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Abstract 

 

Beamforming is one of the most commonly used source reconstruction methods for magneto- and electroencephalography 10 

(M/EEG). One underlying assumption, however, is that distant sources are uncorrelated and here we tested whether this is an 

appropriate model for the human hippocampal data. We revised the Empirical Bayesian Beamfomer (EBB) to accommodate 

specific a-priori correlated source models. We showed in simulation that we could use model evidence (as approximated by 

Free Energy) to distinguish between different correlated and uncorrelated source scenarios. Using group MEG data in which 

the participants performed a hippocampal-dependent task, we explored the possibility that the hippocampus or the cortex or 

both were correlated in their activity across hemispheres. We found that incorporating a correlated hippocampal source model 

significantly improved model evidence. Our findings help to explain why, up until now, the majority of MEG-reported 

hippocampal activity (typically making use of beamformers) has been estimated as unilateral.  
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1) Introduction 

Encephalographic functional neuroimaging modalities such as magneto- and electroencephalography (M/EEG) 

work on the principle of detecting an electromagnetic signature of synchronous neuronal currents in the brain, 

using sensors on or near the scalp of a participant. The estimation of electrical brain activity given the scalp level 

measurements is an ill-posed problem and requires additional assumptions or prior beliefs about how the data 

were generated. One such reconstruction method, beamforming, has enjoyed widespread use by the M/EEG 

community1–9. 

Recent studies into the neural dynamics of memory have motivated numerous publications where hippocampal 40 

function has been imaged non-invasively. One anomaly is that studies using functional MRI (fMRI) often report 

bilateral hippocampal activations10–14, whereas source-level M/EEG studies typically report unilateral 

activations9,15–17. A common link between many of the M/EEG studies is the reliance on beamformer methods.  

Beamforming exploits the temporal covariance of recordings from a fixed array of sensors (such as set of 

magnetometers or electrodes) and tunes the sensitivity to successive anatomical locations, whilst attenuating all 

other interfering sources. This data-driven approach makes it a powerful, and noise robust, source reconstruction 

method, that has been widely used in clinical and cognitive neuroscience4,18–23. However, the assumption behind 

beamformer source reconstruction is that sources are a priori uncorrelated. Consequently, there are well-known 

situations, such as the bilateral evoked response due to binaural auditory stimulation, in which source(s) are 

mislocalised or suppressed entirely. Here we hypothesise that it is this feature of beamforming that may explain 50 

why there is a discrepancy between the M/EEG and fMRI literature on the hippocampus.  

Solutions to this correlated source problem have been forthcoming for many years, with a wide variety of 

approaches published24–31. For a detailed history, Kuznetsova and colleagues provide a review of the literature 

within their own solution to the correlated source problem31. One common approach is to collapse two distinct 

and hypothetically correlated sources into a single source24,27, the problem being that as these sources are now 

correlated a priori, and all solutions (regardless of the underlying physiology) will reflect this. Although these 

solutions are practical in situations where such correlations are known to exist, it is difficult to determine when 

(or if) such measures are necessary when faced with novel paradigms or data.  

In this study, we set out to use commonly available tools and methodology to explore data derived from a task 

known to engage the hippocampus. We made use of the Empirical Bayesian Beamformer (EBB32) to explain 60 

competing models of MEG data33. The advantage of this formulation is that different priors (or assumptions) can 

be directly compared in terms of their model evidence (as approximated by Free energy34,35). We show how model 

evidence directly reflected the poorer source reconstruction performance of the conventional EBB in the presence 

of correlated sources. We then demonstrate how it is possible to use different correlated and uncorrelated priors 

to directly test physiological hypotheses. We show this in simulation and then in an experimental dataset from a 

recent beamformer MEG study16. We found that models based on correlated hippocampal priors provided a 

significantly more likely explanation of the MEG data. We also identified an issue specific to the anterior 

hippocampi, which have highly correlated gain matrices and are therefore difficult to distinguish between using 

conventional cryogenic arrays.   

  70 
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2) Theory 

2.1) A brief summary of empirical Bayesian source reconstruction 

An M/EEG dataset, � ∈ ℝ�ý×�þ from �ý sensors and sampled over �þ timepoints, generated from ��  current 

dipoles distributed within the brain, can be described by the generative model 

� = �þ + �,     (1) 

where  þ ∈ ℝ��×�þ is a matrix which comprising of the activity at each of the sources, � ∈ ℝ�ý×�� is the gain, or 

lead field matrix, which contains the dipolar field patterns expected for a single source of for a given location and 

orientation, and � ∈ ℝ�ý×�þ  is the unexplained noise, typically modelled as a multivariate Gaussian distribution 

with zero mean and covariance �� . Source reconstruction aims to rearrange Equation 1 such that, given a set of 

source locations and calculated lead fields, we can obtain þ. Here we approached the problem within in a Bayesian, 80 

maximum a posteriori framework33,36–38.  Assuming þ is a multivariate Gaussian process, with zero mean and 

covariance ��, the source estimates can be expressed through Bayes’ theorem as 

þ = argmaxþ [p(�|þ)p(þ)p(�) ].    (2) 

in other words, the distribution of sources which maximises the posterior p(þ|�). The likelihood and prior are 

assumed to be multivariate Gaussian processes with zero-mean, such that, 

p(�|þ)  ∝ exp {2 12 (� 2 �þ)���21(� 2 �þ)},  (3) p(þ) ∝ exp {2 12 þ���21þ},     (4) 

whilst p(�) is assumed to be constant. The derivation of Equation 2 has been covered previously38,39, but the end 

result is a source estimate of the form  

þ̂ =  ����(�� + �����)21�.   (5) 90 

In this expression the lead fields are analytically solved based on physical models of the head40–43. The noise 

covariance matrix  �� ∈ ℝ�ý×�ý  can be directly measured from an empty room recording, but is often assumed 

that noise from the sensors is independent and individually distributed, such that �� ∝ ý�ý where ý�ý ∈ ℝ�ý×�ý   is 

an identity matrix. The source covariance matrix �� ∈ ℝ��×��  contains the priors or assumptions that differentiate 

source reconstruction methods from one other44. For example, the minimum norm solution (MNE45) assumes that 

all sources are considered independent and equiprobable (i.i.d.), such that ��|ýýÿ = ý��. EBB32 also assumes 

independent sources (off diagonal values of ��|Ā�� are set to 0) but each diagonal element corresponds to the 

(beamformer estimated) variance of a single source. For a given source at a location/orientation �  

ý�2 = 1����� (�����21��)21
,    (6) 

where �� ∈ ℝ�ý×�ý  is the sensor-level covariance matrix and �� ∈ ℝ�ý×1 is the corresponding lead field vector. 100 

Defining the vector �2 = [ý12, ⋯ , ý��2 ], we finally generate the source covariance prior for beamforming 
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��|Ā�� = diag(�2).     (7) 

2.2) The correlated source Empirical Bayesian Beamformer (cEBB) 

Beamformers are known to perform poorly when the underlying current distribution contains distal correlated 

sources6,24,25,46. Put simply, the signal from the partner source at a different location is seen as noise and 

suppressed. To counter this in our prior construction, we modified the lead field vector in Equation 6 to define a 

source space where each dipole of interest is paired to another, each pair mapping to a single lead-field24. Here 

the modified variance term, ý′2 for location � is 

ý�′2 = 1{���+��� }{��+��} ({��� + ��� }��21{�� + ��})21
, (8) 

where � is the location/orientation of the second source which correlates with the source at �. Likewise, the 110 

variance at � would be the same, i.e. ý�′2 =  ý�′2. Consequentially, this requires prior knowledge of where this 

second source is expected to be, but typically it is assumed to be the homolog in the contralateral hemisphere. We 

also note that not every source need to necessarily to be correlated with another, only w regions of interest if 

required.  By concatenating all the variance measurements into one vector, �′2, we generated our final covariance 

matrix 

��|�Ā�� = ��|Ā�� + diag(�′2).    (9) 

We note that technically we are still assuming independence between all sources, but here we adjust the sensitivity 

to sources in the prior that we would have otherwise missed with the standard EBB. Note also that the solution is 

the sum of the original EBB solution and the solution composed of correlated pairs. We briefly investigate the 

effects of using exclusively one formulation or the other in the Supplementary Information. 120 

3) Methods  

3.1) Simulations 

We simulated MEG datasets based on three different scenarios in two different regions of the brain (one cortical 

region, Heschl’s gyri and one subcortical, the hippocampal regions): 

1. A single source generating a 20 Hz sinusoid of amplitude 10 nAm, located in the right hemisphere.  

2. Two uncorrelated sources, one a 20 Hz sinusoid of amplitude 10 nAm, located in the right hemisphere. 

The second source being a 10 Hz sinusoidal source of amplitude 10 nAm, located the homologous region 

in the left hemisphere.  

3. Two correlated, homologous sources in the left and right hemispheres, consisting of two 20 Hz sinusoids 

(of the same phase) at 10 nAm. 130 

For illustrative purposes, a cartoon depiction of the simulations can be found later in Figure 1A. In each of the 

three cases, sources were active for 1 second with a 6 second inter-trial-interval, for 10 trials. All simulations were 

based on a 275-channel SQUID MEG system (CTF, Coquitlam, BC) set in a 3rd order synthetic gradiometer 

configuration. The locations of three fiducial coil positions (nasion, left and right preauricular) relative to the 

sensors were derived from a previous experiment16. We used canonical rather than individual MRIs for source 

reconstruction35,47. The source space was based on the template anatomical provided with SPM12 

(https://www.fil.ion.ucl.ac.uk/spm), with cortical surfaces extracted from the boundary between the pial and white 

matter. These surfaces were downsampled, such that the 4096 vertices per hemisphere corresponded to the 
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locations and the mesh vertex normals corresponded to the orientations of the dipoles in our source space (used 

for both the simulations and source reconstruction of the resultant data). In addition, a mesh corresponding to the 140 

hippocampus was incorporated in the source space48. The source space was then affined transformed (using 7 

degrees of freedom) such that the anatomical fiducial locations of the template MRI were aligned to the locations 

of the fiducial coils relative the MEG sensor array. The lead fields for each of the other sources were generated 

using a single shell model41, where the conductive model geometry was based on a convex hull mesh of the 

brain/CSF boundary, derived from the transformed template MRI. The SNR of simulations was varied, from 0 dB 

to -40 dB in steps of 5 dB, sensor noise was sampled from a Gaussian distribution. Data were simulated within 

SPM12.  

3.2) Experimental data 

Twenty two native English speakers (14 female, aged 27±7 [mean±SD] years) participated in a previously 

published  study16 that involved generating novel scene imagery, a task known to engage the hippocampus. The 150 

study was approved by the University College London Research Ethics Committee and all participants gave 

written informed consent.  

The detailed paradigm and experimental considerations can be found in elsewhere16 but a summary follows. On 

any one trial, participants were asked to either imagine a scene, a single isolated object floating against a white 

background, or count in threes from a specified number. The stimulus type (either, <scene”, <object” or 

<counting”) was delivered via MEG-compatible earphones (3M, Saint Paul, MN). The participant closed their 

eyes and awaited the auditory cue of the scene (e.g. <jungle”) or object (e.g. <bottle=) to imagine, or the number 
to count in threes from (e.g. <sixty=). The participant then had 3000 ms to imagine or count until a beep indicated 

the trial was over. The participant then opened their eyes. Seventy-five trials of each condition were presented in 

a pseudorandom order. Note for this investigation, we used all conditions together (i.e. no contrasts) for our 160 

analyses. 

Data were collected using a 275-channel MEG system (CTF, Coquitlam, BC) at a 1200 Hz sample rate, with 3rd 

order synthetic gradiometry applied. All participants wore three head position coils, placed on the nasion and 

left/right preauricular points of the head. These coils were energised prior and after each recording block to 

establish the locations of the sensors relative to these fiducial points. Trials were visually inspected for SQUID 

resets and extensive electromyographic artefacts, with trials containing either omitted from further analysis. 

3.3) Source reconstruction 

All source reconstruction was undertaken within SPM12’s DAiSS toolbox (https://github.com/spm/DAiSS). The 

source space was again defined using a template MRI and its associate cortex/hippocampal mesh as described in 

Section 3.1. Again, dipole locations were the defined as the mesh vertices and orientation was set to the vertex 170 

normal of the mesh. The data covariance matrix ��, was calculated using discrete-cosine-transform to filter the 

data, and decomposed into 4 temporal modes per trial prior to covariance calculation. For the simulations, data 

were filtered to the 1-48 Hz band. For the experimental data we selected the theta (4-8 Hz) band, as that has been 

frequently implicated in previous electrophysiological studies of the hippocampus9,16,49–53. 

The empirical Bayesian scheme involves the optimal weighting of the priors defined in the source covariance 

matrix �� and an i.i.d. noise matrix ��, to the original data covariance: 

��  ≅ �1�� + �(�2��)�� ,  (8) 

Where �1 and �2 are non-negative hyperparameters that are estimated by maximising Free energy, þ,  (a lower 
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bound for the model evidence33) using a Variational Laplacian estimator38, such that   

� =  [�1, �2],    (9) 180 

� =  argmax� [þ]    (10) 

þ =  2 �ý2 tr(��21���) 2 �ý2 ln|��| 2 �ý�þ2 ln(2�) 2 12 (�̂ 2 �)��(�̂ 2 �) + 12 ln|���|, (11) 

where the prior and posterior distributions �,  þ(�) and ý(�) are assumed to be multivariate Gaussians, such that  

þ(�) =  �(�, �21)    (12) ý(�) =  �(�̂, ��).   (13) 

The mean � and precision � of the priors are chosen to be uninformative, such that the þ is a distribution with 

near-zero mean (�24) and low precision (� 116) to cover a wide parameter space. Note �  is also a scaled identity 

matrix. The final optimized free energy (or model evidence) allows us to compare different models (i.e. different 

formulations of ��) of how the data were generated. 

In the case of cEBB, we needed to specify different forms of �� depending on which sources were correlated. 190 

One such prior was that all homologous source pairs in the two hemispheres were correlated, an assumption made 

when reconstructing the simulated data. For the experimental data, we also looked at priors containing correlated 

sources only in the hippocampi but not the cortex and vice versa. For locations where we did not expect correlated 

sources, we used the definition of source variance in equation 6 rather than equation 8-9 when constructing the 

prior. From here a source weights matrix � ∈ ℝ�ý×�� for all sources can be generated using 

� =  �2����(�1�� + ��2����)21
, (14) 

where each column represents a single source. If a source at location � has a corresponding source weights vector �� ∈ ℝ1×�ý, then the reconstructed source power is 

ý[þ̂2] =  ���Āÿ��� ,    (15) 

where �Āÿ ∈ ℝ�ý×�ý is the data covariance matrix filtered and epoched in to a sub-band and time window of 200 

choice. 

In the empirical group analysis, we computed the power estimate (equation 15) across the cortical and 

hippocampal meshes. All power estimates were reconstructed onto a canonical mesh (transformed differently 

depending on the locations of the fiducial coils within the MEG sensor array) with source spacing of 5 mm on 

average. This means that vertex N for each participant corresponds to approximately the same location in MNI 

space. Glass-brain plots were used to depict this mesh in MNI coordinate space. These estimates were then 

smoothed (along the mesh) using a Green function as the smoothing operator32, which gives a local coherence of 

about 10 mm. We choose 10mm to allow for some intra-subject variability and to increase the sensitivity of the 

subsequent group statistics. We compared the EBB to various cEBB solutions through a paired t-test of the 

difference between these smoothed (surface based) power estimates. False Discovery Rate (FDR), as implemented 210 

in SPM12, was used to control the false positive rate.  
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3.4) Bayesian Model Comparison 

For the simulations that consist of a single dataset, the best model is the one that has the highest model evidence. 

However, for group studies we may have one candidate model that shows large but random changes in model 

evidence across the group, or another model that displays modest but consistent improvements. Here, we 

employed a random effects analysis54,55 to inform us which model was more likely or more frequent to prevail in 

a population. From the analysis, two omnibus statistics are useful for our purposes; first, if we have two competing 

models, m1 and m2 based on our group-level data G, we can calculate the protected exceedance probability (PXP; ϕ) that one model would be picked over the other: 

ϕ1>2 = p(m1 > m2|G).    (16) 220 

Within the calculation of ϕ, we also quantify the Bayesian Omnibus Risk (BOR) defined as the posterior 

probability that model frequencies are equal54. This could be considered analogous to the classical p-value in 

frequentist statistics such that BOR<0.05 means that it is unlikely that the model frequencies are the same.  

3.5) Data Availability 

The EBB scheme with options for correlated sources is available within DAiSS toolbox, with an implementation 

directly within SPM12 arriving in a future update. The full pipeline to run and analyse the simulations is available 

at https://github.com/georgeoneill/EBBcorr. The experimental MEG data are available upon reasonable request – 

please contact EAM. 
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4) Results 230 

We divide the results into three main sections. The first section demonstrates the basic principal of operation 

and the metrics we wished to use in a set of shallow source simulations; the simulation scenarios are familiar 

and have been explored in many other studies. In the second section, we specifically examined sources on the 

hippocampal envelope. We had not anticipated this, but for sources located at the anterior hippocampi, the 

limitations of MEG system sensitivity interacted with the inference we wished to make. Finally, we applied the 

machinery to data from empirical recordings designed to engage the hippocampus. 

4.1) Shallow source simulations 

We first examined three possible scenarios within Heschl’s gyri and nine different SNR levels in simulation.  

Figure 1B shows the differences in model evidence (Δþ) for cEBB relative to EBB inverse models. Negative 

values indicate that the EBB solution was more likely than the cEBB. For a single simulated source (Mono; red 240 

bars in Fig. 1B) we observed that the cEBB (correlated priors) model was a much less likely description of the 

data. These differences in model evidence are relatively constant between SNR values of -15 dB to 0 dB (Δþ ≈ -

140), beyond which we see a reduction in the magnitude of differences as SNR worsens. Similarly, for two 

uncorrelated sources (blue bars in Fig. 1B) the EBB model provided a more likely description of the data (Δþ= -

46 at -15 dB). However, in the case of two correlated sources (green bars in Fig. 1B), we noted an increase in 

model evidence when considering correlated source priors (Δþ=69 at -15 dB). We also observed a failure to 

identify the correlated sources at SNRs lower than -25 dB.  

 

Figure 1: Depiction and model evidence results of the simulations comparing Empirical Bayesian Beamforming (EBB)  to 

correlated EBB (cEBB) inversions. A) Cartoon diagram explaining the simulation types, in this case two sources placed in 250 
Heschl’s gyri were set to be either unilateral, uncorrelated or correlated bilateral. B) Model evidence comparison between 

the correlated and uncorrelated beamformer priors for sources simulated in Heschl’s gyri. Positive values in model evidence 

indicate that correlated priors (cEEB) were more likely models compared to uncorrelated ones (EBB).  

Figure 2 shows the spatial distributions of the source priors for three source inversions. The priors used were EBB, 

cEBB and, for comparison, an additional vanilla IID model (in which the source prior consisted of an identity 

matrix) is also shown. Again, these were based on the simulations in Heschl’s gyri (with an SNR=-10 dB) for 

illustrative purposes. The IID model was not data dependent and so every source location had the same source 

variance a priori, whereas the beamformer models showed differing data-dependent source variance maps. For 

the mono simulations we noted that the EBB prior highlights only one source, whereas the cEBB prior projected 

that single source into both hemispheres. This projection can be faintly seen in Figure 2 (marked with a dashed 260 

circle), but as the cEBB prior also included information from the EBB prior (it was the sum of the standard and 

modified priors) this effect was reduced. We investigate the effect of removing the standard EBB prior (from the 

sum) in the Supplementary Information (see Supplementary Figures 2-3). The priors for the dual (uncorrelated) 

simulations gave priors that were topographically similar, whilst for the correlated sources, the priors’ 
topographies diverged. EBB estimated the largest source variance to be in the centre of the brain (and in medial 
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areas of cortex) rather in either Heschl’s gyrus. Conversely, the cEBB prior estimated a variance distribution 

peaking around the locations of the simulated sources.  

Figure 3 shows glass brain plots of oscillatory power estimates between 8-22 Hz (recall simulated sources were 

generated at either 10 or 20 Hz) during the stimulation period (0-1000 ms) for the three inverse models and the 

three simulation types at -10 dB. The left most column, which has the power maps for the IID model, show that 270 

it localised the source(s), with power biased towards the most superficial cortical locations; a characteristic of 

unnormalised MNE source reconstructions56,57. The beamformer models for the non-correlated source simulations 

localised power with spatially similar profiles to each other, with their maximal power in each hemisphere close 

to their simulated locations (IID mean location error (MLE): 13.4 mm; EBB and cEBB MLE: 3.1 mm). Note that 

despite cEBB estimating variance in the contralateral hemisphere within its prior, the source was predominantly 

localised in the (correct) ipsilateral hemisphere. For the correlated source simulations, we observed that the EBB 

model resulted in a quite different topography compared to cEBB; the power distribution more closely resembled 

the MNE power map for a correlated source model. cEBB in comparison, correctly localised both sources with 

less localisation error (EBB mean localisation error: 13.8 mm; cEBB mean localisation error: 3.8 mm). In 

summary, there are three main points to note in this figure. The IID was robust to the correlation structure in the 280 

data but tended to produce superficial source estimates. The EBB algorithm produced precise source estimates for 

uncorrelated sources but in the case of correlated sources failed gracefully, producing an IID-type solution. 

Finally, the cEBB produced an accurate solution for the correlated scenario. It is interesting to note that the cEBB 

solution is asymmetric (Figure 3) whereas the prior is symmetric (Figure 2 and Supplementary Figure S3) This 

highlights one the key differences between the EBB and standard beamformer solutions (which would also be 

symmetric). Here we develop the prior �� based on beamformer assumptions but the general solution (equation 

14) is also determined by the data and the standard lead field matrix (with no additional covariance structure). 

 

Figure 2:  Spatial distributions of the source priors and reconstructed source power plotted onto glass brains for simulations 

within Heschl’s gyri. Results have been transformed into MNI space. A) The spatial distribution of the source priors, scaled 290 
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relative to their maximum value for three inverse models, Minimum Norm Estimation (IID), Empirical Bayesian Beamforming 

(EBB) and correlated source Empirical Bayesian Beamforming (cEBB). The dashed circle highlights a case where cEBB will 

estimate variance of a non-existent source in the contralateral hemisphere due to the presence of a genuine source in the 

ipsilateral hemisphere. 

 

 
Figure 3:  Spatial distributions of the reconstructed source power for unilateral, dual-uncorrelated and dual-correlated 

simulation scenarios (SNR = -10 dB). When sources were uncorrelated, EBB and cEBB inversion models gave similar results, 

whereas in the presence of correlated sources, EBB power fell back onto a topography akin to IID. Although qualitatively 

cEBB reconstructs all three scenarios it is only objectively the best model (see model evidence scores in figure 3) for the dual-300 
correlated sources. Results have been transformed into MNI space for visualisation purposes. 

4.2) Hippocampal source simulations 

The results of the hippocampal simulations are showing in Figure 4. Panel A shows the model evidence from all 

three simulation scenarios across the 9 SNR levels for a pair of sources in the posterior of the hippocampal body 

(left plot) and the anterior hippocampus (right plot). In the hippocampal body, we observed very similar behaviour 

to that found in Hechl’s gyri. It correctly identified that the EBB was a more plausible model for single sources 

and the case of dual uncorrelated sources, with cEBB being awarded with better model evidence scores for the 

dual correlated sources. However, for sources in the anterior hippocampus (Figure 4A, right panel), whilst there 

was a clear distinction between models when the underlying source was unilateral rather than bilateral, sources 

that were uncorrelated in simulation were more likely (Δþ ≈ 10 for most SNR levels) under cEBB prior (i.e. our 310 

inference would suggest they were correlated).  Figure 4B shows the spatial distribution of model evidence 
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changes when comparing EBB to cEBB for dual uncorrelated sources with an SNR of -10 dB. We observed that 

for the majority of the hippocampal sources the model evidence suggested that uncorrelated priors were (correctly) 

more likely, but toward the anterior we noted a transition to where the correlated model was incorrectly classified 

as more plausible. Figure 4C shows a binarised representation of the model evidence scores; blue areas are where 

EBB was correctly identified as the winning model, and the red areas where cEBB was favoured.  This red zone, 

in which uncorrelated sources appeared as correlated, was exclusively in the anterior hippocampus. Figure 4D is 

a plot of the correlation of the lead fields between homologous source pairs in the hippocampus.  In the anterior 

hippocampus, the lead fields between a source and its homolog were highly (r > 0.7) correlated (i.e. occupied a 

very similar portion of MEG signal space).   320 

 

Figure 4: Results of simulations within the hippocampus. A) Model evidence scores of the three simulation scenarios across 

nine SNR steps for sources in the posterior of the hippocampal body (left) and anterior hippocampal (right). B) Spatial map 

of the difference in evidence between cEBB to EBB models (cEBB-EBB) for a pair of uncorrelated sources with an SNR of -

10 dB. The changes were negative in most cases (i.e. an uncorrelated EBB was a more likely model) but in the anterior we 

observed that the correlated model was erroneously selected to be more likely. C) A binarised map to show where the 

simulations correctly identified the underlying data was uncorrelated (blue), and incorrectly suggested to be correlated (red). 

D) A map of the correlation of the lead fields between homologous source pairs in the hippocampi. Note the strong positive 

correlation between the anterior hippocampal pairs. 

4.3) Experimental data 330 
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In the previous sections we showed how model evidence can be used to select between different source covariance 

priors. The question we considered next was how best to describe data originating from the human hippocampus. 

We reanalysed data from Barry et al.16 using four different models: standard EBB using exclusively uncorrelated 

sources; cEBB with homologous correlated source pairs for the whole brain (across both hippocampi and cortex); 

cEBB with homologous pairs of correlated sources in the hippocampi only; cEBB with homologous pairs of 

correlated sources in the cortex but not hippocampi. Figure 5A shows the comparison between competing 

generative models used to describe data in the 4-8 Hz band in the 0-3000 ms window during all valid trials (across 

all conditions) for the cohort of 22 participants16. Positive values indicate a model is a more likely description of 

the data than EBB. The first model, where correlated sources could exist in either the cortex or the hippocampus, 

displayed the largest changes in model evidence compared to EBB (red bars; Δþ= 15 ± 32 [mean  ± SD] across 340 

subjects) followed by restricting the correlated sources to the cortex (blue bars;  Δþ= 13 ± 30), and the smallest 

changes by restricting correlations to just the hippocampi (green bars;  Δþ= 5 ± 3). However, as is evident in Fig. 

5A, not all the changes were positive. For the models that contained correlated cortical sources, 5/22 participants 

exhibited a reduction in model evidence, whereas for the model with the correlated sources existing in only the 

hippocampi, we observed increases in model evidence in all 22 participants. 

The next step was to determine the most likely model (or most frequently chosen model across the population)  

using Bayesian model selection54. Panel 5B shows the results of the pairwise exceedance probabilities, ϕ between 

all competing model combinations. Values above 0.5 (red squares) indicate that models labelled along the column 

are more likely than the model labelled along the row. We found that all models with correlated sources were 

more likely than the uncorrelated source model (top row, ϕ > 0.9) but, importantly, if the difference between two 350 

models was only that the hippocampi were correlated in one and not in the other, then the former model was most 

frequently chosen in all cases (ϕ = 1).  Figure 5C shows the Bayesian Omnibus Risk (BOR), the probability that 

there is no difference in how often a model would be chosen from across a population. All models involving 

correlated hippocampal sources were deemed distinct (BOR<0.01) from those without.  

Figure 6 shows the group-level FDR-corrected paired-T-contrasts comparing theta band power (4-8 Hz) between 

source estimates based on uncorrelated (EBB) source models and correlated models containing the hippocampus. 

Contrasting the correlated hippocampal source model to standard EBB (Fig. 6, left), we noted a bilateral increase 

in theta power reconstructed in the anterior hippocampus. The right column of Figure 6 shows the contrast between 

EBB and the cortex-plus-hippocampus correlated model, where we also observed significant changes in power (p 

< 0.05; whole brain FDR corrected) in the anterior hippocampal regions and anterior/polar temporal cortices. We 360 

also observed significant clusters of increased reconstructed power in the occipital cortex. 
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Figure 5: Evidence for four generative models of the experimental data set.  A) The changes in model evidence compared to 

EBB when differing elements of the model were allowed to be correlated: either all sources (red), only the cortical sources 

(blue) or hippocampal sources (green). B) A random effects pairwise comparison of models in terms of protected exceedance 

probabilities (PXP; �). High values (red) indicated model 1 was more likely. C) Bayesian Omnibus Risk (BOR), which 

quantifies how likely it is that a pair of models have the same frequency of occurrence across a group. Asterisks mark 

comparisons in which model frequencies were clearly different (BOR < 0.05). Note the colour-scale of the BOR values are on 

a log10 rather than linear scale.    370 
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Figure 6. Reconstructed theta band power based on hippocampal only (left panel) and whole-brain (right panel) correlated 

priors contrasted (paired T-test) against the uncorrelated source model. Left: Comparing uncorrelated to a model containing 

a correlated hippocampus, we noted a significant increase in theta-band (4-8 Hz) power over the anterior hippocampal areas. 

Right: Contrasting the whole-brain correlated model with the uncorrelated EBB solution. We observed bilateral anterior 

hippocampal clusters with significant increases in power in the parahippocampal, rhinal and temporal pole areas. Results 

have been tranformed into MNI space for visualisation purposes. 

5) Discussion 

We have proposed a method to implement and test between different correlated source models in beamformer 380 

neuroimaging. This is possible within an empirical Bayes framework in which we can objectively quantify the 

likelihood of any particular model given the data. We applied this correlated source framework to experimental 

MEG data to show, for the first time, that human hippocampal activity in a scene imagination paradigm is bilateral. 

We revisited the Empirical Bayesian Beamformer (EBB) in simulation and demonstrated that (unlike normal 

beamformer solutions) it failed gracefully in the presence of correlated sources. This is because when covariant 

sources are suppressed, the EBB-prior becomes featureless, approximating a minimum-norm prior. We then 

introduced the cEBB variant in which the prior variance component consisted of a paired-correlated-source prior 

plus the standard EBB prior. This meant that the cEBB variant gave qualitatively similar and accurate performance 

for both correlated and uncorrelated source pairs. Using unilateral, and bilateral correlated and uncorrelated 

cortical source we showed how model evidence can be used to identify the most likely model for a given dataset. 390 

We observed similar performance for source configurations along the body of the hippocampi; however, our 

inference broke down at the anterior portion of the hippocampi. In this region, although we were able to distinguish 

between unilateral and bilateral sources, our analysis identified uncorrelated source pairs as correlated. It seems 

that this was due to the high correlation between the sensor-level profiles produced by the either of the anterior 

sources (see also Supplementary figure 4) rather than any other factor (such as source distance or dipole 

orientation). In other words, although spatially distinct, the anterior hippocampal portions occupy the same region 

in cryogenic MEG signal space. As approximately 50% of the variance in one source will automatically be 

explained by the other (due to the lead-field correlations), even uncorrelated sources appear as correlated from 

this viewpoint. It is, however, encouraging that the overlap of sensitivity was not so large that we were unable to 

distinguish unilateral from bilateral sources.  400 

For the experimental data, we found that adding a bilaterally correlated hippocampal prior gave a consistent 

improvement in model evidence across the cohort (Fig. 5A). The random effects analysis suggested that this model 

was not only the most likely, but was clearly distinct from the classical beamformer/EBB solution to the problem 
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(Fig. 5B, 5C). Furthermore, and perhaps more striking, we also observed a significant improvement in model 

evidence when adding a correlated hippocampus to an already correlated cortex. It is worth noting that in both 

these winning models, the hippocampal sources only account for 3.9% of the total source space, and these sources 

were in turn deep in the brain. Making use of the winning correlated-hippocampal model, we noted an increase in 

theta power in both hippocampi (Fig. 6, left panels) as compared to standard beamformer (EBB) estimates. Also, 

if we removed the hippocampal specificity and allowed correlation to exist across the whole brain (Fig. 6 right 

panels), the main power increases were once again observed in these regions.  Note, however, that based on our 410 

simulations, and the anterior location of the hippocampal power change, we were unable to resolve whether these 

sources were correlated or not. The conservative conclusion is simply that the power changes are more likely 

bilateral than unilateral. In the Supplementary Information we investigate what particular properties of the 

modelled dipoles in the hippocampus might be driving this area of uncertainty on the anterior hippocampus. The 

results may determine whether potentially adding more anterior or inferior sensors, or even changing the sensor 

orientation may allow for better separation of these sources. We are currently looking into designs of on-scalp 

optically-pumped MEG (OP-MEG) systems58 that might more effectively distinguish between these anterior 

hippocampal portions59.  

It is important to note that the correlated-cortex and whole-brain correlated models generated the largest absolute 

changes in model evidence (relative to the uncorrelated prior), however in 5/22 participants these changes were 420 

in the opposite direction. Based on the random effects analysis, these models were not significantly different from 

the standard EBB implementation. However, contrasting theta power compared to the EBB model still showed 

significant increases in power in parahippocampal, rhinal and temporal pole areas (Fig. 6). One explanation is that 

our anatomical model did not match reality: these data were all source reconstructed using a fitted template 

anatomical image, with canonical cortical and hippocampal meshes. We know this approach is robust and works 

well for volumetric studies15–17,51,60–65 but it may well be that co-registration errors or individual anatomical 

variability mean that some hippocampal variance is explained by the cortical mesh or vice versa. Given the large 

cluster of significant power changes in bilateral temporal lobes, this seems likely. Even when the individual 

anatomy is available, we know that small errors in co-registration can undermine accurate forward models66. The 

inconsistent improvements/reductions in model evidence could be attributed to forcing 96% of the source space 430 

to be correlated in this scenario, when in reality a much smaller area is exhibiting correlated behaviour. As an 

aside, when using the whole-brain correlated model, we also observed a cluster of theta power located towards 

the visual cortex, which has been reported in similar paradigms in both MEG17,67,68 and fMRI69. 

The key neuroscience finding from this investigation is that when provoked by an imagination paradigm, theta 

oscillations within the human hippocampus are bilateral. Our motivation was the discrepancy between functional 

activation results reported when using fMRI and MEG (with beamformers) to image similar tasks. fMRI 

experiments designed to engage the hippocampus often report bilateral activation12,69,70, whereas there is typically 

a lateralisation to a single hippocampus in MEG. The experimental MEG data presented in the current study 

originated from a previous experiment16 where the authors found theta band oscillatory activity localised to the 

left hippocampus and temporal lobe during scene imagination trials. A follow-up study, where scalp-based OP-440 

MEG was compared to conventional SQUID-MEG in the same paradigm showed left lateralised hippocampal 

theta using SQUID-MEG, but right lateralised hippocampal activity using OP-MEG, despite the same participants 

being scanned in the two MEG systems17. Finally, a recent MEG study investigating autobiographical memory 

recall reported lateralised activity in the left anterior hippocampus15. The common link between these MEG 

studies is that their source reconstruction was performed using LCMV beamforming, the performance of which 

is impaired by distal correlated sources, or extended cortical patches71 (which is what we effectively have with 

paired anterior hippocampal sources sharing over 50% variance between them). Indeed, moving away from scene-

specific paradigms, and simply counting the number of MEG papers reporting hippocampal activity (see 

Supplementary Figure 1), we found that 49/83 papers reported unilateral hippocampal activity, and of those that 

did, 39 used a source reconstruction method within the beamformer family of solutions. Conversely, only 11 450 

beamformer-type reconstructions led to reported bilateral activations in the hippocampus, but even in that case, 

one of these studies used modified beamformers to specifically image correlated sources72. 

To summarise, we have explored the possibility that the hippocampus or the cortex or both are correlated in their 
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activity across hemispheres during an imagination paradigm. We found strong evidence that a correlated 

hippocampal (and uncorrelated cortical) model provided the best explanation of the data. These findings may have 

implications more generally, by helping to explain why, up until now, the majority of MEG-reported hippocampal 

activity (typically making use of beamformers) has been estimated as unilateral. 
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