

1 Genetic and ecomorphological divergence between sympatric *Astyanax* 2 morphs from Central America

4 **Authors:** Carlos A. Garita-Alvarado^{1,2}, Marco Garduño-Sánchez^{1,2}, Marta Barluenga³, C.
5 Patricia Ornelas-García^{1*}

6

7 ¹Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de
8 México, Tercer Circuito Exterior S/N. CP 045110, México City, México.

9 ²Posgrado en Ciencias Biológicas, Universidad Autónoma de México, Tercer Circuito
10 Exterior S/N. CP 04510, México City, México.

11 ³Departament of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias
12 Naturales, CSIC, José Gutiérrez Abascal 2, 28006 Madrid Spain.

13

14 *Corresponding author: C. Patricia Ornelas-García, patricia.ornelas.g@ib.unam.mx

15

16 Carlos A. Garita-Alvarado: cagaritab@gmail.com, Orcid 0000-0003-2815-3829

17 Marco Garduño-Sánchez: marco.garduno@st.ib.unam.mx

18 Marta Barluenga: Marta.Barluenga@mncn.csic.es, Orcid 0000-0003-1514-0586

19

20

21

22

1 **Abstract:** Ecological and morphological divergence within populations can be a signal of
2 adaptive divergence, which can maintain intraspecific polymorphisms and promote
3 ecological speciation in the event of reproductive isolation. Here, we evaluate correlations
4 among morphology, trophic ecology, and genetic differentiation between two divergent
5 morphs (elongate and deep-body) of the fish genus *Astyanax* in the San Juan River basin in
6 Central America, to infer the putative evolutionary mechanism shaping this system. We
7 collected the two morphs from three water bodies and analyzed: 1) the correlation between
8 body shape and the shape of the premaxilla, a relevant trophic structure, 2) the trophic level
9 and niche width of each morph, 3) the correspondence between trophic level and body and
10 premaxillary shape, and 4) the genetic differentiation between morphs using mitochondrial
11 and nuclear markers. We found a strong correlation between the body and premaxillary
12 shape of the morphs. The elongate-body morph had a streamlined body, a premaxilla with
13 acuter angles and a narrower ascending process, and a higher trophic level, characteristic of
14 species with predatorial habits. By contrast, the deep-body morph had a higher body depth,
15 a premaxilla with less acute angles, and a broader trophic niche, suggesting generalist
16 habits. Despite the strong correlation between morphological and ecological divergence, the
17 morphs showed limited genetic differentiation, supporting the idea that morphs may be
18 undergoing incipient ecological speciation, although alternative scenarios such as stable
19 polymorphism or plasticity should also be considered. This study provides evidence about
20 the role of ecological factors in the diversification processes in *Astyanax*.

21

22 **Keywords:** adaptive divergence, ecomorphology, genetic divergence, incipient ecological
23 speciation, isolation by distance, stable isotopes, trophic polymorphism, trophic level.

24

1 **Introduction**

2 Alternative adaptive phenotypes that utilize different resources within a population (i.e.,
3 resource polymorphisms) are commonly found in vertebrates, and they are considered
4 critical in the evolution of innovation and diversification (West Eberhard, 1986, 2003;
5 Smith & Skúlason, 1996; Skúlason et al., 2019). Divergent and frequency-dependent
6 selection can both generate conditions for adaptive divergence by favoring the exploitation
7 of alternative resources, which, in turn, could promote and maintain stable polymorphisms
8 in a population over time (Smith & Skúlason, 1996; West Eberhard, 2003) or, alternatively,
9 promote ecological speciation if divergent phenotypes become reproductively isolated
10 (Schluter, 1996; Schluter, 2000; Nosil, 2012; Hendry, 2009). Genetic processes and/or
11 environmental responses (phenotypic plasticity) can be involved in generating adaptive
12 differences (West Eberhard, 2003; Nonaka et al., 2015).

13 In the context of ecological speciation, different stages along a continuum can be found
14 (Hendry, 2009; Nosil, Harmon, & Seehausen, 2009), from phenotypic variation without
15 reproductive isolation or stages with a different level of reproductive isolation (incipient
16 speciation) to discontinuous adaptive differences with complete reproductive isolation
17 (speciation completion). It has been argued (e.g., Kulmuni et al., 2020) that the speciation
18 continuum is neither unidirectional nor unidimensional, and that the accumulation of
19 barriers to gene flow is an extended process in which reproductive isolation often slowly
20 evolves. Remarkable cases of resource polymorphisms in trophic ecology and/or habitat use
21 that are considered at different stages of speciation occur in a variety of freshwater fishes.
22 For instance, adaptive divergence without reproductive isolation has been observed in the
23 sunfish *Lepomis gibbosus* (McCairns & Fox, 2004), the yellow perch *Perca flavescens*

1 (Faulks, Svanbäck, Eklöv, & Östman, 2015), the roach *Rutilus rutilus* (Faulks et al., 2015),
2 the brook trout *Salvelinus fontinalis* (McLaughlin & Grant, 1994), and the desert cichlid
3 *Herichthys minckleyi* (Magalhaes, Ornelas-García, Leal-Cardin, Ramírez, & Barluenga,
4 2015). Intermediate levels of adaptive divergence and reproductive isolation have been
5 reported in sympatric ecotypes of the whitefish *Coregonus clupeaformis* in several North
6 American lakes (Lu & Bernatchez, 1999). Finally, evidence of complete reproductive
7 isolation has been shown in an anadromous species pair of the threespine stickleback
8 (*Gasterosteus aculeatus*) species complex in Japan (Kitano, Seiichi, & Peichel, 2007), and
9 in the Midas cichlid species complex *Amphilophus* spp. in Lake Apoyo, a crater lake in
10 Nicaragua (Barluenga, Stölting, Salzburger, Muschick, & Meyer, 2006).

11 The complex geological and hydrographical history of Central America makes it a unique
12 scenario for freshwater fish fauna diversification (Myers, 1966; Matamoros, McMahan,
13 Chakrabarty, Albert, & Schaefer, 2015). An excellent system in which to assess
14 mechanisms promoting and maintaining diversity is the freshwater fish genus *Astyanax*
15 Baird & Girard, 1854, given its remarkable adaptability to diverse environmental
16 conditions (Jeffery, 2009). Previous studies have shown the high diversification capacity of
17 *Astyanax* in lacustrine environments (Garita-Alvarado, Barluenga, & Ornelas-García, 2018;
18 Powers et al., 2020), particularly in the San Juan River basin, which includes two large
19 Nicaraguan lakes, Managua and Nicaragua, and their associated outflow river, the San
20 Juan. In this basin, two very distinct morphs (elongate-body and deep-body) of *Astyanax*
21 coexist in sympatry (Garita-Alvarado et al., 2018), raising questions about the degree of
22 morphological divergence, ecological specialization, and reproductive isolation shown by
23 the morphs, and the links between these factors. The divergent morphologies of these two

1 morphs, which have evolved in parallel and coexist in sympatry in other Mesoamerican
2 regions (e.g., Lake Catemaco in Mexico), have been associated with a differential use of
3 environmental resources (Ornelas-García et al., 2018).

4 Previous morphological studies of *Astyanax* in the San Juan River basin have shown that
5 the alternative morphs present a high level of divergence in trophic-related traits (Garita-
6 Alvarado et al., 2018; Powers et al., 2020). Regarding trophic habits, Bussing (1993), on
7 the basis of a stomach content analysis, described the elongate-body morph as mainly
8 piscivorous, and the deep-body morph as omnivorous, mainly feeding on insects and plant
9 material. However, this analysis represents a single snapshot of trophic habits; therefore,
10 the trophic ecology (trophic niche width and trophic level) of the sympatric morphs in the
11 San Juan River basin is still largely unknown.

12 Despite the divergence in trophic-related traits (Garita-Alvarado et al., 2018; Powers et al.,
13 2020) and the potential differences in trophic habits (Bussing, 1993), very few studies have
14 characterized the level of genetic differentiation between the two morphs. Ornelas-García,
15 Domínguez-Domínguez, & Doadrio (2008) showed that morphs have a close genetic
16 relationship, and even share mitochondrial haplotypes. Given this context, in the present
17 study, we investigate the degree of genetic differentiation and ecomorphological divergence
18 between the sympatric morphs, and their correlation. We hypothesize that if the two
19 morphs of *Astyanax* are at incipient stages of ecological speciation, then ecomorphological
20 differences would be associated with genetic differentiation, evidencing limitations to gene
21 flow (because of some level of reproductive isolation), as suggested by empirical studies of
22 ecological speciation (Thibert-Plante & Hendry, 2011; Yamasaki et al., 2020).
23 Alternatively, if the two morphs represent a case of stable polymorphisms, we would

1 expect to observe a lack of association between the genetic variation of neutral markers and
2 the ecomorphology of the *Astyanax* morphs due to unrestricted gene flow between them
3 (Smith & Skúlason 1996).

4 In order to establish whether the morphological, ecological, and genetic divergences
5 between *Astyanax* morphs in the San Juan River basin are associated, we first evaluate the
6 correlation between body shape and trophic morphology (based on the shape of the
7 premaxillary bone shape) to show, in detail, the contrasting patterns of morphological
8 differentiation between the morphs. Then, using stable isotope analyses, we clarify the
9 trophic ecology (trophic niche width and trophic level) of the morphs, and evaluate the
10 association between trophic level and premaxillary and body shape. Finally, by analyzing
11 mitochondrial and neutral nuclear markers, we determine the degree of genetic
12 differentiation between the two divergent morphs.

13

14 **Materials and Methods**

15 ***Study species and sample collections***

16 We collected the two morphs of *Astyanax* (elongate and deep-body) from ten sampling sites
17 across three water bodies in the San Juan River basin: the two Nicaraguan lakes, Managua
18 and Nicaragua, and the Sarapiquí River (referred to as the three regions throughout the
19 study; Fig. 1). The two morphs were previously considered as species belonging to two
20 different genera; however, phylogenetic studies clearly show that they all belong to the
21 same genus (i.e., *Astyanax*: Ornelas- García et al., 2008; Schmitter-Soto, 2017). Originally,

1 the elongate-body morph was assigned to the genus *Bramocharax*, and comprised two
2 species: *B. bransfordi* Gill 1877 from Lake Nicaragua and the Sarapiquí River, and *B.*
3 *elongatus* Meek 1907 from Lake Managua. The deep-body morph was assigned to the
4 genus *Astyanax*, and also comprised two species: *A. nicaraguensis* Eigenmann & Ogle
5 1907 from Lake Nicaragua and the Sarapiquí River, and *A. nasutus* Meek 1907 from Lake
6 Managua. We collected a total of 302 specimens: 187 deep-body morphs and 115 elongate-
7 body morphs. The number of specimens and sampling sites included varied depending on
8 the analysis (see below). The low sample size of the elongate-body morph from Sarapiquí
9 River reflects its low abundance in lotic habitats, where its presence is considered atypical
10 (Bussing, 1998). Fish were collected using either gill or cast nets during sampling
11 campaigns that took place between November 2011 and January 2017. The subsample of
12 fish used in the isotopic analyses were collected during the dry season between December
13 2016 and January 2017. While in the field, the collected fish were euthanized with iced
14 water, photographed in a standardized position, and assigned to a morph type on the basis
15 of dentition patterns (Bussing 1998). Fin clips and muscle tissue samples were collected
16 and preserved for, respectively, the DNA analyses and the stable isotope analyses. The
17 muscle samples were stored in sodium chloride powder in the field, and later at -80 °C in
18 the laboratory. Finally, the premaxillary bone was dissected for the morphometric analyses.

19

20 ***Ecomorphology***

21 To characterize the shape of the premaxillary bone and the body, we performed geometric
22 morphometric analyses. Prior to imaging, the dissected premaxillary bone was cleaned in a
23 1 M KOH solution for 15 min. We imaged each premaxilla using a stereoscope (Zeiss

1 Stemi305), and digitized two landmarks and 50 semilandmarks (Fig. 1B) using TPSDig2
2 version 2.31 (Rohlf, 2015). We performed a Procrustes superimposition, and calculated
3 relative warps (RWs) and centroid size using the program TPSRelw version 1.69 (Rohlf,
4 2015). To characterize body shape, we digitized 16 landmarks and 13 semilandmarks (Fig.
5 1C) also using TPSDig2. We performed a Procrustes superimposition, and calculated RWs
6 and centroid size with CoordGen8h and PCAGen8o, respectively, in the Integrated
7 Morphometrics Package (Sheets, 2001).
8 To test for an association between trophic morphology and body shape, and to characterize
9 in greater detail the morphological divergence between morphs, we correlated the shape of
10 the premaxilla with body shape for each morph through an analysis of 136 specimens (92
11 deep-body and 44 elongate-body morphs from eight of the 10 sites). We used a linear
12 mixed-effects model (LMM) to evaluate the association of RW1 of the premaxilla, which is
13 directly related to ecomorphological trophic specialization (as the response variable), with
14 morph type, RW1 of body shape, and region (as fixed effect predictor variables; only
15 statistically significant interactions were included). We included sampling site as a random
16 effect. The LMM was run in the nlme package in R (R Core Team, 2013, version 3.03:
17 <http://cran.r-project.org>).

18

19 ***Trophic divergence analysis***

20 To assess trophic divergence between morphs, we analyzed the stable isotope ratios of
21 carbon (13C/12C) and nitrogen (15N/14N) in 96 samples (59 deep-body and 37 elongate-
22 body) collected from seven of the 10 sampling sites. These ratios are widely used to
23 determine trophic level and trophic niche width (Post, 2002; Jempsen & Winemiller, 2002;
24 Layman, Arrington, Montaña, & Post, 2007; Schalk, Montaña, Winemiller, & Fitzgerald,

1 2017). Preserved muscle tissue samples were dried at 60 °C for 24 h in an oven and then
2 ground into a fine powder with a mortar and a pestle. Subsamples (1–1.5 mg) were
3 individually packaged into tin capsules prior to being analyzed at the Stable Isotope Facility
4 of the University of California, Davis. The stable isotopic ratios were measured in parts per
5 thousand (‰) in standard delta “ δ ” notation. To determine trophic niche width, we used
6 metrics that describe trophic variation based on the position of consumers in $\delta^{13}\text{C}$ and
7 $\delta^{15}\text{N}$ (Layman et al., 2007; Jackson, Inger, Parnell, & Bearhop, 2011). For each morph in
8 each of the three regions, we calculated six trophic niche metrics ($\delta^{15}\text{N}$ range, $\delta^{13}\text{C}$ range,
9 total area: TA, mean distance to centroid: CD, mean nearest neighbor distance: NND, and
10 standard deviation of nearest neighbor distance: SDNND) following Layman et al. (2007).
11 We also calculated the Bayesian standard ellipse area (SEA_B) using the package SIBER
12 (Jackson et al., 2011) in R. Similar to TA (Layman et al., 2007), SEA_B provides an estimate
13 of the trophic niche width per morph, however, it is less influenced by sample size
14 compared with TA (Jackson et al., 2011; Syvääranta, Lensu, Marjomäki, Oksanen, & Jones,
15 2013).

16 We next compared the trophic level of morphs by region, and its relationship to the shape
17 of both the premaxilla and the body. For this, we analyzed the shape of the premaxilla in 70
18 specimens, and the shape of the body in 96 specimens. First, we visualized variation
19 between morphs within regions in these shapes by plotting RW2 against RW1.
20 Then, we performed two LMM analysis using $\delta^{15}\text{N}$ as the response variable and either
21 RW1 of the premaxillary shape or of the body shape as covariate. In each analysis, we
22 included morph type, the covariate, and region as fixed effect predictor variables (we tested

1 for an interaction between all predictor variables but included only if statistically
2 significant). We included sampling site as a random effect.
3 Size influences many traits in animals including shape (Gould, 1966; Klingenberg, 1996).
4 To control for size and to determine the variation in the shape of both the premaxilla and
5 body associated with size (centroid size), we performed independent LMM analyses using
6 the RW1 of premaxillary shape or of body shape as the response variables. The log centroid
7 size, morph type and region were the fixed effect predictors. For both analyses, sampling
8 site was included as a random effect. All of the LMM analyses were performed using the
9 package nlme in R.

10

11 ***Genetic analyses***

12 DNA was extracted using a standard Proteinase-K in a SDS/EDTA solution, NaCl and
13 chloroform, following the protocol by Sonnenberg, Nolte, and Tautz (2007). DNA quality
14 and quantity were determined with a Nanodrop 1000 (Thermo Fisher Scientific). A
15 fragment of 880-bp of the mitochondrial gene cytochrome *b* (*Cytb*) was amplified by PCR
16 from 37 specimens from eight sampling sites using the primers Glu- F
17 5'GAAGAACCAACCGTTATTCAA and Thr- R 5'ACCTCCRATCTYCGGATTACA
18 (Zardoya & Doadrio, 1998). The following thermocycling conditions were used: initial
19 denaturation at 95 °C (5 min), followed by 35 cycles at 94 °C (45 s), 48 °C (1 min), and 72
20 °C (90 s), and a final extension at 72 °C (5 min). Each PCR was performed in a final
21 volume of 10 µl containing 0.4 mmol of each primer, 0.2 mmol of each dNTP, 2 mmol
22 MgCl₂, 1 unit of Taq DNA polymerase (Invitrogen), and 10 ng of template DNA. PCR
23 products were purified with EXOSAP-IT (Thermo Fisher Scientific) and then sequenced on
24 an ABI PRISM 3700 DNA automated sequencer (Applied Biosystems).

1 We carried out a phylogenetic reconstruction of *Astyanax* spp. in Central America (i.e.,
2 Group II in Ornelas-García et al., 2008), we used 37 sequences generated in this study and
3 59 that were previously published by Ornelas-García et al. (2008) using an alignment of
4 1140-bp. The latter sequences represent populations of *Astyanax* from tributaries near the
5 Pacific coast of northern Nicaragua, the Atlantic coast of Nicaragua and Costa Rica and
6 northern Central America. We included lineages of *Astyanax* from Mexico and Costa Rica
7 (Groups I and III, respectively) as the outgroups. The Bayesian inference analysis was
8 performed in MrBayes version 3.2.7 (Huelsenbeck & Ronquist, 2001), as implemented in
9 the CIPRES Science Gateway (<https://www.phylo.org/portal2/home.action>; Miller, Pfeiffer,
10 & Schwartz, 2010). We created codon partitions for the first, second, and third position in
11 the alignment, and used GTR + Γ as the substitution model. The phylogenetic
12 reconstruction was performed using two independent runs of four Metropolis-coupled
13 Markov chain Monte-Carlo for 20 million generations each, with the first 20% of trees
14 discarded as burn in. The sampled trees were used to estimate posterior probabilities and
15 determine branch supports. We assessed convergence of the Bayesian analysis in MrBayes,
16 and also confirmed that ESS values were well over 200 using Tracer (Rambaut,
17 Drummond, Xie, Baele, & Suchard, 2018).

18 We amplified 11 nuclear microsatellite loci that had been developed for *Astyanax*
19 *mexicanus* (Protas, Conrad, Gross, Tabin, & Borowsky, 2006) from 302 specimens (187
20 deep-body morphs, 115 elongate-body morphs) across all sampling sites. These markers are
21 located on different chromosomes and are not linked to reported traits. The loci were
22 multiplexed in two reactions, each with a final volume of 5 μ l, using the Multiplex PCR Kit
23 (QIAGEN), following the manufacturer's instructions. PCR amplifications consisted of

1 initial denaturation at 95 °C for 5 min; followed by 35 cycles of denaturation at 94 °C for
2 30 s, annealing at 52–60 °C for 30 s, and extension at 72 °C for 45 s; and a final extension
3 step at 72 °C for 7 min. Forward primers were labelled with fluorescent dyes (Invitrogen),
4 and amplified PCR products were run on an ABI Prism 3730 DNA Analyzer (GS500 ROX
5 size standard). Allele sizes were scored using Geneious R10 (Kearse et al., 2012), and
6 MICRO-CHECKER version 2.23 (Van Oosterhout, Hutchinson, Wills, & Shipley, 2004)
7 was used to check for the presence of null alleles and to identify and correct any genotyping
8 errors.

9 For the genetic differentiation analyses and summary statistics for *Cytb* we included an
10 alignment of 880-bp and a total of 49 sequences: 37 generated in this study and 12
11 previously published ones of *Astyanax* from the San Juan River basin (Ornelas-García et
12 al., 2008). The microsatellite analysis included 302 samples of *Astyanax*. Summary
13 descriptive statistics were calculated for combinations of morphs and regions using DnaSP
14 version 6 (Rozas et al., 2017) for *Cytb* and GENALEX version 6 (Peakall & Smouse, 2006)
15 for the microsatellites. For the microsatellites, allelic richness (AR), using the rarefaction
16 approach to deal with differences in sample size, was calculated in the package
17 popgenreport (Adamack & Gruber, 2014) in R. We evaluated the degree of genetic
18 differentiation between morphs and between geographical regions using several methods.
19 Initially, for both types of markers, we performed two hierarchical analyses of molecular
20 variance (AMOVAs) each with 20,000 permutations in Arlequin version 3.5.2.2 (Excoffier
21 & Lischer, 2010). The first included morphs as groups (and regions as populations), and the
22 second considered regions as groups (and morphs as populations). Then, we calculated the

1 pairwise Fst of the six morph type–region combinations (for both types of molecular
2 markers), also in Arlequin, with 20,000 permutations.

3 To determine the genetic clustering of morphs or regions using nuclear data, we employed
4 two methods. First, we ran a Bayesian model-based clustering algorithm in Structure
5 version 2.1 (Pritchard, Stephens, & Donnelly, 2000) to test the assignment of individuals
6 according to morph type and region. The admixture model and the option of correlated
7 allele frequencies between populations were used. To determine the number of ancestral
8 clusters, K, we compared the log-likelihood ratios of five runs for values of K between 1
9 and 11, and calculated the ΔK following Evanno, Regnaut, and Goudet (2005) to determine
10 the K value associated with the best log-likelihood probability. Each run consisted of
11 1,000,000 iterations with a burn-in period of 200,000 without prior information on their
12 sampling region. Also, we ran the clustering algorithm of Structure to test for any particular
13 genetic structuring for each region separately, including the same parameters used in the
14 overall Structure analysis for values of K between 1 and 6. Second, we performed a
15 discriminant analysis of principal components (DACP) (Jombart & Ahmed, 2011; Jombart
16 & Collins, 2015) using the package adegenet in R. The DA method defines a model in
17 which genetic variation is partitioned into a between-group and a within-group component,
18 yielding synthetic variables that maximize the first group while minimizing the second
19 (Jombart & Ahmed, 2011). The DAPC was performed using the microsatellite data, with
20 missing data removed, and the individual clustering assignment was determined using the
21 *find.clusters* function and a sequential K-means from 1 to 6 with 10 iterations. The best-
22 supported model inferring the optimal number of genetic clusters was selected on basis of
23 the Bayesian Information Criterion (BIC). The validation set was selected with a stratified
24 random sampling, which guarantees that at least one member of each conglomerate or

1 cluster is represented in both the training and the validation set (Jombart & Collins, 2015).
2 The proportions of intermixes, obtained from the membership probability based on the
3 retained discriminant functions, were plotted for each individual.
4 Finally, to test for isolation by distance, we pooled the specimens by sampling site and
5 performed a Mantel test on the microsatellite data in Arlequin with 20,000 permutations.
6

7 **Results**

8

9 ***Ecomorphology***

10 The LMM analysis testing for an association between trophic morphology and body shape
11 revealed a strong correlation between the first RWs of both premaxillary and body shape
12 (RW1 of body, $F_{1,124} = 19.3$, $p < 0.001$). We also observed clear morphological differences
13 between the morphs ($F_{1,124} = 420.3$, $p < 0.001$). Positive RW1 values for body shape,
14 indicating slender bodies, were associated with positive RW1 values for premaxillary
15 shape, which depict premaxillas with acute angles and a narrow ascending process, both
16 characteristic of the elongate-body morph (Fig. 2). Despite some overlap in body shape
17 between morphs (between 0 and 0.02 on the x-axis, Fig. 2), its relationship with the shape
18 of the premaxilla clearly differed between morphs. We also found marginal differences
19 among regions ($F_{2,5} = 5.8$, $p = 0.05$), as well as different slopes (interaction region*RW1 of
20 body, $F_{2,124} = 4.7$, $p < 0.05$).
21

22 ***Trophic divergence***

1 The results of the stable isotope ratio analysis showed that sympatric morphs within regions
2 differed in trophic niche width, although the direction of divergence was region dependent
3 (Fig. S1A). In the lakes Managua and Nicaragua, the trophic niche width of the deep-body
4 morph was broader than that of the elongate-body morph according to the isotope metrics
5 (Fig. S1A); moreover, the TA, CD, and SEA_B metrics were greater for the deep-body
6 morph (Fig. S1B, Table S1). In contrast, in the Sarapiquí River, the elongate-body morph
7 showed a greater trophic niche width compared with the deep-body morph, mainly due to
8 having a larger $\delta^{13}\text{C}$ range (Fig. S1A, Table S1); however, our sample size was low for the
9 calculation of this trophic niche.

10 When RW2 of the premaxillary shape was plotted against RW1, sympatric morphs could be
11 clearly discriminated for all regions (Fig. 3A). RW1 mainly accounted for the variation in
12 the angles and the width of the ascending process. Acute angles and a narrow ascending
13 process are associated with the elongate-body morph and a higher trophic level (with the
14 deep-body morph showing the opposite patterns). RW2 accounted for the variation in the
15 width of the premaxilla and the length of the ascending process. For body shape, RW1
16 mainly discriminated individuals by body depth, while RW2 was related to head length and
17 eye diameter (Fig. 3B). Sympatric morphs from Lake Managua and Sarapiquí River were
18 clearly distinguishable by body shape, whereas those from Lake Nicaragua showed some
19 overlap, but followed the same pattern observed for the other two regions.

20 In the comparisons of trophic levels between morphs, the elongate-body morph showed a
21 higher trophic level than the deep-body morph, when both premaxillary shape and body
22 shape were considered (Fig. 4). In the LMM with the RW1 of premaxillary shape set as the
23 covariate, we found significant differences between morph types ($F_{1,61} = 32.9$, $p < 0.001$)
24 and regions ($F_{2,4} = 74.2$, $p < 0.01$), and the RW1 of the premaxillary shape was positively

1 correlated with $\delta^{15}\text{N}$ values (Fig. 4A–C, $F_{1,61} = 5.3$, $p < 0.05$). Likewise, in the LMM with
2 the RW1 of the body shape set as covariate, we found significant differences associated
3 with morph type (with the elongate-body morph showing a higher trophic level, $F_{1,85} =$
4 25.3, $p < 0.001$) and regions ($F_{2,4} = 24.2$, $p < 0.01$), and a positive correlation between the
5 RW1 of the body shape and $\delta^{15}\text{N}$ (Fig. 4D–F, $F_{1,85} = 4.8$ $p < 0.05$). The extent to which the
6 two morph types differed was region dependent, with morphs from Lake Nicaragua
7 showing a smaller divergence (interaction region*morph $F_{2,85} = 8.9$, $p < 0.001$) than those
8 from Lake Managua and the Sarapiquí River. Regarding shape variations associated with
9 size, differences between the two morph types in the RW1 of both the premaxillary shape
10 and the body shape were consistent and independent of variations in size (log centroid size)
11 (Fig. S2).

12

13 ***Genetic analyses***

14

15 We recovered five well supported clades in the Bayesian phylogenetic tree based on *Cytb*
16 of Central American *Astyanax* (Fig. S3). The relationships among these clades were not
17 fully resolved, and the morphs were not recovered as a monophyletic group. Two of the
18 clades (A and B) comprised samples from the three regions in the San Juan River basin.
19 Clade A included samples of both morphs from Lake Managua and those from tributaries
20 along the Pacific coast of northern Nicaragua. Clade B was comprised of samples of both
21 morphs from all three regions in the San Juan River basin as well as those from tributaries
22 along the Atlantic coast of Nicaragua and Costa Rica. The other clades were comprised of
23 samples from northern Central America (Clades C and D) and the Pacific versant of Costa
24 Rica (Clade E).

1 Regarding the nuclear markers, of the 11 microsatellite loci analyzed, some showed signals
2 of the presence of null alleles in some of the studied populations, and only one (16C)
3 showed an excess of homozygotes in all groups considered. Summary statistics of the
4 genetic variability of *Cytb* and the microsatellites are shown in Table 1. For *Cytb*, we found
5 high levels of polymorphisms in the six groups analyzed (i.e., the two morph types in each
6 of the three regions). These groups also showed high levels of haplotype diversity (HD,
7 0.9–1), and a high proportion of private haplotypes (PH) (40%–85.7%; Table 1A). All
8 microsatellites were polymorphic in all groups. The deep-body morph from Lake Managua
9 had the most alleles (Na) and effective alleles (Ne), while the elongate-body morph from
10 Sarapiquí River had the fewest alleles. However, after controlling for sample size, the deep-
11 body morph from Sarapiquí showed the highest allelic richness (Table 1B). Also, observed
12 (Ho) and expected heterozygosity (He) and unbiased expected heterozygosity (UHe) were
13 relatively high for all groups. The elongate-body morph from Sarapiquí River exhibited the
14 highest value of Ho, and the deep-body morph from the same river showed the highest
15 value of He (Table 1B).

16 In the hierarchical AMOVAs for *Cytb* and the microsatellites, similar results were obtained
17 when samples were grouped by morphs, with significant differences found among regions
18 (i.e., Lake Managua, Lake Nicaragua, and Sarapiquí River). Also, in the AMOVA for *Cytb*,
19 when samples were grouped by region, only the within populations level was significant
20 (Table 2A). However, in the AMOVA for the microsatellites, we found significant
21 differences between morphs when samples were grouped by region (Table 2B). In all
22 groupings, the within population level was significant, and accounted for most of the
23 explained variance, as frequently seen in AMOVA (Excoffier, Smouse, & Quattro, 1992)
24 (Table 2).

1 In the Fst pairwise comparisons of the mitochondrial data, no significant differences were
2 found (Table 3). However, for the nuclear data, significant differences between sympatric
3 morphs were observed only for the Sarapiquí River. Significant differences between other
4 pairwise comparisons of morphs and regions are shown in Table 3.

5 In the Structure analysis and according to the ΔK value following Evanno et al. (2005), a K
6 of 2 showed the best log-likelihood probability. However, the clusters did not group
7 according to morph type or region (Fig. S4A). Clusters also did not group by morph type in
8 the analysis by region (Fig. S5). In the DAPC, we retained the first 60 principal
9 components, and the BIC indicated the best-fit k value was 3; however, as in the Structure
10 analyses, clusters did not group according to morph type or region (Fig. S4B).

11 The Mantel test showed an isolation by distance pattern, evidencing that genetic distances
12 between sampling sites among regions were larger than those between sampling sites
13 within regions ($r^2 = 0.45$, $p < 0.001$, Fig. 5).

14

15 **Discussion**

16

17 In this study, we evaluated the association among morphological, ecological, and genetic
18 divergences between *Astyanax* morphs across three tropical regions of the San Juan River
19 basin in Central America. Our results showed an association between ecological divergence
20 in trophic niche and trophic level (i.e., resource use) and morphological differentiation in
21 the body and premaxillary shape in *Astyanax* (trophic polymorphism), which could be
22 interpreted as evidence of adaptive divergence. Moreover, we observed a weak but
23 significant level of genetic differentiation in the nuclear markers between the sympatric
24 morphs (AMOVA and pairwise Fst in Sarapiquí River). Although we cannot rule out a

1 possible scenario of stable trophic polymorphism, the evidence of slight genetic
2 differentiation provides some support to the hypothesis that morphs may be in an incipient
3 speciation process. Regardless, our study provides strong additional evidence about the role
4 of ecological factors in the diversification processes in *Astyanax*.

5

6 ***Morphological and ecological divergence between morphs***

7 Sympatric morphs of *Astyanax* from the San Juan River basin showed a high level of
8 morphological divergence when correlating body shape with premaxillary shape. As body
9 shape becomes more streamlined, the angles of the premaxilla become acuter and the
10 ascending process narrower (note the almost parallel lines in Fig. 2). However, it is the
11 difference in the magnitude of the premaxillary shape (i.e., the separation of morph-
12 adjusted lines along the y-axes) that clearly separate the two morphs, despite some overlap
13 in body shape. Modularity, i.e., the presence of discrete modules as sets of phenotypic traits
14 that are tightly integrated internally but relatively independent from other modules
15 (Klingenberg, 2008, 2014), has been recognized as a universal emergent property of
16 biological traits that could facilitate evolution (West-Eberhard, 2019). Indeed, modularity
17 has already been suggested to be involved in the divergence of lacustrine *Astyanax* in other
18 lineages (Ornelas-García, Bautista, Herder, & Doadrio, 2017). Notably, in our case, the
19 results demonstrate a strong correlation between the shape of the premaxilla and body
20 shape in morphs of Central American *Astyanax*, revealing contrasting patterns of
21 covariation between them. Therefore, future analyses of the modular evolution of both
22 morphs may shed light on the synergistic role of the two morphological sets (body shape
23 and the trophic morphology) in the divergence of the morphs, and the role of modular
24 evolution as a triggering mechanism in the trophic diversification of the genus.

1 The strong correlation between body shape and the shape of the premaxilla in these morphs
2 highlights the relevance of ecomorphology, along with differences in trophic ecology, as a
3 promoter of diversification in *Astyanax*. For example, slender bodies, which characterize
4 the elongate-body morph, are often adaptations to open water environments, as has been
5 supported by theoretical predictions for fish adapted to high sustained swimming (Webb,
6 1984; Ornelas-García et al., 2018). Also, the acute angular shape of the premaxilla in the
7 elongate-body morph resembles the premaxillary shape found in other predatory
8 characiforms, such as species of the genus *Oligosarcus* (Ribeiro & Menezes, 2015).
9 Diversification related to trophic specialization has generally been recognized as a common
10 pattern in characiforms (Sidlauskas, 2007, 2008; Ornelas-García et al., 2018).
11 The trophic niche of the deep-body morph inhabiting the lacustrine regions (lakes Managua
12 and Nicaragua) was wider than that of the elongate-body morph. This pattern is congruent
13 with results observed for similar morphs in other lacustrine populations of *Astyanax* (i.e.,
14 Lake Catemaco, Mexico) (Ornelas-García et al., 2018), suggesting trophic specialization in
15 the elongate-body morph and retention of generalist habits in the deep-body one. Jepsen
16 and Winemiller (2002) reported similar patterns for other fish species in Venezuela. In their
17 analysis of stable isotope ratios, these authors showed that highly specialized piscivorous
18 fishes, regardless of species, had less variable carbon and nitrogen profiles compared with
19 other trophic groups. Thus, our finding of a narrower trophic niche for the lacustrine
20 elongate-body morph is congruent with Bussing's (1993) description of the species as
21 having a primarily piscivorous feeding strategy. The wider trophic niche for the lacustrine
22 deep-body morph suggests an omnivorous strategy, as found in other species of *Astyanax*
23 (Mise, Fugi, Pagotto, & Goulart, 2013; Ornelas-García et al., 2018). In contrast to the
24 lacustrine populations, in the Sarapiquí River, the elongate-body morph had a wider trophic

1 niche compared with the deep-body morph, mainly due to the $\delta^{13}\text{C}$ range. Despite our
2 small sample size in some groups, the $\delta^{13}\text{C}$ values could reflect the abundance of primary
3 carbon sources within the food web, given that the range increases as different primary
4 carbon sources are incorporated in the food web (Jackson et al., 2011). Differences in the
5 direction of the niche amplitude observed between *Astyanax* morphs from the river and the
6 lakes may be due to differences in primary carbon sources, and their dynamics, between the
7 two environments. In lakes, pelagic and benthic primary carbon sources are known to
8 contribute to higher trophic levels production (Vander Zanden & Vadeboncoeur, 2002);
9 however, river food webs are considered more complex (Finlay & Kendall, 2007). River
10 drainages contain both allochthonous carbon, derived primarily from terrestrial sources
11 (plants and soils), and autochthonous carbon, derived from production within rivers
12 (aquatic macrophytes, algae, and bacteria) (Finlay & Kendall, 2007). Further
13 characterization of the food web in the Sarapiquí River and the Nicaraguan great lakes
14 would likely clarify the relationship among primary carbon sources, the organisms that
15 occupy several trophic levels, and the trophic niche width of morphs.

16 Likewise, the accumulation of N isotopes can be used to estimate trophic position as it
17 increases with trophic level, with predators typically showing higher levels of accumulation
18 compared with non-predators (Post, 2002; Jackson et al., 2011). We observed a positive
19 correlation between N isotope accumulation and not only slender bodies but also acuter
20 angles of the premaxilla, further support the idea that elongate-body morphs are predatory.
21 We also compared the trophic level of sympatric morphs in the three regions relative to
22 their detailed morphology. In our models, the factors related to the divergence between
23 morphs (RW1 of body/premaxillary shape and morph type) were significant, showing

1 evidence of divergence in trophic level. Interestingly, the differences in trophic level
2 between sympatric morphs were robust and consistent, despite the differences in $\delta^{15}\text{N}$
3 among regions, which could be explained by variation at the base of the food web from
4 which organisms draw nitrogen (Post, 2002). Ornelas-García et al. (2018) also found a
5 higher trophic level in the elongate-body morph compared with the deep-body morph in
6 Lake Catemaco, México. Our results, together with those of Ornelas-García et al. (2018),
7 support the hypothesis that morphology could reflect the ecology of an organism, and could
8 be used to predict its trophic habits, as has been proposed in other characids (Bonato,
9 Burress, & Fialho, 2017).

10

11 ***Genetic differentiation between morphs***

12 We found slight genetic differentiation between sympatric morphs of *Astyanax* in the San
13 Juan River basin, but with some contrasting patterns between morphs and regions. Our
14 phylogenetic reconstruction of *Astyanax* did not recover monophyletic groups according to
15 morph type or region, though the AMOVAs for both types of markers were congruent in
16 showing differences among regions, supporting the possibility of some geographic genetic
17 structuring. However, the AMOVA for the nuclear markers revealed significant differences
18 between morphs when regions were considered as groups (i.e., Lake Managua, Lake
19 Nicaragua, and Sarapiquí River), indicating some genetic divergence between morphs.
20 Furthermore, in the Fst pairwise comparisons, we found differences between sympatric
21 morphs in the Sarapiquí River region, although comparisons between morphs in the lakes
22 Managua and Nicaragua were not significant. A similar pattern of genetic differentiation
23 has been described for the African cichlid fish *Astatotilapia burtoni*, in which the degree of
24 differentiation between lake and stream adapted fish varied across regions in Lake

1 Tanganyika (Theis, Ronco, Indermaur, Salzburger, & Egger, 2014). This pattern of varying
2 genetic differentiation between morphs in different regions suggests that species might be
3 at different stages of the speciation continuum (Theis et al., 2014).
4 According to the clustering analyses, our samples most likely represent two (Bayesian
5 clustering algorithm, Structure) or three (DAPC) populations, however, the clusters were
6 not differentiated by morph type or region. Bayesian clustering analyses are known to have
7 a low capability to detect distinct clusters when genetic differentiation levels are low (e.g.,
8 Latch, Dharmarajan, Glaubitz, & Rhodes, 2006). In cases of incipient speciation, genetic
9 differentiation is typically weak (Nosil et al., 2009); therefore, our case may be reflecting a
10 similar situation. Although Jombart et al. (2010) showed that DAPC generally performs
11 better than Structure at characterizing population subdivision, and can even be used to
12 unravel complex population structures, in our case, it did not detect any clustering
13 associated with morphs or regions. Only the analyses based on the nuclear markers
14 (AMOVA and Fst comparisons) provide evidence supporting slight genetic differentiation
15 between morphs, and particular in the Sarapiquí River. Therefore, our study does not
16 provide clear evidence of any gene flow limitations between morphs. Future studies should
17 focus on determining if the significant genetic differentiation between morphs from
18 Sarapiquí River is stable over time, particularly considering our study's low sample size of
19 elongate-body morphs from that region, where their presence is considered rare (Bussing
20 1998). Also, future studies should include more molecular markers (e.g., genomic data) to
21 uncover potential differentiation patterns between morphs not detected by our data set.
22 Based on the weak genetic differentiation between morphs, we cannot rule out the alternate
23 evolutionary scenario of stable polymorphism. Since the genetic basis of the
24 ecomorphological divergence between morphs in the San Juan River basin is unknown,

1 phenotypic plasticity (i.e., alternative phenotypes in response to environmental differences)
2 remains as a plausible explanation for the adaptive divergence found, according to a stable
3 polymorphism scenario (Smith & Skúlason, 1996). However, there is increasing evidence
4 suggesting that phenotypic plasticity plays an important role in the ecological speciation
5 process (Nonaka et al., 2015; Sabino-Pinto et al., 2019).
6 The evolution of barriers to gene flow (leading to reproductive isolation) and
7 morphological divergence could be time-dependent, such that recently diverged populations
8 could show weaker signs of genetic differentiation (under an ecological divergence
9 framework) than older populations (Nosil et al., 2009; Nosil, 2012). The low level of
10 genetic differentiation observed between sympatric morphs in the San Juan River system is
11 higher than that recently reported in an equivalent system in Mexico (Lake Catemaco,
12 Ornelas-García et al., 2020). In that system, no genetic differentiation was found between
13 the elongate and deep-body morphs, and only a difference in migration rates between
14 morphs was observed, tentatively suggesting a genetic differentiation cline across the
15 Mexican and Central American lakes. The *Astyanax* found in Lake Catemaco may
16 correspond to a younger lineage of the genus than that in the San Juan River basin
17 (Ornelas-García et al., 2008), which could represent an older diverging lineage with
18 discrete levels of genetic differentiation. Congruent with this genetic divergence, Garita-
19 Alvarado et al. (2018) and Powers et al. (2020) found a higher level of morphological
20 divergence between morphs in the San Juan River system than between those from Lake
21 Catemaco. Additionally, besides time, Nosil et al. (2009) noted other factors that could
22 influence the ecological speciation process including the nature of the divergent selection
23 itself (e.g., strong vs. weak selection, or selection on a single trait vs. selection on a larger
24 number of traits) and genetic factors (e.g., no physical linkage between genes under

1 selection and those conferring reproductive isolation). These factors should be addressed in
2 *Astyanax* from Lake Catemaco and the San Juan River basin to better understand the
3 ecomorphological and genetic divergence between morphs.

4

5 ***Isolation by distance***

6 A pattern of isolation by distance was observed within the San Juan River basin. Geological
7 evidence shows that Managua and Nicaragua lakes originally formed a single water body
8 (the “Great Nicaraguan Lake”) that split into the present lakes in the late Pleistocene
9 (Hayes, 1899; Villa, 1976). Today, the two lakes remain partially isolated, and only
10 intermittently connect with each other through the Tipitapa River (see Fig 1), which runs
11 partially subterranean, but experiences periodic surface water flow. This situation implies
12 that contemporary exchange of fish between the two lakes is not extensive (Villa, 1976;
13 Barluenga et al., 2010) and thus gene flow is limited by distance. Consistent with this are
14 the results of the AMOVAs for both types of markers, which showed significant differences
15 among regions. The complex (geo) hydrological history of this area could be reflected in
16 the phylogenetic relationships recovered (the two lineages present in the San Juan River
17 basin also include *Astyanax* from outside the basin), and in the observed pattern of isolation
18 by distance. Further studies with additional samples could shed light on potential secondary
19 contact or incomplete lineage sorting patterns in *Astyanax* in the San Juan River basin
20 system.

21

22 In conclusion, we observed a strong correlation between body shape and premaxillary
23 shape, highlighting the morphological divergence of a relevant trophic structure in
24 sympatric morphs of *Astyanax* in the San Juan River system. We also found a strong

1 correlation between this morphological divergence and divergence in trophic ecology
2 (trophic niche and level) in these morphs, strongly supporting their adaptive divergence.
3 Furthermore, the weak genetic differentiation observed between the morphs suggests they
4 may be at a stage of incipient ecological speciation. Future studies including genomic data
5 may shed light on the genetic basis of ecomorphological divergence in this model and its
6 speciation process.

7

8

1 **References**

2 Adamack, A. T., & Gruber, B. (2014). PopGenReport: simplifying basic population genetic
3 analyses in R. *Methods in Ecology and Evolution*, 5(4), 384-387.

4 <https://doi.org/10.1111/2041-210X.12158>

5 Barluenga, M., Stölting, K. N., Salzburger, W., Muschick, M., & Meyer, A. (2006).
6 Sympatric speciation in Nicaraguan crater lake cichlid fish. *Nature*, 439(7077), 719.

7 <https://doi.org/10.1038/nature04325>

8 Barluenga, M., & Meyer, A. (2010). Phylogeography, colonization and population history
9 of the Midas cichlid species complex (*Amphilophus* spp.) in the Nicaraguan crater
10 lakes. *BMC Evolutionary Biology*, 10(1), 326. <https://doi.org/10.1186/1471-2148-10-326>

12 Bonato, K. O., Burress, E. D., & Fialho, C. B. (2017). Dietary differentiation in relation to
13 mouth and tooth morphology of a neotropical characid fish community. *Zoologischer
14 Anzeiger*, 267, 31-40. <https://doi.org/10.1016/j.jcz.2017.01.003>

15 Bussing, W. A. (1993). Fish communities and environmental characteristics of a tropical
16 rain forest river in Costa Rica. *Revista de Biología Tropical*, 791-809.

17 Bussing, W. A. (1998). Freshwater fishes of Costa Rica. Editorial Universidad de Costa
18 Rica.

19 Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of
20 individuals using the software STRUCTURE: a simulation study. *Molecular Ecology*,
21 14(8), 2611-2620. <https://doi.org/10.1111/j.1365-294X.2005.02553.x>

22 Excoffier, L., Smouse, P. E., & Quattro, J. M. (1992). Analysis of molecular variance
23 inferred from metric distances among DNA haplotypes: application to human

1 mitochondrial DNA restriction data. *Genetics*, 131(2), 479-491.

2 <https://doi.org/10.1093/genetics/131.2.479>

3 Excoffier, L., & Lischer, H. E. (2010). Arlequin suite ver 3.5: a new series of programs to
4 perform population genetics analyses under Linux and Windows. *Molecular Ecology*
5 Resources, 10(3), 564-567. <https://doi.org/10.1111/j.1755-0998.2010.02847.x>

6 Faulks, L., Svanbäck, R., Eklöv, P., & Östman, Ö. (2015). Genetic and morphological
7 divergence along the littoral–pelagic axis in two common and sympatric fishes: perch,
8 *Perca fluviatilis* (Percidae) and roach, *Rutilus rutilus* (Cyprinidae). *Biological Journal*
9 of the Linnean Society, 114(4), 929-940. <https://doi.org/10.1111/bij.12452>

10 Finlay, J. C., & Kendall, C. (2007). Stable isotope tracing of temporal and spatial
11 variability in organic matter sources to freshwater ecosystems. In: Michener, R.,
12 Lajtha, K. (Eds). *Stable Isotopes in Ecology and Environmental Science* (pp. 283-
13 333). Oxford, UK: Blackwell Publishing

14 Fry, B. (2006). *Stable isotope ecology*. New York: Springer.

15 Gould, S. J. (1966). Allometry and size in ontogeny and phylogeny. *Biological Reviews*,
16 41, 587-638. <https://doi.org/10.1111/j.1469-185x.1966.tb01624.x>

17 Hayes, C. W. (1899). Physiography and geology of region adjacent to the Nicaragua canal
18 route. *Bulletin of the Geological Society of America*, 10(1), 285-348.
19 <https://doi.org/10.1130/GSAB-10-285>

20 Hendry, A. P. (2009). Ecological speciation! Or the lack thereof? *Canadian Journal of*
21 *Fisheries and Aquatic Sciences*, 66(8), 1383-1398. <https://doi.org/10.1139/F09-074>

22 Huelsenbeck, J. P., & Ronquist, F. (2001). MRBAYES: Bayesian inference of phylogenetic
23 trees. *Bioinformatics*, 17(8), 754-755. <https://doi.org/10.1093/bioinformatics/17.8.754>

1 Jackson, A. L., Inger, R., Parnell, A. C., & Bearhop, S. (2011). Comparing isotopic niche
2 widths among and within communities: SIBER—Stable Isotope Bayesian Ellipses in R.
3 Journal of Animal Ecology, 80(3), 595-602. <https://doi.org/10.1111/j.1365-2656.2011.01806.x>

5 Jeffery, W. R. (2009). Regressive evolution in *Astyanax* cavefish. Annual Review of
6 Genetics, 43, 25-47. <https://doi.org/10.1146/annurev-genet-102108-134216>

7 Jepsen, D. B., & Winemiller, K. O. (2002). Structure of tropical river food webs revealed
8 by stable isotope ratios. Oikos, 96(1), 46-55. <https://doi.org/10.1034/j.1600-0706.2002.960105.x>

10 Jombart, T., & Ahmed, I. (2011). adegenet 1.3-1: new tools for the analysis of genome-
11 wide SNP data. Bioinformatics, 27(21), 3070-3071.
12 <https://doi.org/10.1093/bioinformatics/btr521>

13 Jombart, T., & Collins, C. (2015). A tutorial for discriminant analysis of principal
14 components (DAPC) using adegenet 2.0. 0. London: Imperial College London, MRC
15 Centre for Outbreak Analysis and Modelling.

16 Jombart, T., Devillard, S., & Balloux, F. (2010). Discriminant analysis of principal
17 components: a new method for the analysis of genetically structured populations. BMC
18 Genetics, 11(1), 94. <https://doi.org/10.1186/1471-2156-11-94>

19 Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., ... & Thierer,
20 T. (2012). Geneious Basic: an integrated and extendable desktop software platform
21 for the organization and analysis of sequence data. Bioinformatics, 28(12), 1647-
22 1649. <https://doi.org/10.1093/bioinformatics/bts199>

23 Kitano, J. U. N., Mori, S., & Peichel, C. L. (2007). Phenotypic divergence and reproductive
24 isolation between sympatric forms of Japanese threespine sticklebacks. Biological

1 Journal of the Linnean Society, 91(4), 671-685. <https://doi.org/10.1111/j.1095-8312.2007.00824.x>

2

3 Klingenberg, C.P. (1996) Multivariate Allometry. In: Marcus, L.F., Corti, M., Loy, A.,

4 Naylor, G.J.P., Slice, D.E. (Eds.), Advances in Morphometrics (pp. 23-49). New

5 York, USA: NATO ASI Series, Springer.

6 Klingenberg, C. P. (2008). Morphological integration and developmental modularity.

7 Annual Review of Ecology, Evolution, and Systematics, 39, 115-132.

8 <https://doi.org/10.1146/annurev.ecolsys.37.091305.110054>

9 Klingenberg, C. P. (2014). Studying morphological integration and modularity at multiple

10 levels: concepts and analysis. Philosophical Transactions of the Royal Society B:

11 Biological Sciences, 369(1649), 20130249. <https://doi.org/10.1098/rstb.2013.0249>

12 Latch, E. K., Dharmarajan, G., Glaubitz, J. C., & Rhodes, O. E. (2006). Relative

13 performance of Bayesian clustering software for inferring population substructure

14 and individual assignment at low levels of population differentiation. Conservation

15 Genetics, 7(2), 295-302. <https://doi.org/10.1007/s10592-005-9098-1>

16 Layman, C. A., Arrington, D. A., Montaña, C. G., & Post, D. M. (2007). Can stable isotope

17 ratios provide for community-wide measures of trophic structure? Ecology, 88(1),

18 42-48. [https://doi.org/10.1890/0012-9658\(2007\)88\[42:CSIRPF\]2.0.CO;2](https://doi.org/10.1890/0012-9658(2007)88[42:CSIRPF]2.0.CO;2)

19 Lu, G., & Bernatchez, L. (1999). Correlated trophic specialization and genetic divergence

20 in sympatric lake whitefish ecotypes (*Coregonus clupeaformis*): support for the

21 ecological speciation hypothesis. Evolution, 53(5), 1491-1505.

22 <https://doi.org/10.1111/j.1558-5646.1999.tb05413.x>

23 Magalhaes, I. S., Ornelas-Garcia, C. P., Leal-Cardin, M., Ramírez, T., & Barluenga, M.

24 (2015). Untangling the evolutionary history of a highly polymorphic species:

1 introgressive hybridization and high genetic structure in the desert cichlid fish
2 *Herichtys minckleyi*. Molecular Ecology, 24(17), 4505-4520.
3 <https://doi.org/10.1111/j.0022-1112.2006.01021.x>

4 Matamoros, W. A., McMahan, C. D., Chakrabarty, P., Albert, J. S., & Schaefer, J. F.
5 (2015). Derivation of the freshwater fish fauna of Central America revisited:
6 Myers's hypothesis in the twenty-first century. Cladistics, 31(2), 177-188.
7 <https://doi.org/10.1111/cla.12081>

8 McCairns, R. S., & Fox, M. G. (2004). Habitat and home range fidelity in a trophically
9 dimorphic pumpkinseed sunfish (*Lepomis gibbosus*) population. Oecologia, 140(2),
10 271-279. <https://doi.org/10.1007/s00442-004-1580-9>

11 McLaughlin, R. L., & Grant, J. W. (1994). Morphological and behavioural differences
12 among recently-emerged brook charr, *Salvelinus fontinalis*, foraging in slow-*vs.* fast-
13 running water. Environmental Biology of Fishes, 39(3), 289-300.
14 <https://doi.org/10.1007/BF00005130>

15 Miller, M.A., Pfeiffer, W., & Schwartz, T. (2010). Creating the CIPRES Science Gateway
16 for inference of large phylogenetic trees. In: Proceedings of the Gateway Computing
17 Environments Workshop (GCE), 14 Nov. 2010, New Orleans, Louisiana, United States
18 of America. Available: http://www.phylo.org/sub_sections/portal/sc2010_paper.pdf.

19 Mise, F. T., Fugi, R., Pagotto, J. P. A., & Goulart, E. (2013). The coexistence of endemic
20 species of *Astyanax* (Teleostei: Characidae) is propitiated by ecomorphological and
21 trophic variations. Biota Neotropica, 13(3), 21-28. <https://doi.org/10.1590/S1676-06032013000300001>

22 Nonaka, E., Svanbäck, R., Thibert-Plante, X., Englund, G., & Bränström, Å. (2015).
23 Mechanisms by which phenotypic plasticity affects adaptive divergence and ecological

1 speciation. *The American Naturalist*, 186(5), E126-E143.

2 <https://doi.org/10.1086/683231>

3 Myers, G. S. (1966). Derivation of the freshwater fish fauna of Central America. *Copeia*,

4 1966(4), 766-773. <http://dx.doi.org/10.2307/1441405>

5 Nosil, P., Harmon, L. J., & Seehausen, O. (2009). Ecological explanations for (incomplete)

6 speciation. *Trends in Ecology and Evolution*, 24(3), 145-156.

7 <https://doi.org/10.1016/j.tree.2008.10.011>

8 Nosil, P. (2012). Ecological speciation. Oxford University Press.

9 Ornelas-García CP, Domínguez-Domínguez O, Doadrio I. 2008. Evolutionary history of

10 the fish genus *Astyanax* Baird & Girard (1854) (Actinopterygii, Characidae) in

11 Mesoamerica reveals multiple morphological homoplasies. *BMC Evolutionary*

12 *Biology*, 8, 340. <https://doi.org/10.1186/1471-2148-8-340>

13 Ornelas-García CP, Bastir M, Doadrio I. 2014. Morphometric variation between two

14 morphotypes within the *Astyanax* Baird and Girard, 1854 (Actinopterygii: Characidae)

15 genus, From a Mexican tropical lake. *Journal of Morphology*, 275, 721-731.

16 <https://doi.org/10.1002/jmor.20252>

17 Ornelas-García, C. P., Bautista, A., Herder, F., & Doadrio, I. (2017). Functional modularity

18 in lake-dwelling characin fishes of Mexico. *PeerJ*, 5, e3851.

19 <https://doi.org/10.7717/peerj.3851>

20 Ornelas-García, C. P., Córdova-Tapia, F., Zambrano, L., Bermúdez-González, M. P.,

21 Mercado-Silva, N., Mendoza-Garfias, B., & Bautista, A. (2018). Trophic specialization

22 and morphological divergence between two sympatric species in Lake Catemaco,

23 Mexico. *Ecology and Evolution*, 8(10), 4867-4875. <https://doi.org/10.1002/ece3.4042>

1 Ornelas-García, C.P., Gonzalez E., Tautz D., & Doadrio I. (2020). Lack of genetic
2 differentiation between two sympatric species of *Astyanax* (Characidae: Teleostei) in
3 Lake Catemaco, Mexico. Research Square. <https://doi.org/10.21203/rs.2.22839/v1>

4 Peakall, R. O. D., & Smouse, P. E. (2006). GENALEX 6: genetic analysis in Excel.
5 Population genetic software for teaching and research. Molecular Ecology Notes, 6(1),
6 288-295. <https://doi.org/10.1111/j.1471-8286.2005.01155.x>

7 Post, D. M. (2002). Using stable isotopes to estimate trophic position: models, methods,
8 and assumptions. Ecology, 83(3), 703-718. [https://doi.org/10.1890/0012-9658\(2002\)083\[0703:USITET\]2.0.CO;2](https://doi.org/10.1890/0012-9658(2002)083[0703:USITET]2.0.CO;2)

10 Powers, A. K., Garita-Alvarado, C. A., Rodiles-Hernández, R., Berning, D. J., Gross, J. B.,
11 & Ornelas-García, C. P. (2020). A geographical cline in craniofacial morphology
12 across populations of Mesoamerican lake-dwelling fishes. Journal of Experimental
13 Zoology Part A: Ecological and Integrative Physiology, 333(3), 171-180.
14 <https://doi.org/10.1002/jez.2339>

15 Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure
16 using multilocus genotype data. Genetics, 155(2), 945-959.

17 Protas, M., Conrad, M., Gross, J. B., Tabin, C., & Borowsky, R. (2007). Regressive
18 evolution in the Mexican cave tetra, *Astyanax mexicanus*. Current Biology, 17(5), 452-
19 454. <https://doi.org/10.1016/j.cub.2007.01.051>

20 Rambaut, A., Drummond, A. J., Xie, D., Baele, G., & Suchard, M. A. (2018). Posterior
21 summarization in Bayesian phylogenetics using Tracer 1.7. Systematic Biology, 67(5),
22 901. <https://doi.org/10.1093/sysbio/syy032>

23 Ribeiro, A. C., & Menezes, N. A. (2015). Phylogenetic relationships of the species and
24 biogeography of the characid genus *Oligosarcus* Günther, 1864 (Ostariophysi,

1 Characiformes, Characidae). Zootaxa, 3949(1), 41-81.

2 <http://dx.doi.org/10.11646/zootaxa.3949.1.2>

3 Rohlf, F. J. (2015). The tps series of software. Hystrix the Italian Journal of Mammalogy,

4 26, 9–12. <https://doi.org/10.4404/hystrix-26.1-11264>

5 Rozas, J., Ferrer-Mata, A., Sánchez-Del Barrio, J. C., Guirao-Rico, S., Librado, P., Ramos-

6 Onsins, S. E., & Sánchez-Gracia, A. (2017). DnaSP 6: DNA sequence polymorphism

7 analysis of large data sets. Molecular Biology and Evolution, 34(12), 3299-3302.

8 <https://doi.org/10.1093/molbev/msx248>

9 Sabino-Pinto, J., Goedbloed, D. J., Sanchez, E., Czypionka, T., Nolte, A. W., & Steinfartz,

10 S. (2019). The role of plasticity and adaptation in the incipient speciation of a fire

11 salamander population. Genes, 10(11), 875. <https://doi.org/10.3390/genes10110875>

12 Schalk, C. M., Montaña, C. G., Winemiller, K. O., & Fitzgerald, L. A. (2017). Trophic

13 plasticity, environmental gradients and food-web structure of tropical pond

14 communities. Freshwater Biology, 62(3), 519-529. <https://doi.org/10.1111/fwb.12882>

15 Schlüter, D. (1996). Ecological causes of adaptive radiation. The American Naturalist, 148,

16 S40-S64. <https://doi.org/10.1086/285901>

17 Schlüter, D. (2000). The ecology of adaptive radiation. Oxford.

18 Schmitter-Soto, J. J. (2017). A revision of *Astyanax* (Characiformes: Characidae) in Central

19 and North America, with the description of nine new species. Journal of Natural

20 History, 51(23-24), 1331-1424. <https://doi.org/10.1080/00222933.2017.1324050>

21 Sheets, HD. (2001). Integrated Morphometrics Package (IMP). Available at:

22 <https://www.animal-behaviour.de/imp/>

1 Sidlauskas, B. (2007). Testing for unequal rates of morphological diversification in the
2 absence of a detailed phylogeny: a case study from characiform fishes. *Evolution*,
3 61(2), 299-316. <https://doi.org/10.1111/j.1558-5646.2007.00022.x>

4 Sidlauskas, B. (2008). Continuous and arrested morphological diversification in sister
5 clades of characiform fishes: a phylogenospace approach. *Evolution*, 62(12), 3135-
6 3156. <https://doi.org/10.1111/j.1558-5646.2008.00519.x>

7 Skúlason, S., Parsons, K. J., Svanbäck, R., Räsänen, K., Ferguson, M. M., Adams, C. E., ...
8 & Snorrason, S. S. (2019). A way forward with eco evo devo: an extended theory of
9 resource polymorphism with postglacial fishes as model systems. *Biological Reviews*,
10 94(5), 1786-1808. <https://doi.org/10.1111/brv.12534>

11 Smith, T. B., & Skúlason, S. (1996). Evolutionary significance of resource polymorphisms
12 in fishes, amphibians, and birds. *Annual Review of Ecology and Systematics*, 27(1),
13 111-133. <https://doi.org/10.1146/annurev.ecolsys.27.1.111>

14 Syvääranta, J., Lensu, A., Marjomäki, T. J., Oksanen, S., & Jones, R. I. (2013). An empirical
15 evaluation of the utility of convex hull and standard ellipse areas for assessing
16 population niche widths from stable isotope data. *PloS One*, 8(2), e56094.
17 <https://doi.org/10.1371/journal.pone.0056094>

18 Sonnenberg, R., Nolte, A. W., & Tautz, D. (2007). An evaluation of LSU rDNA D1-D2
19 sequences for their use in species identification. *Frontiers in Zoology*, 4(1), 6.
20 <https://doi.org/10.1186/1742-9994-4-6>

21 Theis, A., Ronco, F., Indermaur, A., Salzburger, W., & Egger, B. (2014). Adaptive
22 divergence between lake and stream populations of an East African cichlid fish.
23 *Molecular Ecology*, 23(21), 5304-5322. <https://doi.org/10.1111/mec.12939>

1 Thibert-Plante, X., & Hendry, A. P. (2011). The consequences of phenotypic plasticity for
2 ecological speciation. *Journal of Evolutionary Biology*, 24(2), 326-342.
3 <https://doi.org/10.1111/j.1420-9101.2010.02169.x>

4 Van Oosterhout, C., Hutchinson, W. F., Wills, D. P., & Shipley, P. (2004). MICRO-
5 CHECKER: software for identifying and correcting genotyping errors in microsatellite
6 data. *Molecular Ecology Notes*, 4(3), 535-538. <https://doi.org/10.1111/j.1471-8286.2004.00684.x>

7 Vander Zanden, M. J., & Vadeboncoeur, Y. (2002). Fishes as integrators of benthic and
8 pelagic food webs in lakes. *Ecology*, 83(8), 2152-2161. [https://doi.org/10.1890/0012-9658\(2002\)083\[2152:FAIOBA\]2.0.CO;2](https://doi.org/10.1890/0012-9658(2002)083[2152:FAIOBA]2.0.CO;2)

9 Villa, J. (1976). Some speculations about "The Great Nicaraguan Lake". In T.B. Thorson
10 (Ed.), *Investigations of the ichthyofauna of Nicaraguan Lakes* (pp.191–196). Nebraska,
11 USA: University of Nebraska.

12 Webb, P. W. (1984). Body form, locomotion and foraging in aquatic vertebrates. *American
13 Zoologist*, 24(1), 107-120. <https://doi.org/10.1093/icb/24.1.107>

14 West-Eberhard, M. J. (1986). Alternative adaptations, speciation, and phylogeny (a
15 review). *Proceedings of the National Academy of Sciences*, 83(5), 1388-1392.
16 <https://doi.org/10.1073/pnas.83.5.1388>

17 West-Eberhard, M. J. (2003). *Developmental plasticity and evolution*. Oxford University
18 Press.

19 West-Eberhard, M. J. (2019). Modularity as a universal emergent property of biological
20 traits. *Journal of Experimental Zoology Part B: Molecular and Developmental
21 Evolution*, 332(8), 356-364. <https://doi.org/10.1002/jez.b.22913>

1 Yamasaki, Y. Y., Takeshima, H., Kano, Y., Oseko, N., Suzuki, T., Nishida, M., &
2 Watanabe, K. (2020). Ecosystem size predicts the probability of speciation in
3 migratory freshwater fish. *Molecular Ecology*, 29(16), 3071-3083.
4 <https://doi.org/10.1111/mec.15415>

5 Zardoya, R., & Doadrio, I. (1998). Phylogenetic relationships of Iberian cyprinids:
6 systematic and biogeographical implications. *Proceedings of the Royal Society of
7 London. Series B: Biological Sciences*, 265(1403), 1365-1372.
8 <https://doi.org/10.1098/rspb.1998.0443>

9

10

1 **Table 1.** Summary statistics for the genetic variability of mitochondrial (Cytb) (A) and 11
2 nuclear microsatellite loci (B) for the two morphs of *Astyanax* from the three studied
3 regions of the San Juan River basin. n = sample size, h = number of haplotypes, Hd =
4 haplotype diversity; Pi = nucleotide diversity; PH = % of private haplotypes; Na = number
5 of alleles; Ne = number of effective alleles, AR = allelic richness, Ho = observed
6 heterozygosity; He = expected heterozygosity; UHe = unbiased expected heterozygosity.
7

	L. Nicaragua		L. Managua		R. Sarapiquí		All
	Deep	Elongate	Deep	Elongate	Deep	Elongate	
A) Cytb							
n	14	6	13	4	7	5	49
h	11	5	10	4	7	4	33
Hd	0.95	0.93	0.95	1	1	0.90	0.96
Pi	0.01	0.01	0.02	0.02	0.01	0.01	0.02
PH	72.7	40	80	50	85.7	75	-
B) Microsatellites							
n	72	68	82	35	33	12	302
% polymorphic loci	100	100	100	100	100	100	100
Na	18.09	17.45	20.27	15.00	15.91	8.82	15.92
Ne	8.78	9.01	10.69	8.78	10.52	5.71	8.91
AR	9.99	9.67	10.81	9.82	10.86	7.93	-
Ho	0.65	0.64	0.68	0.67	0.69	0.70	0.67
He	0.85	0.83	0.87	0.84	0.88	0.80	0.84
UHe	0.86	0.84	0.87	0.85	0.90	0.83	0.86

8
9
10

1 **Table 2.** Two-level AMOVA for *Cytb* (A) and the microsatellites (B). Bold values indicate
2 significant differences ($p < 0.05$).
3

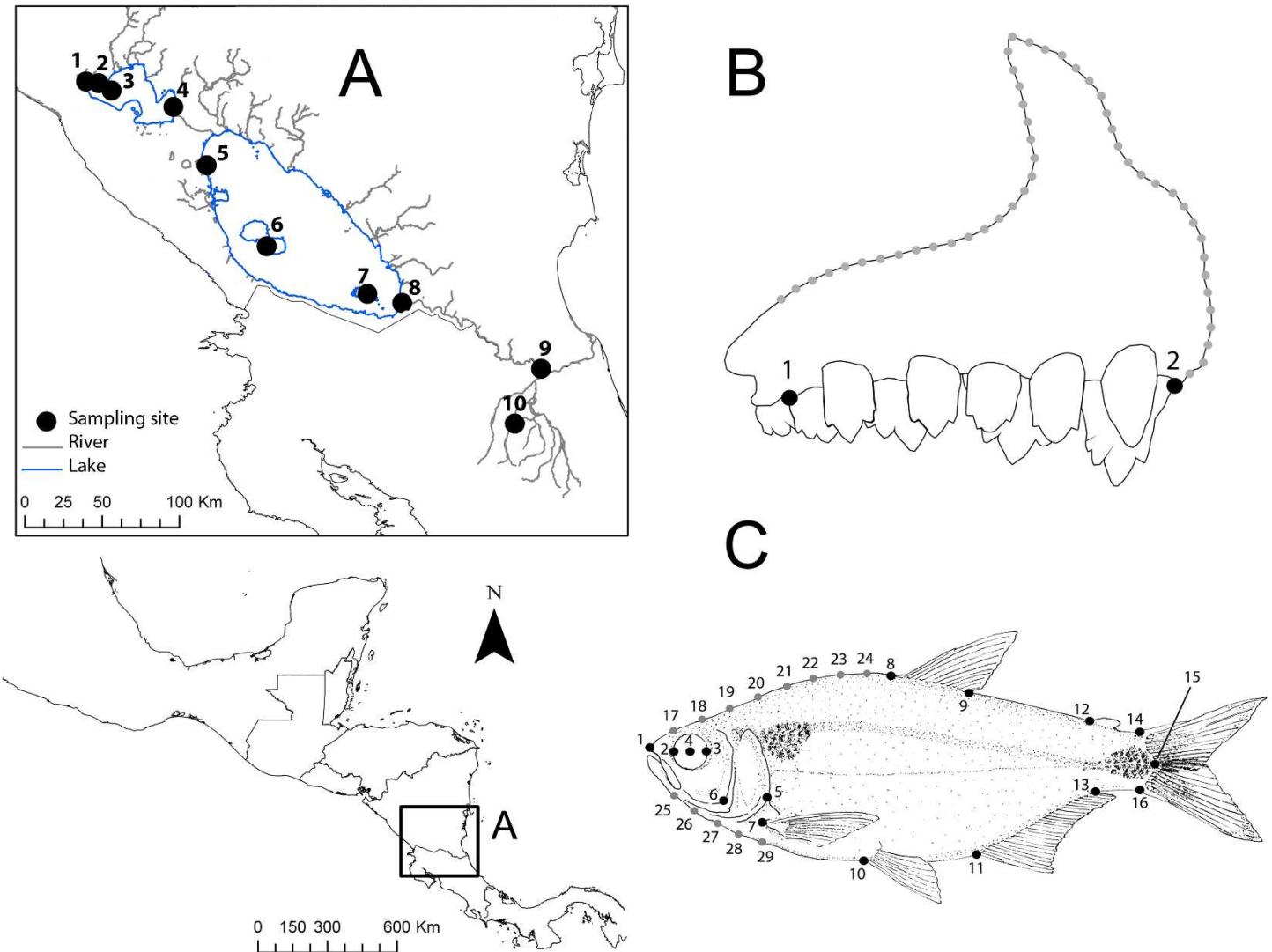
Groups	Among groups		Among populations within groups		Within populations	
	Fct	variation	Fsc	% variation	Fst	% variation
A) Cytb						
Regions (Managua, Nicaragua, and Sarapiquí)						
Sarapiquí	0.13	13.91	-0.016	-1.39	0.12	87.48
Morphs (elongate and deep-body)						
	-0.013	-1.34	0.109	11.06	0.097	90.28
B) microsatellites						
Regions (Managua, Nicaragua, and Sarapiquí)						
Sarapiquí	0.006	0.63	0.008	0.85	0.014	98.52
Morphs (elongate and deep-body)						
	0.0006	0.06	0.013	1.3	0.013	98.64

4

5

6

7


8

1 **Table 3.** Pairwise Fst comparisons across morphs and regions. Above the diagonal, *Cytb*
2 and below the diagonal, microsatellite data. Bold values indicate significant differences
3 after Bonferroni correction.

4

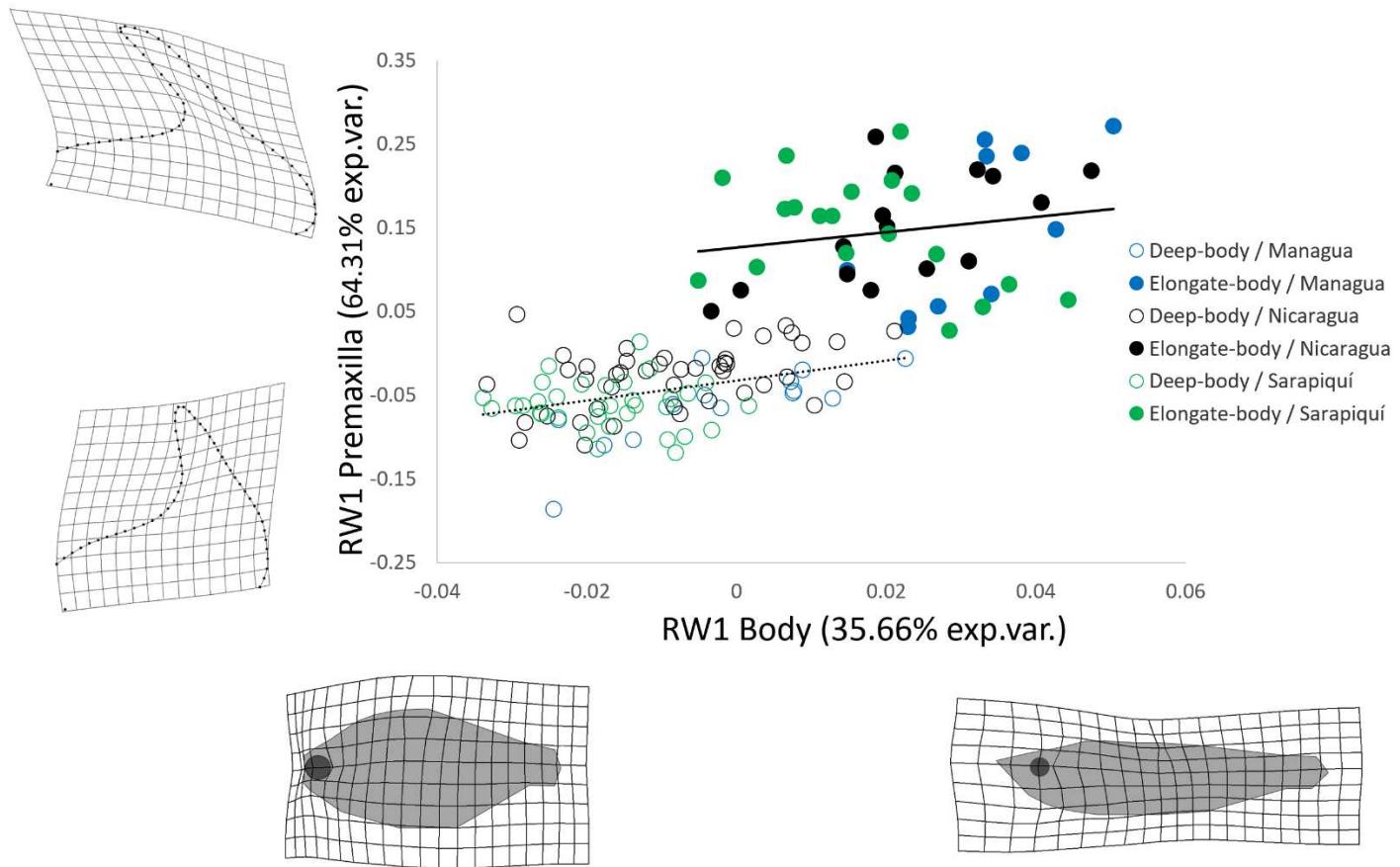
		L. Nicaragua		L. Managua		R. Sarapiquí	
		Deep	Elongate	Deep	Elongate	Deep	Elongate
L. Nicaragua							
Deep	-	0.085		0.126	-0.056	0.018	0.032
Elongate	0.0051	-		0.224	0.131	-0.077	0.007
L. Managua							
Deep	0.0065	0.013	-		-0.146	0.171	0.240
Elongate	0.0074	0.010		0.007	-	0.043	0.137
Sarapiquí R.							
Deep	0.018	0.033		0.026	0.030	-	0.062
Elongate	0.0071	0.009		0.018	0.018	0.022	-

5

2 **Figure 1.** A) Map representing sampling sites in the San Juan River basin in Central
3 America. Sampling localities 1–4, Lake Managua; 5–8, Lake Nicaragua; and 9 and 10,
4 Sarapiquí River. B) Distribution of landmark (black) and semilandmark (grey) positions
5 used to characterize the premaxilla bone. Landmark positions: 1) the posterior insertion of
6 the penultimate tooth, and 2) anterior insertion of the anterior tooth. Semilandmark
7 positions: 50 equally distributed positions describe the dorsal profile of the premaxilla from
8 the anterior tooth to the projection of landmark 1 in the dorsal profile of the premaxilla
9 bone. C) Distribution of landmark (black) and semilandmark (grey) positions to

1 characterize the body shape. Landmark positions: 1) snout tip, 2) anterior extent of eye, 3)
2 posterior extent of eye, 4) center of eye, 5) posterior extent of the operculum, 6) lower
3 margin of preoperculum, 7) anterior insertion of pectoral fin, 8) anterior and 9) posterior
4 insertion of dorsal fin, 10) anterior insertion of pelvic, 11) anal, and 12) adipose fin, 13)
5 posterior insertion of anal fin, 14) dorsal insertion of caudal fin, 15) posterior extent of
6 caudal peduncle, and 16) ventral extent of caudal fin and caudal peduncle. Semilandmark
7 positions: eight equally distributed positions between dorsal projection in body profile of
8 the anterior extent of eye and the same projection of the pelvic fin (semilandmarks 17 to
9 24), and five equally distributed positions between ventral projection in body profile of the
10 anterior extent of eye and the same projection of the anterior insertion of the pectoral fin
11 (semilandmarks 25 to 29).

12


13

14

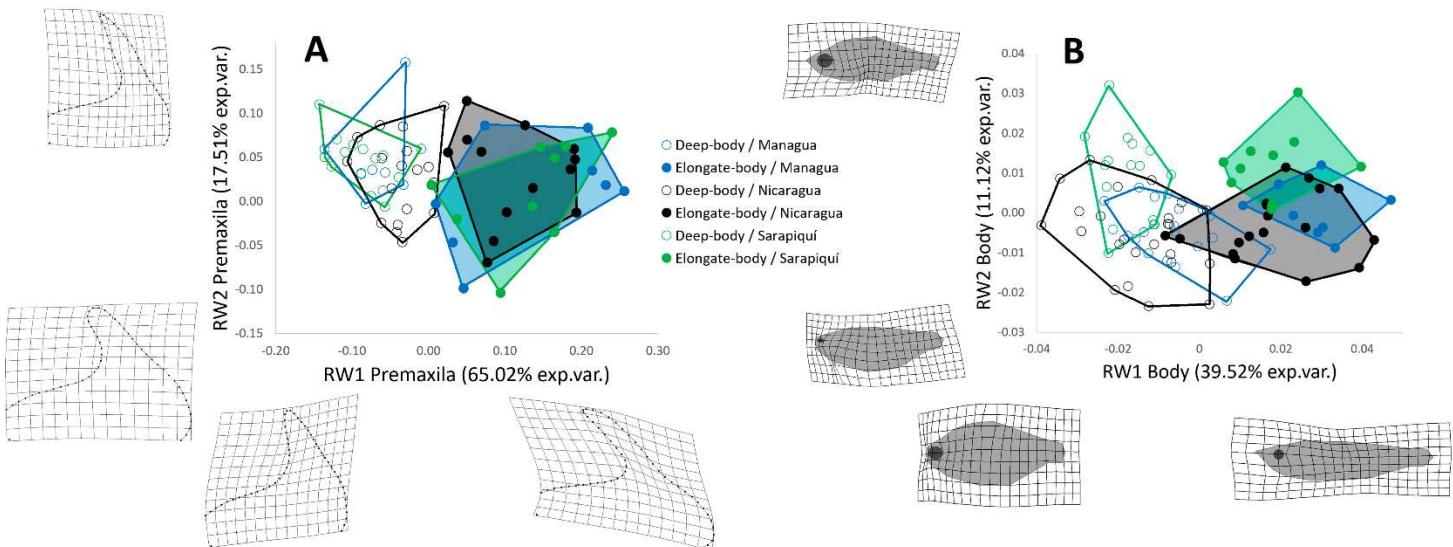
15

16

17

2 **Figure 2.** Relationship between RW1 of premaxillary shape and RW1 of body shape by
3 region and morph type. The solid line indicates the elongate-body morph, and the dotted
4 line, the deep-body morph. The empty circles correspond to the deep-body morph, and the
5 filled circles, the elongate-body morph. Thin-plate spline transformations of the landmark
6 positions represent the extreme transformation of the premaxilla shape along the y-axes,
7 and the body shape along the x-axes.

8


9

10

11

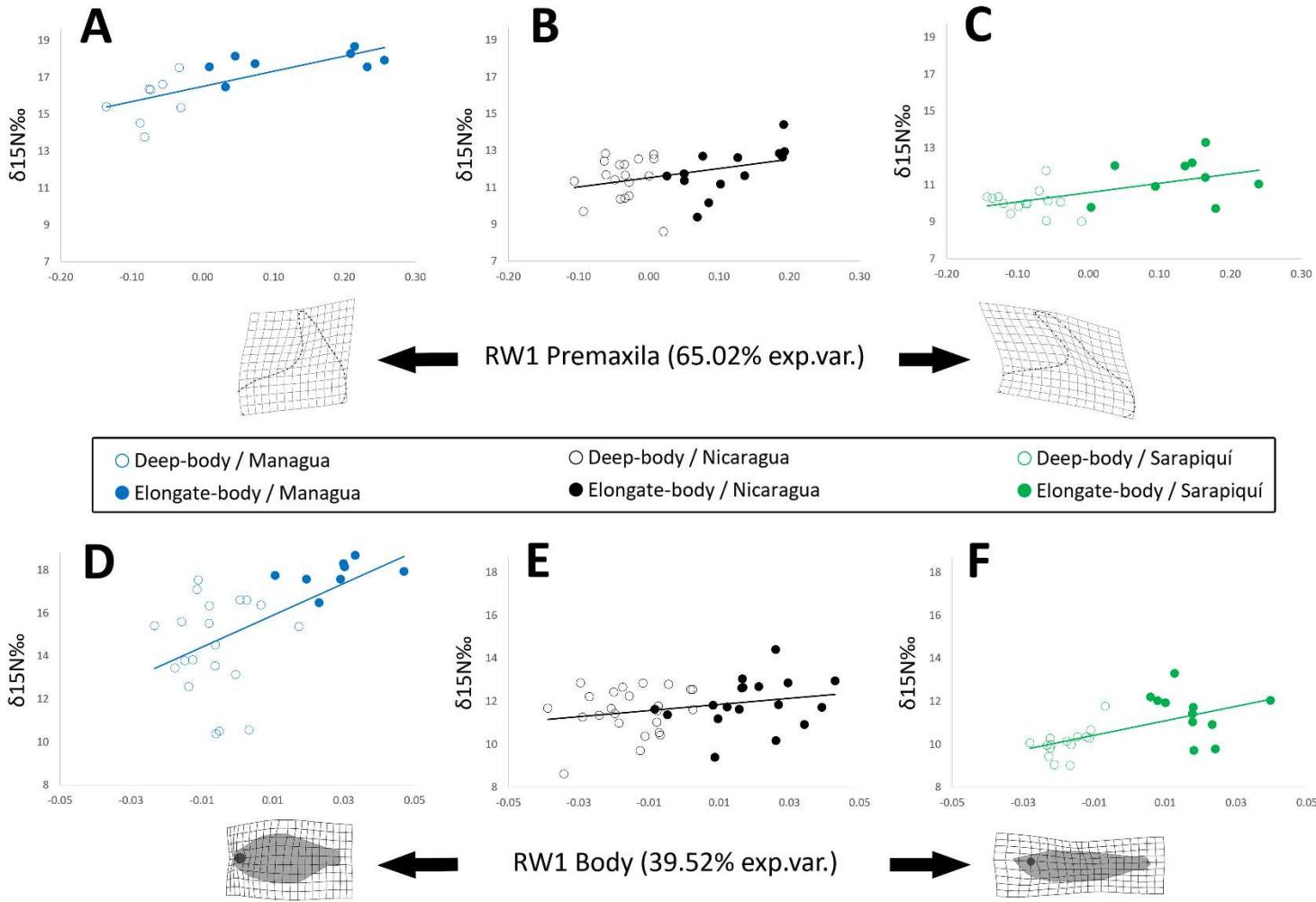
1

2

4

5 **Figure 3.** Relative warp analysis of the shape of the premaxilla (A) and body shape (B).

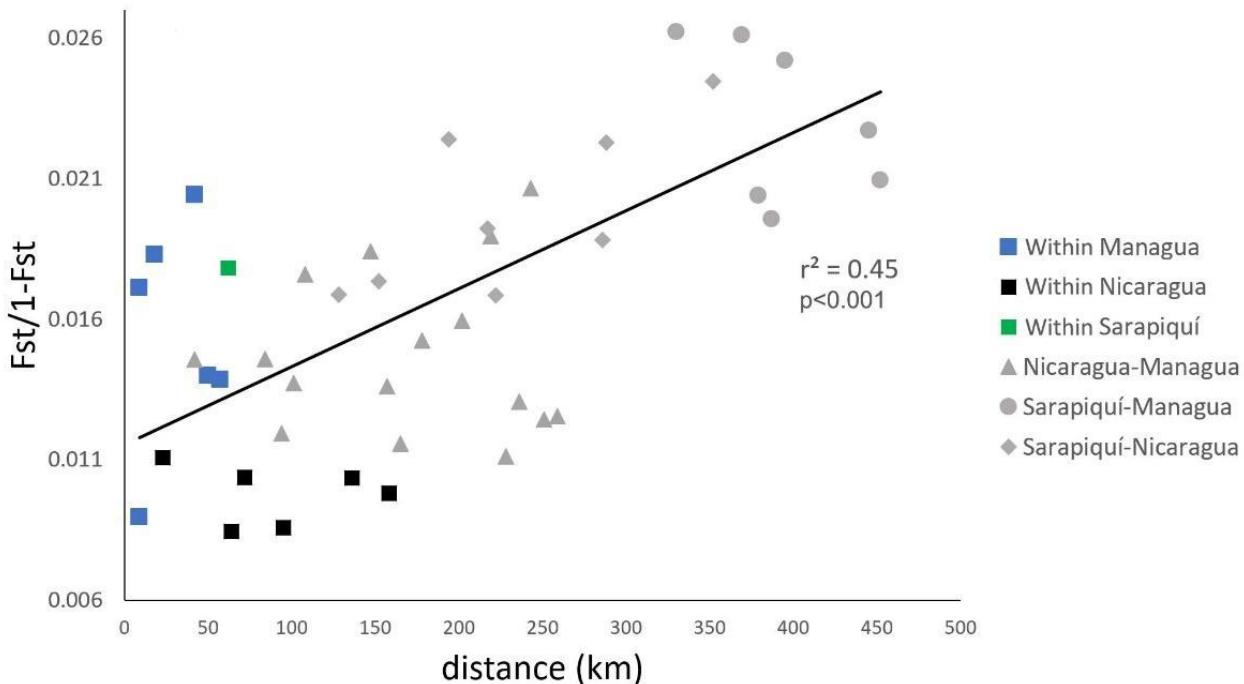
6 Thin-plate spline transformation of the landmark positions represent the extreme


7 transformation along the axes. The empty circles correspond to the deep-body morph, and

8 the filled circles correspond to the elongate-body morph.

9

10


11

2 **Figure 4.** Relationship between trophic level ($\delta^{15}\text{N}$) and the shape of the premaxilla (A–C)

3 and the body (D–F), measured by RW1 of the morphs in the three main regions.

4

1

2 **Figure 5.** Isolation by distance (IBD) pattern in San Juan River system as shown by the
3 Mantel test.

4

5

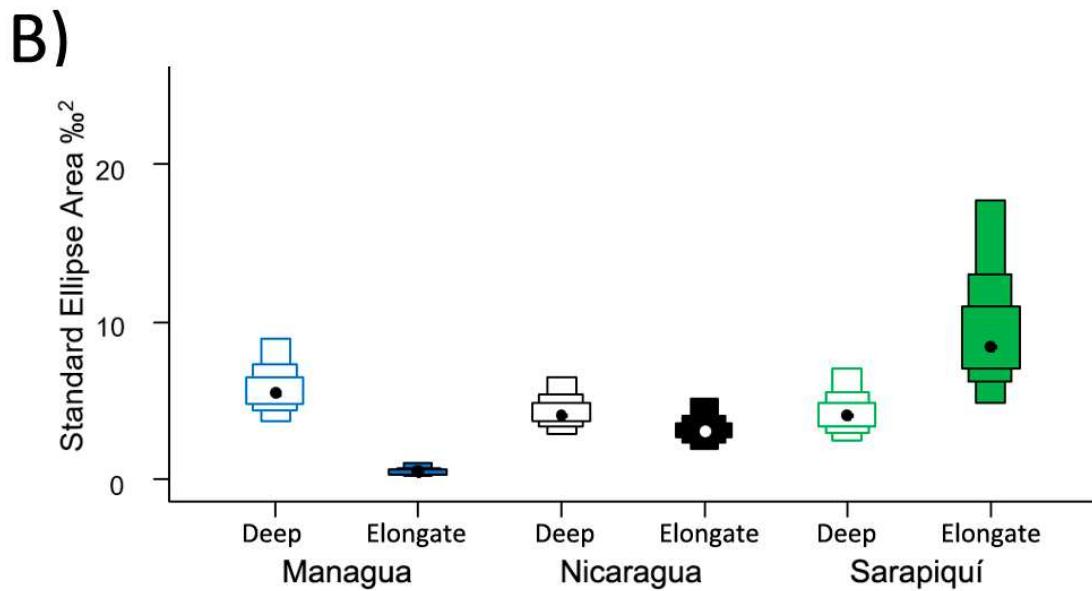
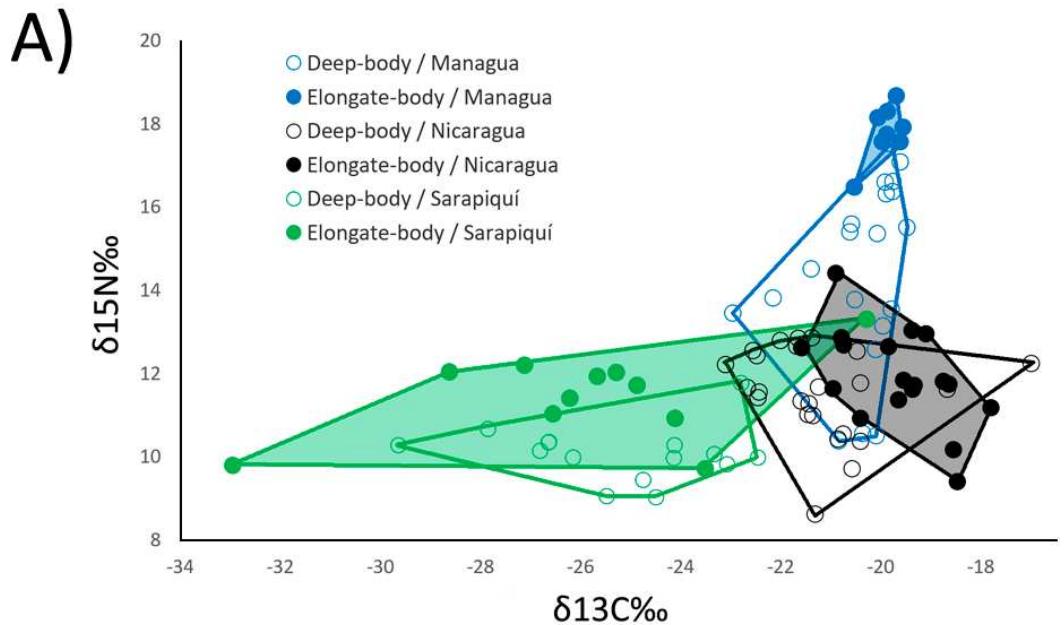
6

7

8

9

10

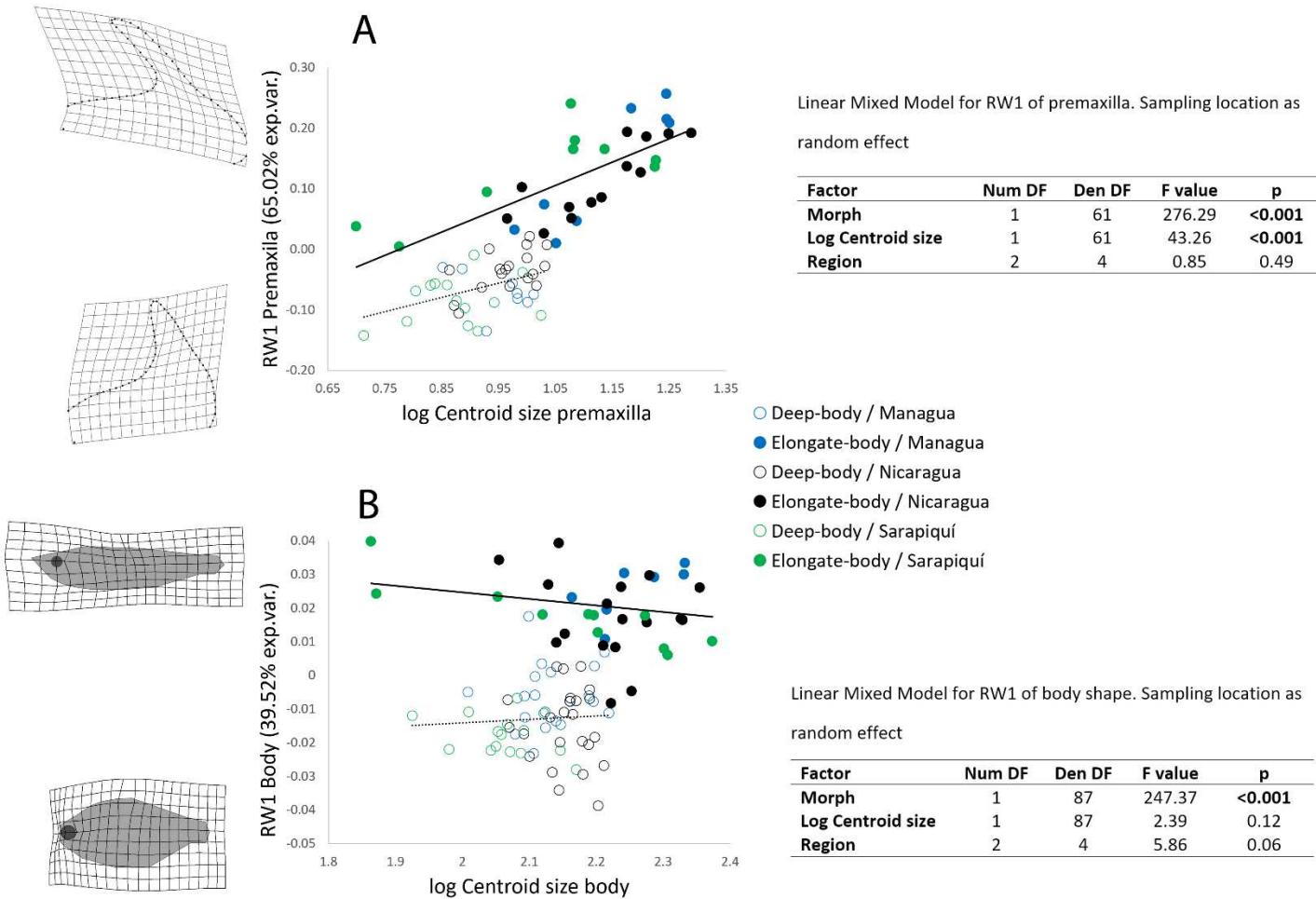


11

12

13

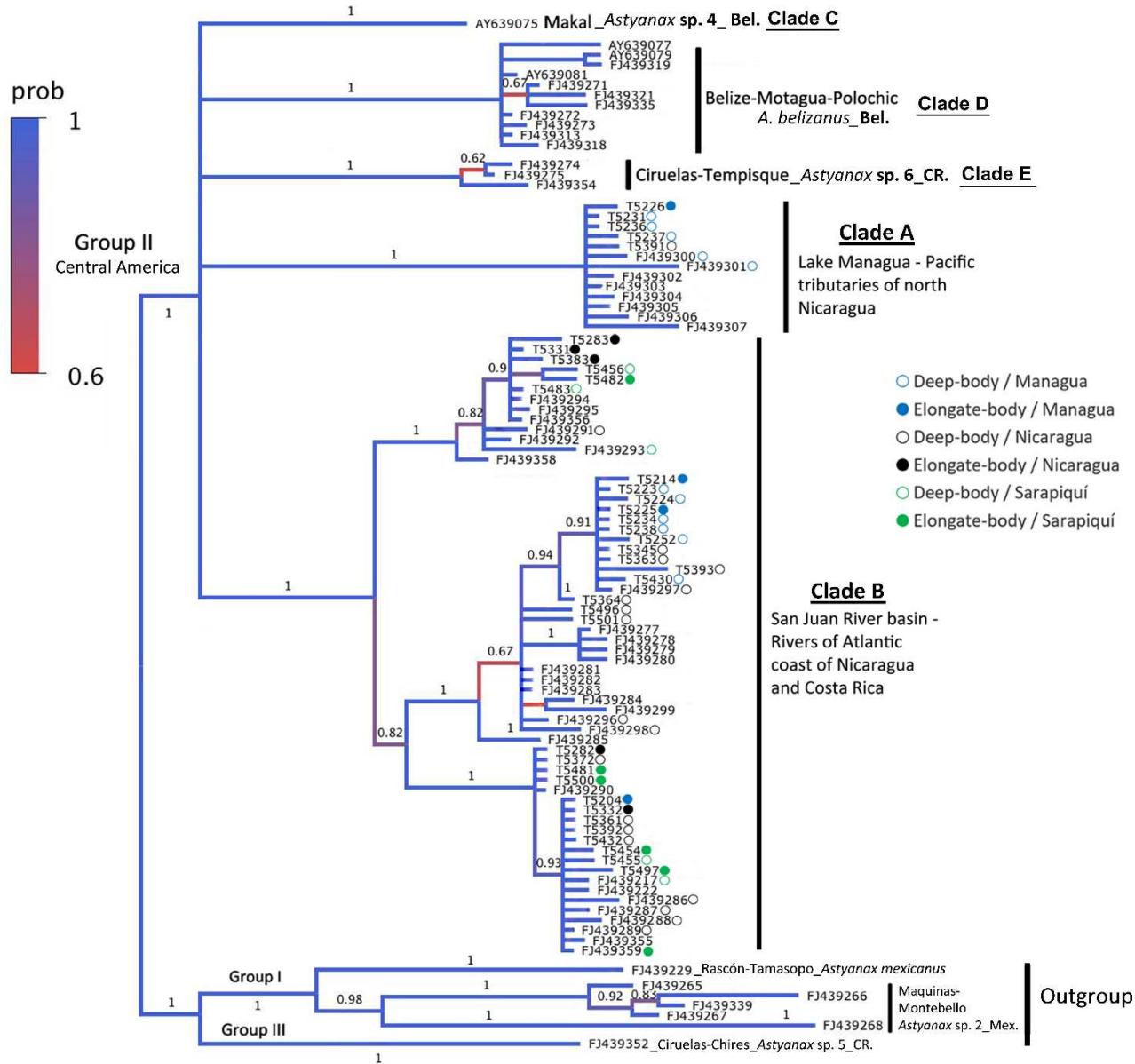
14

1

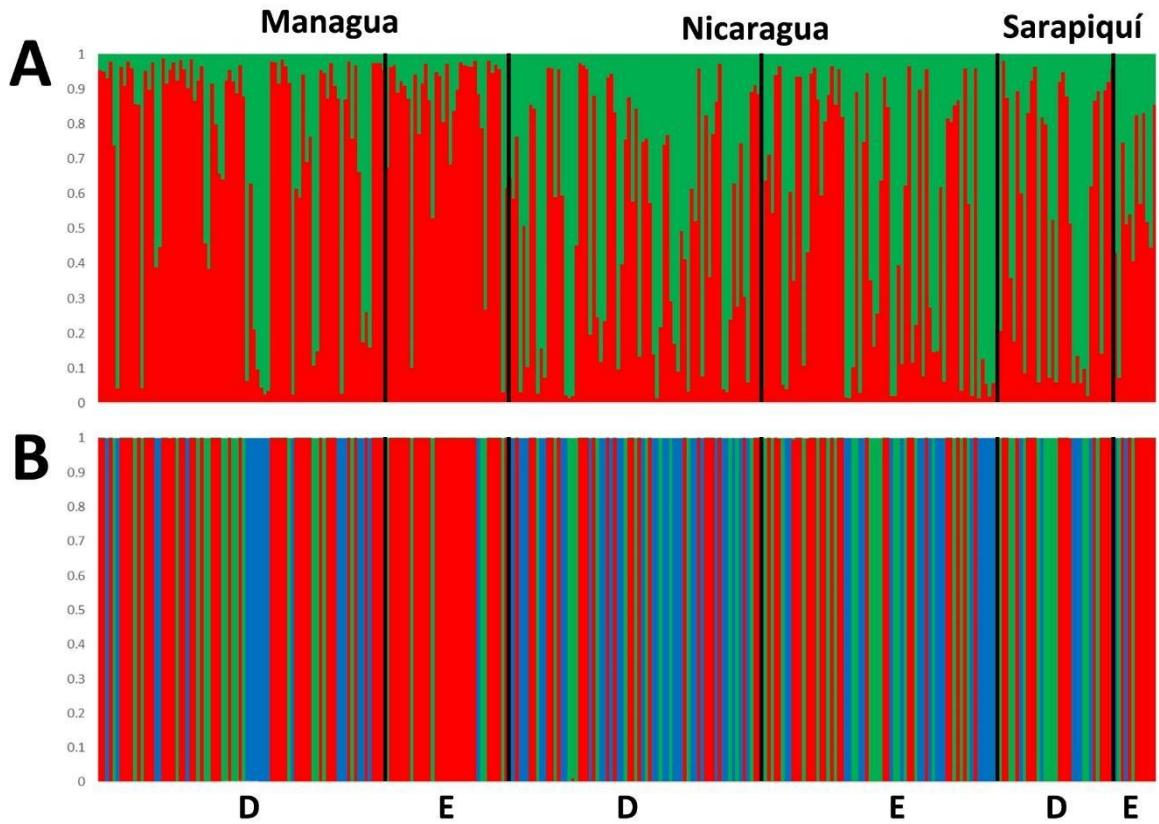

2

3 **Figure S1.** $\delta^{15}\text{N}$ and $\delta^{13}\text{C}$ plot (A), and Bayesian standard ellipse area by region and
4 morph type (B). Empty boxes: deep-body morph, Solid boxes: elongate-body morph.

5


6

7


2

3 **Figure S2.** Variation in the shape of the premaxilla (A) and the body (B) associated with
4 log centroid size. Results of the linear mixed models for each data set are shown on the
5 right.

2 **Figure S3.** Bayesian phylogenetic tree (n=96) based on *Cytb* for *Astyanax* in Central
3 America. Sequences used include those of the Group II clade of *Astyanax* identified by
4 Ornelas-García *et al.* (2008) and the 37 newly obtained for this study. Morph type is
5 indicated for the samples from the three regions of the San Juan River basin. The posterior
6 probabilities values are shown above branches (Bel = Belize, CR = Costa Rica, Mex =
7 Mexico).

1

2

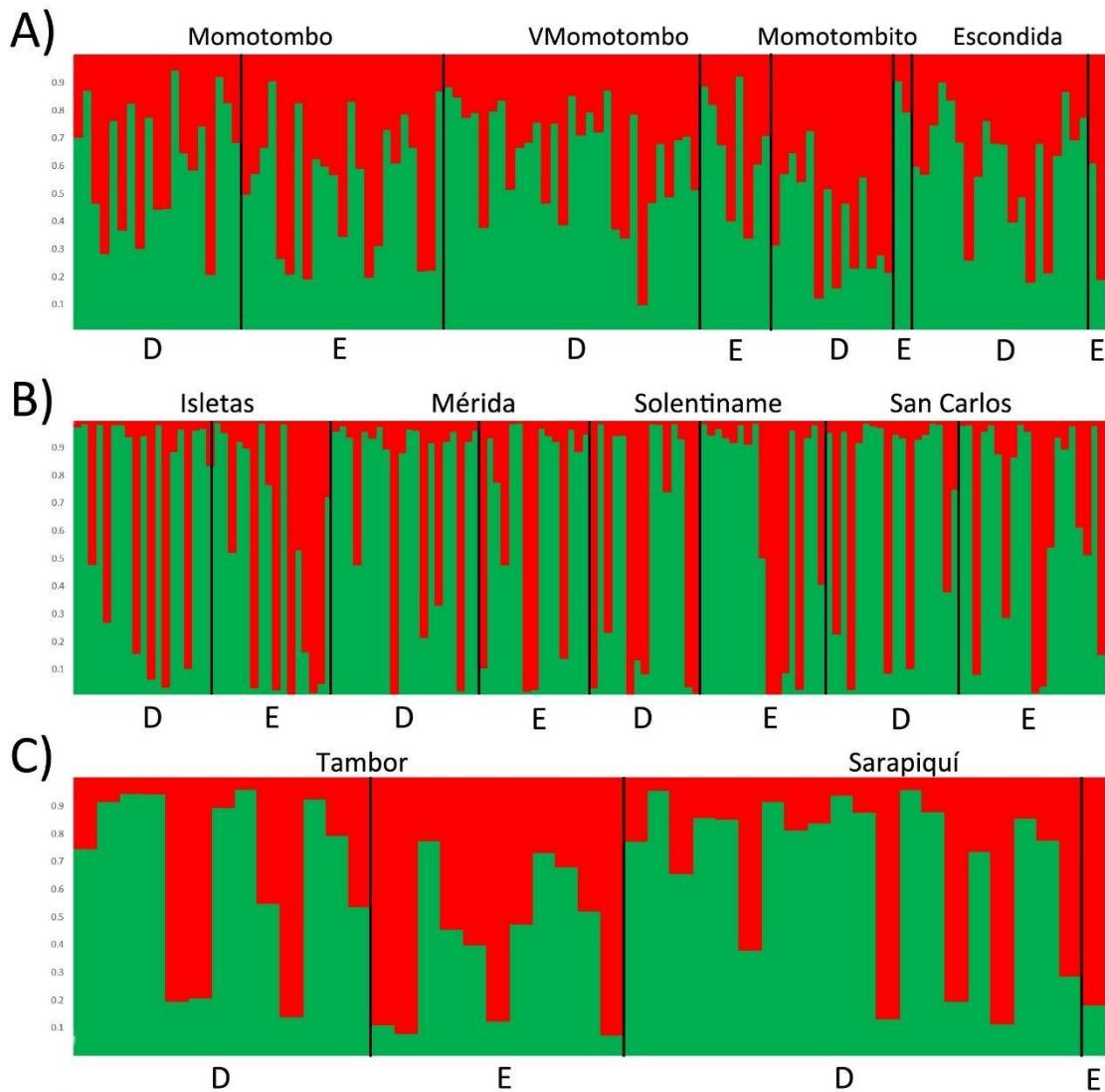
3 **Figure S4.** Clustering of individuals as determined by Structure ($K = 2$) and DAPC ($K =$
4 3). (D = deep-body morph, E = elongate-body morph).

5

6

7

8


9

10

11

12

1

2

3 **Figure S5.** Clustering of individuals by region as determined by the Structure analysis
4 showing K = 2 for A) Lake Managua, B) Lake Nicaragua, and C) Sarapiquí River.
5 Sampling locations are indicated above each clustering. (D = deep-body morph, E =
6 elongate-body morph).

7

8

1

2 **Table S1.** Layman (2007) metrics by region and morph. Total area: TA, mean distance to
3 centroid: CD, mean nearest neighbor distance: NND, standard deviation of nearest neighbor
4 distance: SDNND.

Morph	δ15N range	δ13C range	TA	CD	NND	SDNND
Deep-body Nicaragua	4.25	6.11	13.15	1.41	0.47	0.49
Elongate-body Nicaragua	5.02	3.78	9.18	1.31	0.52	0.41
Deep-body Managua	7.15	3.48	13.38	2.07	0.46	0.27
Elongate-body Managua	2.20	0.97	0.78	0.53	0.40	0.34
Deep-body Sarapiquí	2.75	7.19	10.69	1.84	0.63	0.56
Elongate-body Sarapiquí	3.58	12.67	23.73	2.34	1.53	1.62

5

6

7

8