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Abstract

Antibiotic resistant Saphylococcus infections are a global concern, with increasing cases of
resistant Staphylococcus aureus and Staphylococcus haemolyticus found circulating in the
Middle East. While extensive surveys have described the prevalence of resistant infections in
Europe, Asia, and North America, the population structure of resistant staphylococcal Middle
Eastern clinical isolates is poorly characterized. We performed whole genome sequencing of 56
S aureus and 10 S haemolyticus isolates from Alexandria Main University Hospital.
Supplemented with additional publicly available genomes from the region (34 S. aureusand 6 S
haemolyticus), we present the largest genomic study of staphylococcal Middle Eastern isolates.
These genomes include 20 S. aureus multilocus sequence typing (MLST) types and 9 S
haemolyticus MLSTSs, including 3 and 1 new MLSTSs, respectively. Phylogenomic analyses of
each species core genome largely mirrored MLSTS, irrespective of geographical origin. The
hospital-acquired spa t037/SCCmec I[II/MLST CC8 clone represented the largest clade,
comprising 22% of S. aureus isolates. Similar to other regional genome surveys of S. aureus, the
Middle Eastern isolates have an open pangenome, a strong indicator of gene exchange of
virulence factors and antibiotic resistance genes with other reservoirs. We recommend stricter

implementation of antibiotic stewardship and infection control plansin the region.
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I mpact Statement

Staphylococci are under-studied despite their prevalence within the Middle East. Methicillin-
resistant Saphylococcus aureus (MRSA) is endemic to hospitals in this region, as are other
antibiotic-resistant strains of S. aureus and S. haemolyticus. To provide insight into the strains
currently in circulation within Egypt, we performed whole genome sequencing of 56 S. aureus
and 10 S haemolyticus isolates from Alexandria Main University Hospital (AMUH). Through
analysis of these genomes, as well as other genomes of isolates from the Middle East, we were
able to produce a more compl ete picture of the current diversity than traditional molecular typing
strategies. Furthermore, the S haemolyticus genome analyses provide the first insight into strains
found in Egypt. Our analysis of resistance and virulence mechanisms carried by these strains
provides invaluable insight into future plans of antibiotic stewardship and infection control

within the region.

Data Summary
Raw sequencing reads and assembled genomes can be found at BioProject Accession number

PRINA648411 (https://www.ncbi.nIm.nih.gov/bioproject/PRINA648411).
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I ntroduction

Staphylococci are a heterogenous group of commensal bacteria in humans with the
potential to cause infections 1. Two staphylococcal species especially relevant to the clinical
setting are Staphylococcus aureus and Saphylococcus haemolyticus. S. aureus is arguably the
most clinically important staphylococcal species; the infections it can cause range from mild
erythema to serious life-threatening ailments, including septicemia, pneumonia, and endocarditis
2. A difficulty in treating and controlling S. aureus stems from its prevalence and increasing
resistance to clinically used antibiotics, resulting in it being one of the leading agents for
nosocomial and community-acquired infections **. S. haemolyticus is the second most common
staphylococcal species isolated in human blood cultures and a prominent reservoir for antibiotic
resistance genes, which can be shared with other Staphylococci, including S. aureus .

Epidemiological surveillance and profiling are key to managing Staphylococci ®°.
Historically, profiling of Staphylococci has relied on complementary molecular typing strategies,
such as Multi Locus Sequence Typing (MLST), typing of hypervariable short repeats in Protein
A (spa), subtyping elements in the cassette chromosome mec (SCCmec), and presence of the
Panton-Valentine leucocidin (PVL) *°. MLST consists of comparing the sequence of specific
housekeeping genes in bacteria; the strategy is effective at tracking a broad range of clones over
a global area, but prior to whole-genome sequencing (WGS) this method was slow and
expensive '°. spa typing complements MLST by tracking the molecular evolution of S. aureus,
given the relevance of Protein A to the infectious process °. SCCmec permits profiling of
clinically relevant antibiotic resistances, including mecA, which results in methicillin-resistant S
aureus (MRSA) 2. PVL is an important cytotoxin in MRSA that is common in community-
acquired MRSA (CA-MRSA), but uncommon in hospital-associated MRSA (HA-MRSA)

Traditionally, these profiling strategies have been a powerful means to type, trace, and manage
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92  Staphylococcal infections, but technical limitations curtail the usefulness of molecular typing in
93 rea time .
94 The increasing utility, speed, and inexpensiveness of WGS in the clinical setting is poised

375 WGS alows access to the entire

95 to immensely benefit Staphylococci profiling
96 staphylococcal genome, including sequence data for typing MLST, spa, SCCmec, and PVL. In
97 addition, WGS allows us to study the phylogenomic lineage, core, and accessory genome of
98 isolatesfrom an infectious outbreak or a geographical area. A key question is how WGS analysis
99 comparesto traditional typing techniques. For example, there is evidence that phylogenomic data
100 does not always agree with standard typing methods; skepticism also exists that WGS can
101 reliably detect single nucleotide polymorphisms (SNPs) in sensitive genetic content °. In
102  contrast, studies have demonstrated that WGS can be used to type, discriminate, and cluster
103  staphylococcal isolates for the purpose of outbreak control ***°. WGS could be used to close the
104  gap in staphylococcal management in regions that have not been extensively monitored, such as
105 theMiddle East and specifically Egypt.
106 The epidemiology of Staphylococci in non-European countries of the Mediterranean
107  region is under-studied *°. Antibiotic resistance in S. haemolyticus has been identified in Middle
108  Eastern countries, such as Turkey © and Egypt ’. There is evidence that MRSA is prevalent and
109 endemic to hospitalsin this region, with a median MRSA prevalence of 38% in Algeria, Cyprus,
110  Egypt, Jordan, Lebanon, Malta, Morocco, Tunisia and Turkey '’. Broadly speaking, PVL
111 prevalence is reported as low in some of these countries, indicating a predominance of HA-

112 MRSA 819 Research into the lineage of Staphylococci in this region is urgent, as it would

113  give us both a present and future assessment of staphylococcal epidemiology.
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114 Generally, molecular typing and phylogeny data are limited from this region. Multiple
115 isolates in Palestine were typed as ST22 with a minority typed as ST80-MRSA-IV and PVL-
116  positive . In Jordan, genotyping of S. aureus isolates revealed that the majority were ST80-
117  MRSA-1V 2. In Lebanon, the primary lineage was PV L-positive ST80-MRSA-IV followed by
118 PVL-positive ST30-MSSA . In Algeria, it was reported that STSO-MRSA-IV was present in
119  most neonates tested over an 18-month period, with a minority of these PV L-positive . Finally,
120 for Egypt, it has been reported that the prevalent MLSTs are ST30, ST80, and a novel type,
121  ST1010; PVL prevaence has been estimated at 19% %. Enany et al. reported that the Egyptian
122 ST80 lineage was different from the globally prevalent ST80, primarily due to a unique spa type
123 and antimicrobial resistance %.

124 Egypt presents a unique case-study for staphylococcal distribution in Arab countries .
125 Egypt’'s cultural and geographical placement may facilitate local Staphylococcal exposure to
126  international lineages, both from the Middle East and elsewhere . The accessibility of WGS
127  presents an opportunity to profile Staphylococci in Egypt and the rest of the Arab region in terms
128  of gene marker typing, core genome, and phylogenomics. Prior to this study, there were limited
129 genomic dataof S aureusand S. haemolyticus in this region.

130 Here, we report the phylogenetic and phylogenomic associations of 56 S. aureus and 10
131 S haemolyticus isolates from Egypt and their relationship to 34 S. aureus and 6 S. haemolyticus
132  isolates from Egypt, Kuwait, Lebanon, Tunisia, Palestine, United Arab Emirates, Morocco, and
133  Sudan. WGS afforded insight into the lineage and genetic content of these two staphylococcal
134  species, including type information historically obtained usng molecular methods. Both the
135 MLST and SCCmec type mirrored the core genome, indicating that WGS is a fast and accessible

136  option for Staphylococcal profiling. We identified multiple MLST and clonal complexes in
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137  circulation in the region, including 3 new genotypes. Genome analysis indicated that S aureusin
138 Egypt has an open pangenome that includes virulence genes in both the core and accessory
139 genomes. Surveillance and profiling of Staphylococci are key to infection control, and we have
140 shown that WGS can be a valuable asset, especially in regions where Staphylococci have not
141 been well studied, such asthe Middle East.

142

143  Reaults

144 S aureus and S. haemolyticus isolates were collected from patients presenting to the Medical
145 Microbiology Laboratory at AMUH between September and December 2015. Draft genomes for
146 66 of the clinical isolates were of high quality and were included in our analysis. These genomes
147 included 56 S. aureus and 10 S. haemolyticus isolates, assembled on average into 71 and 126
148  contigs, respectively. Additional publicly available S aureus and S haemolyticus strains were
149 identified and included in subsequent analyses. 34 S aureus (from Egypt n=17; Kuwait n=5;
150 Lebanon n=4; Tunisia, Palestine and United Arab Emirates n=2 each; Morocco and Sudan n=1
151 each) and 6 S haemolyticus (al from Egypt). Supplementary Table Sl lists the available
152 metadata and presents the genome assembly statistics for S. aureus and S. haemolyticus. The S.
153  aureus genomes were, on average, larger than S. haemolyticus genomes: 2.8 Mbp and 2.5 Mbp,
154  respectively. Genome size and GC content were on par with other publicly available genomes.
155 Each draft genome was annotated using NCBI's PGAP, identifying an average of 2,839 and
156 2,495 coding sequences (CDS) for S, aureus and S. haemolyticus, respectively. The strains varied
157  intheir number of rRNA operons and tRNAs.

158

159  Strain genotyping
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160 The genomes represent varied MLSTs. The 16 S, haemolyticus isolates examined here belonged
161 to nine MLSTs, including a new genotype ST-74 (strain 51) assigned as a result of this study,
162 and an isolate of unknown ST (strain 7A). ST-3 was the most common amongst the isolates
163 examined (n=4) (Supplementary Table S2). A total of 20 S. aureus MLSTs were identified,
164  including three novel types ST-5860 (strain 48), ST-5861 (strain 2705404), and ST-5862 (strain
165 2705410); al three of these strains came from prior studies and were isolated from Egypt,
166 Kuwait and Lebanon, respectively (Supplementary Table S2). Twelve different MLSTs were
167 identified among the Egyptian isolates;, ST-239 was the most prevalent (n=24), followed by ST-1
168 (n=19) and then ST-80 (n=12). Two of the AMUH S. aureus isolates, strains AA32 and AA35,
169  could not be typed due to incomplete sequences.

170 S aureus isolates could be categorized into seven clonal complexes (CC)
171  (Supplementary Table S2), the largest being CC8 (n=26), consisting mainly of Egyptian
172  isolates and one Moroccan isolate (strain 12480433). 12 strains were identified as ST-80, which
173  does not belong to a clonal complex. 20 different spa types were identified in addition to 7
174  isolates that could not be typed. The predominant spa type was t037 (n=33), with all but one
175 belonging to CC8; 30 of these 33 isolates belonged to SCCmec Il1. The next most frequent spa
176  typewast127 (n=19), all belonging to CC1. Table 1 summarizes these resullts.

177

178 Core and pangenomes of S. haemolyticusand S. aureus strains

179 To investigate the core genome and pangenome of S. haemolyticus, we added the 6 publicly
180 avalable S. haemolyticus genomes from Egypt to our 10 S haemolyticus genomes
181 (Supplementary Table S1). The pangenome for these strains included 3,541 genes

182 (Supplementary Fig. S1), with 1,834 single copy number genes in the core genome. Included
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183  within these core genes are the virulence factors autolysin (atl), elastin binding protein (ebp),
184  thermonuclease (nuc), and cytolysin (cylR2).

185 In addition to our 56 S. aureus genomes, our core and pangenome analysisincluded 34 S.
186 aureus draft genome assemblies from the Arab region (Supplementary Table Sl1). The
187 pangenome of these 90 isolates contained 4,283 genes (Fig. 1, panel A), the core genome
188 included 1,501 single copy number genes, and the accessory genome contained 2,178 genes.
189 These analyses show that the Arab isolates have an open pangenome. The functionality of the
190 geneswithin the S aureus core genome was determined according to their COG categories (Fig.
191 1, pand B). The core genome was further examined for virulence factors, finding the same gene
192 related to autolysin (atl) that was found in the S haemolyticus core. We aso identified genes
193 associated with intercellular adhesin, cysteine protease, thermonuclease, capsule, and the Type
194 VI secretion system (Table 2).

195

196 In addition to the virulence factors found within the core genome, we identified virulence
197 factors and antibiotic resistance genes within the accessory genome (Supplementary Tables S3
198 and $4). The isolates were screened for the presence of |ukF/S-PV, which encodes PVL.
199 Isolates positive for PVL were mainly (77%) mecA positive, present in CC1, ST-80, CC30 and
200 CC8, and obtained from Egypt, Kuwait, Tunisia, Lebanon and Morocco. Importantly, isolates
201 obtained from CA infections belonged to CC1, ST-80, CC5, CC97 and CC8, making PVL
202  presence a good predictor for the ability of the isolate to cause CA infections.

203

204

205  Phylogenomic study of S. haemolyticus and S. aur eus strains from the Arab region

10
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206  The core genes were used to derive phylogenies for each species. The S. haemolyticus isolates
207  were all from Egypt and clustered into two clades (Fig. 2). As the tree shows, variation between
208  the core genomes of these isolates was minor. Furthermore, the clade structure of the genomes
209  corresponded with MLST, indicated in the bar of Fig. 2. The MLST tree for these genomes is
210 shown in Supplementary Fig. S2.

211

212 S aureus isolates came from all over the region, and clustered into six clades, with Egyptian
213  isolatesrepresented in all clades (Fig. 3 and 4). Clade 1 isolates belonged to ST-1 and were from
214  Egypt and the UAE, clade 2 contained the majority of the Arab isolates including some from
215 Egypt. The predominating clone seen among 46.7% of the isolates within clade 2 was spa
216  t044/SCCmec IV/ST-80, which shows some degree of shared content between these isolates.
217 Clade 3 isolates were solely from Egypt and belonged mainly to ST-15 and ST-5. Clade 4
218 comprised isolates from Egypt, Sudan and Palestine, with the majority belonging to ST-22 and
219 ST-361. Clade 5 contained isolates from Egypt, belonging mainly to ST-97. The remaining
220 isolates werein clade 6, of ST-239 and from Egypt, with the exception of one Moroccan isolate.
221  This clade represents a spa t037/SCCmec 11I/MLST CC8 clone. The phylogenetic tree derived
222  from the core genome sequences corresponded with the tree derived from the MLST marker
223  genes (Fig. 3 and Supplementary Fig. S2). 14 isolates lacked mecA (Fig. 4, pale green star) and
224 occurred predominantly in CC1 (n=5), CC15 (n=3) and CC30, CC8 and ST-80, with one isolate
225 ineach; in addition, three isolates belonged to ST-361 (n=2) or ST-5860 (n=1). 13 of these mecA
226  negativeisolates were from Egypt.

227

228

11
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229

230 Discussion

231 S aureus is a mgjor human pathogen in hospital and community settings, with the
232 infection rate of MRSA increasing on a globa scale at varying rates . While extensive
233 surveys have provided insight into the prevalence of such resistant infections in Europe %/, Asia
234 %% and North America ***, limited data is available for the Arab region *. Furthermore,
235  antibiotic resigtant S. haemolyticus strains have been identified worldwide °, including Turkey °
236 and Egypt ‘. Prior to the study initiated here, there were limited genomic data for these two
237  Saphylococcus species from the Middle East. The addition of 56 S aureus and 10 S
238  haemolyticus genomes enabled our investigation of strain diversity within the region. With the
239 mgority (or all, in the case of S. haemolyticus) of genomes representing isolates from Egypt, we
240 could investigate members of these species currently in circulation. We found that several
241  different MLSTs and clonal complexes are in circulation within Egypt and more broadly within
242  the region. 20 S aureus MLSTs were identified in the region, including 3 new genotypes
243  identified here, and 12 of these are in circulation within Egypt. Analysis of the S. haemolyticus
244  genomes found 9 MLSTsin circulation within Egypt, including one new genotype.

245 The core genome for the S. aureus strains is dightly larger than that previously calculated
246  for the species *3*. This is expected, however, as our analysis is restricted to fewer genomes
247  from asingle region. Both our S. haemolyticus and S. aureus core genomes include the gene atl,
248  which is essential for biofilm formation *. Furthermore, the ica gene cluster, also associated
249  with biofilm formation *°, as well asits regulator icaR ¥, are included in the core genome of the
250 S aureus strains examined here. The presence of atl and the ica gene clusters signifies the

251  Dbiofilm potential of the isolates. This potential is relevant because 80% of human microbial

12
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252  infections are complicated by biofilm formation, such as in wounds, IV catheters, sutures and
253 implants (see reviews %), Moreover, the biofilm capacity to evade the host’s immune defenses,
254  theinability of most antibiotic treatment regimens to eradicate existing biofilms and the fact that
255  biofilms serve as a good medium for exchange of genetic material (e.g. plasmids) between cells
256  make biofilm formation amajor health concern in the clinical setting (*°; see reviews *%).

257 The Arab S. aureus genomes have an open pangenome, evidence of gene exchange
258  between these isolates and other reservoirs. S. aureus is naturally competent %, and horizontal
259 gene transfer (HGT) between strains, coagulase-negative Staphylococcus (CoNS) strains, and
260  other species is well documented (see review *%). Recently, HGT was shown to be a driver of
261 persistent S aureus infections within patients *°. Genes within the accessory genome included
262  virulence factors and antibiotic resistance genes (Supplementary Tables S3 and $4). Prior
263  comparative genomic studies for this species similarly found an open pangenome and resistance
264  genes within the accessory genome ®,

265 Phylogenomic analyses of the core genome largely mirrored MLST types (Fig. 3). This
266  was irrespective of geographical origin. Interestingly, strains of the same SCCmec type had a
267  more similar core genome sequence (Fig. 4). In a prior phylogenetic study, John and co-workers
268 found that 16S rRNA gene sequence similarity did not correspond with SCCmec type, leading
269 them to conclude that horizontal gene transfer plays a role in resistance gene acquisition *.
270 However, only two SCCmec types were identified for the samples examined here. Recently,
271  Soliman et al. published a study characterizing the genomes of 18 MRSA isolates from atertiary
272  care hospital in Cairo, Egypt; their isolates were primarily SCCmec types V (n=9) and VI (n=2),
273  not observed within our larger collection *°. Similarly, SCCmec type V and IV have been most

274 frequently observed in other S aureus studies within the region . Rather, our study found

13
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275 that SCCmec type Il and IV were equally prevalent within the region. SCCmec type IlI
276  predominated among HA-MRSA infections, suggesting that, in contrast to these prior studies,
277 our isolates indicate that HA-infections have a higher incidence among the patients tested here.
278 AMUH, where our isolates were collected, is the largest tertiary hospital and main referral center
279 inthe Northern sector of Egypt; thus, patients with more severe infections would be more likely
280 tobetreated at AMUH than at any other hospital in the region. Prior studies have found SCCmec
281 type |1l to be the predominant type in Asian countries . Besides, the SCCmec type I1I/MLST
282  ST-239 isthe oldest pandemic strain of MRSA *°, which might explain its prevalence among the
283  current collection of isolates.

284 The S. haemolyticus and S. aureus genomes examined here provide insight into the
285 diversity of strains currently in circulation in Egypt, particularly with respect to their encoded
286  virulence factors and antibiotic resistance genes. WGS analysis enabled a more complete picture
287  of thisdiversity than molecular typing strategies. The S. haemolyticus genomes provide the first
288 ingght into strains found in Egypt. Identifying the main genotypes, as well as the resistance and
289  virulence mechanisms among the resistant isolates in the region, can drive antibiotic stewardship
290 andinfection control plans.

201

292 Methods

293 Bacteria isolates

294  Atotal of 89 S aureus and 14 S. haemolyticus consecutive non-duplicate isolates were collected
295 from the Medical Microbiology Laboratory at Alexandria Main University Hospital (AMUH)
296  between September and December 2015. These isolates were obtained from various clinical

297  specimens, including pus, blood, sputum, urine, tissue, aspirate and broncho-alveolar lavage

14
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298 (BAL). The identity of the isolates was determined using conventional methods, such as Gram
299 staining, growth on and fermentation of mannitol salt agar, growth on DNase agar and dlide
300 coagulase testing using Dryspot Staphytect Plus (Oxoid Ltd, England), and confirmed using
301 Matrix Assisted Laser Desorption lonization - Time of Flight Mass Spectrometry (MALDI-TOF
302 MYS) (Bruker Datonik, USA). The isolates were further classified as either hospital-acquired or
303 community-acquired infections based on a 48 h window between the dates of patient admission
304  andisolate collection *.

305

306 DNA extraction

307 Colonies grown on tryptone soya agar (TSA) plates were harvested and washed in 1 ml
308 phosphate buffer saline (PBS) and resuspended in 0.5 ml SET (75mM NaCl, 25mM EDTA,
309 20mM Tris, pH 7.5), to which 50ul of fresh 20 mg/ml lysozyme in PBS and 30ul Mutanolysin
310  were added; the mixture was incubated at 37°C for 60 min. The cells were then treated with 60ul
311  10% sodium dodecyl sulphate and 20ul proteinase K and incubated at 55°C for two hours with
312 gentle inversion. The suspension was mixed gently with 210ul of 6M NaCl, and 700ul
313  phenol:chloroform were added, followed by incubation at room temperature for 30-60 minutes,
314 using a rotating wheel for gentle mixing. The suspension was then centrifuged a maximum
315 gpeed for 10 min and the aqueous phase was transferred to a new microfuge tube and mixed
316 gently with an equal volume of isopropanol. The tubes were centrifuged to produce a DNA pellet
317 that was washed with 70% ethanol, which was left to evaporate overnight. The pellets were
318  resuspended in 50ul ddH,0 and stored at -20°C till further processing.

319

320 Genome Sequencing and Genome Assembly
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321 The lllumina Nextera kit was used for whole genome library preparation. Each isolate was
322  sequenced using the Illumina MiSeq System, producing paired-end 2x250 bp reads. Quality
323  control and de-multiplexing of sequence data was done with onboard MiSeq Control software
324 and MiSeq Reporter v3.1. Raw reads were trimmed using Sickle v1.33
325  (https://github.com/ngjoshi/sickle) and assembled using SPAdes v3.13.0 ** with the “only-
326  assembler” option for ki 1=[155, 77, 99, and 127. Genome coverage was calculated usng BBMap
327 v38.47 (https.//sourceforge.net/projects/bbmap/). Contigs shorter than 500 bp were pruned using
328 hioawk (https://github.com/Ih3/bioawk). Genome assemblies were annotated using PATRIC
329  v3.3.18 *°. Genomes were deposited in NCBI's Assembly database, along with raw sequence
330 data in SRA under BioProject PRINA648411. Deposited genomes were annotated using the
331 NCBI Prokaryotic Genome Annotation Pipeline (PGAP) v5.0 >*. Unless previously noted,
332  default parameters were used for each software tool. To complement our analysis of the genomes
333 from AMUH, raw sequence data for 41 S. aureus and 10 S. haemolyticus strains were retrieved
334 from NCBI. These records were identified by searching SRA (as of January 2020) for strains
335 isolated in the Arab region. These raw reads were processed as indicated above. High-quality
336 assemblies wereincluded in subsequent analyses.

337

338 Bioinformatic Analysis

339 Multilocus sequence typing (MLST) was determined using the MLST v2.0.4 web server
340 available through the Center for Genomic Epidemiology *°. MLST allele sequence and profile
341  data were obtained from PubMLST v2.0.0 *°. spa typing was performed using the online tool
342  SpaTyper v1.0 available through the Center for Genomic Epidemiology >. SCCmec typing was

343 peformed using SCCmecFinder v1.2 online tool available through the Center for Genomic
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344  Epidemiology (https://cge.chs.dtu.dk/servicesSCCmecFinder/) ***°. Resistance and virulence
345  genes wereidentified using PATRIC v3.6.5 ®° and VFAnalyzer ®.
346

347 Phylogenomic and Phylogenetic Analysis

348 The core and pangenomes were generated using anvi’o v5.1. The following scripts were used to
349 calculate the pangenome: anvi-gen-genomes-storage, anvi-pan-genome and anvi-display-pan,
350 and the following script was used to calculate the core genome: anvi-get-sequences-for-gene-
351 clusters ®*%. Functiona groups for the core genome were determined by querying core genome
352 amino acid sequences against the COG database * through anvi’o. The core genes were
353  concatenated for each genome and then aligned using MAFFT v7.388 ®. The tree was built
354 using the FastTree v2 ® plugin in Geneious Prime v2019.2 (Biomatters Ltd., Auckland, New
355  Zeadland). MLST ST sequences were downloaded from PubMLST v2.0.0 *°, aligned in Geneious
356  Prime v2019.2 and the trees were built using the FastTree v2 ® plugin in Geneious Prime
357 v2019.2.iTOL v5.6.1 ®" was used to annotate and visualize all trees.

358

359
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390 Figure 1. Genome analysis of 90 Arab S aureus strains. (a) The pangenome. Each ring
391 corresponds to a single genome. Each radial extension in the ring corresponds to the presence
392  (black) or absence (light gray) of a given gene cluster (homologous gene). The bar chartslist the
393 number of genesidentified in the given genome (top) and the number of singleton genes or genes
394 that are unique to the given genome (bottom). The pangenome of these 90 isolates contained
395 4,283 genes, the core genome included 1,501 single copy number genes, and the accessory
396 genome contained 2,178 genes. (b) Functionality of genes contained within the core genome.
397 The same autolysin gene (atl) found in the core genome of S. haemolyticus was found in S
398 aureus.

399

400 Figure 2. Phylogeny based upon the core genes for the S. haemolyticus isolates. All S
401  haemolyticusisolates were from Egypt and clustered into two clades corresponding with MLST.
402

403 Figure 3. S aureus core genome phylogeny colored by geographical origin of isolation (strain
404 namecolor) and MLST (right bar). S. aureus isolates were from different parts of the region, and
405 clustered into six clades, each containing Egyptian isolates. Clade 1 isolates belonged to ST-1
406  and were from Egypt and the UAE, clade 2 contained the mgjority of the Arab isolates, with spa
407  t044/SCCmec IV/ST-80 as the predominating clone. Clade 3 isolates were solely from Egypt and
408 belonged mainly to ST-15 and ST-5. Clade 4 comprised isolates from Egypt, Sudan and
409 Palesting, with the majority belonging to ST-22 and ST-361. Clade 5 contained isolates from
410 Egypt and belonged mainly to ST-97. The remaining isolates were in clade 6, of ST-239 and
411  from Egypt and Morocco (n=1). This clade represents a spa t037/SCCmec |1I/MLST CC8 clone.

412
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Figure 4. Phylogenetic tree based on core genome annotated by geographic origin, MLST CC,
main spa and SCCmec types. 14 isolates, mostly from Egypt, lacked mecA and occurred
predominantly in CC1 (n=5), CC15 (n=3) and CC30, CC8 and ST-80 (one isolate in each), ST-

361 (n=2) or ST-5860 (n=1).

Table 1: MLST clonal complexes, spa types, and SCCmec types among the S. aureus isolates.

Geographical
MLST CC | Strain Name spatype | SCCmectype
Origin
3 (A), 3 (B), 23, 6 (B), 43, AA5L, AAG67,
Egypt t127 N/D
AAT7
R181, R180, AA1, AA78 UAE, Egypt t127 N/D
CC1
6 (A), AABY Egypt t127 N/D
AAS59, AAGB5, AAGS Egypt t127 predicted as M SSA
AA103, AA8B7 Egypt t127 predicted as MSSA
15, 16 Egypt t094 predicted as M SSA
CC15
17 Egypt unk predicted as M SSA
41 Egypt 113828 v
Gaza MRSA_B62 Palestine t223 v
AA18 Egypt t223 v
CC22
AA5 Egypt t3243 v
Gaza MRSA_B04 Palestine t790 v
40 Egypt unk v
AA41 Egypt t037 predicted as M SSA
CC30
19 Egypt t1504 N/D
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AA30 Egypt t304 v
CC5 14, AA76, AABO Egypt 1688 N/D
AAT0 Egypt 1688 V1(4B)
12480433 Morocco t008 v
LHI_Sa 30 Egypt t008 N/D
46 Egypt t030 I
50, AA101, AA13, AA14, AA22, AA23,
AA27, AA3L, AA33, AA46, AA52, AAGS5,
CC8 Egypt t037 Il
AA57, AAGBO, AAGL, AAB2, AAGB3, AAGB4,
AA91, AA92
AAT9 Egypt t037 N/D
AA93 Egypt t037 predicted as M SSA
AA29 Egypt unk I
AA36 Egypt t267 N/D
AA39, AA6 Egypt t267 v
CCco7
AA104 Egypt t267 N/D
AAS8 Egypt unk v
Tunisia,
2705432, 2705403, 2705405, 2705407,
Kuwait, t044 v
2705409, 2705412
Lebanon
AA45 Egypt t044 v
ST-80
2705431 Tunisia t044 predicted as M SSA
2705411 Lebanon 1131 v
AA2 Egypt 1416 v
AA3, AA4 Egypt t416 N/D

420

421  Table 2. Virulence factorsincluded in the S. aureus core genome.
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VFclass Virulencefactors Related genes
Autolysin atl
icaA
Adherence
Intercellular adhesin icaD
icaR
Cysteine protease sspC
Enzyme
Thermonuclease nuc
cap5SA
cap8B
Immune evasion | Capsule cap5M
cap8N
capO
esaB
Type VII  secretion | essA
Secretion system
system essB
esxA
422
423
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