

1 **The TPLATE complex mediates membrane bending during plant clathrin-mediated**
2 **endocytosis**

3 **One Sentence Summary:** While plant CME is actin independent, we identify that the
4 evolutionarily ancient octameric TPLATE complex mediates membrane bending against high
5 turgor pressure in plant clathrin-mediated endocytosis.

6 Alexander Johnson¹, Dana A Dahhan^{2*}, Nataliia Gnyliukh^{1*}, Walter A Kaufmann¹, Vanessa
7 Zheden¹, Tommaso Costanzo¹, Pierre Mahou³, Mónika Hrtyan¹, Jie Wang^{4,5}, Juan Aguilera-
8 Servin¹, Daniël van Damme^{4,5}, Emmanuel Beaurepaire³, Martin Loose¹, Sebastian Y
9 Bednarek² and Jiri Friml^{1§}

10 * Authors contributed equally

11 ¹ Institute of Science and Technology (IST Austria), 3400 Klosterneuburg, Austria

12 ² UW-Madison, Biochemistry, 215C HF DeLuca Laboratories, Madison, WI, 53706

13 ³ Laboratory for Optics and Biosciences, Ecole Polytechnique, CNRS, Inserm, IP Paris,
14 Palaiseau, France

15 ⁴ Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark
16 71, 9052 Ghent, Belgium

17 ⁵ VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium

18 § Corresponding author: jiri.friml@ist.ac.at

19

20 **Abstract**

21 Clathrin-mediated endocytosis in plants is an essential process but the underlying mechanisms
22 are poorly understood, not least because of the extreme intracellular turgor pressure acting
23 against the formation of endocytic vesicles. In contrast to other models, plant endocytosis is
24 independent of actin, indicating a mechanistically distinct solution. Here, by using biochemical
25 and advanced microscopy approaches, we show that the plant-specific TPLATE complex acts
26 outside of endocytic vesicles as a mediator of membrane bending. Cells with disrupted
27 TPLATE fail to generate spherical vesicles, and *in vitro* biophysical assays identified protein
28 domains with membrane bending capability. These results redefine the role of the TPLATE
29 complex as a key component of the evolutionarily distinct mechanism mediating membrane
30 bending against high turgor pressure to drive endocytosis in plant cells.

31 **Main Text**

32 Clathrin-mediated endocytosis (CME) is a critical eukaryotic cellular process that regulates a
33 wide range of physiological processes, for example, mediating the internalization of receptors
34 and transporters (1). During CME, a small area of the plasma membrane (PM) invaginates into
35 the cell forming a spherical vesicle against intracellular forces that oppose membrane
36 deformation, like turgor pressure. The mechanisms driving this process in mammalian and
37 yeast systems have been the subject of extensive study for the better part of 5 decades, which
38 has led to the identification of key proteins that provide the force required to overcome these
39 forces (2, 3). Critically, actin has been established to be essential for membrane bending in
40 systems with high turgor pressures (2, 4). In stark contrast, plant CME characterization is in its
41 infancy. Indeed, it had been postulated for many years that due to the extreme levels of turgor
42 pressure in plants, CME was physically impossible in most plant cells (5). However, while it
43 is now well established that CME does occur *in planta*, and plays key developmental and
44 physiological roles (6), the machinery and mechanisms that drive CME against the unique
45 biophysical properties of plant cells are yet to be clearly identified. For example, it had long
46 been thought that plant CME relies on actin to overcome the extreme turgor pressure, however
47 it has recently been demonstrated that plant CME is independent of actin, highlighting that
48 plants have evolved a distinct solution to bending membranes against high turgor pressures (7).
49 A further mechanistic divergence of plant CME is manifested by the presence of the octameric
50 TPLATE complex (TPC), where all 8 members share the same localizations and dynamics at
51 sites of plant CME, and is essential for both CME and plant survival (8, 9). While this complex

52 is conserved in some biological systems, for example *Dictyostelium*, it is notably absent from
53 mammalian and yeast genomes (8, 10, 11). Based on static interaction and localization data,
54 the TPC has been proposed to be a classical endocytosis adaptor protein; chiefly acting to bind
55 cargo in the clathrin-coated vesicle (CCV), driving the coat assembly, and has thus been
56 predicted to localize beneath the clathrin coat (8, 12).

57 However, recent total internal reflection fluorescence microscopy (TIRF-M) of CME
58 events *in planta* suggested that once the endocytic CCV departs from the PM, TPLATE
59 dissociates from the CCV prior to the loss of clathrin (7). This did not support the proposed
60 adaptor functions of TPLATE, which, as assumed to be localized under the clathrin coat, should
61 have an equivalent/slower dissociation relative to clathrin. Furthermore, the classical adaptor,
62 AP2, and TPLATE have different dynamics at co-localized foci on the PM (8). To further
63 assess and quantify the dissociation of TPLATE from the CCV, we analyzed CME events
64 marked with Clathrin light-chain 2 (CLC2-tagRFP) and TPLATE-GFP obtained using a
65 spinning disk microscope equipped with a sample cooling stage (Fig. 1A) (9). As this imaging
66 modality provides an increase in the illumination volume of the cytoplasm compared to TIRF-
67 M, and cooling the sample slowed the dynamics of cellular processes (9), it allowed a more
68 precise visualization of the dissociation sequence of proteins from the CCV once it is freed
69 from the PM (Fig. S1A). This resulted in kymographs of individual CME events with a visible
70 lateral divergence of fluorescence signals at the end of the CME events (Fig. 1B), which
71 represent the movement of CCVs once departed from the PM. These ‘departure traces’ were
72 analyzed to establish the sequence of TPLATE and CLC2 dissociation. We found that the
73 significant majority of visible departure traces displayed differential dissociation of these
74 proteins; critically where TPLATE departed the CCV before CLC2 (Fig 1C., Fig S1B.). This
75 argued against the model that TPC is entrapped within the clathrin coat of the CCV. To further
76 query the nature of the association of the TPC with CCVs, we performed western blot analysis
77 of purified CCV preparations from plant cells. While we found an enrichment of the clathrin
78 isoforms and the canonical adaptor AP2 in the purified CCV fraction, TPLATE was not
79 enriched (Fig 1C-D). The depletion of TPLATE was observed in parallel with a similar lack of
80 enrichment of dynamin related protein 1c (DRP1c), which functions outside the CCV (13).
81 Together, this demonstrates that TPLATE is more loosely associated with CCVs than clathrin
82 coat proteins and not incorporated within CCV structures as previously predicted.

83 To precisely determine the localization of TPLATE at CME events we used structured
84 illumination microscopy (SIM) to examine live plants expressing TPLATE-GFP and CLC2-

85 TagRFP. We observed that TPLATE, in addition to presenting as individual foci, often
86 appeared as crescent shaped or ring structures (Fig. 2A and Fig. S2A). This was in contrast to
87 CLC2, which was always found as discrete foci on the PM or large structures representing
88 trans-Golgi/ early endosomes (7). We found that ~68% of TPLATE co-localized with CLC2
89 foci, agreeing with previously published results (8). Upon closer inspection of the super
90 resolved co-localized events, we found that ~17% of co-localization events showed that
91 TPLATE formed a ring or crescent around the CLC2 foci whereas the inverse arrangement was
92 never observed, suggesting that TPLATE localizes outside of the clathrin coat assembly during
93 CME. In further support of this, when we examined plants expressing TPLATE-GFP and
94 AP2A1-tagRFP we found a similar pattern, where ~18% of colocalized events showed
95 TPLATE surrounding AP2 in ring and crescent patterns (Fig. S2A). To gain further insight into
96 the TPLATE ring arrangements, we visualized the dynamics of TPLATE on the PM using
97 TIRF-SIM. We observed that TPLATE first appeared as a spot, and over time form a ring,
98 which then closed back to a spot before disappearing (Fig. 2C and Movie 1). This suggests that
99 at the beginning of the CME event, TPLATE and clathrin are both present in an area below the
100 resolution of SIM, but as the CCV grows in diameter (above the resolution limit), TPLATE is
101 excluded from the invaginating CCV coat formation and is localized at the rim around the
102 CCV. This confirms that TPLATE is localized at the periphery of CCV events, rather than
103 within the invaginating clathrin coat.

104 In mammalian and yeast CME, the endocytic proteins which are localized at the rim of
105 the CME events are implicated in membrane bending, for example Eps15/Ede1, Epsin and
106 Fcho/Syp1 (14-17). Therefore, based on the spatial and temporal profile of TPLATE, and the
107 ability of distinct domains of TPC to bind directly to the PM (18, 19), we hypothesize that
108 components of the TPC are critical for membrane bending during plant CME. To test this
109 notion, we looked directly at CCVs in plant cells subjected to TPC disruption. For these studies,
110 we used the inducible TPLATE loss-of-function mutant WDXM2; where *tplate* mutant plants
111 are complemented with a genetically destabilized version of TPLATE that after heat shock
112 results in the total aggregation of TPLATE away from the PM and blocks CME (20). First, we
113 further confirmed that the heat shock treatment had no significant effect on the efficiency and
114 kinetics of CME in plants by examining FM4-64 uptake and the dynamics of single CME
115 events (Fig. S3). To achieve the spatial resolution required to look at the shape of individual
116 CCVs, we used scanning electron microscopy (SEM) to examine metal replicas of unroofed
117 protoplasts made directly from wild type or WDXM2 roots. Under control conditions in

118 WDXM2 cells, we observed that the majority of clathrin structures were spherical (i.e., fully
119 invaginated CCVs). In contrast, in cells in which the TPC was disrupted, we observed many
120 flat clathrin structures (Fig. 3A), which were never observed in control conditions. To quantify
121 the effect of TPC disruption, we determined the shape of the clathrin structures by measuring
122 the area and average intensity (a proxy for CCV curvature (Fig. S4A) (21)) of each clathrin
123 structure visualized and classified these shapes into 4 categories; ‘small and round’ (the fully
124 invaginated CCVs), ‘small and flat’ (where curvature generation had failed), ‘large and round’,
125 and ‘large and flat’ (clathrin plaques) (Fig. 3C). We found that the heat shock had no effect
126 upon CCV formation in wild type cells (Fig. S4B and Fig. 3D), where the majority of clathrin
127 structures were found as ‘small and round’ (87-96%). This population in WDXM2 cells under
128 control conditions was 86%, but following TPC disruption, this decreased to 24% and the
129 ‘small and flat’ population increased to 58% (compared to <7% in all other tested conditions).
130 These results indicated that the TPC is required to generate curved clathrin structures.

131 To further confirm this, we directly examined the 3-dimentional shape of clathrin
132 structures in WDXM2 cells incubated at either control or TPC disruptive conditions using
133 scanning transmission electron microscopy (STEM) tomography (Fig. 3E). Under conditions
134 that disrupted TPC function, the curvature of clathrin structures did not exceed 10 nm, whereas
135 under control conditions, the clathrin structures were spherical with Z heights > 50 nm (Fig.
136 3E and Movie S2-S3). Together, these ultrastructural examinations of clathrin structures
137 demonstrate that the TPC is required to generate spherical CCVs.

138 Given this strong phenotype of flattened clathrin structures during TPLATE disruption,
139 we looked for protein domains within the TPC which could mediate membrane bending. The
140 plant-specific members of the TPC, AtEH1/Pan1 and AtEH2/Pan1, each contain 2 Eps15
141 homology domains (EH) which are also present in proteins which localize at the rim of CME
142 events and known to have membrane bending activity in other systems (e.g., Eps15/Ede1 and
143 Intersectin/Pan1) (12, 15-17). As the EH domains of Eps15 have been shown to tubulate
144 membranes *in vitro* (17), and the EH domains of AtEH1/Pan1 have been shown to bind
145 membranes (18), we therefore tested their ability to bend membranes. To do this, we incubated
146 large unilamellar liposomes (LUVs) with the purified EH domains of AtEH1/Pan1, and
147 analysis by transmission electron microscopy revealed that after 2 and 30 minutes, both EH
148 domains produced significant levels of membrane ruffling and longer tubules of vesiculated
149 membrane compared to control treatments (Fig. 4 and Fig. S5). This demonstrated that
150 AtEH1/Pan1 has the capacity to contribute to membrane bending. However, as AtEH1/Pan1

151 remains associated with the PM during WDXM2 disruption (20), but is not sufficient to
152 generate the invagination (Fig. 3), it suggests that additional factors are required to modulate
153 the membrane bending activity of the AtEH1/Pan1 EH domains. This is similar to Eps15,
154 where the isolated EH domains can deform membranes while the full-length protein requires
155 the co-factor FCHo (17). Interestingly, the Eps15 and FCHo interaction is mediated by the μ -
156 homology domain (HD) domain within Fcho (22), which is similar to the interactions within
157 the TPC, as the TML μ -HD domain interacts with AtEH1/Pan1 (12, 18). Although not
158 experimentally addressed yet in the context of WDXM2, the failure to generate spherical CCVs
159 despite AtEH/Pan1 remaining on the PM might point to the necessity of TML to also localize
160 on the PM and likely implicates it as co-factor in plant membrane bending. Furthermore, as the
161 μ -HD domain is absent from the TPC homologous TSET complex in *Dictyostelium*, which also
162 lacks the AtEH/Pan1 proteins (11, 19), it suggests a potential functional divergence between
163 the plant TPC and the *Dictyostelium* TSET complex, where CME is also mechanistically
164 distinct; as in contrast to plant CME, *Dictyostelium* CME is coupled with actin (23).

165 Overall, this study provides crucial insights into the long-standing question how
166 endocytic vesicles can be formed by PM invaginations against the high turgor pressure of plant
167 cells. This mystery has been used previously as a main argument against the existence of
168 efficient endocytosis in plants and has been reinforced by the recent demonstration that, in
169 contrast to yeast, plants do not use actin cytoskeleton to generate the necessary force for this
170 process (7). Using a range of biochemistry, advanced high-, super- and ultra-resolution
171 microscopy and *in vitro* reconstitution assays, we redefined the role of the plant-specific TPC,
172 which has been thought to act as adaptor inside of the coat of the forming endocytic vesicles.
173 Instead, we show that the TPC localizes outside of CCVs and is essential for membrane
174 bending and endocytic vesicle formation (Fig. S6). This provides further evidence for the
175 evolutionary distinct mechanism of how endocytosis operates in plants.

176 **Material and Methods**

177 **Plant Materials**

178 *Arabidopsis thaliana* accession codes for genes used in this study; AP2A1 (AT5G22770),
179 CLC2 (AT2G40060), TPLATE (AT3G01780) and AtEH1/Pan1 (AT1G20760). Transgenic
180 *Arabidopsis thaliana* plants used in this study were *tplate* pLAT52p::TPLATE-GFP x

181 pRPS5A::CLC2-tagRFP, pLAT52p::TPLATE-GFP x pRPS5A::AP2A1-TagRFP (8) and
182 *tplate* pLAT52::WDXM2-GFP (20).

183 Growth Conditions

184 Plants are grown by plating seeds on to ½ AM agar plates with 1% (w/v) sucrose, stratified for
185 2-3 days in the dark at 4°C, then transferred to growth rooms (21°C, 16 hours light, 8 hours
186 dark) and grown vertically for 4, 5 or 7 days as detailed below.

187 Departure Analysis of EAPs from CCVs

188 Raw data from Wang et al. (9) was analyzed to determine the departure dynamics of the
189 endocytosis proteins. Briefly, spinning disk microscopy was conducted on 4-day old epidermal
190 cells of etiolated hypocotyls were imaged with a Nikon Ti microscope equipped with a
191 Ultraview spinning-disk system (Perkin- Elmer), a Plan Apo 100x 1.45 NA oil immersion
192 objective and a CherryTemp system (Cherry Biotech) to apply the experimental temperature
193 conditions; either room temperature (25°C) or 12 °C. Time lapses were collected at a frame
194 rate of 1 frame per 1.174s. The 12°C time-lapses of TPLATE-GFP and CLC2-TagRFP samples
195 were subjected to histogram matching bleach correction and then dynamically re-sliced to
196 produce kymographs in Fiji (24). The CLC2 channel was manually screened to identify
197 kymograph traces with a visible departure track. These selected traces were then examined to
198 compare the departure of both channels and categorized as illustrated in Fig. S1.

199 Western blotting analysis of CCV purification

200 CCVs were purified from suspension cultured *Arabidopsis* T87W cells as previously described
201 (25). Equal amounts of protein from the deuterium ficoll gradient load (DFGL) and purified
202 clathrin coated vesicle (CCV) samples were separated by SDS-PAGE, transferred to
203 nitrocellulose membrane, and immunoblotted with anti-CLC2 1:10,000 (26), anti-CHC 1:1,000
204 (sc-57684, Santa Cruz Biotechnology), anti-AP2mu2 1:250 (27), anti-TPLATE 1:2000 (28),
205 and anti-DRP1c 1:500 (29) antibodies. Primary antibodies were detected through anti-rabbit or
206 anti-mouse secondary antibodies (Sigma Aldrich) conjugated to horseradish peroxidase at
207 1:5,000 before application of SuperSignal West Femto enhanced chemiluminescent (ECL)
208 substrate (ThermoFisher) and subsequent imaging with iBright CL1000 Imaging System
209 (ThermoFisher). The integrated density values of the chemiluminescent bands of the DFGL
210 and CCV fractions were measured by ImageJ (NIH). The integrated density value of the CCV

211 band was divided by the corresponding value of the DFGL band to determine the relative
212 enrichment across three independent CCV purifications.

213 FM uptake and TIRF-M imaging and analysis

214 A Zeiss LSM-800 confocal microscope was used to examine the effect of FM4-64 uptake in 5-day
215 old Col-0 seedlings. Seedlings were incubated for 6 hours at either room temperature or 35°C
216 for six hours and then incubated with 2 μ M FM4-64 in AM+ media for 5 minutes, washed
217 twice in $\frac{1}{2}$ MS and 1% sucrose media and imaged and analyzed as specified previously (30).
218 A 40x water immersion objective was used.

219 Total internal reflective fluorescence microscopy (TIRF-M) experiments made use of
220 an Olympus IX83 inverted microscope equipped with a Cell^TIRF module using an
221 OLYMPUS Uapo N 100x/1.49 Oil TIRF objective. 7-day old seedlings were incubated at either
222 25°C or 37°C for 6 hours prior to imaging. Root epidermal cells were imaged and analyzed as
223 described previously (30); this provided unbiased lifetimes, densities and fluorescence profiles
224 of endocytosis proteins in samples subjected to the experimental temperature conditions.

225 Super-resolution localization of EAPs

226 Structured illumination microscopy (SIM) was conducted on 7-day old seedlings expressing
227 TPLATE-GFP or AP2A1-GFP and CLC2-TagRFP. Root samples were prepared as described
228 previously (30), but high-precision 1.5 coverslips were used (Thorlabs, #CG15CH), and
229 epidermal cells in the elongation zone were selected for imaging. For 3D-SIM, an OMX
230 BLAZE v4 SIM (Applied Precision) was used. For TIRF-SIM, an OMX SR (GE Healthcare)
231 was used. Both are equipped with a 60 \times 1.42 NA oil immersion objective, and 100 mw 488
232 nm and 561 nm lasers were used for illumination (for TPLATE-GFP x CLC2-TagRFP, 488
233 laser powers ranged from; 488, 30-100%; 561, 25-100%. For TPLATE-GFP x AP2A1-
234 TagRFP, laser powers ranged from; 488, 20-100%; 561, 40-100%). Images were reconstructed
235 using SOFTWORX (GE Healthcare) and further processed in Fiji (24).

236 The co-localization rate was determined by using ComDet
237 (<https://github.com/ekatrukha/ComDet>), where co-localization was determined positive if spot
238 detection were less than 4 pixels apart. This method uses wavelet decomposition to determine
239 spot detection, thus considers rings and spots extremely close together as a single spot. To
240 determine the pattern of localization of TPLATE, i.e., if it is a spot or surrounding the CME

241 event, spots were manually examined and scored if TPLATE presented as a crescent or ring
242 around a CLC2 or AP2A1 spot.

243 Ultra-structural examination of CCVs by SEM and EM tomography from metal replicas of
244 protoplasts made directly from roots

245 Densely sown Col-0 or WDXM2-GFP plants were grown for 8-10 days. The roots were cut
246 into small ~1-2 mm fragment directly in to ‘Enzyme solution’ (0.4 M Mannitol, 20 mM KCl,
247 20 mM MES pH 5.7, 1.5% Cellulase R10 (Yakult), 0.4% Macerozyme R10 (Yakult) in H₂O).
248 The cuttings and enzyme solution were placed into a vacuum chamber for 20 mins and then
249 subjected to a 3-hour incubation at room temperature, in the dark, and with gentle agitation.
250 The cells were then centrifuged at 100 rcf for 2 mins, and the pellet washed with ‘W5 buffer’
251 (154 mM NaCl, 125 mM CaCl₂, 5 mM KCl, 2mM MES) by centrifugation (100 rcf for 2
252 mins). The cells were then resuspended in W5 buffer and incubated at 4°C for 30 mins. The
253 sample was again centrifuged at 100 rcf for 2 mins, and the cells were resuspended in
254 ‘hyperosmotic GM buffer’ (GM; 0.44% (w/v) Murashige and Skoog (MS) powder with
255 vitamins (Duchefa Biochemie), 89 mM Sucrose, 75 mM mannitol, pH 5.5 adjusted with KOH)
256 and then plated on precleaned (washed in pure ethanol and sonicated), carbon (10 nm thickness)
257 and poly-l-lysine (Sigma) coated coverslips. Samples were incubated at room temperature in
258 the dark for 30 mins, and then subjected to a 4-hour incubation in the dark at either room
259 temperature or 37°C. Samples were then unroofed as described previously (30), with the
260 buffers were equilibrated to either room temperature or 37°C. Samples for SEM analysis were
261 attached to SEM mounts using sticky carbon tape and coated with platinum to a thickness of 3
262 nm, whereas samples for STEM were attached to a sticky Post-It-Note (as described in (31))
263 and coated with 3 nm platinum and 4 nm carbon using an ACE600 coating device (Leica
264 Microsystems). The STEM samples were then washed with Buffered Oxide Etchant (diluted
265 6:1 with surfactant) to separate the metal replica from the coverslip, washed with distilled
266 water, and remounted on formvar/carbon-coated 200-line bar EM grids (Science Services).

267 The SEM samples were then imaged with an FE-SEM Merlin Compact VP (Zeiss) and
268 imaged with an In-lens Duo detector (SE and BSE imaging) at an accelerating voltage of 3-5
269 kV. The area and mean grey value of clathrin-coated structures (CCSs) was measured using
270 Fiji (24), where ROIs were manually draw around each CCS. To estimate the curvature of the
271 CCSs, the mean CCS ROI was divided by the average grey value of the PM (as determined by
272 the mean grey value of 4 PM ROIs in each corner of each image). From these two values, the

273 morphology of the CCS could be determined by using thresholds and divided into categories,
274 as described by *Moulay et al.*, (21). We used an area threshold of 8500 mm² (which is derived
275 from a diameter of 105 nm) to determine if the CCS was small or large, and a curvature value
276 of 1.25 (determined by measuring the mean grey value of the large CCSs observed in TPC
277 disruption conditions) to determine if the CCS was round or flat. Pooled data from multiple
278 experiments were plotted and the percentage of CCVs in each category was calculated.

279 STEM Tomograms were recorded using a JEOL JEM2800 scanning/transmission
280 electron microscope (200kV). Each CCV was imaged at over a range of -72° to 72°, with 4°
281 steps driven by STEM Meister (TEMography.com). Tomograms were then processed and 3D
282 reconstructions were made using Composer and Evo-viewer (TEMography.com). To examine
283 the curvature, 3D reconstructions were rotated 90° and their profiles were manually traced in
284 Adobe Illustrator.

285 Expression and purification of AtEH/Pan1 EH domains

286 The two EH domains of atEH1, EH1.1 and EH1.2 as defined by (18), were amplified from
287 synthetic AtEH1/Pan1 (codon optimized for bacterial expression, IDT) (Supplemental Table
288 1) and inserted into pET-TwinStrep-TEV-G4. They were then expressed in *E. coli* BL21 cells
289 and grown at 37°C in Lysogeny Broth medium (pH 7.0) supplemented with 50 µg ml-1
290 kanamycin. Protein expression was induced at an OD600 of 0.6 with 1 mM isopropyl-β-
291 thiogalactopyranoside (IPTG) and incubated for 5 h at 37°C. Cultures were centrifuged at 5000
292 g for 30 min at 4°C, and pellets were resuspended in 50 mL Phosphate-buffered saline (PBS)
293 buffer. They were then centrifuged at 4700 g for 30 min at 4°C and then pellets were frozen
294 and stored at -80°C until further processing.

295 The pellets were resuspended for 1 hour at 4°C with gentle mixing in buffer A (20 mM
296 HEPES (pH7.4), 150 mM NaCl, 2 mM CaCl₂, as described by (18)) with supplemented
297 ethylenediaminetetraacetic acid (EDTA)-free protease inhibitor cocktail tablets (Roche
298 Diagnostics), 1 mM phenylmethylsulfonyl fluoride (PMSF), 1 mg mL-1 lysozyme, 1 µg ml-1
299 DNase I. Cells were lysed by sonication (Qsonica Q700) and centrifuged at 67000 g for 1 h at
300 4 °C. The clarified lysate was incubated with Streptactin sepharose resin (Strep-Tactin®
301 Sepharose® resin; iba) for 1 hour at 4°C. The resin was washed with 40 bed volumes of buffer
302 A and the fusion protein was eluted with buffer A containing 5 mM d-Desthiobiotin (Sigma-
303 Algrich). Peak atEH domain fractions were dialyzed overnight at 4°C against buffer A in the

304 presence of TwinStrep-tagged TEV protease (32) at a protease-to-sample molar ratio of 1:100.
305 After centrifugation (21 140 xg for 10 min at 4 °C), the supernatant was applied to a HiLoad
306 16/600 Superdex 75 pg column, pre-equilibrated with buffer A, using a fast protein liquid
307 chromatography system. Protein was eluted with buffer A and stored in aliquots at –80 °C. The
308 protein sequences of the EH domains were verified by MS analysis.

309 **Liposome tubulation assay**

310 LUVs were prepared using a mixture of 1,2-dioleoyl-sn-glycero-3-phospho-(1'-rac-
311 glycerol) (DOPC), 1,2-dioleoyl-sn-glycero-3-phospho-L-serine (DOPS), cholesterol (plant)
312 and 1,2-dioleoyl-sn-glycero-3-phospho-(1'-myo-inositol-4',5'-bisphosphate) (PI(4,5)P₂)
313 (Avanti) at a ratio of 60:17.5:20:2.5 mol% was used. Lipids were mixed in a glass vial at the
314 desired ratio, blow-dried with filtered N₂ to form a thin homogeneous film and kept under
315 vacuum for 2–3 h. The lipid film was rehydrated in a swelling buffer (20 mM HEPES (pH 7.4),
316 150 mM NaCl) for 10 min at room temperature to a total lipid concentration of 2 mM. The
317 mixture was vortexed rigorously and the resulting dispersion of multilamellar vesicles was
318 repeatedly freeze–thawed (5–6 times) in liquid N₂. The mixture was extruded through a
319 polycarbonate membrane with pore size 400 nm (LiposoFast Liposome Factory). LUVs were
320 stored at 4 °C and used within 4 days. To assay the membrane bending activity of proteins of
321 interest upon the LUVs, 10 µM of the protein of interest was mixed with 0.5 mM of LUVs in
322 swelling buffer and incubated for 2, or 30, minutes at room temperature. Control LUVs were
323 diluted to a concentration of 0.5 mM in swelling buffer and incubated for 1 hour at room
324 temperature. 20 µl of the experimental solutions were incubated on glow-discharged to carbon-
325 coated copper EM grids (300 mesh, EMS). Filter paper was used to remove any excess solution
326 and the EM samples were then washed three times with swelling buffer. They were then
327 negatively stained with 2% uranyl acetate aqueous solution for 2 mins and observed under a
328 Tecnai 12 transmission electron microscope operated at 120 kV (Thermo Fisher Scientific).
329 The number of tubulated and non-tubulated liposomes was counted manually using Fiji (24)
330 from multiple experiments.

331 **References**

332 1. H. T. McMahon, E. Boucrot, Molecular mechanism and physiological functions of
333 clathrin-mediated endocytosis. *Nat Rev Mol Cell Biol* **12**, 517–533 (2011).
334 2. M. Kaksonen, A. Roux, Mechanisms of clathrin-mediated endocytosis. *Nat Rev Mol
335 Cell Biol* **19**, 313–326 (2018).

336 3. M. S. Robinson, Forty Years of Clathrin-coated Vesicles. *Traffic* **16**, 1210-1238 (2015).

337 4. S. Aghamohammadzadeh, K. R. Ayscough, Differential requirements for actin during
338 yeast and mammalian endocytosis. *Nat Cell Biol* **11**, 1039-1042 (2009).

339 5. D. Gradmann, D. G. Robinson, Does turgor prevent endocytosis in plant cells? *12*, 151-
340 154 (1989).

341 6. J. Paez Valencia, K. Goodman, M. S. Otegui, Endocytosis and Endosomal Trafficking
342 in Plants. *Annu Rev Plant Biol* **67**, 309-335 (2016).

343 7. M. Narasimhan *et al.*, Evolutionarily unique mechanistic framework of clathrin-
344 mediated endocytosis in plants. *Elife* **9**, (2020).

345 8. A. Gadeyne *et al.*, The TPLATE adaptor complex drives clathrin-mediated endocytosis
346 in plants. *Cell* **156**, 691-704 (2014).

347 9. J. Wang *et al.*, High temporal resolution reveals simultaneous plasma membrane
348 recruitment of TPLATE complex subunits. *Plant Physiol*, (2020).

349 10. K. More, C. M. Klinger, L. D. Barlow, J. B. Dacks, Evolution and Natural History of
350 Membrane Trafficking in Eukaryotes. *Curr Biol* **30**, R553-R564 (2020).

351 11. J. Hirst *et al.*, Characterization of TSET, an ancient and widespread membrane
352 trafficking complex. *Elife* **3**, e02866 (2014).

353 12. Y. Zhang *et al.*, Change your TPLATE, change your fate: plant CME and beyond.
354 *Trends Plant Sci* **20**, 41-48 (2015).

355 13. C. A. Konopka, S. K. Backues, S. Y. Bednarek, Dynamics of Arabidopsis dynamin-
356 related protein 1C and a clathrin light chain at the plasma membrane. *Plant Cell* **20**,
357 1363-1380 (2008).

358 14. M. G. Ford *et al.*, Curvature of clathrin-coated pits driven by epsin. *Nature* **419**, 361-
359 366 (2002).

360 15. M. Mund *et al.*, Systematic Nanoscale Analysis of Endocytosis Links Efficient Vesicle
361 Formation to Patterned Actin Nucleation. *Cell* **174**, 884-896 e817 (2018).

362 16. K. A. Sochacki, A. M. Dickey, M. P. Strub, J. W. Taraska, Endocytic proteins are
363 partitioned at the edge of the clathrin lattice in mammalian cells. *Nat Cell Biol* **19**, 352-
364 361 (2017).

365 17. L. Wang, A. Johnson, M. Hanna, A. Audhya, Eps15 membrane-binding and -bending
366 activity acts redundantly with Fcho1 during clathrin-mediated endocytosis. *Mol Biol*
367 *Cell* **27**, 2675-2687 (2016).

368 18. K. Yperman *et al.*, Distinct EH domains of the endocytic TPLATE complex confer lipid
369 and protein binding. 2020.2005.2029.122911 (2020).

370 19. K. Yperman *et al.*, Molecular architecture of the endocytic TPLATE complex. *Sci Adv*
371 7, (2021).

372 20. J. Wang *et al.*, Conditional destabilization of the TPLATE complex impairs endocytic
373 internalization. **118**, e2023456118 (2021).

374 21. G. Moulay *et al.*, Alternative splicing of clathrin heavy chain contributes to the switch
375 from coated pits to plaques. *J Cell Biol* **219**, (2020).

376 22. L. Ma *et al.*, Transient Fcho1/2Eps15/RAP-2 Nanoclusters Prime the AP-2 Clathrin
377 Adaptor for Cargo Binding. *Dev Cell* **37**, 428-443 (2016).

378 23. R. J. Brady, C. K. Damer, J. E. Heuser, T. J. O'Halloran, Regulation of Hip1r by epsin
379 controls the temporal and spatial coupling of actin filaments to clathrin-coated pits. *J*
380 *Cell Sci* **123**, 3652-3661 (2010).

381 24. J. Schindelin *et al.*, Fiji: an open-source platform for biological-image analysis. *Nat*
382 *Methods* **9**, 676-682 (2012).

383 25. G. D. Reynolds, B. August, S. Y. Bednarek, Preparation of enriched plant clathrin-
384 coated vesicles by differential and density gradient centrifugation. *Methods Mol Biol*
385 **1209**, 163-177 (2014).

386 26. C. Wang *et al.*, Clathrin light chains regulate clathrin-mediated trafficking, auxin
387 signaling, and development in Arabidopsis. *Plant Cell* **25**, 499-516 (2013).

388 27. C. Wang *et al.*, Differential Regulation of Clathrin and Its Adaptor Proteins during
389 Membrane Recruitment for Endocytosis. *Plant Physiol* **171**, 215-229 (2016).

390 28. W. Dejonghe *et al.*, Disruption of endocytosis through chemical inhibition of clathrin
391 heavy chain function. *Nat Chem Biol* **15**, 641-649 (2019).

392 29. B. H. Kang, D. M. Rancour, S. Y. Bednarek, The dynamin-like protein ADL1C is
393 essential for plasma membrane maintenance during pollen maturation. *Plant J* **35**, 1-15
394 (2003).

395 30. A. Johnson *et al.*, Experimental toolbox for quantitative evaluation of clathrin-mediated
396 endocytosis in the plant model Arabidopsis. *J Cell Sci*, (2020).

397 31. K. Ong, T. Svitkina, E. Bi, Visualization of in vivo septin ultrastructures by platinum
398 replica electron microscopy. *Methods Cell Biol* **136**, 73-97 (2016).

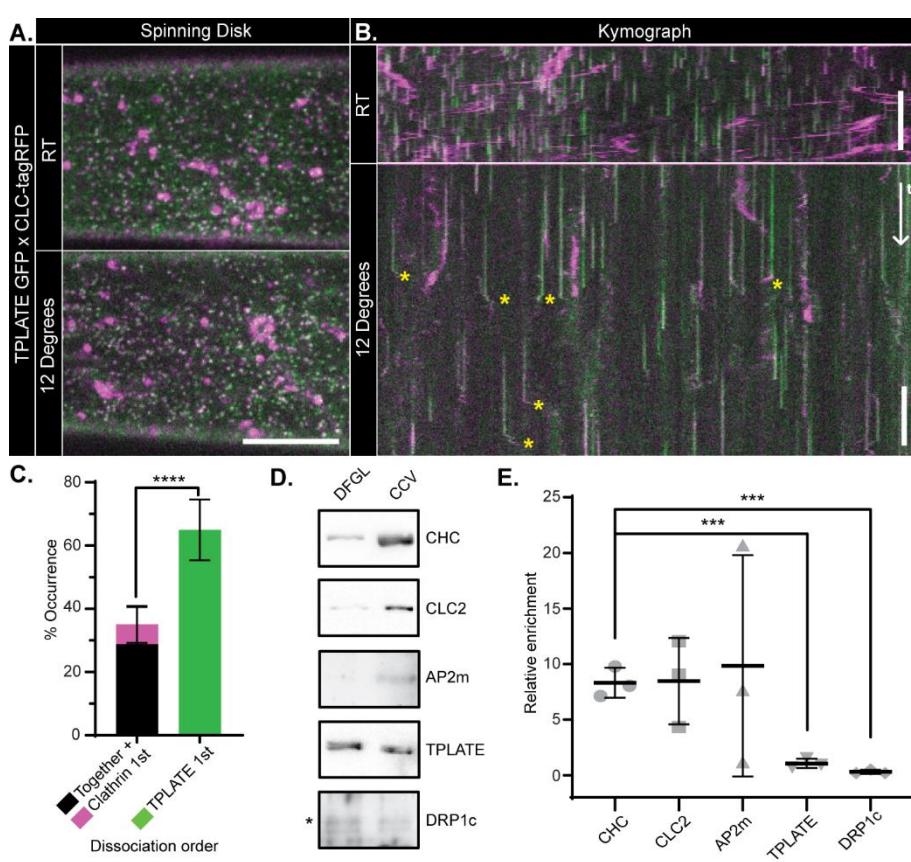
399 32. J. E. Tropea, S. Cherry, D. S. Waugh, in *High Throughput Protein Expression and*
400 *Purification: Methods and Protocols*, S. A. Doyle, Ed. (Humana Press, Totowa, NJ,
401 2009), pp. 297-307.

403 Acknowledgments

414 **Funding**

415 A.J. is supported by funding from the Austrian Science Fund (FWF): I3630B25 to J.F. P.M.
416 and E.B. are supported by Agence Nationale de la Recherche (ANR): ANR-11-EQPX-0029
417 Morphoscope2, ANR-10-INBS-04 France BioImaging. S.Y.B. is supported by the National
418 Science Foundation (NSF): No. 1121998 and 1614915. J.W and D.V.D are supported by the
419 European Research Council Grant 682436 (to D.V.D.), a China Scholarship Council Grant
420 201508440249 (to J.W.) and by a Ghent University Special Research cofunding Grant
421 ST01511051 (to J.W.).

422 Author contributions

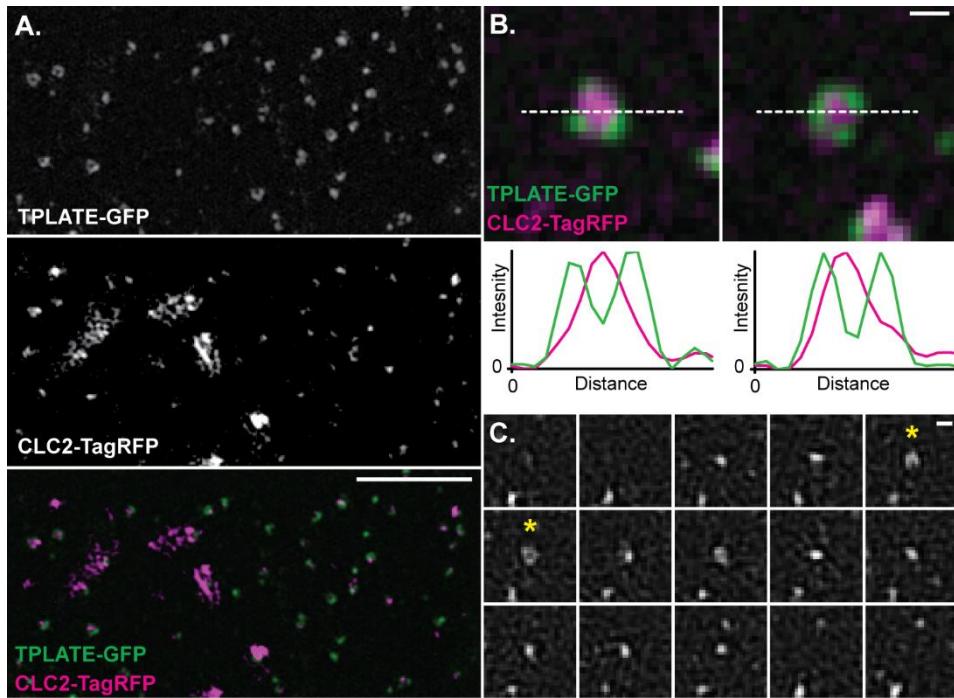

423 Conceptualization: A.J. and J.F.; Investigation: A.J., D.A.D, N.G., W.A.K., V.Z., T.C., P.M.,
424 M.H., and J.S.; J.W. material generation. Formal Analysis: A.J., D.A.D and N.G.; Writing –
425 original draft: A.J. and J.F.; Writing – review & editing: all authors; Supervision: D.V.D., E.B.,
426 M.L., S.Y.B. and J.F.

427 **Competing interests**

428 The authors declare that they have no competing interests.

429

430 **Figures**

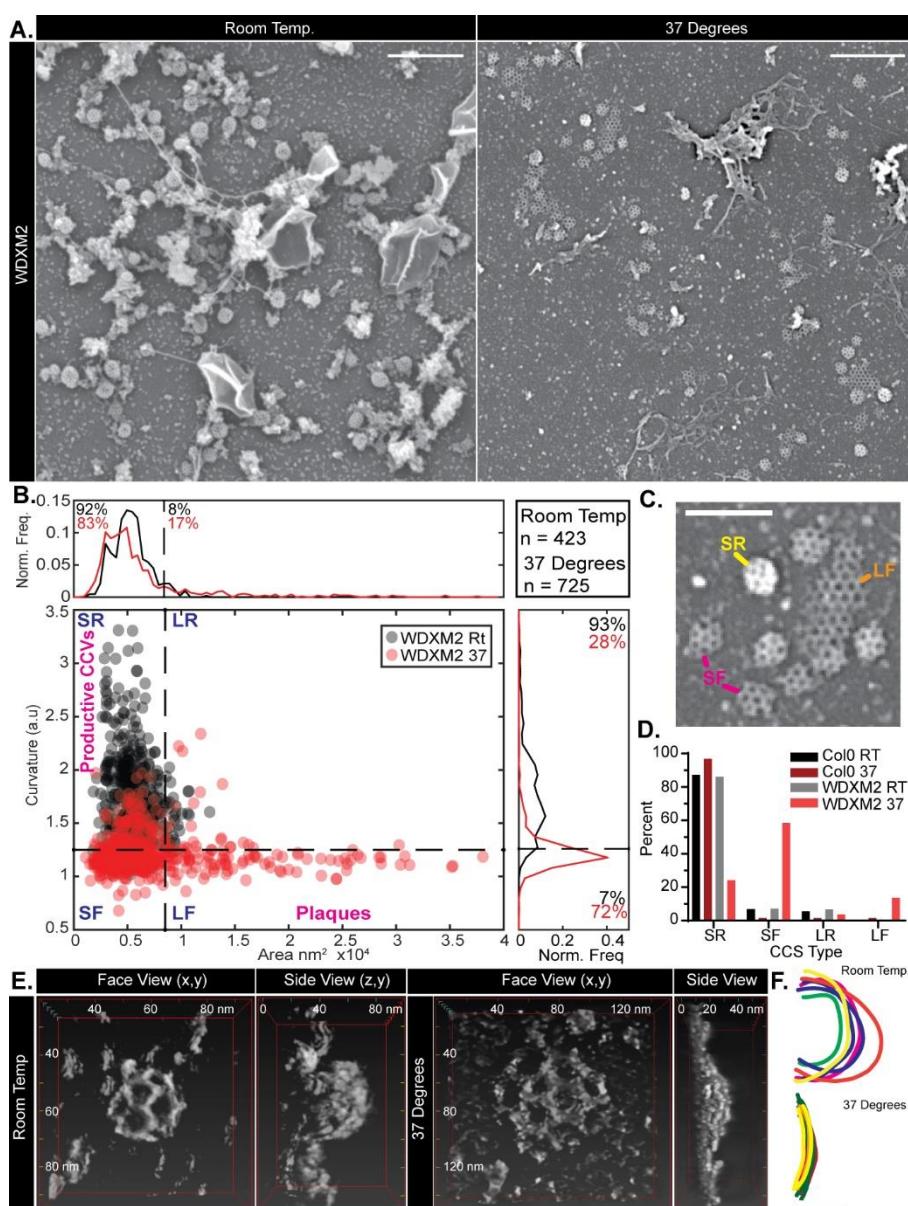

431

432 **Fig. 1. TPLATE is only loosely associated with CCVs.**

433 A) Example spinning disk images and B) kymographs of *Arabidopsis* hypocotyl epidermal
434 cells expressing TPLATE-GFP (green) and CLC2-TagRFP (magenta) at either room-
435 temperature or 12°C. Yellow asterisks note example departure traces where CCVs are visible
436 after dissociation from the PM. C) Quantification of departure traces based on the order of
437 departure (Fig. S1B). N = 14 cells from independent plants, 258 departure traces. ****p <
438 0.001, T-Test. D) Representative western blots of endocytosis proteins during CCV
439 purification and E) quantification of proteins in the CCV fraction relative to an earlier
440 purification step (DFGL). N = 3 independent CCV purifications. *** p > 0.01, T-tests
441 compared to Clathrin heavy chain (CHC).

442 Plots, mean \pm SD. Scale bars, A, 5 μ m; B, 60 s.

443



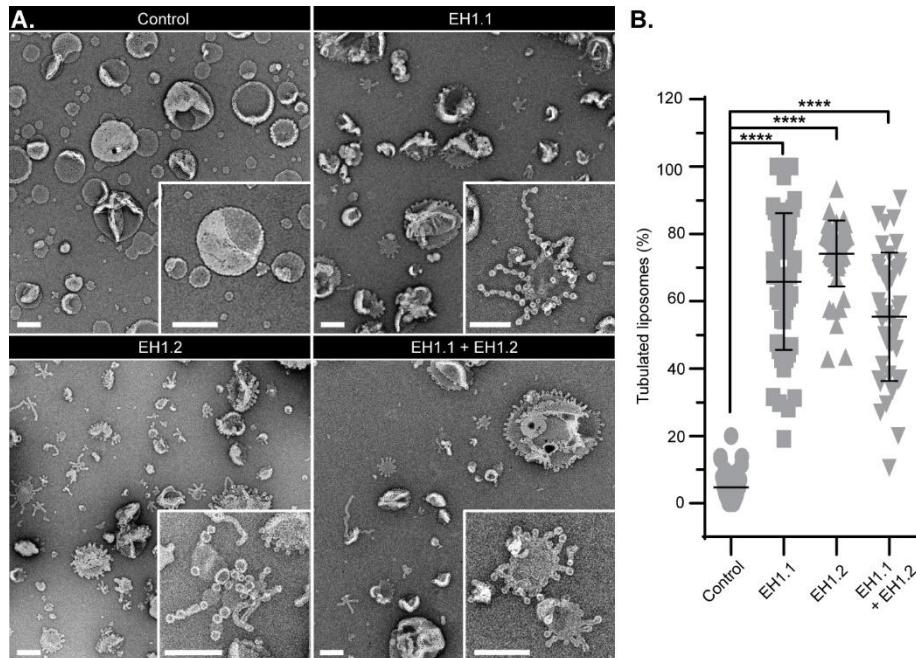
445 **Fig. 2. The TPLATE complex is localized at the rim of CME events**

446 A) Representative 3D-SIM image of an *Arabidopsis* root epidermal cell expressing TPLATE-
447 GFP and CLC2-TagRFP. B) Examples of individual endocytosis structures and line plots
448 (white dotted line) of their fluorescent intensities. C) TIRF-SIM example of TPLATE-GFP
449 dynamics in an *Arabidopsis* root epidermal (See Movie 1 for a larger field of view). Asterisks
450 note when a ring structure is formed. Frame interval is 5 seconds.

451 Scale bars, A, 3 μ m; B and C, 200 nm.

452

453

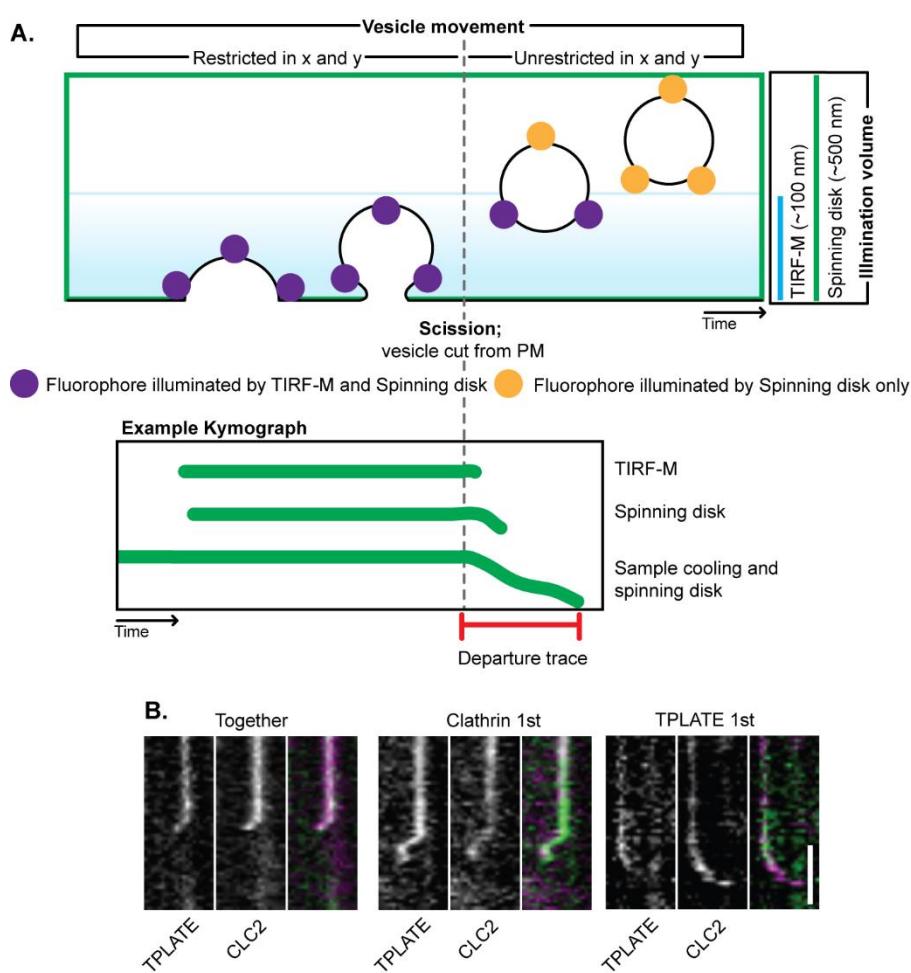

454 **Fig. 3. TPC disruption prevents membrane bending during plant CME**

455 A) SEM of metal replicas of unroofed WDXM2 root protoplast cells. B) Scatter plot of the area
456 and curvature of clathrin-coated structures (CCSs) in WDXM2 cells incubated at room-
457 temperature (RT) (gray dots) or 37°C (red dots) for 4 hours. The graph is divided into 4 sections
458 in order to classify the CCSs based on their shape: SR (small and round), SF (small and flat),
459 LR (large and round) and LF (large and flat, plaques). C) Example CCSs of these
460 classifications. D) Percentage populations of these classifications in wild type (Col-0) and
461 WDXM2 cells subjected to RT or 37°C incubations. Data pooled from multiple experiments;
462 N = Col-0 RT, 3 and 588 CCSs; Col-0 37°C, 3 and 127 CCSs; WDXM2 RT, 6 and 423 CCSs;
463 WDXM2 37°C, 3 and 725 CCSs. E) Reconstructions of example STEM tomograms of clathrin

464 structures in unroofed WDXM2 cells incubated at either RT or 37°C. F) Tracings of
465 reconstructions overlaid each other. N = RT, 6; 37°C, 8.

466 Scale bars, A, 500 nm; C, 200 nm; F, 50 nm

467



468

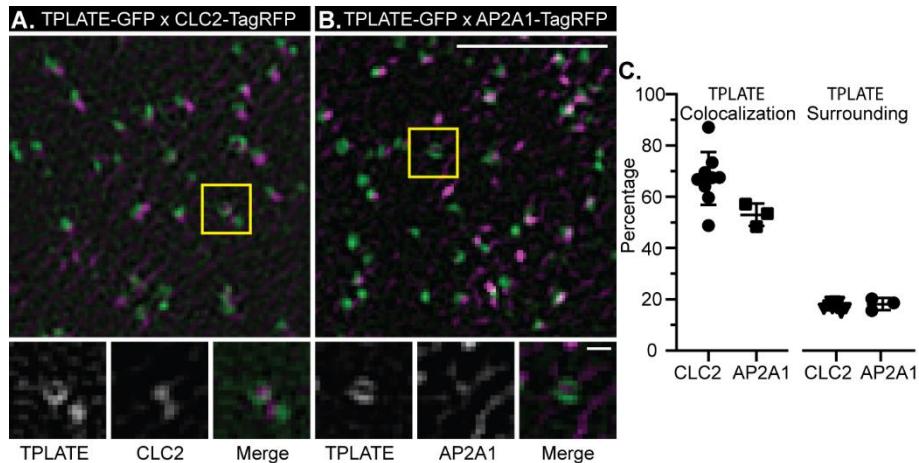
469 **Fig. 4. The AtEH1/Pan1 EH domains have membrane bending activity**

470 A) Example TEM overviews of LUVs after 2 minutes incubation in control conditions, or with
471 EH domain EH1.1, EH1.2 and EH1.1 plus EH1.2. Insets are zooms of representative LUVs.
472 Scale bars, A, 200 nm. B) Quantification of the percentage of LUVs which displayed
473 tubulation. N, control, 40; EH1.1, 47; EH1.2, 52 and EH1.1+EH1.2, 40 images pooled from 3
474 independent experiments. Plot, mean \pm SD. **** p < 0.0001, One-way ANOVA with Dunnett
475 post-test to compare to control.

476 **Supplemental Figures**

477

478 **Fig. S1. Classification of departure events**


479 Related to figure 1.

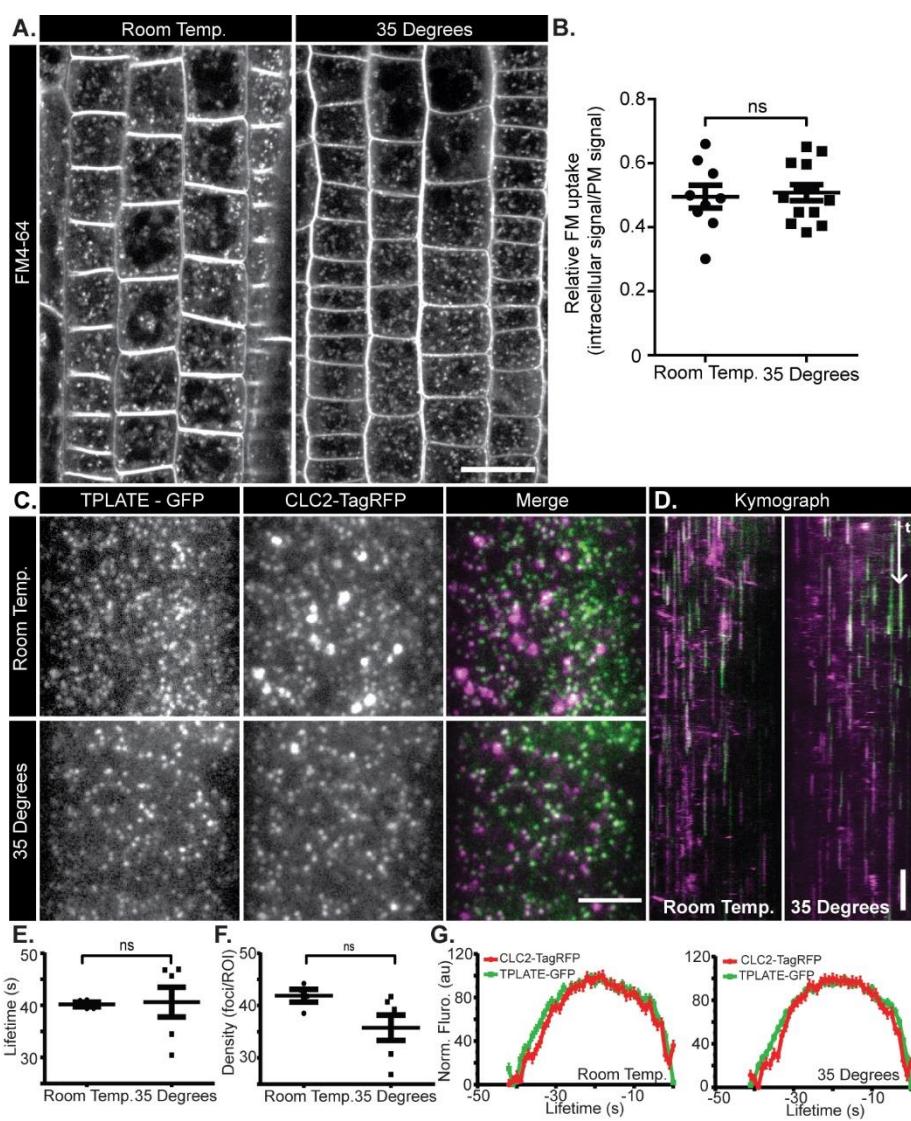
480 A) During CME, as the CCV invaginates on the PM it is restricted in movement in X and Y.
481 This means in a kymograph it will present a linear pattern. However, once it is freed from the
482 PM (gray dotted line), it trafficks away from the PM and thus is able to move in all directions,
483 resulting in a lateral movement in the kymograph trace. Notably, this also results in the CCV
484 moving deeper into the cell and exiting the illumination volume of fluorescence imaging
485 methods, which determine how long the CCV is visible once after being cut from the PM and
486 thus how long the departure trace is on a kymograph. TIRF-M has a Z depth of around 100-
487 200 nm, whereas spinning disc has a Z volume of ~500 nm in Z away from the PM, which
488 means fluorescently labeled CCVs are visible longer with spinning disk and thus have a longer
489 departure trace. This is extended by using sample cooling to slow down cellular dynamics. B)
490 Example departure traces of TPLATE (green) and CLC2 (magenta) at single events of CME

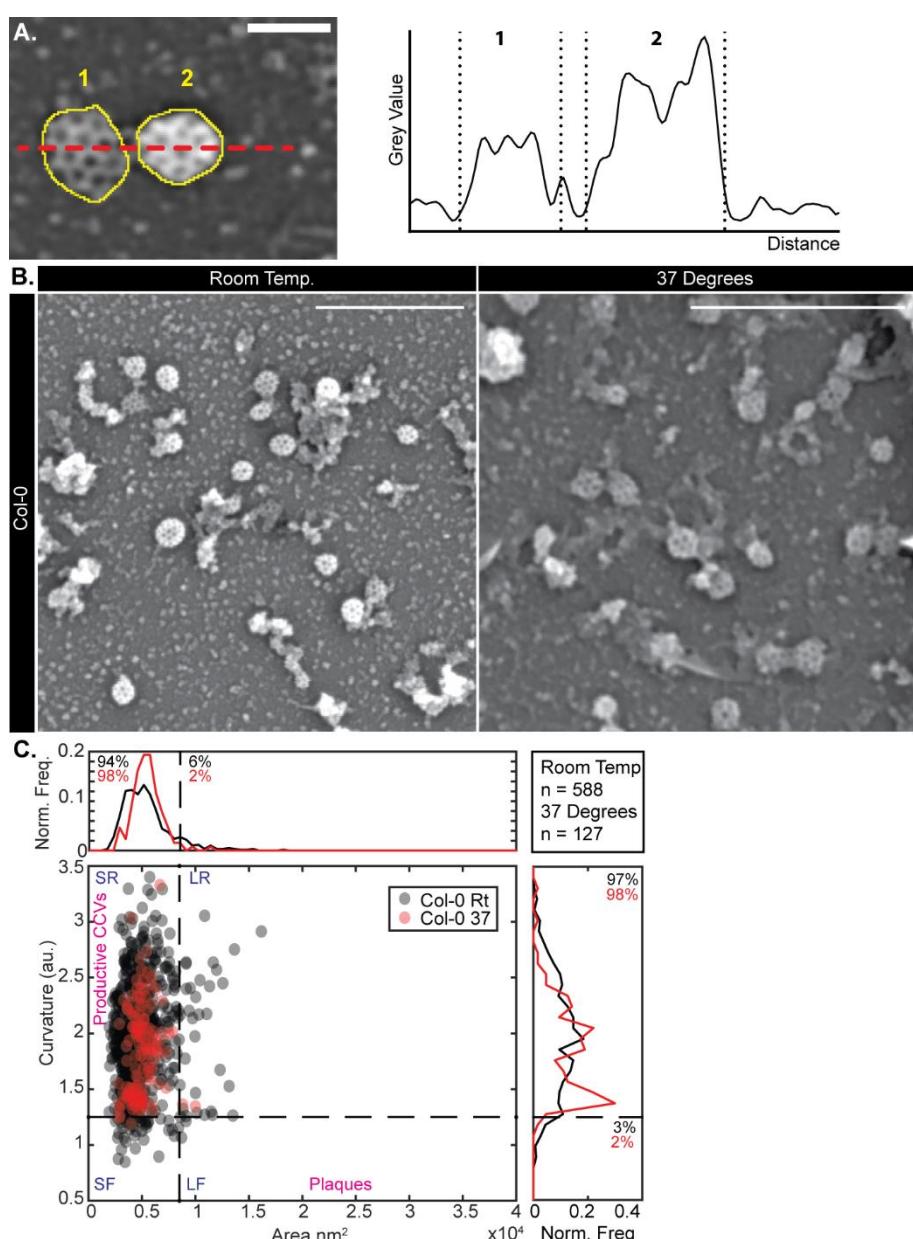
491 demonstrating 4 different types of departure. ‘Together’, where both traces display the same
492 lateral movement at the end of the trace and disappear together, which would be expected if
493 TPLATE is bound to the CCV under CLC2 as it cannot depart the CCV before uncoating
494 occurs before leaving the illumination volume; ‘Clathrin 1st’, where the CLC2 trace disappears
495 before the TPLATE trace, which could indicate that CLC is removed as a layer before TPLATE
496 and ‘TPLATE 1st’, where the TPLATE trace terminates before the CLC2 trace, indicating that
497 it is free to leave the CCV before the clathrin coat dissociates.

498 Scale bar, B, 60 s.

499

500

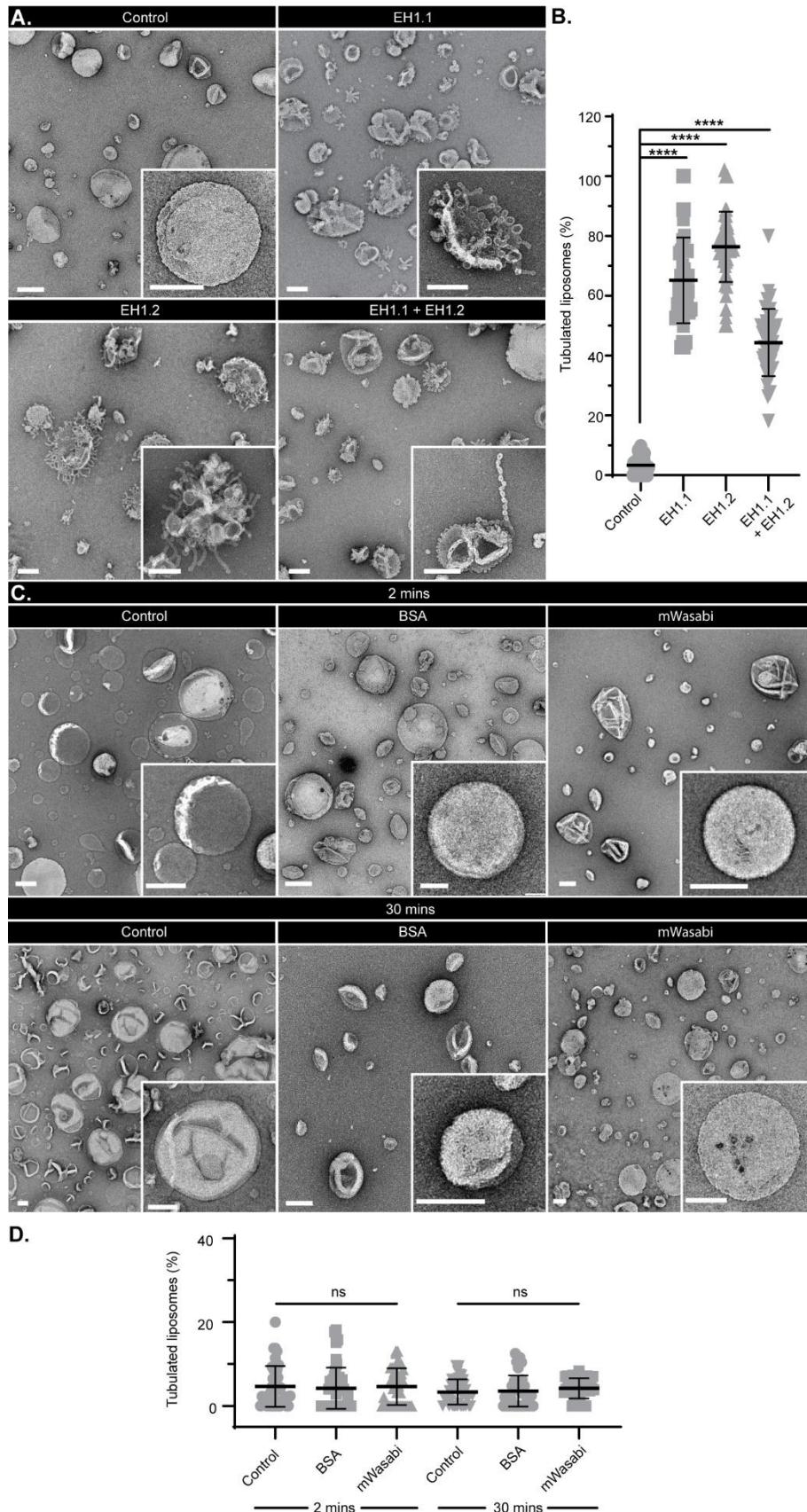

501 **Fig. S2. TPLATE localizes around Clathrin and AP2**


502 Related to figure 2.

503 TIRF-SIM example images of *Arabidopsis* root epidermal cells expressing A) TPLATE-GFP
504 (green) x CLC2-TagRFP (magenta) and B) TPLATE-GFP x AP2A1-TagRFP. Yellow squares
505 denote the area zoomed in for the lower panels. C) Quantification of colocalization of TPLATE
506 with CLC2 and AP2A1, and the percentage of colocalized spots where TPLATE is found to
507 surround CLC2 and AP2A1. Plots, mean \pm SD. N; TPLATE x CLC2, 9 cells; TPLATE x AP2,
508 3 cells.

509 Scale bars, A and B, upper image, 2 μ m, lower panels, 200 nm.

510



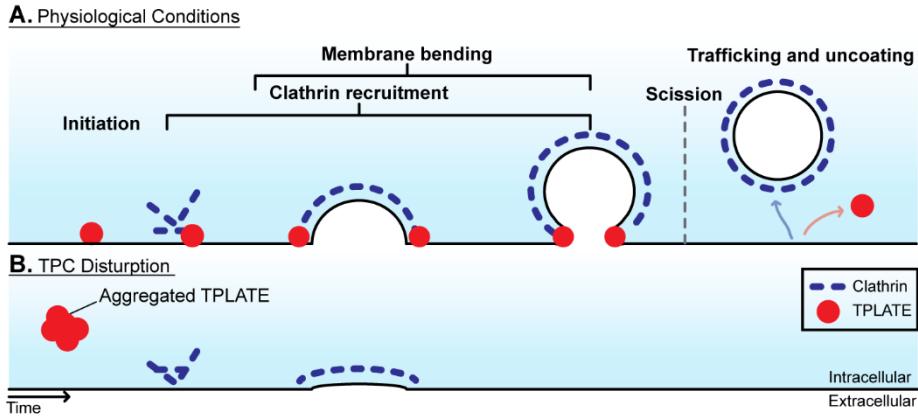
524

525 **Fig. S4. Heat shock does not affect the formation of spherical clathrin-coated vesicles**

526 Related to Figure 3.

527 A) ROIs (yellow dashed line) are drawn around the clathrin-coated vesicles (CCS) to determine
528 the size and the mean gray values. The gray values can be used to estimate the curvature of the
529 CCSs, for example, the flatter CCS (1) has a lower grey value than the rounder CCS (2). B)
530 Representative SEM images of metal replicas of unroofed Col-0 root protoplast cells. C)
531 Scatter plot of the area and curvature of CCSs in wild-type Col-0 cells incubated at room
532 temperature (RT) (gray dots) or 37°C (red dots) for 4 hours and classified into 4 types of CCSs
533 as detailed in the methods. Scale bars, 500 nm. N = RT, 3 and 588 CCSs; 37°C, 3 and 127
534 CCSs. Scale bars, A, 100 nm; B, 500 nm.

535


536 **Fig. S5. AtEH1/Pan1 EH domain membrane bending activity and additional controls**

537 Related to figure 4.

538 A) Example TEM overviews of LUVs after 30 minutes incubation in control conditions, or
539 with EH domain EH1.1, EHD1.2 and EHD1.1 plus EHD1.2. Inserts are zooms of representative
540 LUVs. B) Quantification of the percentage of LUVs which displayed tubulation. N; control,
541 41; EH1.1, 40; EH1.2, 49 and EH1.1+EH1.2, 46 images pooled from 3 independent
542 experiments. C) Example TEM overviews of LUVs after 2 minutes (upper panels), or 30 mins
543 (lower panels) incubation in control conditions, or with BSA, or mWasabi. Inserts are zooms
544 of representative LUVs. D) Quantification of the percentage of LUVs which displayed
545 tubulation. N; control 2 min, 41; BSA 2 min, 48; mWasabi 2 min, 42; control 30 min, 4; BSA
546 30 min, 42 and mWasabi 30 min, 40 images pooled from 3 independent experiments. Plot,
547 mean \pm SD. **** p < 0.001, one-way ANOVA with Dunnett post-test to compare to control,
548 'ns' indicate not significant.

549 Scale bars, 200 nm.

550

551

552 **Fig. S6. The TPC is required for membrane bending during plant CME**

553 A) In physiological conditions TPLATE and the TPC is recruited to the PM and clathrin is then
554 recruited to begin the coat assembly phase of CME. Then the membrane bends creating an
555 invagination against the high turgor pressure, here TPLATE is located at the rim of this
556 invagination and drives the membrane bending. Eventually as the CME vesicle grows, a tight
557 neck is created, where the TPC ring closes and after scission is able to departure the CCV
558 before clathrin as it is not associated within the coat. B) During TPC disruption, TPLATE
559 aggerates in the cytoplasm, while clathrin and AtEH1/Pan1 is still recruited to the PM but no
560 invagination is created as there the full TPC is not present, resulting in the failure of membrane
561 bending during the CME event.

562

563 **Movie S1. TIRF-SIM of root epidermal cells expressing TPLATE-GFP**

564 Example TIRF-SIM time lapse of TPLATE-GFP in an *Arabidopsis* root epidermal cell. Yellow
565 ovals denote TPLATE structures which dynamically form ring structures. Time interval
566 between frames, 5 seconds. Scale bar, 5 μ m.

567 **Movie S2. STEM tomography of a clathrin-coated vesicle in control conditions**

568 180° rotation of a 3D reconstructed STEM tomogram for a CCV in a metal replica of an
569 unroofed WDXM2 cell after 4-hour incubation at room temperature.

570 **Movie S3. STEM tomography of a clathrin-coated vesicle during TPC disruption**

571 180° rotation of a 3D reconstructed STEM tomogram for a CCV in a metal replica of an
572 unroofed WDXM2 cell after 4-hour incubation at 37°C.

573

Construct	Sequence
AtEH1/Pan1 EH1.1	GCGGGACAAAATCCAAACATGGATCAATTGAGGCTTACTTTAACG GCGCAGACCTCGATGGCGATGGCCGCATTCGGGTGCTGAAGCCGT AGGATTCTTCAGGGTTCAGGCCTCTCTAAGCAAGTCCTGCCAG ATTTGGAGTCTCAGTGATAGATCTCACTCCGGTTCTCGATGCC AGAATTCTATAACTCGTTGCGCTCGTAACCGTAGCTCAATCGAA GAGAGATCTCACCTCTGAAATTGTCAATGCTGCGTTAACACGCCT GCTGCAGCGAAAATCCCGCCTCTAAGATAAAATCTCAGCGCA
AtEH1/Pan1 EH1.2	GGTAACAAATCAGCCGCTTGGCCAAAATGAAACCGTCCGACGTAC AAAAATATACTAAAGTCTTCATGGAAGTTGACAGTGACAAGGACGG TAAAATAACTGGAGAACAGGCTCGTAATCTCTTCTTCGTGGCGC TTGCCTCGTGAAGTTGAAGCAGCTGTGGAGCTTCTGATCAGG ACAACGACACCATGCTGAGTCTCGGTGAGTTCTGTATTCTTGTA CCTGATGGAGCGCTATCGCGAGGGAAAGGCCATTGCCACCGCATTG CCGAGCTCTATAATGTTGATGAAACTCTCTGTCG
pET_TST_EH1.1_fwd	GAAAACCTGTATTTCAGGGCGCGGGACAAAATCCAAACATG
pET_TST_EH1.1_rev	TCGAGTGCAGCCGCAAGCCTATGCGCTGAGATTATCTTAGGAG
pET_TST_EH1.2_fwd	GAAAACCTGTATTTCAGGGCGGTAAACAATCAGCCGCTTG
pET_TST_EH1.2_rev	TCGAGTGCAGCCGCAAGCCTACGACAGAAGAGTTCATCAAACATT ATAG

574

575 **Table 1 – Codon optimized AtEH1/Pan1 EH domain sequences and primers used**