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 32 

ABSTRACT 33 

Defining appropriate null expectations for species distribution hypotheses is important 34 

because sampling bias and spatial autocorrelation can produce realistic, but ecologically 35 

meaningless, geographic patterns. Generating null species occurrences with similar spatial 36 

structure to observed data can help overcome these problems, but existing methods focus on 37 

single or pairs of species and do not incorporate between-species spatial structure that may 38 

occlude comparative biogeographic analyses. Here, we describe an algorithm for generating 39 

randomised species occurrence points that mimic the within- and between-species spatial 40 

structure of real datasets and implement it in a new R package - fauxcurrence. The algorithm 41 

can be implemented on any geographic domain for any number of species, limited only by 42 

computing power. To demonstrate its utility, we apply the algorithm to two common 43 

analysis-types: testing the fit of species distribution models (SDMs) and evaluating niche-44 

overlap. The method works well on all tested datasets within reasonable timescales. We 45 

found that many SDMs, despite a good fit to the data, were not significantly better than null 46 

expectations and identified only two cases (out of a possible 32) of significantly higher niche 47 

divergence than expected by chance. The package is user-friendly, flexible and has many 48 

potential applications beyond those tested here, such as joint SDM evaluation and species 49 

co-occurrence analysis, spanning the areas of ecology, evolutionary biology and 50 

biogeography. 51 

KEYWORDS 52 

Environmental niche model; Joint species distribution modelling; Niche conservatism; Niche 53 

divergence; Niche overlap; Null biogeographical model; Species distribution model  54 

 55 
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1 INTRODUCTION 58 

Eco-geographical hypothesis testing using species occurrence data can be hampered by 59 

spatial autocorrelation and the difficulty of defining appropriate null expectations (Bahn & 60 

Mcgill, 2007; Beale, Lennon, & Gimona, 2008; Chapman, 2010; Fourcade, Besnard, & 61 

Secondi, 2018; Moore, Bagchi, Aiello-Lammens, & Schlichting, 2018). A major issue is that 62 

spatial clustering of conspecific, or separation of heterospecific, occurrence records can be 63 

affected by multiple factors, which are often difficult to disentangle. These include: i) habitat 64 

suitability (Phillips, Anderson, & Schapire, 2006), ii) dispersal limitation (Glor & Warren, 65 

2010), iii) interactions between individuals of the same or different species such as 66 

conspecific attraction, competitive exclusion or mutualism (Mielke et al., 2020), or iv) 67 

sampling bias, where occurrence records are more likely to be collected from more easily 68 

accessible or intensively studied areas (Phillips et al., 2009).  69 

 70 

One approach to overcome these issues has been to use null species occurrences to define the 71 

expectations if only the inherent spatial structure within species has shaped their distributions 72 

(Beale et al., 2008; Algar, Mahler, Glor, & Losos, 2013). To define the null expectation, 73 

these approaches use an iterative procedure to produce null species distributions with similar 74 

spatial structure to observed occurrences, excluding any consideration of environment or 75 

specific geographic location. While these methods are well-suited to testing habitat-suitability 76 

hypotheses for single species, they do not take spatial structure between species into account, 77 

making them unsuitable for testing multispecies hypotheses involving, for example, niche 78 

overlap or range boundaries. Some methods designed to test niche overlap hypotheses 79 

employ null models for pairs of species, but these either do not take spatial structure into 80 

account (Warren, Glor, & Turelli, 2008), or simply translocate the entire set of occurrence 81 
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points. This preserves spatial structure but limits their application to species which are range-82 

restricted relative to the study region (Nunes & Pearson, 2017).  83 

 84 

Here, we present a method to fill this gap, which is implemented in a new R package 3 85 

fauxcurrence version 1.0 (available at https://github.com/ogosborne/fauxcurrence). The 86 

package can produce null species occurrences which preserve the spatial structure within and 87 

between an arbitrary number of species, and provides many options to tailor these 88 

occurrences to the user9s needs. We demonstrate the utility of the package using a dataset of 89 

22 species of plants, vertebrates and arthropods. We use the resulting null occurrence points 90 

to test the significance of species distribution models (SDMs) and to test for significant 91 

deviations from null expectations of niche overlap between species. 92 

 93 

2 MATERIALS AND METHODS 94 

2.1 Method description 95 

Our method (Fig. 1a) has three main modes of operation, distinguished by how inter-point 96 

distances are used to define spatial structure. Within-species distances (divided into one 97 

subset per species) are always included and can also be used alone (which we refer to here as 98 

the <Intra= null model; Fig. 1b). The total set of between-species distances can be divided 99 

into subsets in two ways: either as sets of general between-species distances per species (i.e., 100 

the distances from a species9 occurrence points to all heterospecific occurrence points; the 101 

<Inter= null model; Fig. 1b) or as a separate set of distances between each pair of species in 102 

the dataset (the <Inter-sep= model; Fig. 1b; Appendix 1.1).  103 

 104 

The user provides a set of species occurrence points and a raster defining the study area. The 105 

algorithm begins by randomly generating one simulated occurrence point per species. It then 106 
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 5 

adds occurrence points for each species by drawing each new point D distance away from a 107 

random existing conspecific point (where D is sampled from the empirical distribution 108 

function of observed within-species distances) until each species has the same number of 109 

occurrences as in the observed dataset (Appendix 1.7).  110 

 111 

Once the initial set of simulated points are generated, the fit of their spatial structure to that of 112 

the observed points is iteratively improved. For each iteration, one point is replaced and the 113 

match between null and observed interpoint distances is evaluated using discrete Kullback-114 

Leibler (KL) divergence (Kullback & Leibler, 1951), where smaller values indicate a better 115 

match between the simulated and observed points. Since there are multiple interpoint distance 116 

distributions (i.e., within- and between-species distances for multiple species or pairs of 117 

species), a weighted mean of KL-divergence across all distributions is used, weighted such 118 

that within- and between-species distances contribute equally. The point replacement is only 119 

retained if it improves the match, and this procedure is repeated until either no improvement 120 

has been made for a set number of iterations or a maximum iteration limit has reached (Fig. 121 

1c-e; see Appendix 1 for full details).   122 

 123 

 124 

 125 

 126 

 127 

 128 

 129 
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 130 

Figure 1.  Overview of the method. A flowchart (a) shows the basic functioning of the 131 

algorithm: initial null points are generated based on observed inter-point distances, these are 132 

then iteratively improved. The algorithm finishes when the number of iterations with no 133 

improvement (n.flat) reaches a user-defined limit. There are three classes of inter-point 134 

distance sets in the algorithm (b), within-species (used in all models), general between-135 

species (used in the Inter model) and pairwise between-species (used in the Inter-sep model). 136 

The circles to the right of each indicate which null models they are used in. Panels (c-e) show 137 

an example run of the Inter model. Kullback-Leibler divergence decreases across iterations 138 

(c) and this improvement can be clearly seen when comparing the initial and final null 139 

occurrence points (d; map panels). The left of each split violin plot (e) shows the density of 140 
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observed interpoint distances for each of the distance sets in the model and the right shows 141 

those of the null, which are more similar to the observed distances in the final null (bottom) 142 

than the initial null (top).  143 

 144 

2.2 Test data 145 

We tested the method on seven species occurrence datasets from Sulawesi, Indonesia each 146 

containing between one and six species from a single genus (Fig. S1a; Appendix 2). We ran 147 

the Intra model on all datasets, and the Inter model on all datasets with over one species. 148 

Since the Inter and Inter-sep models are identical for species pairs, we only ran the Inter-sep 149 

model for datasets with over two species. The iterative improvement was continued until 150 

there had been no improvement for 10,000 iterations. For each dataset/model combination, 151 

we produced 1,000 independent, null occurrence replicates, each with similar spatial 152 

structure, but differing in the final locations selected by the algorithm. 153 

 154 

2.3 SDM model-fitting and niche overlap 155 

We used Maxent v. 3.4.1 (Phillips et al., 2006) to build Species Distribution Models (SDMs) 156 

for all species using the 19 BIOCLIM climate variables and altitude from the WorldClim1 157 

database (Hijmans, Cameron, Parra, Jones, & Jarvis, 2005). To determine if SDMs for the 158 

observed data had a significantly better fit than the null models, we calculated P-values by 159 

comparison of area under the receiver operating characteristic curve (AUC) in SDMs built 160 

from observed data to those from all null model replicates. For datasets with more than one 161 

species, we compared null and observed niche overlap using Schoener9s D (Schoener, 1968) 162 

and Warren9s I (Warren et al., 2008), between all pairs of congeneric species (See Appendix 163 

3 for full details).  164 

 165 
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3 RESULTS 166 

3.1 Method performance 167 

Average time per iteration ranged from 3.2 milliseconds (ms) to 21.5 ms and the mean 168 

number of iterations ranged from 48,155 to 341,610 (Fig. S1). Number of occurrences was 169 

the best predictor of number of iterations to model completion, although number of species 170 

also had an effect (Table S1). Plotting KL divergence across iterations suggested that 10,000 171 

iterations without improvement was more than sufficient to minimise the KL-divergence 172 

statistic for most datasets (Fig. S2-S4).  173 

 174 

3.2 Application to SDM model-fitting and niche overlap 175 

 176 

The AUC values were over 0.8 for 13 of 22 species and over 0.9 for four species, values 177 

typically interpreted as <excellent= or <outstanding= discrimination, respectively (Hosmer, 178 

Lemeshow, & Sturdivant, 2013). Nevertheless, just six of these were significantly greater 179 

than null expectations according to at least one of our null model types (Fig. 2a-c) and where 180 

they were significantly greater than those of one null model type, they were often not 181 

significantly different to those of the others (Fig. 2a-d). In fact, SDMs for only two species 182 

had a significantly better AUC than all applied null models (Fig. 2d). 183 

 184 

Observed niche divergence differed from null expectations in only two species pairs, both of 185 

which showed significant niche divergence (Fig. S5-S8). Both of these involved Cyrtandra 186 

geocarpa, which was also one of only two species whose SDM fit significantly better than 187 

those from all the null models (Fig. 2). Both Inter and Inter-sep null models, and both niche 188 

overlap statistics found the same two species pairs to be significant (Figs. S5-S8).  189 

 190 
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 191 

Figure 2. The relationship between Area Under Curve (AUC) of the Species Distribution 192 

Models (SDMs) for observed occurrences, and the P-values for comparison to AUC of each 193 

null model type (a-c). Dotted lines mark 0.05 on the P-value axis, the solid line is a linear 194 

regression line and Pearson9s correlation is shown in the top-right of each plot. A Venn 195 

diagram (d) shows the overlap in significance (P < 0.05) between the three models. Each 196 

labelled circle contains species with significantly higher observed AUC than those of 197 
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simulated data of each null model type and those which were significantly higher than 198 

simulated data from multiple null models are shown in the appropriate intersection (those 199 

outside the circles were not significant: <n.s=). Where all implemented models agree, symbols 200 

are in bold. Species symbols are shown in the legend (e). 201 

 202 

 203 

4 DISCUSSION 204 

Here, we describe a new tool to help overcome the difficulties of defining null expectations 205 

when working with multi-species occurrence data. Our case study demonstrates the utility of 206 

the method. Although SDMs were calculated individually for each species, the between-207 

species distances used in the null model had a major effect on their significance. For 208 

example, Draco spilonotus had a significantly better fit than the Intra null model (P = 0.001), 209 

but was not significantly different from either the Inter or Inter-sep models (P = 0.18 and P = 210 

0.27, respectively). Such a pattern may be expected if, for example, competitive exclusion 211 

between species, rather than climate suitability, was responsible for the geographical 212 

separation of species into ranges that happen to have distinct climates (Godsoe, Franklin, & 213 

Blanchet, 2017). While AUC and P-values were highly correlated, many species with very 214 

high AUC scores did not have a significantly better fit than the null models. The lowest AUC 215 

score which was significantly higher than any of the null models was 0.76, underlining that 216 

SDMs with low AUC scores (e.g., < 0.75) should be treated with great caution. Using our 217 

method to demonstrate that SDMs fit significantly better than null expectations will provide 218 

much greater certainty than simple inspection of AUC. 219 

 220 

We also demonstrated the applicability of our method to identify significant niche divergence 221 

(or niche conservatism). Our method has advantages over existing approaches. The approach 222 
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of Nunes & Pearson (2017) creates null replicates by translocating and rotating observed 223 

species occurrences. This would clearly be inappropriate for a study region such as Sulawesi, 224 

since most rotations and translocations would result in a large proportion of occurrences 225 

being translocated to the sea, leading to a high number of similar replicates, as noted by the 226 

authors (Nunes & Pearson, 2017). The contorted geography of Sulawesi is not unique, and 227 

many intensely studied locations such as Isabela Island in the Galápagos archipelago and 228 

Lord Howe Island, Australia, also fall into this category. It is possible our model could have 229 

similar issues in extreme cases, where dense occurrence points cover a very large proportion 230 

of the study region. However, we expect it to work on a wider range of datasets due to our 231 

use of <as similar as possible= rather than identical spatial structure and the capability to 232 

include overland distances.  233 

 234 

Aside from the two applications shown here, there are many other potential uses for the 235 

package. For example, the performance of joint species distribution models (Pollock et al., 236 

2014), which jointly model environmental and community effects on species distributions, 237 

could be assessed with our approach in a similar way to our tests of SDM fit. Other potential 238 

applications include identifying significant effects of biotic factors (other species) on a focal 239 

species' distribution (Algar et al., 2013; Giannini, Chapman, Saraiva, Alves-dos-Santos, & 240 

Biesmeijer, 2013) where the comparison of different null models can give insight into the 241 

relevance of pairwise and complex biotic interactions, and testing for significant co-242 

occurrence of range-boundaries across clades (Swenson & Howard, 2005). More generally, 243 

fauxcurrence-generated occurrences could be used in any theoretical biogeographical 244 

application where realistic occurrences of species and clades are required. Overall, the 245 

method is easy to use, flexible, and can add rigour and insight into investigations of a wide 246 

range of problems in ecology, evolution and biogeography. 247 
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