bioRxiv preprint doi: https://doi.org/10.1101/2021.04.29.441929; this version posted August 11, 2021. The copyright holder for this preprint

10

20

30

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

Testing covariance models for MEG source reconstruction of hippocampal
activity

George C. O’Neill**, Daniel N. Barry®, Tim M. Tierney?, Stephanie Mellor?, Eleanor A. Maguire?, Gareth R. Barnes?

“Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London,
London, UK
bDepartment of Experimental Psychology, University College London, London, UK

Abstract

Beamforming is one of the most commonly used source reconstruction methods for magneto- and electroencephalography
(M/EEG). One underlying assumption, however, is that distant sources are uncorrelated and here we tested whether this is an
appropriate model for the human hippocampal data. We revised the Empirical Bayesian Beamfomer (EBB) to accommodate
specific a-priori correlated source models. We showed in simulation that we could use model evidence (as approximated by
Free Energy) to distinguish between different correlated and uncorrelated source scenarios. Using group MEG data in which
the participants performed a hippocampal-dependent task, we explored the possibility that the hippocampus or the cortex or
both were correlated in their activity across hemispheres. We found that incorporating a correlated hippocampal source model
significantly improved model evidence. Our findings help to explain why, up until now, the majority of MEG-reported
hippocampal activity (typically making use of beamformers) has been estimated as unilateral.
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1) Introduction

Encephalographic functional neuroimaging modalities such as magneto- and electroencephalography (M/EEG)
work on the principle of detecting an electromagnetic signature of synchronous neuronal currents in the brain,
using sensors on or near the scalp of a participant. The estimation of electrical brain activity given the scalp level
measurements is an ill-posed problem and requires additional assumptions or prior beliefs about how the data
were generated. One such reconstruction method, beamforming, has enjoyed widespread use by the M/EEG
community'~°.

Recent studies into the neural dynamics of memory have motivated numerous publications where hippocampal
function has been imaged non-invasively. One anomaly is that studies using functional MRI (fMRI) often report
bilateral hippocampal activations!*!4, whereas source-level M/EEG studies typically report unilateral
activations®!>!7. A common link between many of the M/EEG studies is the reliance on beamformer methods.

Beamforming exploits the temporal covariance of recordings from a fixed array of sensors (such as set of
magnetometers or electrodes) and tunes the sensitivity to successive anatomical locations, whilst attenuating all
other interfering sources. This data-driven approach makes it a powerful, and noise robust, source reconstruction
method, that has been widely used in clinical and cognitive neuroscience*'#23. However, the assumption behind
beamformer source reconstruction is that sources are a priori uncorrelated. Consequently, there are well-known
situations, such as the bilateral evoked response due to binaural auditory stimulation, in which source(s) are
mislocalised or suppressed entirely. Here we hypothesise that it is this feature of beamforming that may explain
why there is a discrepancy between the M/EEG and fMRI literature on the hippocampus.

Solutions to this correlated source problem have been forthcoming for many years, with a wide variety of
approaches published?*!. For a detailed history, Kuznetsova and colleagues provide a review of the literature
within their own solution to the correlated source problem?!. One common approach is to collapse two distinct
and hypothetically correlated sources into a single source?*?’, the problem being that as these sources are now
correlated a priori, and all solutions (regardless of the underlying physiology) will reflect this. Although these
solutions are practical in situations where such correlations are known to exist, it is difficult to determine when
(or if) such measures are necessary when faced with novel paradigms or data.

In this study, we set out to use commonly available tools and methodology to explore data derived from a task
known to engage the hippocampus. We made use of the Empirical Bayesian Beamformer (EBB3?) to explain
competing models of MEG data’. The advantage of this formulation is that different priors (or assumptions) can
be directly compared in terms of their model evidence (as approximated by Free energy>***). We show how model
evidence directly reflected the poorer source reconstruction performance of the conventional EBB in the presence
of correlated sources. We then demonstrate how it is possible to use different correlated and uncorrelated priors
to directly test physiological hypotheses. We show this in simulation and then in an experimental dataset from a
recent beamformer MEG study'®. We found that models based on correlated hippocampal priors provided a
significantly more likely explanation of the MEG data. We also identified an issue specific to the anterior
hippocampi, which have highly correlated gain matrices and are therefore difficult to distinguish between using
conventional cryogenic arrays.
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2) Theory
2.1) A brief summary of empirical Bayesian source reconstruction

An M/EEG dataset, ¥ € R™*™ from n, sensors and sampled over n, timepoints, generated from n; current
dipoles distributed within the brain, can be described by the generative model

Y=1L]+e (D

where J € R™*™ is a matrix which comprising of the activity at each of the sources, L € R™*™ is the gain, or
lead field matrix, which contains the dipolar field patterns expected for a single source of for a given location and
orientation, and € € R™*™t is the unexplained noise, typically modelled as a multivariate Gaussian distribution
with zero mean and covariance Q.. Source reconstruction aims to rearrange Equation 1 such that, given a set of

80 source locations and calculated lead fields, we can obtain J. Here we approached the problem within in a Bayesian,
maximum a posteriori framework®>*-38, Assuming J is a multivariate Gaussian process, with zero mean and
covariance @, the source estimates can be expressed through Bayes’ theorem as

_ 10 400):10))]
J = arggnax [7}) ® ] )

in other words, the distribution of sources which maximises the posterior p(J|Y). The likelihood and prior are
assumed to be multivariate Gaussian processes with zero-mean, such that,

(Y1) o exp{—2(¥ - LNTQ:A(Y - L))}, 3)
p()  exp {-3J7 @5y}, @)

whilst p(Y) is assumed to be constant. The derivation of Equation 2 has been covered previously**3°, but the end
result is a source estimate of the form

90 J=Q,L7(Q.+LQ,L")'Y. (5)

In this expression the lead fields are analytically solved based on physical models of the head***, The noise
covariance matrix Q. € R™*™s can be directly measured from an empty room recording, but is often assumed
that noise from the sensors is independent and individually distributed, such that Q. o I,,_ where I, € R"*™s is
an identity matrix. The source covariance matrix Q; € R"™/*™ contains the priors or assumptions that differentiate
source reconstruction methods from one other**. For example, the minimum norm solution (MNE*) assumes that
all sources are considered independent and equiprobable (i.i.d.), such that Q;j;p = In].. EBB?? also assumes
independent sources (off diagonal values of Q;gzpp are set to 0) but each diagonal element corresponds to the

(beamformer estimated) variance of a single source. For a given source at a location/orientation 6
2 __1 qro-17 )71
Ps = 7, (1605l (©)

100 where @, € R™*"s is the sensor-level covariance matrix and ly € R™s*! is the corresponding lead field vector.

Defining the vector p? = [plz, ,p,zlq], we finally generate the source covariance prior for beamforming
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Qjiess = diag(p?). @)
2.2) The correlated source Empirical Bayesian Beamformer (cEBB)

Beamformers are known to perform poorly when the underlying current distribution contains distal correlated
sources®?*2>%_ Put simply, the signal from the partner source at a different location is seen as noise and
suppressed. To counter this in our prior construction, we modified the lead field vector in Equation 6 to define a
source space where each dipole of interest is paired to another, each pair mapping to a single lead-field?*. Here
the modified variance term, p'? for location 8 is

-1
P’ = m({lg +}Q I+ 1)) . ®)

110 where ¢ is the location/orientation of the second source which correlates with the source at 6. Likewise, the
variance at @ would be the same, i.e. pi* = p(’pz. Consequentially, this requires prior knowledge of where this
second source is expected to be, but typically it is assumed to be the homolog in the contralateral hemisphere. We
also note that not every source need to necessarily to be correlated with another, only w regions of interest if
required. By concatenating all the variance measurements into one vector, p'?, we generated our final covariance
matrix

Qjicess = Qjigr + diag(Plz)- 9)

We note that technically we are still assuming independence between all sources, but here we adjust the sensitivity

to sources in the prior that we would have otherwise missed with the standard EBB. Note also that the solution is

the sum of the original EBB solution and the solution composed of correlated pairs. We briefly investigate the
120 effects of using exclusively one formulation or the other in the Supplementary Information.

3) Methods
3.1) Simulations

We simulated MEG datasets based on three different scenarios in two different regions of the brain (one cortical
region, Heschl’s gyri and one subcortical, the hippocampal regions):

1. A single source generating a 20 Hz sinusoid of amplitude 10 nAm, located in the right hemisphere.
Two uncorrelated sources, one a 20 Hz sinusoid of amplitude 10 nAm, located in the right hemisphere.
The second source being a 10 Hz sinusoidal source of amplitude 10 nAm, located the homologous region
in the left hemisphere.
3. Two correlated, homologous sources in the left and right hemispheres, consisting of two 20 Hz sinusoids
130 (of the same phase) at 10 nAm.

For illustrative purposes, a cartoon depiction of the simulations can be found later in Figure 1A. In each of the
three cases, sources were active for 1 second with a 6 second inter-trial-interval, for 10 trials. All simulations were
based on a 275-channel SQUID MEG system (CTF, Coquitlam, BC) set in a 3™ order synthetic gradiometer
configuration. The locations of three fiducial coil positions (nasion, left and right preauricular) relative to the
t'5, We used canonical rather than individual MRIs for source
The source space was based on the template anatomical provided with SPM12
(https://www.fil.ion.ucl.ac.uk/spm), with cortical surfaces extracted from the boundary between the pial and white

matter. These surfaces were downsampled, such that the 4096 vertices per hemisphere corresponded to the

sensors were derived from a previous experimen
reconstruction®>+7,
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locations and the mesh vertex normals corresponded to the orientations of the dipoles in our source space (used

140 for both the simulations and source reconstruction of the resultant data). In addition, a mesh corresponding to the
hippocampus was incorporated in the source space*. The source space was then affined transformed (using 7
degrees of freedom) such that the anatomical fiducial locations of the template MRI were aligned to the locations
of the fiducial coils relative the MEG sensor array. The lead fields for each of the other sources were generated
using a single shell model*!, where the conductive model geometry was based on a convex hull mesh of the
brain/CSF boundary, derived from the transformed template MRI. The SNR of simulations was varied, from 0 dB
to -40 dB in steps of 5 dB, sensor noise was sampled from a Gaussian distribution. Data were simulated within
SPM12.

3.2) Experimental data

Twenty two native English speakers (14 female, aged 2747 [mean+SD] years) participated in a previously

150 published study'® that involved generating novel scene imagery, a task known to engage the hippocampus. The
study was approved by the University College London Research Ethics Committee and all participants gave
written informed consent.

The detailed paradigm and experimental considerations can be found in elsewhere!® but a summary follows. On
any one trial, participants were asked to either imagine a scene, a single isolated object floating against a white
background, or count in threes from a specified number. The stimulus type (either, “scene”, “object” or
“counting”’) was delivered via MEG-compatible earphones (3M, Saint Paul, MN). The participant closed their
eyes and awaited the auditory cue of the scene (e.g. “jungle”’) or object (e.g. “bottle”) to imagine, or the number
to count in threes from (e.g. “sixty”). The participant then had 3000 ms to imagine or count until a beep indicated
the trial was over. The participant then opened their eyes. Seventy-five trials of each condition were presented in

160 a pseudorandom order. Note for this investigation, we used all conditions together (i.e. no contrasts) for our
analyses.

Data were collected using a 275-channel MEG system (CTF, Coquitlam, BC) at a 1200 Hz sample rate, with 3™
order synthetic gradiometry applied. All participants wore three head position coils, placed on the nasion and
left/right preauricular points of the head. These coils were energised prior and after each recording block to
establish the locations of the sensors relative to these fiducial points. Trials were visually inspected for SQUID
resets and extensive electromyographic artefacts, with trials containing either omitted from further analysis.

3.3) Source reconstruction

All source reconstruction was undertaken within SPM12’s DAISS toolbox (https://github.com/spm/DAiSS). The
source space was again defined using a template MRI and its associate cortex/hippocampal mesh as described in
170 Section 3.1. Again, dipole locations were the defined as the mesh vertices and orientation was set to the vertex

normal of the mesh. The data covariance matrix Q,, was calculated using discrete-cosine-transform to filter the
data, and decomposed into 4 temporal modes per trial prior to covariance calculation. For the simulations, data
were filtered to the 1-48 Hz band. For the experimental data we selected the theta (4-8 Hz) band, as that has been
frequently implicated in previous electrophysiological studies of the hippocampus®16:4%-33,

The empirical Bayesian scheme involves the optimal weighting of the priors defined in the source covariance
matrix @; and an i.i.d. noise matrix @, to the original data covariance:

Q, =1,Q.+L(2,Q,)L", ®)

Where A; and A, are non-negative hyperparameters that are estimated by maximising Free energy, F, (a lower
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bound for the model evidence??) using a Variational Laplacian estimator®, such that
180 4= [A1,4,], ©)

A = argmax[F] (10)
2

nsng
2

F=—2u(Q;'Yy") - Zn|Q,| - ln(Zn)—é(i—v)Tl'l(;l—v)+%ln|Z,1H|, (11)

where the prior and posterior distributions 4, q(4) and p(4) are assumed to be multivariate Gaussians, such that

qd) = N, o) (12)
p(d) = N(Z,%). (13)

The mean v and precision II of the priors are chosen to be uninformative, such that the q is a distribution with
1

near-zero mean (e~*) and low precision (eﬁ) to cover a wide parameter space. Note Il is also a scaled identity

matrix. The final optimized free energy (or model evidence) allows us to compare different models (i.e. different

formulations of @) of how the data were generated.

190 In the case of cEBB, we needed to specify different forms of @; depending on which sources were correlated.
One such prior was that all homologous source pairs in the two hemispheres were correlated, an assumption made
when reconstructing the simulated data. For the experimental data, we also looked at priors containing correlated
sources only in the hippocampi but not the cortex and vice versa. For locations where we did not expect correlated
sources, we used the definition of source variance in equation 6 rather than equation 8-9 when constructing the
prior. From here a source weights matrix W € R™*™/ for all sources can be generated using

W= 1,Q,L7(1,Q. +L1,Q,L") ", (14)

where each column represents a single source. If a source at location 8 has a corresponding source weights vector
wy € RM™"s_ then the reconstructed source power is

E[J?] = woQ;.w5, (15)

200 where Qf, € R™*™s is the data covariance matrix filtered and epoched in to a sub-band and time window of
choice.

In the empirical group analysis, we computed the power estimate (equation 15) across the cortical and
hippocampal meshes. All power estimates were reconstructed onto a canonical mesh (transformed differently
depending on the locations of the fiducial coils within the MEG sensor array) with source spacing of 5 mm on
average. This means that vertex N for each participant corresponds to approximately the same location in MNI
space. Glass-brain plots were used to depict this mesh in MNI coordinate space. These estimates were then
smoothed (along the mesh) using a Green function as the smoothing operator®2, which gives a local coherence of
about 10 mm. We choose 10mm to allow for some intra-subject variability and to increase the sensitivity of the
subsequent group statistics. We compared the EBB to various cEBB solutions through a paired t-test of the

210 difference between these smoothed (surface based) power estimates. False Discovery Rate (FDR), as implemented
in SPM12, was used to control the false positive rate.
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3.4) Bayesian Model Comparison

For the simulations that consist of a single dataset, the best model is the one that has the highest model evidence.
However, for group studies we may have one candidate model that shows large but random changes in model
evidence across the group, or another model that displays modest but consistent improvements. Here, we
employed a random effects analysis**> to inform us which model was more likely or more frequent to prevail in
a population. From the analysis, two omnibus statistics are useful for our purposes; first, if we have two competing
models, m; and m, based on our group-level data G, we can calculate the protected exceedance probability (PXP;
) that one model would be picked over the other:

220 G152 = p(my > my|G). (16)

Within the calculation of ¢, we also quantify the Bayesian Omnibus Risk (BOR) defined as the posterior
probability that model frequencies are equal®*. This could be considered analogous to the classical p-value in
frequentist statistics such that BOR<0.05 means that it is unlikely that the model frequencies are the same.

3.5) Data Availability

The EBB scheme with options for correlated sources is available within DAiSS toolbox, with an implementation
directly within SPM12 arriving in a future update. The full pipeline to run and analyse the simulations is available
at https://github.com/georgeoneill/EBBcorr. The experimental MEG data are available upon reasonable request —
please contact EAM.
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230 4) Results

We divide the results into three main sections. The first section demonstrates the basic principal of operation
and the metrics we wished to use in a set of shallow source simulations; the simulation scenarios are familiar
and have been explored in many other studies. In the second section, we specifically examined sources on the
hippocampal envelope. We had not anticipated this, but for sources located at the anterior hippocampi, the
limitations of MEG system sensitivity interacted with the inference we wished to make. Finally, we applied the
machinery to data from empirical recordings designed to engage the hippocampus.

4.1) Shallow source simulations

We first examined three possible scenarios within Heschl’s gyri and nine different SNR levels in simulation.
Figure 1B shows the differences in model evidence (AF) for cEBB relative to EBB inverse models. Negative

240 values indicate that the EBB solution was more likely than the cEBB. For a single simulated source (Mono; red
bars in Fig. 1B) we observed that the cEBB (correlated priors) model was a much less likely description of the
data. These differences in model evidence are relatively constant between SNR values of -15 dB to 0 dB (AF = -
140), beyond which we see a reduction in the magnitude of differences as SNR worsens. Similarly, for two
uncorrelated sources (blue bars in Fig. 1B) the EBB model provided a more likely description of the data (AF= -
46 at -15 dB). However, in the case of two correlated sources (green bars in Fig. 1B), we noted an increase in
model evidence when considering correlated source priors (AF=69 at -15 dB). We also observed a failure to
identify the correlated sources at SNRs lower than -25 dB.

G W
Mono Mono H
80/ wmm Dual Uncorrelated
40+ == Dual Correlated
: = Oa™ gun i
I Dual uncorrelated i Dual uncorrelated i @ II
: . w20
H H 5 H 8 -a0
H i Y i 9 w
: : 3
; . Lo 3 i
i Dual correlated 3 f Y i Dual correlated : -80
; i % ; -100
i Yt i 120
: : : -140
40 -30 20 -10 0

SNR/dB

Figure 1: Depiction and model evidence results of the simulations comparing Empirical Bayesian Beamforming (EBB) to

250 correlated EBB (cEBB) inversions. A) Cartoon diagram explaining the simulation types, in this case two sources placed in
Heschl’s gyri were set to be either unilateral, uncorrelated or correlated bilateral. B) Model evidence comparison between
the correlated and uncorrelated beamformer priors for sources simulated in Heschl’s gyri. Positive values in model evidence
indicate that correlated priors (cEEB) were more likely models compared to uncorrelated ones (EBB).

Figure 2 shows the spatial distributions of the source priors for three source inversions. The priors used were EBB,
cEBB and, for comparison, an additional vanilla IID model (in which the source prior consisted of an identity
matrix) is also shown. Again, these were based on the simulations in Heschl’s gyri (with an SNR=-10 dB) for
illustrative purposes. The IID model was not data dependent and so every source location had the same source
variance a priori, whereas the beamformer models showed differing data-dependent source variance maps. For
the mono simulations we noted that the EBB prior highlights only one source, whereas the cEBB prior projected
260 that single source into both hemispheres. This projection can be faintly seen in Figure 2 (marked with a dashed
circle), but as the cEBB prior also included information from the EBB prior (it was the sum of the standard and
modified priors) this effect was reduced. We investigate the effect of removing the standard EBB prior (from the
sum) in the Supplementary Information (see Supplementary Figures 2-3). The priors for the dual (uncorrelated)
simulations gave priors that were topographically similar, whilst for the correlated sources, the priors’
topographies diverged. EBB estimated the largest source variance to be in the centre of the brain (and in medial
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areas of cortex) rather in either Heschl’s gyrus. Conversely, the cEBB prior estimated a variance distribution
peaking around the locations of the simulated sources.

Figure 3 shows glass brain plots of oscillatory power estimates between 8-22 Hz (recall simulated sources were
generated at either 10 or 20 Hz) during the stimulation period (0-1000 ms) for the three inverse models and the
270 three simulation types at -10 dB. The left most column, which has the power maps for the IID model, show that
it localised the source(s), with power biased towards the most superficial cortical locations; a characteristic of
unnormalised MNE source reconstructions*®>?. The beamformer models for the non-correlated source simulations
localised power with spatially similar profiles to each other, with their maximal power in each hemisphere close
to their simulated locations (IID mean location error (MLE): 13.4 mm; EBB and cEBB MLE: 3.1 mm). Note that
despite cEBB estimating variance in the contralateral hemisphere within its prior, the source was predominantly
localised in the (correct) ipsilateral hemisphere. For the correlated source simulations, we observed that the EBB
model resulted in a quite different topography compared to cEBB; the power distribution more closely resembled
the MNE power map for a correlated source model. cEBB in comparison, correctly localised both sources with
less localisation error (EBB mean localisation error: 13.8 mm; cEBB mean localisation error: 3.8 mm). In
280 summary, there are three main points to note in this figure. The IID was robust to the correlation structure in the
data but tended to produce superficial source estimates. The EBB algorithm produced precise source estimates for
uncorrelated sources but in the case of correlated sources failed gracefully, producing an IID-type solution.
Finally, the cEBB produced an accurate solution for the correlated scenario. It is interesting to note that the cEBB
solution is asymmetric (Figure 3) whereas the prior is symmetric (Figure 2 and Supplementary Figure S3) This
highlights one the key differences between the EBB and standard beamformer solutions (which would also be
symmetric). Here we develop the prior Q; based on beamformer assumptions but the general solution (equation

14) is also determined by the data and the standard lead field matrix (with no additional covariance structure).

Spatial distribution of priors

D EBB cEBB

Dual Uncorrelated Mono

Dual Correlated

0 scaled prior 1

Figure 2: Spatial distributions of the source priors and reconstructed source power plotted onto glass brains for simulations
290 within Heschl’s gyri. Results have been transformed into MNI space. A) The spatial distribution of the source priors, scaled
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relative to their maximum value for three inverse models, Minimum Norm Estimation (IID), Empirical Bayesian Beamforming
(EBB) and correlated source Empirical Bayesian Beamforming (cEBB). The dashed circle highlights a case where cEBB will
estimate variance of a non-existent source in the contralateral hemisphere due to the presence of a genuine source in the
ipsilateral hemisphere.
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Figure 3: Spatial distributions of the reconstructed source power for unilateral, dual-uncorrelated and dual-correlated
simulation scenarios (SNR = -10 dB). When sources were uncorrelated, EBB and cEBB inversion models gave similar results,
whereas in the presence of correlated sources, EBB power fell back onto a topography akin to IID. Although qualitatively

300 cEBB reconstructs all three scenarios it is only objectively the best model (see model evidence scores in figure 3) for the dual-
correlated sources. Results have been transformed into MNI space for visualisation purposes.

4.2) Hippocampal source simulations

The results of the hippocampal simulations are showing in Figure 4. Panel A shows the model evidence from all
three simulation scenarios across the 9 SNR levels for a pair of sources in the posterior of the hippocampal body
(left plot) and the anterior hippocampus (right plot). In the hippocampal body, we observed very similar behaviour
to that found in Hechl’s gyri. It correctly identified that the EBB was a more plausible model for single sources
and the case of dual uncorrelated sources, with cEBB being awarded with better model evidence scores for the
dual correlated sources. However, for sources in the anterior hippocampus (Figure 4 A, right panel), whilst there
was a clear distinction between models when the underlying source was unilateral rather than bilateral, sources
310 that were uncorrelated in simulation were more likely (AF = 10 for most SNR levels) under cEBB prior (i.e. our
inference would suggest they were correlated). Figure 4B shows the spatial distribution of model evidence
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changes when comparing EBB to cEBB for dual uncorrelated sources with an SNR of -10 dB. We observed that
for the majority of the hippocampal sources the model evidence suggested that uncorrelated priors were (correctly)
more likely, but toward the anterior we noted a transition to where the correlated model was incorrectly classified
as more plausible. Figure 4C shows a binarised representation of the model evidence scores; blue areas are where
EBB was correctly identified as the winning model, and the red areas where cEBB was favoured. This red zone,
in which uncorrelated sources appeared as correlated, was exclusively in the anterior hippocampus. Figure 4D is
a plot of the correlation of the lead fields between homologous source pairs in the hippocampus. In the anterior
hippocampus, the lead fields between a source and its homolog were highly (r > 0.7) correlated (i.e. occupied a
320 very similar portion of MEG signal space).
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Figure 4: Results of simulations within the hippocampus. A) Model evidence scores of the three simulation scenarios across
nine SNR steps for sources in the posterior of the hippocampal body (left) and anterior hippocampal (right). B) Spatial map
of the difference in evidence between cEBB to EBB models (cEBB-EBB) for a pair of uncorrelated sources with an SNR of -
10 dB. The changes were negative in most cases (i.e. an uncorrelated EBB was a more likely model) but in the anterior we
observed that the correlated model was erroneously selected to be more likely. C) A binarised map to show where the
simulations correctly identified the underlying data was uncorrelated (blue), and incorrectly suggested to be correlated (red).
D) A map of the correlation of the lead fields between homologous source pairs in the hippocampi. Note the strong positive
correlation between the anterior hippocampal pairs.

330 4.3) Experimental data
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In the previous sections we showed how model evidence can be used to select between different source covariance
priors. The question we considered next was how best to describe data originating from the human hippocampus.
We reanalysed data from Barry et al.'® using four different models: standard EBB using exclusively uncorrelated
sources; cEBB with homologous correlated source pairs for the whole brain (across both hippocampi and cortex);
cEBB with homologous pairs of correlated sources in the hippocampi only; cEBB with homologous pairs of
correlated sources in the cortex but not hippocampi. Figure 5A shows the comparison between competing
generative models used to describe data in the 4-8 Hz band in the 0-3000 ms window during all valid trials (across
all conditions) for the cohort of 22 participants'®. Positive values indicate a model is a more likely description of
the data than EBB. The first model, where correlated sources could exist in either the cortex or the hippocampus,

340 displayed the largest changes in model evidence compared to EBB (red bars; AF= 15 + 32 [mean + SD] across
subjects) followed by restricting the correlated sources to the cortex (blue bars; AF= 13 £ 30), and the smallest
changes by restricting correlations to just the hippocampi (green bars; AF=5 + 3). However, as is evident in Fig.
5A, not all the changes were positive. For the models that contained correlated cortical sources, 5/22 participants
exhibited a reduction in model evidence, whereas for the model with the correlated sources existing in only the
hippocampi, we observed increases in model evidence in all 22 participants.

The next step was to determine the most likely model (or most frequently chosen model across the population)
using Bayesian model selection>*. Panel 5B shows the results of the pairwise exceedance probabilities, ¢ between
all competing model combinations. Values above 0.5 (red squares) indicate that models labelled along the column
are more likely than the model labelled along the row. We found that all models with correlated sources were

350 more likely than the uncorrelated source model (top row, ¢ > 0.9) but, importantly, if the difference between two
models was only that the hippocampi were correlated in one and not in the other, then the former model was most
frequently chosen in all cases (¢ = 1). Figure 5C shows the Bayesian Omnibus Risk (BOR), the probability that
there is no difference in how often a model would be chosen from across a population. All models involving
correlated hippocampal sources were deemed distinct (BOR<0.01) from those without.

Figure 6 shows the group-level FDR-corrected paired-T-contrasts comparing theta band power (4-8 Hz) between
source estimates based on uncorrelated (EBB) source models and correlated models containing the hippocampus.
Contrasting the correlated hippocampal source model to standard EBB (Fig. 6, left), we noted a bilateral increase
in theta power reconstructed in the anterior hippocampus. The right column of Figure 6 shows the contrast between
EBB and the cortex-plus-hippocampus correlated model, where we also observed significant changes in power (p

360 < 0.05; whole brain FDR corrected) in the anterior hippocampal regions and anterior/polar temporal cortices. We
also observed significant clusters of increased reconstructed power in the occipital cortex.
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Figure 5: Evidence for four generative models of the experimental data set. A) The changes in model evidence compared to
EBB when differing elements of the model were allowed to be correlated: either all sources (red), only the cortical sources
(blue) or hippocampal sources (green). B) A random effects pairwise comparison of models in terms of protected exceedance
probabilities (PXP; ¢). High values (red) indicated model 1 was more likely. C) Bayesian Omnibus Risk (BOR), which
quantifies how likely it is that a pair of models have the same frequency of occurrence across a group. Asterisks mark
comparisons in which model frequencies were clearly different (BOR < 0.05). Note the colour-scale of the BOR values are on
a log10 rather than linear scale.
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Figure 6. Reconstructed theta band power based on hippocampal only (left panel) and whole-brain (right panel) correlated
priors contrasted (paired T-test) against the uncorrelated source model. Left: Comparing uncorrelated to a model containing
a correlated hippocampus, we noted a significant increase in theta-band (4-8 Hz) power over the anterior hippocampal areas.
Right: Contrasting the whole-brain correlated model with the uncorrelated EBB solution. We observed bilateral anterior
hippocampal clusters with significant increases in power in the parahippocampal, rhinal and temporal pole areas. Results
have been tranformed into MNI space for visualisation purposes.

5) Discussion

380  We have proposed a method to implement and test between different correlated source models in beamformer
neuroimaging. This is possible within an empirical Bayes framework in which we can objectively quantify the
likelihood of any particular model given the data. We applied this correlated source framework to experimental
MEG data to show, for the first time, that human hippocampal activity in a scene imagination paradigm is bilateral.

We revisited the Empirical Bayesian Beamformer (EBB) in simulation and demonstrated that (unlike normal
beamformer solutions) it failed gracefully in the presence of correlated sources. This is because when covariant
sources are suppressed, the EBB-prior becomes featureless, approximating a minimum-norm prior. We then
introduced the cEBB variant in which the prior variance component consisted of a paired-correlated-source prior
plus the standard EBB prior. This meant that the cEBB variant gave qualitatively similar and accurate performance
for both correlated and uncorrelated source pairs. Using unilateral, and bilateral correlated and uncorrelated
390 cortical source we showed how model evidence can be used to identify the most likely model for a given dataset.
We observed similar performance for source configurations along the body of the hippocampi; however, our
inference broke down at the anterior portion of the hippocampi. In this region, although we were able to distinguish
between unilateral and bilateral sources, our analysis identified uncorrelated source pairs as correlated. It seems
that this was due to the high correlation between the sensor-level profiles produced by the either of the anterior
sources (see also Supplementary figure 4) rather than any other factor (such as source distance or dipole
orientation). In other words, although spatially distinct, the anterior hippocampal portions occupy the same region
in cryogenic MEG signal space. As approximately 50% of the variance in one source will automatically be
explained by the other (due to the lead-field correlations), even uncorrelated sources appear as correlated from
this viewpoint. It is, however, encouraging that the overlap of sensitivity was not so large that we were unable to
400 distinguish unilateral from bilateral sources.

For the experimental data, we found that adding a bilaterally correlated hippocampal prior gave a consistent

improvement in model evidence across the cohort (Fig. 5A). The random effects analysis suggested that this model
was not only the most likely, but was clearly distinct from the classical beamformer/EBB solution to the problem
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(Fig. 5B, 5C). Furthermore, and perhaps more striking, we also observed a significant improvement in model
evidence when adding a correlated hippocampus to an already correlated cortex. It is worth noting that in both
these winning models, the hippocampal sources only account for 3.9% of the total source space, and these sources
were in turn deep in the brain. Making use of the winning correlated-hippocampal model, we noted an increase in
theta power in both hippocampi (Fig. 6, left panels) as compared to standard beamformer (EBB) estimates. Also,
if we removed the hippocampal specificity and allowed correlation to exist across the whole brain (Fig. 6 right

410 panels), the main power increases were once again observed in these regions. Note, however, that based on our
simulations, and the anterior location of the hippocampal power change, we were unable to resolve whether these
sources were correlated or not. The conservative conclusion is simply that the power changes are more likely
bilateral than unilateral. In the Supplementary Information we investigate what particular properties of the
modelled dipoles in the hippocampus might be driving this area of uncertainty on the anterior hippocampus. The
results may determine whether potentially adding more anterior or inferior sensors, or even changing the sensor
orientation may allow for better separation of these sources. We are currently looking into designs of on-scalp
optically-pumped MEG (OP-MEG) systems® that might more effectively distinguish between these anterior
hippocampal portions®.

It is important to note that the correlated-cortex and whole-brain correlated models generated the largest absolute

420 changes in model evidence (relative to the uncorrelated prior), however in 5/22 participants these changes were
in the opposite direction. Based on the random effects analysis, these models were not significantly different from
the standard EBB implementation. However, contrasting theta power compared to the EBB model still showed
significant increases in power in parahippocampal, rhinal and temporal pole areas (Fig. 6). One explanation is that
our anatomical model did not match reality: these data were all source reconstructed using a fitted template
anatomical image, with canonical cortical and hippocampal meshes. We know this approach is robust and works
well for volumetric studies'>1731:60-65 but it may well be that co-registration errors or individual anatomical
variability mean that some hippocampal variance is explained by the cortical mesh or vice versa. Given the large
cluster of significant power changes in bilateral temporal lobes, this seems likely. Even when the individual
anatomy is available, we know that small errors in co-registration can undermine accurate forward models®. The

430 inconsistent improvements/reductions in model evidence could be attributed to forcing 96% of the source space
to be correlated in this scenario, when in reality a much smaller area is exhibiting correlated behaviour. As an
aside, when using the whole-brain correlated model, we also observed a cluster of theta power located towards
the visual cortex, which has been reported in similar paradigms in both MEG!767:% and fMRI®,

The key neuroscience finding from this investigation is that when provoked by an imagination paradigm, theta

oscillations within the human hippocampus are bilateral. Our motivation was the discrepancy between functional

activation results reported when using fMRI and MEG (with beamformers) to image similar tasks. fMRI

experiments designed to engage the hippocampus often report bilateral activation'>%-"%, whereas there is typically
a lateralisation to a single hippocampus in MEG. The experimental MEG data presented in the current study
originated from a previous experiment'® where the authors found theta band oscillatory activity localised to the

440 left hippocampus and temporal lobe during scene imagination trials. A follow-up study, where scalp-based OP-
MEG was compared to conventional SQUID-MEG in the same paradigm showed left lateralised hippocampal
theta using SQUID-MEG, but right lateralised hippocampal activity using OP-MEG, despite the same participants
being scanned in the two MEG systems!”. Finally, a recent MEG study investigating autobiographical memory
recall reported lateralised activity in the left anterior hippocampus's. The common link between these MEG
studies is that their source reconstruction was performed using LCMV beamforming, the performance of which
is impaired by distal correlated sources, or extended cortical patches’! (which is what we effectively have with
paired anterior hippocampal sources sharing over 50% variance between them). Indeed, moving away from scene-
specific paradigms, and simply counting the number of MEG papers reporting hippocampal activity (see
Supplementary Figure 1), we found that 49/83 papers reported unilateral hippocampal activity, and of those that

450 did, 39 used a source reconstruction method within the beamformer family of solutions. Conversely, only 11
beamformer-type reconstructions led to reported bilateral activations in the hippocampus, but even in that case,
one of these studies used modified beamformers to specifically image correlated sources’.

To summarise, we have explored the possibility that the hippocampus or the cortex or both are correlated in their
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activity across hemispheres during an imagination paradigm. We found strong evidence that a correlated
hippocampal (and uncorrelated cortical) model provided the best explanation of the data. These findings may have
implications more generally, by helping to explain why, up until now, the majority of MEG-reported hippocampal
activity (typically making use of beamformers) has been estimated as unilateral.
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