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ABSTRACT

The increased usage of long-read sequencing for metabarcoding has not been matched with
public databases suited for error-prone long-reads. We address this gap and present a proof-
of-concept study for classifying funga species using linked machine learning classifiers. We
demonstrate its capability for accurate classification using labelled and unlabelled fungal
sequencing datasets. We show the advantage of our approach for closely related species over
current alignment and k-mer methods and suggest a confidence threshold of 0.85 to maximise
accurate target species identification from complex samples of unknown composition. We

suggest future use of this approach in medicine, agriculture, and biosecurity.
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BACKGROUND

DNA sequencing is increasingly becoming an important part of identifying and classifying
fungal species, particularly through DNA barcoding. To date this process involves the use of
short, variable regions of DNA that differ between species and are surrounded by highly
conserved regions which are suitable targets for ‘universal’ primers enabling PCR

amplification over alarge variety of fungal taxa[1, 2]. The internal transcribed spacer (ITS)
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region, is used as the primary DNA barcode region for fungal diversity studies[3]. This
regions contains the two variable components, ITS1 and ITS2, which are on average 550-600
bp long [4]. The ITS1 and ITS2 are separated by the conserved 5.8S rRNA gene and is
flanked by the conserved 18S and 28S rRNA genes. Although these regions offer a targetable
region for identifying fungal species, they have some limitations that affect the ability to
accurately classify fungi especially at lower taxonomic ranks [4, 5]. The length of the
complete ITSL/2 region prevents short-read sequencing platforms to use both in combination
for taxonomic classification. Furthermore, the limited selection of ‘universal’ primersin the

region can subject taxonomic studies to primer biases [6].

With the advent and increasing use of long-read sequencing, such as that enabled by the
nanopore sequencing technology of the MinlON from Oxford Nanopore Technologies
(ONT), some of the limitations of short-reads can be bypassed [7]. With long-reads, an
extended ITS region can be sequenced including both ITS1 and ITS2 in addition to the minor
variable regions of the 18S and 28S rRNA subunits using one set of ‘universal’ primers[8-
11]. Here, we focus on the region amplified by the NS3 and LR6 primers [12], spanning close
to 2.9 kbp in size. We refer to this amplicon hereafter as the fungal ribosomal DNA region.
Nanopore sequencing introduces a relatively high read error of around 10% at the time of
conducting our study [13]. These make individual reads less suited for species identification
using DNA metabarcodes combined with currently existing sequence alignment and k-mer
based methods because the genetic distance of the variable regions between closely related
species are often lower than the per read error rate [14]. In addition, the entries in most fungal
DNA barcode databases, such as NCBI and Unite, are relatively short with a median
sequence length of 580 bp and 540 bp [15], respectively. This limits the analysis capacity of
long-reads which completely entail both ITS sequences and include minor variable regionsin

both 18S and 28S rRNA.
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In our current study we address these shortcomings and assess the applicability of novel
sequence analysis methods for metabarcodes using the fungal kingdom as atest case. The
fungal kingdom is diverse, with an estimated 1.5-5 million species globally, performing
important ecosystem functions [16]. At the same time fungi can have adverse effects on
human and animal health and agriculture. An estimated 300 million people suffer from
fungal-related diseases each year [17], which often have a high mortality rate and limited
treatment options, resulting in the deaths of over 1.5 million people annually [18]. Similarly,
fungi can cause large-scale biodiversity loss[19, 20] as demonstrated by the near extinction
of many amphibian taxa by the globally devastating fungal pathogen Batrachochytrium
dendrobatidis [21] and the local extinction of several myrtaceae tree species by the rust
fungus Austropuccinia psidii [22]. Fungal pathogens also cause an estimated loss of about
$200 billion dollars in global food production annually [23]. The importance of fungi
warrants the development of improved sequence-based detection methods for fungi as

illustrated in our proof-of-concept study.

We explored machine learning classifiers as an alternative method for assigning individual
error-prone sequence long-reads to taxa, because machine learning techniques are ideally
suited to identify deterministic spatial relationships between features for classification [24].
For example, it might be that specific DNA bases have a unique spatial relationship within
the fungal ribosomal DNA region that is deterministic for a given fungal species. These
relationships are difficult to capture with currently available (local) alignment or k-mer based
methods when combined with error-prone sequence long-reads, especially when these
features (DNA bases) are not located in close proximity in the primary DNA sequence. There
exist many machine learning methods for identifying patterns across a variety of data types
[25-27]. Convolutional neural networks (CNNSs) are one type of machine learning methods

that are especially suited for identifying the deterministic spatial relationshipsin DNA
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sequence, as they are capable of learning from both small-scale and higher order
discretionary features, including important spatial relationships between said features [24, 28,
29]. So, we applied a CNN approach to metabarcoding based fungal species identification
using a uniquely labelled sequencing dataset of the 2.9 kbp fungal ribosomal DNA region
from 44 individually sequenced fungal species. We compared our machine learning approach
to three commonly used analysis approaches including alignment and k-mer based methods
on different in house and publicly available databases. Our machine learning approach faired
especially well when identifying closely related species. Furthermore, we show that the
training of alimited set of general and specific machine learning taxa classifiers provides a
reasonable approach to targeted species identification from a complex sample of unknown

composition.

RESULTS

Design of a decision tree for machine learning classifiersfor taxonomic assignment of

fungal species

Here we explored the application of machine learning on individual nanopore reads for
fungal taxonomic classification. We sequenced the fungal ribosomal DNA region of 44
fungal speciesindividually to generate alabelled real-life dataset for which the ground truth
is known for each individual read. This makes our dataset uniquely suited for our supervised
machine learning approach and for benchmarking studies when comparing this to commonly
used classification approaches. Our fungal species dataset included 39 ascomycetes species
spanning 19 families and 27 generain addition to five basidiomycetes. We performed several
quality-control steps on all reads in each sample. We first filtered reads based on homology

against a custom-curated database of the fungal ribosomal DNA region, to remove any partial
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reads or reads from other areas of the fungal genome with partial primer binding. We then
filtered reads by length, removing short or very long-reads that were not within a 90%
confidence interval around the mean read length for the fungal ribosomal DNA region for
each species (see Supplemental Table T1). The Galactomyces geotrichum sample had too
few reads for further processing, hence we complimented those with simulated reads using
NanoSim [30]. This resulted in an average of 54,832 + 35,537 reads available across all
species. We took a subsample of these quality-controlled reads and split them into atraining
set and atest set, containing 85% and 15% of the subsampled reads respectively, to be used
for training the machine learning classifiers and assessing the performance of the newly
generated machine learning classifiers, respectively. We implemented a decision tree to be
ableto classify individual reads at each taxonomic rank from phylum to species (Figure 1).
The taxonomic information for the 44 available individually sequenced species was used to
create the cladogram for this decision tree. We generated one machine learning classifier for

each node in our decision tree (Figure 1).
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Figure 1: Visualisation of the fungal ribosomal DNA region and machine learning decision tree.

(A) The fungal ribosomal DNA region between the NS3 and L R6 primers covers around ~2.9 kbp. Shown
isthe alignment of consensus sequences (created with Geneious Prime), with highly conserved regionsin
green and variable regionsin red. (B) Taxonomic information for 44 species was used to create adecision
tree showing the relationship between samples at each taxonomic rank. Where two or more species shared a
common taxon, a machine learning classifier (node) was created to distinguish between those taxa. These
classifiers were chained together to create a decision tree, whereby the classification of aread was
undertaken by a cascade of classifiers. An example path down the decision treeis shown for Candida
albicans.

132

133 For training each of these classifiers, a balanced dataset was used, such that each possible
134  outcome of the machine learning classifier had an equal number of reads. These individual
135 classifiers had amean recall rate of 97.9 + 1.1% for correctly classifying reads using the test
136  read dataset. The lowest recall rate belonged to the species-level classifier that distinguished

137  between Candida species, with arecall rate of 94.4%.

138  Tofully classify aread, we used the cladogram as a decision tree to link individual machine
139  learning classifiers at each taxonomic rank. This allowed us to chain classifiers together to
140 classify aread at each taxonomic rank, moving through the tree from phylum to species

141  assignments. The outcome of a classifier at one taxonomic rank was used to decide the path


https://doi.org/10.1101/2021.05.01.442223
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.01.442223; this version posted May 2, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

available under aCC-BY 4.0 International license.

along the tree, and thus this decision defined which classifier was appropriate for use at the
next lower taxonomic rank (Figure 1). We refer to a classifier by the taxonomic rank that it
outputs. For example, aspecies-level classifier takes reads from a specific genus and outputs
aspecies, while a class-level classifier takes reads from a specific phylum and outputs a
decision on the taxonomic class of the read. The recall rate of the individual classifiers at
different taxonomic ranks can affect the final species-level recall rate for each individual read
as it moves through the decision tree. This means that the final species-level recall rateis
equal to or worse than the individual species-level classifier' srecall rate. Another limitation
of our approach was that not every path through the decision tree had anode at each
taxonomic rank, because of the taxonomic composition of our 44 individually sequenced
species. For example, the basidiomycete species Puccinia striiformis f. sp. tritici has only two
classifiers, at the phylum level and the class level. The latter decides the class classification
which collapses with the species classification because Puccinia striiformisf. sp. tritici is the
only speciesin the class Pucciniomycetesin our sequencing dataset. In total we trained 22

classifiersto distinguish our 44 fungal species.

Comparison of methodsfor species classification of fungal pathogens

We compared the machine learning decision tree to two other more standard methods for read
classification to determine the effectiveness of this technique. We assessed the ability of the
other methods at classifying reads across multiple taxonomic ranks because the tiered nature
of the decision tree offers the potentia to gleam taxonomic information from aread, even
when it cannot be confidently classified at the species level. We used two additional
classification techniques. We first applied mimimap2, a pairwise alignment-based method
designed to be used with long-reads, against a gold-standard custom-curated database
generated from the consensus sequences of all 44 species present in the decision tree (gold

standard alignment). Thisisthe most appropriate comparison for our machine learning
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167  approach because the gold standard and machine learning approaches are directly derived

168  from our sequencing dataset. To compare the machine learning approach with methods where
169  the sequencing datawas not used to create the classification database in some way, we

170  applied minimap2 to alarge publicly-available database of fungal I1TS sequences from NCBI
171 [31, 32] (NCBI alignment), and applied Kraken2, a k-mer-based algorithm designed for use

172 with metagenomic DNA sequences, to the same NCBI database (Kraken2).

173 To compare these methods, an in silico mock community was generated from our labelled
174  sequencing datafor which we know the ground truth classification for each sequencing read.
175  This mock community contained 13 species from the original 44 species used to generate the
176  original machine learning decision tree. Species were selected to focus on species for whom
177  multiple machine learning classifiers would be required, in particular those species from

178  populous genera. Although all species from this mock community were present in the gold
179  standard database, the NCBI database was missing some genera and species. All of these

180  missing or unclassified taxonomies were recorded as having arecall rate of zero percent,

181  artificially decreasing the quality at lower taxonomic ranks.

182 Our machine learning decision tree approach maintained a consistently high recall rate across
183  al taxonomic ranks, with a mean species level recall rate of 93.0 + 2.8%. Notably, it

184  performed very well for closely related taxa, including the cryptic species Candida

185  metapsilosis and Candida orthopsilosis and another closely related species Candida albicans.
186  Thetwo cryptic Candida species (C. metapsilosis and C. orthopsilosis) had a very high

187  consensus sequence similarity, with a genetic distance of 2.74% (97.26% identity) in our

188  fungal ribosomal DNA region target region representing the genetically least distinct species

189  pair. Our machine learning approach did achieve species level recall rates of 90.1% and

190 89.1% for C. metapsilosis and C. parapsilosis, respectively, even with per read error rates of

191  about 10%. This highlights the strength of our approach.
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The gold standard alignment approach also performed very well when compared to the
machine learning approach across all taxonomic ranks (Figure 2). The majority of the species
were classified with recall rates in excess of 95%. Y et this approach significantly
underperformed when trying to differentiate taxa with low genetic distance such as those
from the Candida genus. As with the machine learning approach, the three Candida species
were classified with the lowest recall rate at the species level, with C. albicans, C.
metapsilosis and C. parapsilosis being classified with recall rates of 35.8%, 34.0% and 57.5%
respectively. These difficulties are also reflected in the overall mean species level recall rate

of 76.6 £ 25.5%, which is much lower than our machine learning approach.

10
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Figure 2: Machine learning based speciesidentification performs especially well for closely related species
Recall rates of the alignment-based minimap2 technique, k-mer-based Kraken2 method and the machine
learning decision tree across different taxonomic ranks (A-F). The minimap2 technique, as applied to the
gold standard database, was successful across most taxonomic ranks, but lower recall rates were recorded
for closely related species at the species level (F). Both the minimap2 and Kraken2 methods were applied to
the NCBI database, and while the minimap2 NCBI alignment was more accurate across most taxonomic
ranks, both showed comparable recall at the species level. The machine learning decision tree approach
provided the greatest class fication power for closely related species, despite lower recall rates for some
distantly-related species than the gold standard alignment method.
201

202  Next, we assessed our dataset with alignment and k-mer based analysis approaches when
203  using the publicly available NCBI database. Overall, NCBI alignment with minimap2

204  performed similarly well at higher taxonomic ranks. However, inconsistent or missing
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naming conventions at the family level and missing or aternate species labels, meant that the
overall recall rate was low at the species level, although the vast mgjority of the samples were
classified with ahigh recall rate at the genus level. This low species level recall rateis an
artefact created from the choice of database, which is reflected in the similarly poor species
level recall rates of the Kraken2 method. Overall, the k-mer based Kraken2 was less accurate

than all other methods tested across all taxonomic ranks.

I dentifying target speciesfrom a complex sample of unknown composition using the

machine learning decision tree

A key feature of a species classification tool isits ability to identify a known target species
from a complex sample of unknown composition. Thisis especially important when
attempting to identify the presence of atarget species, such as a specific pathogen, from a

metagenomic sample.

We generated two additional sequencing datasets of truly unknown composition to test the
capability of our machine learning decision tree to identify a given target species. These
datasets were generated with the same PCR and sequencing protocols as for the individual 44
training species focusing on the fungal ribosomal DNA region. The first dataset was derived
from fungi-infected wheat leaves (wheat dataset) [33] and the second was derived from
bronchoalveolar wash in aclinical setting (clinical dataset) [34]. To each of these sequencing
datasets of unknown composition, we spiked in silico a known number of reads with known
labels astest case. We choose Aspergillus flavus, a crop pathogen, and Candida albicans, a
human pathogen. We then tested recall and false positive rate of our machine learning
classifiers using our in silico spiked reads, assuming that the original datasets of unknown

composition did not contain any reads of either species.

12
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We first plotted the propagated confidence score of the species level classification for all
reads in each in silico spiked dataset to better understand the behaviour of our machine
learning decision tree on samples containing reads of unknown origin (Supplemental Figure
S1). This clearly shows that the propagated confidence scores for reads of unknown origin
are far lower than reads of species the classifiers were trained on. We than assessed the recall
and false positive rate of thein silico spiked datasets at different confidence scores thresholds
(Figure 3). Increasing the thresholds reduced the recall and false positive rate in both cases.
For A. flavus, the recall rate remained above 90% until the confidence threshold reached 0.9,
and the false positive rate was consistently low across both the clinical and wheat datasets
with reads of unknown origin. A confidence threshold of 0.85 resulted in ahigh recall rate of
0.917, while maintaining alow false positive rate of just one percent. For C. albicans, not
using a confidence threshold at all resulted in a recall rate of 87.7% and false positive rate of
11.7%. However, by using a confidence threshold of 0.85, the recall rate was only decreased
to 72.4% while reducing the fal se positive rate to only 1.7% in the clinical dataset. We
recommend this confidence score threshold of 0.85 as suitable for retaining a high recall rate
while achieving alow false positive rate, even for a member of a difficult-to-distinguish

genus like Candida.

13
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Figure 3: Varying the confidence score threshold affects the recall rate and false
positive rate when identifying target species from complex samples of unknown
composition.

The plots show the recall rate (left axis) and false positive rate (right axis) at varying
propagated confidence score thresholds for Aspergillus flavus (A) and Candida albicans
(B) when spiked into clinical (orange) or wheat (green) datasets. Both plots are based on
2000-read in silico spiked samples containing 1000 reads with known labels (A. flavus
or C. albicans) and 1000 reads of unknown origin. For A. flavus, a confidence threshold
of 0.85 maintains arecall rate of 91.7%, while reducing the false positive rate to 1% for
both datasets. For C. albicans, the same confidence threshold of 0.85 has arecall rate of
72.4% and reduces the false positive rate below 2% for both datasets.
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DISCUSSION

Nanopore sequencing offers portable, real-time sequencing using long-reads that can cover
extended metabarcodes that are poised to include more sequence information suitable for
species classification than more classic 1llumina short-read sequencing [35]. Y et currently,
metabarcode datasets in publicly available databases are limited in barcode length and often
do not cover these extended regions. This can cause difficulties when using error-prone
nanopore long-reads to classify reads at the species level using these databases [36]. Here, we

implement a novel machine learning approach for species level classification.

Our machine learning approach is comparable to — albeit slightly outperformed by - the gold
standard alignment approach across all taxonomic ranks for most of the species tested.
However, the gold standard alignment approach has a very poor performance at the species
level for very closely related species within the same genus. Thisisindicative of the
problems of alignment-based classification methods for fungi, especialy given the relatively
high error rate of the nanopore long-reads [37]. Hence, it is at the species level where the
greatest potential for improvement using machine learning lays. For example, some closely
related species were highly misclassified with arecall rate lower than 50% using the
minimap2 alignment against the gold standard database. The same species were classified
with recall rates equal to or greater than 90% using our machine learning decision tree. This
is remarkable given the per read error rate of 10% for nanopore reads is much larger than the

genetic distance of 2.74% that we observed between some closely related taxa.

Theseinitial comparisons are based on idealised databases directly derived from our
sequencing dataset for which sequencing read length and database entry length are
equivalent. Hence, we expected these analyses to outperform other approaches relying on

public databases with short reference sequences. This was indeed the case as analysing our
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error prone long-reads with alignment (NCBI alignment) and k-mer (Kraken2) based
approaches using the NCBI ITS RefSeq Targeted Loci database performed relatively poorly
especialy at lower taxonomic ranks. Clearly, the discrepancy between read and database
sequence lengths (~2900 bp vs ~580 bp) negatively impacted the alignment success.
Interestingly, the Kraken2 approach underperformed compared to the alignment-based
approach in our current study. Thisis consistent with previous work with long-read MinlON
nanopore data, where Kraken2 classification success never exceeded that for BLAST, another
alignment-based classification program, when using the default 35 bp k-mers [38]. It is likely
using asmaller k-mer length would improve classification accuracy for long-read nanopore
sequencing due to the high read error, which impacts perfect matches for 35 bp k-mers.
Another common issue when using public databases for species identification was that many
species were not included in the NCBI database or present with different taxonomic labels,
which resulted in some family and species level recall rates being zero. Changing
nomenclature over time can be an issue when using these online databases when trying to
identify a species or detect the presence of a known, named species, as the nomenclatureis
not always updated, leading to outdated or uncorrected taxonomic information persisting in

databases [39, 40].

We also tested if our machine learning approach can accurately identify specific target
species in complex samples of unknown composition without having classifiers for all fungal
Species present in the sample. We were able to show that by only training alimited set of
classifiers we can detect target species with relatively low false positive and high recall rates
inin silico spiked datasets with known ground truth of the spiked reads only. By adjusting the
confidence score one can decide how much false positive and false negatives one is willing to
tolerate. We found athreshold of 0.85 on the propagated confidence score at the species level

classification was sufficient to reduce the false positive rate while maintaining high recall
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rates. To ensure atarget speciesisidentifiable, the species-level classifier in the machine
learning decision tree must include other species closely related to the target species. If no
closely related speciesis present, the likelihood of false positive hits increase as closely
related taxa may be identified as false positives with high confidence scores even in the
absence of the target species. As such, the more fungal species within a genus the machine
learning decision tree classifiers are trained on, the higher the resolution of species-level
identification. Thisis especially important when a genus contains both pathogenic and non-
pathogenic species. In this way, our approach might be particularly applicable to targeted
diagnostic tasks in specific settings, such as detecting fungal pathogens in agriculture [41]
and medicine [42], or screening imports for specific invasive pathogen speciesin aid of
border biosecurity [43, 44]. Here, the species used to train the classifiers are flexible and can
be changed to suit the user’s need. For example, additional species from a specific taxon
could be added for increased resolution within that taxa. Furthermore, the principles behind
the application of machine learning to the fungal ribosomal DNA region can be expanded to
other barcoding regions for other organisms, such as cytochrome c oxidase | [45] or
elongation factor 1 alpha [46, 47]. Recent work on improving barcoding cost-effectiveness
and scalability with the MinlON nanopore segquencer offers promise for expanding to more
species using barcoding across multiple regions to improve the species-level resolution and

overal classification accuracy [48].

CONCLUSIONS

Online databases for metabarcoding often contain only short sequences, and hence are
traditionally useful for identifying taxa using high accuracy short-reads. As such, identifying

species from error prone long-read sequencing data, such as that produced by ONT nanopore
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seguencing, can be inaccurate when using these databases. We provide atangible solution for
species identification by applying anovel neural network-based machine learning approach
with a proof-of-concept study using extended fungal ribosomal DNA barcodes on fungi. Our
machine |learning approach can identify target species with high accuracy from complex
samples of unknown origin making it applicable to pathogen identification in biosecurity,
agriculture, and clinical settings. Our approach performs especially well on closely related
species where it provides an advantage in accuracy over current alignment-based or k-mer-

based classification methods.

MATERIALSAND METHODS

Fungal pathogen sample collection, DNA extraction and | TS amplification

We collected different fungal tissue differently for DNA extractions. The tissue collection

processes for each fungal species are summarized in Supplemental Table T1.

We used three different DNA extraction methods for all the species in the mock
communities. The methods for each species are listed in the Supplemental Table T1.
Coallectively, we used two commercialy available kits: The Qiagen DNeasy Plant Mini Kit
(cat. no. 69106) for most of the plant pathogenic fungi, and the Quick-DNA Fungal/Bacterial
Miniprep Kit (cat. no. D6005, Zymo Research) for some of the human pathogenic fungi
following the manufacturer’s protocol. We used a phenol chloroform-based DNA extraction
method for some other human pathogenic fungi modified from Ferrer et al [49]. Briefly, 100
mg of leaf tissue was homogenized, and cells were lysed using cetyl trimethylammonium
bromide (CTAB, Sigma-Aldrich) buffer (added RNAse T1, Thermo Fisher, 1,000 units per
1750 ul), followed by a phenol/chloroform/isoamyl alcohol (25:24:1, Sigma-Aldrich)

extraction to remove protein and lipids. The DNA was precipitated with 700 ul of
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isopropanol, washed with 1 ml of 70% ethanol, dried for 5 min at room temperature, and
resuspended in 50 ul of TE buffer containing 10 mM Trisand 1 mM EDTA at pH 8. For the
human clinical sample and the field infected wheat sample, we directly used the DNA
described in the original article [33, 34] for PCR amplification. Quality and average size of
genomic DNA was visualized by gel electrophoresis with a 1% agarose gel for 1 h at 100
volts. DNA was quantified by NanoDrop and Qubit (Life Technologies) according to the

manufacturer’s protocol.

We used the NS3 (GCAAGTCTGGTGCCAGCAGCC) and LR6
(CGCCAGTTCTGCTTACC) primers [12] to generate the fungal ribosomal DNA fragment
of al samples, and the EF1-983F (GCY CCYGGHCAYCGTGAYTTYAT) and EF1-2218R
(ATGACACCRACRGCRACRGTYTG) primers[12] were used to sequence a secondary
region, the fungal elongation factor 1 alpha region, although this region was not used for
assessing the machine learning method. We used the New England Biolabs Q5 High-Fidelity
DNA polymerase (NEB #M0515) for the PCR reaction following the manufacturer’s
protocol. Around 10 — 30 nanograms of DNA were used in each PCR reaction. After PCR,
DNA was purified with one volume of Agencourt AMPure XP beads (cat. No. A63881,

Beckman Coulter) according to the manufacturer’s protocol and stored at 4°C.

Library preparation and DNA sequencing using the Minl ON

DNA sequencing libraries were prepared using Ligation Sequencing 1D SQK-LSK108 and
Native Barcoding Expansion (PCR-free) EXP-NBD103 Kits from ONT, as adapted by Hu
and Schwessinger [50] which was adapted from the manufacturer’ s instructions with the
omission of DNA fragmentation and DNA repair. DNA was first cleaned up using a 1x
volume of Agencourt AMPure XP beads (cat. No. A63881, Beckman Coulter), incubated at

room temperature with gentle mixing for 5 mins, washed twice with 200 ul fresh 70%
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ethanol, the pellet was allowed to dry for 2 mins and the DNA was eluted in 51 ul nuclease
free water and quantified using NanoDrop® (Thermo Fisher Scientific, USA) and Promega
Quantus” Fluorometer (cat. No. E6150, Promega, USA) follow the manufacturer’s
instructions. All DNA samples showed a with absorbance ratio A260/A280 > 1.8 and
A260/A230 > 2.0 from the NanoDrop®. DNA was end-repaired using NEBNext Ultra Il End-
Repair/ dA-tailing Module (cat. No. E7546, New England Biolabs (NEB), USA) by adding 7
ul Ultrall End-Prep buffer, 3 ul Ultrall End-Prep enzyme mix. The mixture was incubated at
20°C for 10 mins and 65°C for 10 mins. A 1x volume (60 ul) Agencourt AM Pure XP clean-
up was performed, and the DNA was eluted in 31 pl nuclease free water. Barcoding reaction
was performed by adding 2 ul of each native barcode and 20 pul NEB Blunt/TA Master Mix
(cat. No. M0367, New England Biolabs (NEB), USA) into 18 ul DNA, mixing gently and
incubating at room temperature for 10 mins. A 1x volume (40 ul) Agencourt AMPure XP
clean-up was then performed, and the DNA was eluted in 15 pl nuclease free water. Ligation
was then performed by adding 20 ul Barcode Adapter Mix (EXP-NBD103 Native Barcoding
Expansion Kit, ONT, UK), 20 ul NEBNext Quick Ligation Reaction Buffer, and Quick T4
DNA Ligase (cat. No. E6056, New England Biolabs (NEB), USA) to the 50 ul pooled
equimolar barcoded DNA, mixing gently and incubating at room temperature for 10 mins.
The adapter-ligated DNA was cleaned-up by adding a 0.4x volume (40 ul) of Agencourt

AM Pure XP beads, incubating for 5 mins at room temperature and resuspending the pellet
twicein 140 ul ABB provided in the SQK-LSK 108 kit. The purified-ligated DNA was
resuspended by adding 15 ul ELB provided in the SQK-LSK 108 (ONT, UK) kit and
resuspending the beads. The beads were pelleted again, and the supernatant transferred to a

new 0.5 ml DNA LoBind tube (cat. No. 0030122348, Eppendorf, Germany).

In total, four independent sequencing reactions were performed on a MinlON flow cell (R9.4,

ONT) connected to aMK1B device (ONT) operated by the MinKNOW software (version
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2.0.2): 11 species for each flowcell. Each flow cell was primed with 1 ml of priming buffer
comprising 480 pl Running Buffer Fuel Mix (RBF, ONT) and 520 pl nuclease free water. 12
ul of amplicon library was added to aloading mix including 35 ul RBF, 25.5 pl Library
Loading beads (ONT library loading bead kit EXP-LLBO001, batch number EB01.10.0012)
and 2.5 ul water with afina volume of 75 pl and then added to the flow cell viathe SpotON
sample port. The “NC_48Hr_sequencing_FLOMIN106_SQK-LSK 108" protocol was
executed through MinKNOW after loading the library and run for 48 h. Raw fast5 files were
processed using Albacore 2.3.1 software (ONT) for basecalling, barcode de-multiplexing and

quality filtering (Phred quality (Q) score of > 7) as per the manufacturer's recommendations.

Raw unfiltered fastq files were uploaded into NCBI Short Reads Archive under BioProject

PRINA725648.

Processing and manipulation of fungal pathogen reads

All reads from one species were held in a fastq file with reads of varying quality, that
included sequences from both the fungal ribosomal DNA and the elongation factor 1 alpha
regions of the fungal genome. Data was thus required to be processed so downstream use
dealt only with fungal ribosomal DNA reads of the expected size range. A two-step data

filtration method was applied for this purpose.

To select reads of asimilar general structureto the ITS region, reads were first mapped to an
in-house database of fungal ribosomal DNA regions. This homology-based filter assumes the
structure of the fungal ribosomal DNA region will be similar between species due to shared
ancestry, which has been repeatedly shown to be true [51]. The in-house database used here
was curated from 28 I TS sequences from the NCBI Nucleotide database, from a range of

genera across the fungal kingdom. This process mapped reads using minimap2 (version 2.17),
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using the map-ont flag. Reads that failed to map to any of the sequences in the in-house

database were discarded.

Reads that successfully mapped were then filtered for read length. The expected read length
for the fungal ribosomal DNA region varied by species, from 2600-3200 bp on average. As
the mean length and spread of successfully filtered reads differed between samples, a 90%
confidence interval cut-off around the mean read length was applied. This interval was
sufficient to exclude those remaining short or very long reads, that may have resulted from

incomplete or partial homology filtering, or errors in the sequencing or basecalling processes.

Augmenting read datasets

To ensure al samples had at least 15,000 reads for use in the design of the machine learning
classifiers downstream, some reads were simulated based on the consensus sequence and
error profile of the existing reads where the total number of filtered reads did not exceed the
required number of reads. NanoSim (v2.0.0) [30] was used for one species, Galactomyces
geotrichum, to generate an additional 8,782 simulated cDNA reads. These reads were
generated using an identical error profile and length spread to the pre-existing non-simulated

fungal pathogen reads.

Generating consensus sequences for each species

The consensus sequence, an aggregate sequence formed from the comparison of multiple
sequences that represents the ‘true’ sequence, was generated using 200 randomly subsampled
filtered reads for each sample. Primer sequences were removed using Mothur v1.44.11 [52],
an alignment file was generated using muscle v3.8.1551 [53] and the consensus sequence was

generated from this file using EMBOSS cons v6.6.0.0 [54].

Deter mining the relationships between samples
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Prior to using the processed read datato train machine learning classifiers, the taxonomic

rel ationshi ps between the samples were needed to inform the samples present in each
machine learning classifier at each taxonomic rank. Using the taxonomic information
available for each sample in MycoBank and the results of a BLAST search with the generated
consensus sequences, a cladogram was designed to show the rel ationships between samples
at each of the major taxonomic ranks. A machine learning classifier would be required at
each point where two or more samples split on the cladogram (a node) to distinguish between

samples for each read.

Creation of asset of neural network classifiersto distinguish between samples

A convolutional neural network (CNN) was chosen as the most appropriate type of machine
learning classifier due to its ability to use the spatial relationships between data features in the
reads, such as the distance between ITS and other variable groups, as a factor in assigning a
label to aread. CNNs are capable of learning from both minor variation and higher-order

features, which is of particular importance given the high read error of nanopore reads.

CNNswork best when there is a balanced number of items in each classification class. As
such, for each multiclass node on the cladogram, an equal number of reads were subsampled
from each group of samples that would be represented in the node. So, for machine learning
classifiers distinguishing between species, each species present contributes an equal number
of reads, while at the kingdom level, each phylum contributes an equal number of reads, with
said reads being distributed equally amongst all species belonging to that phylum. The
number of reads subsampled was based on the largest number of reads available for each
sample, with amaximum of 35,000 reads due to computational processing limitations. For
each read subsampled, the nucleotide sequence was converted to a numeric sequence, where

A, C,G,and T became0, 1, 2, and 3, respectively. As not all sequences were of equal length,
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but an equal length was required to avoid sequence length being a distinguishing factor in the
classifier, all sequences were padded out to alength of 5,000 bp. The padding used a value of

4 to avoid the padding data from affecting the identification of key features for classification.

Each read was assigned a label representing the output class it would belong to in the one-hot
format. Labelled reads were then separated into atraining set and a test set. The training set
contained 85% of the reads, and was used to train the machine learning classifiers, while the
test set contained the remaining 15% of labelled reads and was used to test the efficacy of
said classifiers on similar data that the classifier had not previously encountered. The neural
network was created using the Sequential classifier of the Keras framework for neural

networks [55], containing five layers of neurons.

Specific details for the design of the machine learning classifiers and the required software
packages for machine learning and other analyses can be found at

https:.//github.com/teenjes/fungal_ML.

Evaluation of the machine lear ning classifiers

The test set was used to assess the accuracy of the various machine learning classifiers. As
the test set data was labelled, the expected outcome for each read was known, and could be
compared to the output of the machine learning classifier. The accuracy, or classification rate,
of these classifiers was the proportion of reads in the test set for whom the prediction of the
machine learning classifier, as determined by the highest confidence score, matched the
expected outcome. Thisis equivalent to the recall rate [1], where matches to the expected

outcome were true positives and matches outside this outcome were false negatives.

True Positives

Recall Rate = [1]

True Positives+False Negatives

Chaining machine lear ning classifiersinto a decision tree
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When seeking to identify members of a specific taxon in a community, where the members
are not immediately obvious from the species name, it is useful to have samples classified at
each taxonomic rank. A singular classifier would require excessive computational power to
do this. As such, we chained the machine learning classifiers together into a decision tree
based on the cladogram of the species present in our sample. The most confident outcome of
the machine learning classifier at one taxonomic rank would be used to decide the path along
the decision tree. This path could either lead into another machine learning classifier, if the

path diverged again, or lead all the way down to the species level with the same confidence.

Alter native methods for fungal pathogen read classification

For comparison to the machine learning classifier, two different commonly used methods for
fungal pathogen metabarcode classification: an alignment-based method in minimap2; and a
k-mer-based method in Kraken2. To compare these methods, we generated an in silico mock
community from our labelled sequencing data for which we know the ground truth
classification for each sequencing read. This mock community contained 13 species from the
original 44 species used to generate the original machine learning decision tree, randomly
subsampling 1000 reads from those not previously used for training the machine learning
classifiers. Species were selected to focus on species for whom multiple machine learning

classifierswould be required, in particular species with populous genera.

For this minimap2-based alignment method, two separate databases were used for
identification. Firstly, agold standard database was created in-house to represent the best-
case scenario for identification, when all the species present in asample are also present in
the database. This contained the labelled consensus sequences of all 44 species present in the
machine learning decision tree, using the consensus sequences already generated from 200

randomly selected filtered reads. The second was a publicly available database of fungal ITS
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sequences from NCBI

(ftp://ftp.nchi.nim.nih.gov/refseg/TargetedL oci/Fungi/fungi.l TS.fna.gz, downloaded Feb

2021). Minimap2 was applied to each of these databases using the map-ont flag. Asthe
alignment tool can return multiple hits if alignment is good enough, only the best hit was

taken for each read.

We used Kraken2 (v2.0.8) to assign the NCBI taxonomic ID for the same 1000 reads of each
species as used in the machine learning decision tree. We generated a Kraken2 NCBI ITS
database with the same fasta file downloaded from above. We used the Kraken2-build
command with the --add-to-library and --build flag. We used the Python pandas module to

modify the Kraken2 output file and the numpy module to calculate the accuracy.

| dentifying a key species from a complex sample using machine lear ning

To assess the suitability of machine learning for this problem, we utilised the two complex
datasets sampled from fungi-infected sources of unknown compositions: the field infected
wheat dataset [33] and the human clinical dataset [34], to create in silico mock communities.
To create these initial mock communities, we used 950 reads randomly subsampled from
these datasets, and spiked in 50 reads from one of two target species with known ground
truth: Aspergillus flavus, a crop pathogen; and Candida albicans, an opportunistic human
pathogen and common member of the human microbiome. This created a total of four 1000-
read synthetic communities, two of which paired atarget species and dataset from the same
source (A. flavus with the wheat dataset and C. albicans with the clinical dataset) and two
communities where the target species would not be expected to be present in the complex
dataset unless it had been spiked in. We used the propagated confidence scores for assessing
the recall rate for these spiked datasets, where the confidence score at each taxonomic rank

was multiplied to give afinal overall confidence at the species level.
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We then created an additional four in silico mock communities to assess the change in recall

rate and false positive rate [2] as a confidence threshold was applied.

Py False Positi
False Positive Rate = atse Postiives [2]

False Positives+True Negatives

Each mock community was created by randomly subsampling 1000 reads from one of A.
flavus or C. albicans samples with known ground truth and adding an additional 1000
randomly subsampled reads from one of the wheat or clinical datasets containing reads of
unknown origin. In total, thisresulted in four 2000-read in silico mock communities. We
assumed the datasets with reads of unknown origin did not contain any reads for the target
species tested, placing an upper bound on the false positive rate and alower bound on the true
positive rate. Any positive identifications of the target species A. flavus or C. albicans with a
propagated confidence score below the confidence threshold were instead classified as

negative identifications.
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Supplementary Figure SL: The propagated confidence score is markedly different between spiked reads with known
labels and reads of unknown origin.

The plots show the confidence score of spiked labelled reads (yellow) and reads of unknown origin (purple) at the
species level when analysed with our machine learning approach. Labelled reads of species for which we trained
classfiers had a markedly better confidence score at the species level, especially when classified into the correct
species. Reads of unknown origin had relatively low confidence scores independent of their species level
classfication. Our 1000-read in silico spike in samples are comprised of 950 reads from a complex sample with
reads of unknown origin and 50 in silico spiked readsin samples with known labels from Aspergillus flavus (A and
C) or Candida albicans (B and D). The complex samples of unknown composition are derived from infected wheat
leaves (wheat dataset, A and B) or from a bronchoalveolar wash taken in aclinical setting (clinical dataset, C and D.
The number of spiked or unspiked reads classified as either the spiked species or any other species is shown.
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717

Supplementary Table T1
. . . DNA Extraction #Raw #Homolo # Length
Genus label Species label Strain/Isolate Sample Collection Method Reads Filteredgy Filterged
Aspergillus flavus WMO03.230 Tissue from SDA plate * Phenol chloroform 125014 54061 51340
Aspergillus niger WMO06.98 Tissue from SDA plate® Zymo kit 171615 65065 59406
Aspergillus sp. CCLO15 Tissue from PDA plate Qiagen kit 249468 42899 39988
Blastobotrys proliferans WMO07.12 Tissue from SDA plate® Phenol chloroform 133835 39631 37315
Candida albicans WM229 Tissue from SDA plate® Zymo kit 91031 26114 25597
Candida metapsilosis WMO01.56 Tissue from SDA plate® Zymo kit 127633 40257 37426
Candida orthopsilosis WMO03.414 Tissue from SDA plate’ Zymo kit 104214 32490 29765
Candida parapsilosis WMO02.200 Tissue from SDA plate® Zymo kit 135720 45958 42338
Candida sp. WM28 Tissue from SDA plate® Zymo kit 109905 38085 35120
Cladophialophora sp. CLM599 Tissue from PDA plate e Qiagen kit 115477 28063 25917
Clavispora lusitaniae WM18 Tissue from SDA plate® Zymo kit 352768 141856 131936
Cortinarius globuliformis cM4 Fruiting tissue Qiagen kit 347423 128993 117090
Cryptococcus zero CCLO40 Tissue from PDA plate e Qiagen kit 167818 42373 39235
Debaryomyces sp. WMO03.458 Tissue from SDA plate’ Phenol chloroform 174974 35837 33499
Diaporthe foeniculina CCLO60 Tissue from PDA plate e Qiagen kit 206161 42329 39836
Diaporthe sp. Tissue from PDA plate e Qiagen kit 198500 29833 27941
Discula quercina CCLO67 Tissue from PDA plate e Qiagen kit 172601 32847 30504
Discula quercina CCLO68 Tissue from PDA plate e Qiagen kit 188353 33438 31996
Dothiorella vidmadera Tissue from PDA plate e Qiagen kit 204777 47318 44257
Entoleuca sp. CCLO52 Tissue from PDA plate e Qiagen kit 155158 33941 31356
Fusarium oxysporum Race3 Tissue from PDA plate e Qiagen kit 382450 131411 123742
Galactomyces geotrichum WM17.23 Tissue from SDA plate® Phenol chloroform 152933 8485 7805
Kluyveromyces marxianus WM13 Tissue from SDA plate® Zymo kit 115282 31150 28382
Kluyveromyces sp. WMO04.172 Tissue from SDA plate® Zymo kit 370154 165113 152736
Kodamaea ohmeri WM10.200 Tissue from SDA plate® Phenol chloroform 111257 38931 36478
Meyerozyma guilliermondii WMO02.361 Tissue from SDA plate® Phenol chloroform 211853 20333 18944
Penicillium chrysogenum WMO06.341 Tissue from SDA plate® Zymo kit 192173 78105 72307
Pichia kudriavzevii WMO03.103 Tissue from SDA plate® Zymo kit 122601 35604 33244
Pichia membranifaciens WM324 Tissue from SDA plate® Zymo kit 104844 29540 26937
Puccinia striiformis-tritici 104E Fungal spores Phenol chloroform 272465 122080 113337
Pyrenophora tritici-repentis Ptr8814 Tissue from PDA plate e Qiagen kit 260896 97584 90015
Quambalaria cyanescens CCLO55 Tissue from PDA plate e Qiagen kit 205404 49780 46171
Rhodotorula mucilaginosa WMO09.204 Tissue from SDA plate’ Zymo kit 318405 127801 117801
Saccharomyces cerevisiae YH2Gold Tissue from YPD media © Qiagen kit 96837 33025 30260
Scedosporium boydii WMO09.122 Tissue from SDA plate® Zymo kit 331947 102481 93723
Tapesia yallundae CCLO29 Tissue from PDB Qiagen kit 223186 59651 55589
Tapesia yallundae CCLO31 Tissue from PDB Qiagen kit 213143 52944 49481
Tuber brumale Fruiting tissue Qiagen kit 275035 80614 74232
Wickerhamomyces anomalus WMO03.505 Tissue from SDA plate’ Phenol chloroform 193187 45720 42589
Yamadazyma mexicana WM805 Tissue from SDA plate® Phenol chloroform 179240 45093 42369
Yamadazyma scolyti WMO06.835 Tissue from SDA plate® Phenol chloroform 136650 37159 34841
Yarrowia lipolytica WM599 Tissue from SDA plate® Phenol chloroform 141238 35950 33873
Zygoascus hellenicus WMO02.460 Tissue from SDA plate® Phenol chloroform 229073 36666 34002
Zymoseptoria tritici WA332 Tissue from PDA plate e Qiagen kit 413127 143363 133089

Sample labels, collection methods, DNA extraction methods and read counts before and after two-step data filtering. a)
Sabourand dextrose agar (SDA); b) Potato dextrose agar (PDA); ¢) Y east extract peptone dextrose (Y PD)
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