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ABSTRACT

Defining appropriate null expectations for species distribution hypotheses is important
because sampling bias and spatial autocorrelation can produce realistic, but ecologically
meaningless, geographic patterns. Generating null species occurrences with similar spatial
structure to observed data can help overcome these problems, but existing methods focus on
single or pairs of species and do not incorporate between-species spatial structure that may
occlude comparative biogeographic analyses. Here, we describe an algorithm for generating
randomised species occurrence points that mimic the within- and between-species spatial
structure of real datasets and implement it in a new R package - fauxcurrence. The algorithm
can be implemented on any geographic domain for any number of species, limited only by
computing power. To demonstrate its utility, we apply the algorithm to two common
analysis-types: testing the fit of species distribution models (SDMs) and evaluating niche-
overlap. The method works well on all tested datasets within reasonable timescales. We
found that many SDMs, despite a good fit to the data, were not significantly better than null
expectations and identified only two cases (out of a possible 32) of significantly higher niche
divergence than expected by chance. The package is user-friendly, flexible and has many
potential applications beyond those tested here, such as joint SDM evaluation and species
co-occurrence analysis, spanning the areas of ecology, evolutionary biology and
biogeography.

KEYWORDS

Environmental niche model; Joint species distribution modelling; Niche conservatism; Niche

divergence; Niche overlap; Null biogeographical model; Species distribution model
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1 INTRODUCTION

Eco-geographical hypothesis testing using species occurrence data can be hampered by
spatial autocorrelation and the difficulty of defining appropriate null expectations (Bahn &
Mcgill, 2007; Beale, Lennon, & Gimona, 2008; Chapman, 2010; Fourcade, Besnard, &
Secondi, 2018; Moore, Bagchi, Aiello-Lammens, & Schlichting, 2018). A major issue is that
spatial clustering of conspecific, or separation of heterospecific, occurrence records can be
affected by multiple factors, which are often difficult to disentangle. These include: 1) habitat
suitability (Phillips, Anderson, & Schapire, 2006), ii) dispersal limitation (Glor & Warren,
2010), ii1) interactions between individuals of the same or different species such as
conspecific attraction, competitive exclusion or mutualism (Mielke et al., 2020), or iv)
sampling bias, where occurrence records are more likely to be collected from more easily

accessible or intensively studied areas (Phillips et al., 2009).

One approach to overcome these issues has been to use null species occurrences to define the
expectations if only the inherent spatial structure within species has shaped their distributions
(Beale et al., 2008; Algar, Mahler, Glor, & Losos, 2013). To define the null expectation,
these approaches use an iterative procedure to produce null species distributions with similar
spatial structure to observed occurrences, excluding any consideration of environment or
specific geographic location. While these methods are well-suited to testing habitat-suitability
hypotheses for single species, they do not take spatial structure between species into account,
making them unsuitable for testing multispecies hypotheses involving, for example, niche
overlap or range boundaries. Some methods designed to test niche overlap hypotheses
employ null models for pairs of species, but these either do not take spatial structure into

account (Warren, Glor, & Turelli, 2008), or simply translocate the entire set of occurrence
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82  points. This preserves spatial structure but limits their application to species which are range-

83  restricted relative to the study region (Nunes & Pearson, 2017).

84

85  Here, we present a method to fill this gap, which is implemented in a new R package —

86  fauxcurrence version 1.0 (available at https://github.com/ogosborne/fauxcurrence). The

87  package can produce null species occurrences which preserve the spatial structure within and

88  between an arbitrary number of species, and provides many options to tailor these

89  occurrences to the user’s needs. We demonstrate the utility of the package using a dataset of

90 22 species of plants, vertebrates and arthropods. We use the resulting null occurrence points

91  to test the significance of species distribution models (SDMs) and to test for significant

92 deviations from null expectations of niche overlap between species.

93

94 2 MATERIALS AND METHODS

95 2.1 Method description

96  Our method (Fig. 1a) has three main modes of operation, distinguished by how inter-point

97  distances are used to define spatial structure. Within-species distances (divided into one

98  subset per species) are always included and can also be used alone (which we refer to here as

99  the “Intra” null model; Fig. 1b). The total set of between-species distances can be divided
100 into subsets in two ways: either as sets of general between-species distances per species (i.e.,
101  the distances from a species’ occurrence points to all heterospecific occurrence points; the
102 “Inter” null model; Fig. 1b) or as a separate set of distances between each pair of species in
103 the dataset (the “Inter-sep” model; Fig. 1b; Appendix 1.1).
104
105  The user provides a set of species occurrence points and a raster defining the study area. The

106  algorithm begins by randomly generating one simulated occurrence point per species. It then
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107  adds occurrence points for each species by drawing each new point D distance away from a
108  random existing conspecific point (where D is sampled from the empirical distribution

109  function of observed within-species distances) until each species has the same number of
110 occurrences as in the observed dataset (Appendix 1.7).

111

112 Once the initial set of simulated points are generated, the fit of their spatial structure to that of
113 the observed points is iteratively improved. For each iteration, one point is replaced and the
114  match between null and observed interpoint distances is evaluated using discrete Kullback-
115  Leibler (KL) divergence (Kullback & Leibler, 1951), where smaller values indicate a better
116  match between the simulated and observed points. Since there are multiple interpoint distance
117  distributions (i.e., within- and between-species distances for multiple species or pairs of

118  species), a weighted mean of KL-divergence across all distributions is used, weighted such
119  that within- and between-species distances contribute equally. The point replacement is only
120  retained if it improves the match, and this procedure is repeated until either no improvement
121 has been made for a set number of iterations or a maximum iteration limit has reached (Fig.
122 1c-e; see Appendix 1 for full details).

123

124

125
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Figure 1. Overview of the method. A flowchart (a) shows the basic functioning of the
algorithm: initial null points are generated based on observed inter-point distances, these are
then iteratively improved. The algorithm finishes when the number of iterations with no
improvement (n.flat) reaches a user-defined limit. There are three classes of inter-point
distance sets in the algorithm (b), within-species (used in all models), general between-
species (used in the /nter model) and pairwise between-species (used in the Inter-sep model).
The circles to the right of each indicate which null models they are used in. Panels (c-¢) show
an example run of the /nfer model. Kullback-Leibler divergence decreases across iterations
(c) and this improvement can be clearly seen when comparing the initial and final null

occurrence points (d; map panels). The left of each split violin plot (e) shows the density of
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141  observed interpoint distances for each of the distance sets in the model and the right shows
142 those of the null, which are more similar to the observed distances in the final null (bottom)
143 than the initial null (top).

144

145 2.2 Test data

146  We tested the method on seven species occurrence datasets from Sulawesi, Indonesia each
147  containing between one and six species from a single genus (Fig. S1a; Appendix 2). We ran
148  the Intra model on all datasets, and the Inter model on all datasets with over one species.
149  Since the Inter and Inter-sep models are identical for species pairs, we only ran the Inter-sep
150  model for datasets with over two species. The iterative improvement was continued until
151  there had been no improvement for 10,000 iterations. For each dataset/model combination,
152  we produced 1,000 independent, null occurrence replicates, each with similar spatial

153 structure, but differing in the final locations selected by the algorithm.

154

155 2.3 SDM model-fitting and niche overlap

156  We used Maxent v. 3.4.1 (Phillips et al., 2006) to build Species Distribution Models (SDMs)
157  for all species using the 19 BIOCLIM climate variables and altitude from the WorldClim1
158  database (Hijmans, Cameron, Parra, Jones, & Jarvis, 2005). To determine if SDMs for the
159  observed data had a significantly better fit than the null models, we calculated P-values by
160  comparison of area under the receiver operating characteristic curve (AUC) in SDMs built
161  from observed data to those from all null model replicates. For datasets with more than one
162 species, we compared null and observed niche overlap using Schoener’s D (Schoener, 1968)
163  and Warren’s I (Warren et al., 2008), between all pairs of congeneric species (See Appendix
164 3 for full details).

165
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166 3 RESULTS

167 3.1 Method performance

168  Average time per iteration ranged from 3.2 milliseconds (ms) to 21.5 ms and the mean

169  number of iterations ranged from 48,155 to 341,610 (Fig. S1). Number of occurrences was
170  the best predictor of number of iterations to model completion, although number of species
171  also had an effect (Table S1). Plotting KL. divergence across iterations suggested that 10,000
172 iterations without improvement was more than sufficient to minimise the KL-divergence
173 statistic for most datasets (Fig. S2-S4).

174

175 3.2 Application to SDM model-fitting and niche overlap

176

177  The AUC values were over 0.8 for 13 of 22 species and over 0.9 for four species, values

178  typically interpreted as “excellent” or “outstanding” discrimination, respectively (Hosmer,
179  Lemeshow, & Sturdivant, 2013). Nevertheless, just six of these were significantly greater
180  than null expectations according to at least one of our null model types (Fig. 2a-c) and where
181  they were significantly greater than those of one null model type, they were often not

182  significantly different to those of the others (Fig. 2a-d). In fact, SDMs for only two species
183  had a significantly better AUC than all applied null models (Fig. 2d).

184

185  Observed niche divergence differed from null expectations in only two species pairs, both of
186  which showed significant niche divergence (Fig. S5-S8). Both of these involved Cyrtandra
187  geocarpa, which was also one of only two species whose SDM fit significantly better than
188  those from all the null models (Fig. 2). Both Inter and Inter-sep null models, and both niche
189  overlap statistics found the same two species pairs to be significant (Figs. S5-S8).

190
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Figure 2. The relationship between Area Under Curve (AUC) of the Species Distribution
Models (SDMs) for observed occurrences, and the P-values for comparison to AUC of each
null model type (a-c). Dotted lines mark 0.05 on the P-value axis, the solid line is a linear
regression line and Pearson’s correlation is shown in the top-right of each plot. A Venn
diagram (d) shows the overlap in significance (P < 0.05) between the three models. Each

labelled circle contains species with significantly higher observed AUC than those of
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198  simulated data of each null model type and those which were significantly higher than

199  simulated data from multiple null models are shown in the appropriate intersection (those
200  outside the circles were not significant: “n.s”). Where all implemented models agree, symbols
201  are in bold. Species symbols are shown in the legend (e).

202

203

204 4 DISCUSSION

205  Here, we describe a new tool to help overcome the difficulties of defining null expectations
206  when working with multi-species occurrence data. Our case study demonstrates the utility of
207  the method. Although SDMs were calculated individually for each species, the between-

208  species distances used in the null model had a major effect on their significance. For

209  example, Draco spilonotus had a significantly better fit than the /ntra null model (P = 0.001),
210  but was not significantly different from either the Inter or Inter-sep models (P =0.18 and P =
211 0.27, respectively). Such a pattern may be expected if, for example, competitive exclusion
212 between species, rather than climate suitability, was responsible for the geographical

213 separation of species into ranges that happen to have distinct climates (Godsoe, Franklin, &
214  Blanchet, 2017). While AUC and P-values were highly correlated, many species with very
215  high AUC scores did not have a significantly better fit than the null models. The lowest AUC
216  score which was significantly higher than any of the null models was 0.76, underlining that
217  SDMs with low AUC scores (e.g., < 0.75) should be treated with great caution. Using our
218  method to demonstrate that SDMs fit significantly better than null expectations will provide
219  much greater certainty than simple inspection of AUC.

220

221  We also demonstrated the applicability of our method to identify significant niche divergence

222 (or niche conservatism). Our method has advantages over existing approaches. The approach

10
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223 of Nunes & Pearson (2017) creates null replicates by translocating and rotating observed
224 species occurrences. This would clearly be inappropriate for a study region such as Sulawesi,
225  since most rotations and translocations would result in a large proportion of occurrences

226  being translocated to the sea, leading to a high number of similar replicates, as noted by the
227  authors (Nunes & Pearson, 2017). The contorted geography of Sulawesi is not unique, and
228  many intensely studied locations such as Isabela Island in the Galapagos archipelago and
229  Lord Howe Island, Australia, also fall into this category. It is possible our model could have
230  similar issues in extreme cases, where dense occurrence points cover a very large proportion
231  of the study region. However, we expect it to work on a wider range of datasets due to our
232 use of “as similar as possible” rather than identical spatial structure and the capability to

233 include overland distances.

234

235  Aside from the two applications shown here, there are many other potential uses for the

236  package. For example, the performance of joint species distribution models (Pollock et al.,
237  2014), which jointly model environmental and community effects on species distributions,
238  could be assessed with our approach in a similar way to our tests of SDM fit. Other potential
239  applications include identifying significant effects of biotic factors (other species) on a focal
240  species' distribution (Algar et al., 2013; Giannini, Chapman, Saraiva, Alves-dos-Santos, &
241  Biesmeijer, 2013) where the comparison of different null models can give insight into the
242  relevance of pairwise and complex biotic interactions, and testing for significant co-

243 occurrence of range-boundaries across clades (Swenson & Howard, 2005). More generally,
244  fauxcurrence-generated occurrences could be used in any theoretical biogeographical

245  application where realistic occurrences of species and clades are required. Overall, the

246  method is easy to use, flexible, and can add rigour and insight into investigations of a wide

247  range of problems in ecology, evolution and biogeography.

11
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