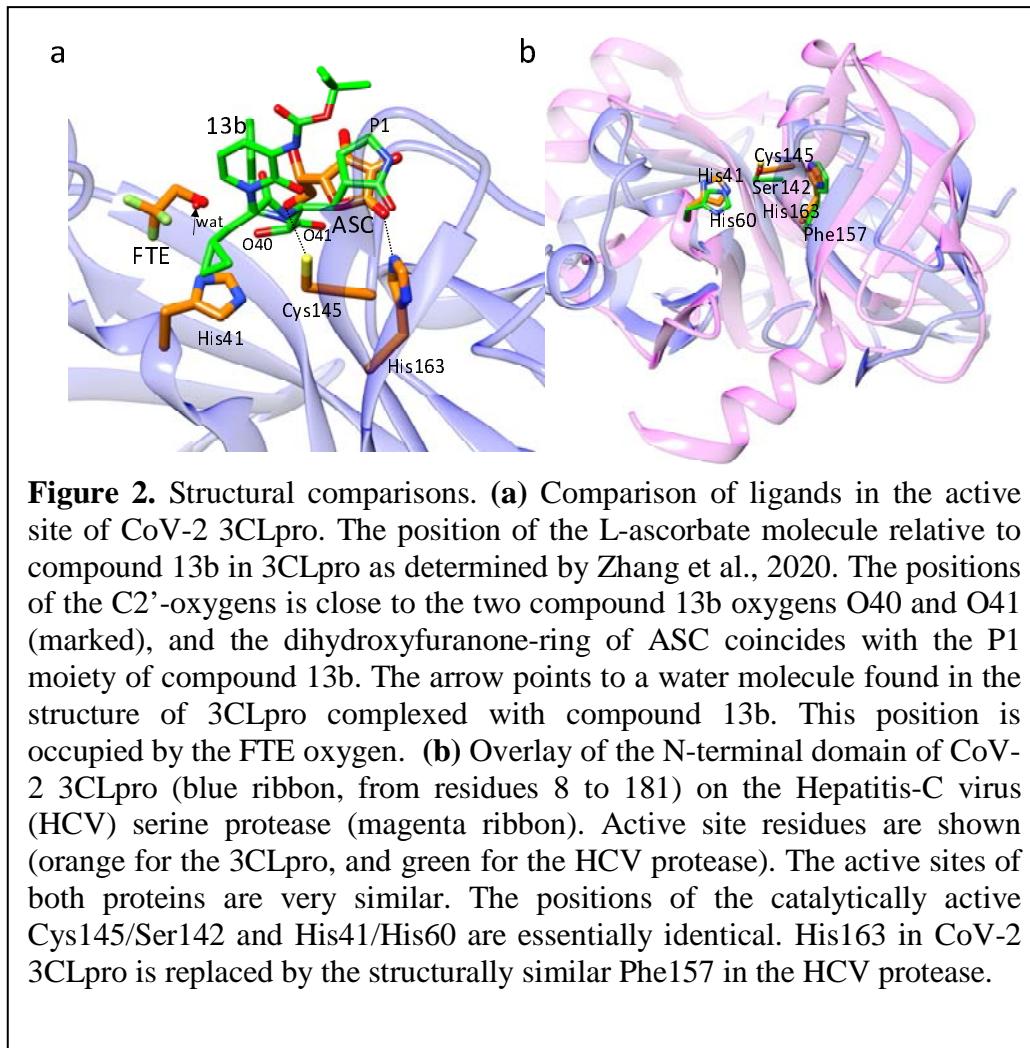

48

49 High throughput structure based drug discovery experiments on 3CL-pro were recently
50 conducted by large groups of scientists at synchrotrons such as Petra III (Gunther et al., 2021),
51 Diamond (Douangamath et al., 2020) and NSLS-II (to be published) among others. This
52 approach was also rapidly deployed after the 2002 SARS-CoV-1 outbreak, with earlier work by
53 the Hilgenfeld group on Mpro (3CLpro) of coronaviruses leading to crystal structures of SARS-
54 CoV-2 Mpro and inhibitor complexes (Zhang, Lin, Kusov, et al., 2020; Zhang, Lin, Sun, et al.,
55 2020). Active sites of coronavirus Mpro are well conserved and those of enteroviruses (3Cpro)
56 are functionally similar: thus, providing an excellent opportunity to develop broad-spectrum
57 antivirals with structural biology approach. However, the most inhibitors investigated so far are
58 marginally water soluble. They have to be added to the crystals in an organic solvent, or they can
59 be co-crystallized. Their relative scarcity, potential toxicity and unspecificity, and a potentially
60 expensive price tag prevents their wide-spread use. Inexpensive, water soluble, and readily
61 available drugs to combat Covid-19 are urgently required.

62

63 Vitamin C has been shown to have antiviral activity for more than half a century, including work
64 of the two-times Nobel Laureate Linus Pauling (Pauling, 1970). Vitamin C is a six-carbon
65 compound (Scheme 1) and a potent antioxidant. It is available in synthetic form and found
66 naturally in Indian gooseberry, citrus fruits and green leafy vegetables. The revival of interest in
67 Vitamin C therapy for acute inflammatory disorders, grounded in sound biological rationale,
68 follows decades of research. Emerging literature suggests that Vitamin C may also play an
69 adjunctive role in the treatment of a variety of viral infections (Colunga Biancatelli et al., 2020;
70 Fowler Iii et al., 2017). A number of observers including Linus Pauling have suggested in the
71 past that Vitamin C in high dosages is directly virucidal (Furuya et al., 2008; Harakeh et al.,
72 1990; Klein, 1945; Pauling, 1970). This assumption was based on in vitro studies, where very
73 high doses of Vitamin C, in the presence of free copper and/or iron, has virucidal activity,
74 presumably through the generation of hydrogen peroxide and other radical species (Furuya et al.,
75 2008; Klein, 1945).

76



Scheme 1. The chemical structure of sodium L-ascorbate, sodium 5-[(1S)-1,2-dihydroxyethyl]-3-hydroxy-4-oxo-furan-2-olate. The crystallographic annotation of atoms is shown in brackets for oxygens that can be involved in hydrogen bonds

A recent clinical study of injecting high doses of vitamin-C (> 20 g) intravenously to combat Covid-19 yielded promising results (Zhao et al., 2021). In another study 8 g of Vitamin C was administered orally over three meals together with zinc (Thomas et al., 2021). The results were inconclusive although a positive trend is apparent. So far, it could not be demonstrated that Vitamin C is directly virucidal against Covid-19 *in vivo*.

88 In order to investigate the binding of Vitamin-C
89 directly to the CoV-2 3CLpro, we co-crystallized CoV-2 3CLpro with low concentrations (5
90 mmol/L) of L-ascorbate and soaked these crystals before freezing for 3 min in 120 mmol/L
91 ascorbate (Supplementary Material). Difference electron density that can be assigned to
92 ascorbate appears in the active sites near Cys-145 and His-163 of both subunits (Fig. 1). The L-
93 ascorbates only weakly interact with Cys-145 (between 3 Å and 3.7 Å to the sulfur, Tab. 1) but
form a tight hydrogen bonding network with Asn-142, Gly-143(N), His-163 and Gln-166 (Fig.

94 S1 and Tab. 1). In addition to the L-ascorbate electron density, an additional density feature is
95 present in the active site. The pillow-like electron density (Fig. 1 b) is interpreted with a
96 trifluoroethanol (FTE) that has been provided as an additive to the crystallization buffer. The
97 interaction of the FTE with the nearby L-ascorbate is weak as the closest distance is larger than 4
98 Å (Tab. 1). Fig. 2 compares the L-ascorbate position to the position of compound 13b in the
99 active site of the 3CLpro. Compound 13b is a potent inhibitor of the 3CLpro (Zhang, Lin, Kusov,
100 et al., 2020). The positions of the two compound 13b oxygens O40 and O41 in the 3CLpro are
101 close to the C2' oxygen of the ascorbate (Fig. 2 a). The dihydroxyfuranone ring (Scheme 1) of
102 the ascorbate occupies a similar position as the moiety P1 of compound 13b (Fig. 2 a). The FTE
103 oxygen position is reflected by a structural water found in the compound 13b complexed 3CLpro
104 structure. 3CLpro can also be crystallized in the presence of dithiotreitol (DTT) (Zhang, Lin,
105 Sun, et al., 2020). DTT binds with one of its sulfurs between the Cys-145 and His-41 (Fig. 1 c).
106 As the distance to the His-41 N_e is substantially shorter (1.5 Å) than the one to the Cys-145
107 sulfur (2.3 Å), the DTT forms a sulfenamide with His-41 which is a critical amino acid for the
108 catalytic mechanism of the 3CLpro.

109
110 A search for ascorbate in the protein data bank yields 645 protein structures with only 40
111 structures that have a bound ascorbate. None of the 40 structures are viral proteins. To our
112 knowledge, this is the first structure of a viral protein with ascorbate bound in the active site. The
113 CoV-2 3CLpro has homologues in many other viruses different from coronavirus. As mentioned
114 above, a similar (3C) protease can be found in picornaviruses (Ramajayam et al., 2011).
115 Members of the *picornaviridae* family cause diseases such as polio (poliovirus),
116 encephalomyelitis (encephalomyocarditis virus) and the common cold (rhinovirus) (Sharma &
117 Gupta, 2017). Moreover, the structure of the N-terminal domain of the CoV-2 3CLpro, as well as
118 that of its active site is very similar to the structure of the hepatitis-C virus (HCV) protease (Fig.
119 2), except that the HCV protease is a serine protease. However, even the HCV protease Ser-142

120 oxygen position is essentially identical to that of the Cys-145 sulfur in the 3CLpro. The binding
121 of Vitamin C to the CoV-2 3CLpro might point to reasons why Vitamin C could be beneficial for
122 the treatment of coronavirus caused diseases such as SARS and middle east respiratory
123 syndrome (MERS) who have structurally similar 3CLpros (Hilgenfeld, 2014; Zhang, Lin, Sun, et
124 al., 2020). Moreover, Vitamin C might also bind to proteases of other viruses, and assists in the
125 treatment of diseases mentioned above and others such as AIDS (Harakeh et al., 1990), herpes
126 (Furuya et al., 2008; Hoog et al., 1997), rhinovirus induced respiratory distress syndrome
127 (Fowler Iii et al., 2017) and even rabies (Banic, 1975).

128
129 The available inhibition test (the ‘Untagged (SARS-CoV-2) Assay Kit’, BPS Biosciences)
130 cannot be used to determine an inhibitory effect of L-ascorbate as the ascorbate quenches the
131 fluorescence of the enzymatically produced product at higher concentrations and inhibition tests
132 are inconclusive. Since ascorbate is detected in the crystal structure, it may well be that
133 inhibition of proteases with Vitamin C, or perhaps with one of its derivates (Mescic Macan et al.,
134 2019) that may even bind directly to the catalytically important Cys-145, becomes an important
135 factor in the treatment of Covid-19 cases and maybe other virus caused infections (Colunga
136 Biancatelli et al., 2020). Further investigations are necessary.

137

138

139 **Table 1.** Comparison ligand interactions with conserved amino acids in the active site of
140 subunits A and B. Designated atoms of amino acids in subunits A and B and ascorbate ligands
141 that interact are labelled according to annotations in the refined structure (see also Scheme 1).

142

3CLpro / Ascorbate		
	Distances [Å] Subunit A	Distances [Å] Subunit B
Asn142-NOD2 / O5	2.4	2.4
Asn 142-NOD2 / O3	3.2	2.6
Cys145-SG / O6	3.0	3.1
Cys145-SG/ O4	3.7	3.4
His163-NE2 / O1	3.3	2.4
His 163-NE2/O4	3.7	3.9
Glu166-OE2 / O2	3.0	3.0
Gly143-N / O6	2.9	3.1
3CLpro / Trifluoroethanol (FTE)		
His41-ND / F*	3.0	2.9
His41-O / F*	2.8	3.2
CYS44-O / F*	3.0	2.9
Ser 46-OG / O	3.2	4.9
ASC-O6 / O**	4.7	4.6
3CLpro / Dithiothreitol (DTT)		
His41-NE2 / S4	1.4	n.a.***
Cys145-SG / S4	2.6	---
H ₂ O111-O / S1	2.6	---

143 *shortest to any of the three flour atoms

144 ** shortest FTE to Ascorbate distance

145 ***only one subunit in the asymmetric unit

146

147

148 **Supplementary Material**

149

150 *Expression.* The CoV-2 3CLpro sequence was synthetized (GenScript) for optimized expression
151 in *E. coli* according to sequence information published previously(Zhang, Lin, Sun, et al., 2020).
152 In short, the N-terminus of 3CLpro is fused to glutathione-S-transferase (GST). It further has a 6-
153 His tag at the c-terminus. The N-terminal GST will be autocatalytically cleaved off after
154 expression due to an engineered 3CLpro cleavage sequence. Although the His tag can be cleaved
155 off by a PreScission protease, the tag did not interfere with crystallization and consequently was
156 left on. Overexpression and protein purification protocols were modified from previous reports.
157 *E. coli* were grown to 0.8 OD₆₀₀ at 37° in terrific broth. Expression was induced by 1 mmol/L
158 IPTG at 25° C. After 3 h of expression, the culture was induced a second time (1 mmol/L IPTG),
159 and shaken overnight at 20° C. The yield is about 80 mg for a 6 L culture. Cells were
160 resuspended in lysis buffer (20mM Tris Base, 150 mmol/L NaCl, pH 7.8.). After lysis of the
161 bacterial cells, debris was centrifuged at 50,000 g for 1 hour. The lysate was let stand at room
162 temperature for 3 h (overnight is also possible). After this, the lysate was pumped through a
163 column containing 15 mL of Talon Cobalt resin (TAKARA). The resin was washed without
164 using imidazole using a wash cycle consisting of low salt (20 mmol/L Tris Base, 50 mmol/L
165 NaCl, pH 7.8), high salt (20 mmol/L Tris Base, 1 mol/L NaCl, pH 7.8) and low salt (as above)
166 solutions (about 20 column volumes each). After the wash cycle was completed, the column was
167 let stand for an additional 2 h at room temperature followed by another wash cycle. The final
168 product was eluted by 300 mmol/L imidazole. Buffer exchange was achieved at 4 °C by either
169 by 3 times spin-concentration and re-dilution with 20 mmol/L Tris base, 150 mmol/L NaCl, 25
170 mmol/L Na-ascorbate, or by dialyzing immediately in 20 mmol/L Tris base, 150 mmol/L NaCl,
171 0.1 mmol/L dithiotreitol (DTT), pH 7.8. The preparations were concentrated to a 3CLpro
172 concentration of 20 mg/mL. Since the 6-His tag was not cleaved off, this one step purification
173 protocol required only ~10 h from cell lysis to the pure 3CLpro product. The product is within
174 1.7 Da of the theoretical molecular weight as determined by mass spectroscopy.

175

176 *Crystallization.* The concentrated 3CLpro containing DTT was diluted to 4 mg/mL. 100 µL of
177 the diluted 3CLpro was mixed (1:1) in batch mode with the same amount of 25 % PEG 3350,
178 Bis-Tris 100 mmol/L, pH 6.5. Rectangular shaped crystals with dimensions of about 200 x 30 x

179 30 μm^3 were obtained. Crystals of the ascorbate containing 3CLpro were obtained by the
180 hanging drop method by mixing 2 μL of 30 mg/mL protease with an equal amount of a reservoir
181 solution containing 15 % PEG 3350, 5 mmol/L ascorbate, and trifluoroethanol (FTE) (4 %) as an
182 additive. Crystals formed long thin needles after 3-day incubation at 16° C. Crystals were soaked
183 in mother liquor containing an addition of 120 mmol/L ascorbate and 20 % glycerol as a
184 cryoprotectant for 3 min before freezing.

185

186 *Data Collection and Structure determination.* The crystals were mounted in Mitegen micro-loops
187 (30 - 50 μm) and directly frozen in pucks suspended in liquid nitrogen for automated (robotic)
188 data collection. The dewar with the pucks were provided to the Advanced Photon Source,
189 Argonne National Lab, Lemont, IL, for robotic data collection at Sector-19 (Structural Biology
190 Center, SBC, beamline 19-ID-D). Data collection was fully remote due to restriction of the
191 COVID-19 pandemic. Dataset to 2.2 \AA and 2.5 \AA , respectively, were collected (0.5° rotation and
192 0.8 s exposure per detector readout for a total of 180°) on the 3CLpro with DTT and L-ascorbate,
193 respectively. Data was processed with HKL3000 (Minor et al., 2006). Data statistics in shown in
194 Tab. 1. The spacegroup of the DTT containing crystals was C2. For refinement, the 3CLpro
195 structure with pdb access code 6Y2E (Zhang, Lin, Sun, et al., 2020) was used as initial model.
196 Molecular replacement was not necessary as the model fits immediately. Refinement was
197 achieved using refmac (Murshudov et al., 2011) (version 5.8.0238). The electron density of the
198 DTT becomes apparent by a difference electron density feature in between His-41 and Cys-145
199 (Fig. 1 c). With L-ascorbate and FTE in the buffer, the spacegroup becomes P2₁2₁2₁ with cell
200 constants not found so far for the CoV-2 3CLpro. Molecular replacement was performed by
201 Phaser (Oeffner et al., 2013) version 2.8.2 using pdb-entry 6XQT (Kneller et al., 2020) as a
202 search model. After refinement of the molecular replacement solution, difference electron
203 density of both, the L-ascorbate and the FTE becomes apparent in the active sites of both
204 subunits (Fig. 1 a). The positions and orientations of the L-ascorbates and the FTE molecules
205 were determined with the help of Polder maps (Fig. 1a and b) (Liebschner et al., 2017) calculated
206 using Phenix (Adams et al., 2010) v1.19.2-4158. After conventional refinement in Phenix,
207 grouped occupancy refinement resulted in sub-stoichiometric concentrations with occupancy
208 values of the L-ascorbates varying from ~60 % in subunit A to ~70 % in subunit B.

209

210 **Table S1.** Data collection and refinement statistics.

	SARS CoV-2 3CLpro	
Beamlne	APS 19-ID-D	
Temperature	110 K	
Ligand	L-ascorbate (Vitamin C)	Dithiothreitol (DTT)
Resolution (Å)	2.3	2.3
Space group	P2 ₁ 2 ₁ 2 ₁	C2
Unit-cell parameters (Å,°)	a = 65.4 Å b = 67.5 Å c= 157.5 Å α=90° β=90° γ=90°	a = 113.39 Å b = 53.4 Å c= 44.7 Å α=90° β=102.8° γ=90°
No of unique reflections	30845	9426
Redundancy	5.7 (3.9)	3.1 (1.8)
Completeness (%)	98.2 (90.0)	70.0
CC1/2 @ dmin	45.2	47.6
R _{merge} (%)	20.4 (145.6)	7.3 (122)
Model Building/ Refinement	Phenix 1.19.2-4158 to 2.3 Å	refmac 5.8.0258 to 2.2 Å
R _{cryst} /R _{free} (%)	21.0/24.4	19.1/26.3
# subunit/asymmetric unit	2	1
# residues/subunit	303/310*	303
additional ligand	trifluoroethanol (FTE)	n.o.
ligand occupancy	Vitamin C: A 0.66; B 0.67** FTE: A 0.66; B: 0.68	0.85
# water	198	1184
R.m.s.d. bonds (Å)/angles (°)	0.005/1.07	0.007/0.949
Coordinate Error (Å)	0.25	0.18

211 *in subunit B, electron density for seven additional C-terminal residues including that of two
212 histidines of the hexa-his tag can be observed.

213 **the difference electron density in any F^{obs}-F^{calc} difference map including the Polder map is
214 visually weaker in the active site of subunit A compared to that of subunit B.

215 n.o.: no additional ligand

216

217
218

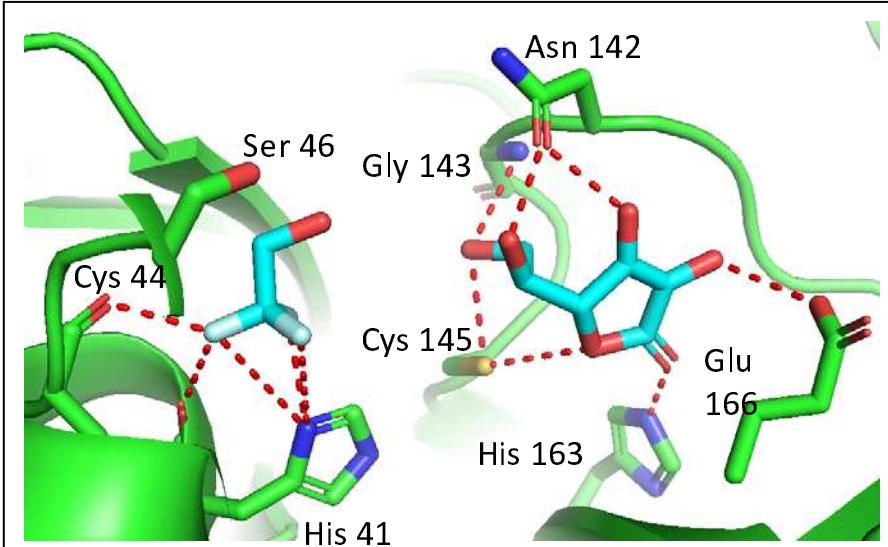


Figure S1. Interaction pattern of the L-ascorbate and FTE with the active site of 3CLpro subunit B. The pattern is very similar in subunit A.

219

220 **References**

221

222 Adams, P. D., Afonine, P. V., Bunkoczi, G., Chen, V. B., Davis, I. W., Echols, N., Headd, J. J.,
223 Hung, L. W., Kapral, G. J., Grosse-Kunstleve, R. W., McCoy, A. J., Moriarty, N. W.,
224 Oeffner, R., Read, R. J., Richardson, D. C., Richardson, J. S., Terwilliger, T. C., &
225 Zwart, P. H. (2010). PHENIX: a comprehensive Python-based system for
226 macromolecular structure solution. *Acta Crystallogr D Biol Crystallogr*, 66(Pt 2), 213-
227 221. <https://doi.org/10.1107/S0907444909052925>

228 Banic, S. (1975). Prevention of Rabies by Vitamin C. *Nature*, 258, 2.

229 Colunga Biancatelli, R. M. L., Berrill, M., & Marik, P. E. (2020). The antiviral properties of
230 vitamin C. *Expert Rev Anti Infect Ther*, 18(2), 99-101.
231 <https://doi.org/10.1080/14787210.2020.1706483>

232 Cui, J., Li, F., & Shi, Z. L. (2019). Origin and evolution of pathogenic coronaviruses. *Nature
233 Reviews Microbiology*, 17(3), 181-192. <https://doi.org/10.1038/s41579-018-0118-9>

234 Douangamath, A., Fearon, D., Gehrtz, P., Krojer, T., Lukacik, P., Owen, C. D., Resnick, E.,
235 Strain-Damerell, C., Aimon, A., Abranyi-Balogh, P., Brandao-Neto, J., Carbery, A.,
236 Davison, G., Dias, A., Downes, T. D., Dunnett, L., Fairhead, M., Firth, J. D., Jones, S. P.,
237 Keeley, A., Keseru, G. M., Klein, H. F., Martin, M. P., Noble, M. E. M., O'Brien, P.,
238 Powell, A., Reddi, R. N., Skyner, R., Snee, M., Waring, M. J., Wild, C., London, N., von
239 Delft, F., & Walsh, M. A. (2020). Crystallographic and electrophilic fragment screening
240 of the SARS-CoV-2 main protease. *Nature Communications*, 11(1), 5047.
241 <https://doi.org/10.1038/s41467-020-18709-w>

242 Fowler Iii, A. A., Kim, C., Lepler, L., Malhotra, R., Debesa, O., Natarajan, R., Fisher, B. J.,
243 Syed, A., DeWilde, C., Priday, A., & Kasirajan, V. (2017). Intravenous vitamin C as
244 adjunctive therapy for enterovirus/rhinovirus induced acute respiratory distress
245 syndrome. *World J Crit Care Med*, 6(1), 85-90. <https://doi.org/10.5492/wjccm.v6.i1.85>

246 Furuya, A., Uozaki, M., Yamasaki, H., Arakawa, T., Arita, M., & Koyama, A. H. (2008).
247 Antiviral effects of ascorbic and dehydroascorbic acids in vitro. *Int J Mol Med*, 22(4),
248 541-545. <https://www.ncbi.nlm.nih.gov/pubmed/18813862>

249 Gunther, S., Reinke, P. Y. A., Fernandez-Garcia, Y., Lieske, J., Lane, T. J., Ginn, H. M., Koua,
250 F. H. M., Ehrt, C., Ewert, W., Oberthuer, D., Yefanov, O., Meier, S., Lorenzen, K.,
251 Krichel, B., Kopicki, J. D., Gelisio, L., Brehm, W., Dunkel, I., Seychell, B., Gieseler, H.,
252 Norton-Baker, B., Escudero-Perez, B., Domaracky, M., Saouane, S., Tolstikova, A.,
253 White, T. A., Hanle, A., Groessler, M., Fleckenstein, H., Trost, F., Galchenkova, M.,
254 Gevorkov, Y., Li, C., Awel, S., Peck, A., Barthelmess, M., Schluzen, F., Lourdu
255 Xavier, P., Werner, N., Andaleeb, H., Ullah, N., Falke, S., Srinivasan, V., Franca, B. A.,
256 Schwinzer, M., Brognaro, H., Rogers, C., Melo, D., Zaitseva-Doyle, J. J., Knoska, J.,
257 Pena-Murillo, G. E., Mashhour, A. R., Hennicke, V., Fischer, P., Hakanpaa, J., Meyer, J.,
258 Gribbon, P., Ellinger, B., Kuzikov, M., Wolf, M., Beccari, A. R., Bourenkov, G., von
259 Stetten, D., Pompidor, G., Bento, I., Panneerselvam, S., Karpics, I., Schneider, T. R.,
260 Garcia-Alai, M. M., Niebling, S., Gunther, C., Schmidt, C., Schubert, R., Han, H., Boger,
261 J., Monteiro, D. C. F., Zhang, L., Sun, X., Pletzer-Zelgert, J., Wollenhaupt, J., Feiler, C.
262 G., Weiss, M. S., Schulz, E. C., Mehrabi, P., Karnicar, K., Usenik, A., Loboda, J., Tidow,
263 H., Chari, A., Hilgenfeld, R., Utrecht, C., Cox, R., Zaliani, A., Beck, T., Rarey, M.,
264 Gunther, S., Turk, D., Hinrichs, W., Chapman, H. N., Pearson, A. R., Betzel, C., &

265 Meents, A. (2021). X-ray screening identifies active site and allosteric inhibitors of
266 SARS-CoV-2 main protease. *Science*. <https://doi.org/10.1126/science.abf7945>

267 Harakeh, S., Jariwalla, R. J., & Pauling, L. (1990). Suppression of Human-Immunodeficiency-
268 Virus Replication by Ascorbate in Chronically and Acutely Infected-Cells. *Proc Natl
269 Acad Sci U S A*, 87(18), 7245-7249. <https://doi.org/DOI 10.1073/pnas.87.18.7245>

270 Hilgenfeld, R. (2014). From SARS to MERS: crystallographic studies on coronaviral proteases
271 enable antiviral drug design. *Febs Journal*, 281(18), 4085-4096.
272 <https://doi.org/10.1111/febs.12936>

273 Hoog, S. S., Smith, W. W., Qiu, X., Janson, C. A., Hellmig, B., McQueney, M. S., O'Donnell,
274 K., O'Shannessy, D., DiLella, A. G., Debouck, C., & Abdel-Meguid, S. S. (1997). Active
275 site cavity of herpesvirus proteases revealed by the crystal structure of herpes simplex
276 virus protease/inhibitor complex. *Biochemistry*, 36(46), 14023-14029.
277 <https://doi.org/10.1021/bi9712697>

278 Klein, M. (1945). The Mechanism of the Virucidal Action of Ascorbic Acid. *Science*, 101(2632),
279 587-589. <https://doi.org/10.1126/science.101.2632.587>

280 Kneller, D. W., Galanis, S., Phillips, G., O'Neill, H. M., Coates, L., & Kovalevsky, A. (2020).
281 Malleability of the SARS-CoV-2 3CL M(pro) Active-Site Cavity Facilitates Binding of
282 Clinical Antivirals. *Structure*, 28(12), 1313-1320 e1313.
283 <https://doi.org/10.1016/j.str.2020.10.007>

284 Liebschner, D., Afonine, P. V., Moriarty, N. W., Poon, B. K., Sobolev, O. V., Terwilliger, T. C.,
285 & Adams, P. D. (2017). Polder maps: improving OMIT maps by excluding bulk solvent.
286 *Acta Crystallogr D Struct Biol*, 73(Pt 2), 148-157.
287 <https://doi.org/10.1107/S2059798316018210>

288 Mescic Macan, A., Gazivoda Kraljevic, T., & Raic-Malic, S. (2019). Therapeutic Perspective of
289 Vitamin C and Its Derivatives. *Antioxidants (Basel)*, 8(8).
290 <https://doi.org/10.3390/antiox8080247>

291 Minor, W., Cymborowski, M., Otwinowski, Z., & Chruszcz, M. (2006). HKL-3000: the
292 integration of data reduction and structure solution - from diffraction images to an initial
293 model in minutes. *Acta Crystallographica Section D-Structural Biology*, 62, 859-866.
294 <Go to ISI>://WOS:000239119800003

295 Murshudov, G. N., Skubak, P., Lebedev, A. A., Pannu, N. S., Steiner, R. A., Nicholls, R. A.,
296 Winn, M. D., Long, F., & Vagin, A. A. (2011). REFMAC5 for the refinement of
297 macromolecular crystal structures. *Acta Crystallogr D Biol Crystallogr*, 67(Pt 4), 355-
298 367. <https://doi.org/10.1107/S0907444911001314>

299 Oeffner, R. D., Bunkoczi, G., McCoy, A. J., & Read, R. J. (2013). Improved estimates of
300 coordinate error for molecular replacement. *Acta Crystallographica Section D-Biological
301 Crystallography*, 69, 2209-2215. <https://doi.org/DOI 10.1107/S0907444913023512>

302 Pauling, L. (1970). *Vitamin C and the Common Cold*. W. H. Freeman and Company.

303 Ramajayam, R., Tan, K. P., & Liang, P. H. (2011). Recent development of 3C and 3CL protease
304 inhibitors for anti-coronavirus and anti-picornavirus drug discovery. *Biochem Soc Trans*,
305 39(5), 1371-1375. <https://doi.org/10.1042/BST0391371>

306 Sharma, A., & Gupta, S. P. (2017). Fundamentals of Viruses and Their Proteases. *Viral
307 Proteases and Their Inhibitors*, 1-24. [https://doi.org/10.1016/B978-0-12-809712-0.00001-0](https://doi.org/10.1016/B978-0-12-809712-
308 0.00001-0)

309 Thomas, S., Patel, D., Bittel, B., Wolski, K., Wang, Q., Kumar, A., Il'Giovine, Z. J., Mehra, R.,
310 McWilliams, C., Nissen, S. E., & Desai, M. Y. (2021). Effect of High-Dose Zinc and

311 Ascorbic Acid Supplementation vs Usual Care on Symptom Length and Reduction
312 Among Ambulatory Patients With SARS-CoV-2 Infection: The COVID A to Z
313 Randomized Clinical Trial. *JAMA Netw Open*, 4(2), e210369.
314 <https://doi.org/10.1001/jamanetworkopen.2021.0369>

315 Wu, F., Zhao, S., Yu, B., Chen, Y.-M., Wang, W., Song, Z.-G., Hu, Y., Tao, Z.-W., Tian, J.-H.,
316 Pei, Y.-Y., Yuan, M.-L., Zhang, Y.-L., Dai, F.-H., Liu, Y., Wang, Q.-M., Zheng, J.-J.,
317 Xu, L., Holmes, E. C., & Zhang, Y.-Z. (2020). A new coronavirus associated with human
318 respiratory disease in China. *Nature*, 579, 4.
319 <https://doi.org/https://doi.org/10.1038/s41586-020-2008-3>

320 Zhang, L. L., Lin, D. Z., Kusov, Y., Nian, Y., Ma, Q. J., Wang, J., von Brunn, A., Leyssen, P.,
321 Lanko, K., Neyts, J., de Wilde, A., Snijder, E. J., Liu, H., & Hilgenfeld, R. (2020). alpha-
322 Ketoamides as Broad-Spectrum Inhibitors of Coronavirus and Enterovirus Replication:
323 Structure-Based Design, Synthesis, and Activity Assessment. *Journal of Medicinal
324 Chemistry*, 63(9), 4562-4578. <Go to ISI>://WOS:000535279800012

325 Zhang, L. L., Lin, D. Z., Sun, X. Y. Y., Curth, U., Drosten, C., Sauerhering, L., Becker, S., Rox,
326 K., & Hilgenfeld, R. (2020). Crystal structure of SARS-CoV-2 main protease provides a
327 basis for design of improved alpha-ketoamide inhibitors. *Science*, 368(6489), 409-+. <Go
328 to ISI>://WOS:000528513300041

329 Zhao, B., Ling, Y., Li, J., Peng, Y. B., Huang, J., Wang, Y. H., Qu, H. P., Gao, Y., Li, Y. C., Hu,
330 B. J., Lu, S. H., Lu, H. Z., Zhang, W. H., & Mao, E. Q. (2021). Beneficial aspects of high
331 dose intravenous vitamin C on patients with COVID-19 pneumonia in severe condition: a
332 retrospective case series study. *Annals of Palliative Medicine*, 10(2), 1599-+.
333 <https://doi.org/10.21037/apm-20-1387>

334